
HAL Id: hal-04248699
https://hal.science/hal-04248699

Submitted on 18 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Weighted online search
Spyros Angelopoulos, Konstantinos Panagiotou

To cite this version:
Spyros Angelopoulos, Konstantinos Panagiotou. Weighted online search. Journal of Computer and
System Sciences, 2023, 138, pp.103457. �10.1016/j.jcss.2023.05.002�. �hal-04248699�

https://hal.science/hal-04248699
https://hal.archives-ouvertes.fr

Weighted Online Search

Spyros Angelopoulos1 and Konstantinos Panagiotou2

1CNRS and LIP6-Sorbonne University, Paris, France, spyros.angelopoulos@lip6.fr

2LMU Munich, Munich, Germany, kpanagio@lmath.lmu.de

Abstract

We study the general setting of weighted search in which a number of weighted targets are

hidden in a star-like environment, and a mobile searcher must locate a subset of targets with

aggregate weight at least a given value W . The cost of the strategy is the distance traversed by

the searcher, and its performance is measured by the worst-case ratio of the cost incurred by the

searcher over the cost of an on optimal, offline strategy. This is the first study of a setting that

generalizes several problems in search theory such as searching for a single target and searching

for unit-weighted targets. We present and analyze a near-optimal strategy using an approach

based on parameterized analysis. This problem formulates settings of resource allocation among

parallel tasks under uncertainty; specifically, we demonstrate further applications in the design

of interruptible systems based on adaptive scheduling of contract algorithms.

Keywords: Search problems, competitive analysis, ray search, contract scheduling.

1 Introduction

We introduce and study the following general search problem. We are given a star-like environment

that consists of m concurrent rays of infinite length, with a common origin O. For each ray

i ∈ {0, . . . ,m−1}, there is a target of weight wi ≥ 0 that is hidden at some distance di ≥ 0 from O.

Note that the setting allows cases such as di = ∞ (i.e., there is no target hidden on ray i) and

wi = 0 (i.e., the target has no weight). A mobile searcher is initially at O, and its objective is

to locate a subset of targets whose aggregate weight is at least a specified value W . The searcher

1

knows the number of rays m, however, it has no further knowledge about the instance, namely the

weights of the targets and their distances from O.

A search strategy Σ for this problem is specified by determining, at every point in time that the

searcher is at the origin, a ray i and a depth `i, such that the searcher will next traverse ray i to

depth `i and then will return back to O. If during this search a target was found, and as long as

the weight accrued is less than W , the searcher will immediately return to O and will never again

traverse ray i. In general, we assume that the search strategies have memory; the pairs (i, `i) may

depend, among other things, on targets already discovered by Σ and the already explored depths.

As common for searching in unbounded environments, we evaluate the performance of a search

strategy Σ by means of the well-established competitive ratio, which can be traced to early work

in (Beck and Newman, 1970) in the context of searching on the line. Informally, the competitive

ratio compares the performance of a search strategy that is oblivious of the instance (that is, the

exact position of the targets and their weights) to an omniscient searcher that has full information

on the instance. To formalize this concept, given a number of rays m ≥ 2, let us denote by Im the

set of all instances

Im =
{(
W, (di, wi)0≤i≤m−1}

)
: W ≥ 0, wi ≥ 0, di ≥ 1, and

∑
0≤i≤m−1

wi ≥W
}
.

We make two standard assumptions, namely that all targets are at least a unit distance from O –

otherwise, no strategy can have a bounded competitive ratio – and that there is a feasible solution

to the instance. Given I ∈ Im the cost of Σ on I, denoted by c(Σ, I) is defined as the total distance

traversed by the searcher until the first time it discovered targets of aggregate weight at least W .

We also denote by opt(I) the optimal cost of I, namely the cost of an ideal strategy that has

complete knowledge of the instance I (i.e., the positions of the targets and their weights, as well as

W). A strategy Σ is called ρ-competitive for some ρ ≥ 1, if c(Σ, I) ≤ ρ · opt(I), for all I ∈ Im. The

competitive ratio of Σ is then defined as

ρ(Σ) = sup
I∈Im

c(Σ, I)

opt(I)
, (1)

and reflects the overhead of Σ due to lack of information. A strategy of minimum competitive ratio

is called optimal. Figure 1 illustrates an example of an instance.

2

O

(100,10) (20,2)

(10,1) (40,7)

Figure 1: Illustration of the weighted star search problem, for an instance I with m = 4 rays. The
target at ray i is represented by the pair (di, wi), where di denotes its distance from O and wi it’s
weight. Assume an indexing of rays as 0 . . . 3, from left to right, and a value of W equal to 10.
Then an optimal strategy will either search the ray 0 at a cost of 100 or the rays 1,2,3 (in this
order), which also yields the optimal cost of 2 · 20 + 2 · 10 + 40 = 100.

Our setting is motivated by many factors. First, it generalizes several well-studied problems in

Theoretical Computer Science and Operations Research, most notably the (unweighted) ray search

or star search problem in (Gal, 1974; Baeza-Yates et al., 1993; Jaillet and Stafford, 1993), in which a

single target is present on some ray. Note that star search is a generalization of another well-known

problem, namely the linear search problem, originally studied in (Bellman, 1963; Beck, 1964). In

addition, the weighted setting subsumes the multi-target search problem of (Angelopoulos et al.,

2014), in which each target has unit weight, and the objective is to locate t targets, for some t ∈ N+

that is known to the strategy. Star search problems have a long history of study; see Section 1.3

for a discussion of related work.

More importantly, weighted search provides a useful abstraction of the setting in which one

has to allocate resources to parallel tasks without knowing, in advance, the degree to which each

task will prove itself fruitful. This is a fundamental aspect of many decision-making processes. For

instance, a researcher may want to determine how to allocate time among m different projects,

without knowing ahead of time how useful the outcome of each project will be towards a combined

publication of the potential results. Here, the projects can be modeled as weighted targets, with the

distance to a target representing the time needed to the successful completion of the corresponding

project.

Connections between ray searching and resource allocation among parallel tasks have been

3

shown even for unweighted search, in the context of studies in TCS, AI and OR. Notable examples

include: the design of interruptible algorithms, i.e., algorithms that return acceptable solutions

even if interrupted during their execution (see (Bernstein et al., 2003; Angelopoulos, 2015)); the

synthesis of hybrid algorithms, in which the best algorithm must be chosen among a suite of different

algorithms, without knowing in advance which one is the best on a given instance; and database

query optimization (in particular, pipeline filter ordering as studied in (Condon et al., 2009),

which has an equivalent search-related formulation over a star graph as discussed in (Angelopoulos

et al., 2019)). Thus, solutions to the weighted search problem can provide a framework for solving

weighted variants of the above settings. For instance, one may define hybrid algorithms based on

the model of (Kao et al., 1998), in which each individual algorithm execution is assigned a score

related to the quality of the returned solution. In this sense, our setting is a generalization akin to

the study of weighted objectives in scheduling theory.

1.1 Contribution

We present and analyze a strategy called AdaptiveSearch (or AdSch for short) for weighted ray

search that attains a (near-)optimal competitive ratio. Define the function φ by

φ(x) = 1 + 2 (1 + x)

(
1 +

1

x

)x
, x > 0.

Note that φ(x) = Θ(x). As we will see, φ plays a central role in the analysis and reveals connections

to previous studies of the simpler variants of search problems. Our first theorem provides a tight,

worst-case analysis for weighted search.

Theorem 1. The competitive ratio of AdSch is φ(m−1), and this is the optimal competitive ratio

for weighted search.

Some remarks are in place. Let us consider a special case, namely the classic problem of

searching on m rays. Here, there is solely one target that hides in some ray unknown to the

searcher. Using our notation, this corresponds to the case di =∞ for all rays 0 ≤ i ≤ m− 1 except

for exactly one ray i∗, and W = wi∗ . The competitive ratio of this problem was determined in (Gal,

1974) to be equal to φ(m− 1). It is then immediate that the competitive ratio of weigthed search

is at least φ(m− 1); the main contribution of Theorem 1 is to establish that this is also an upper

4

bound. In other words, our first result says that in the worst case, weighted search is at most as

difficult as searching for one target in m rays.

Even though Theorem 1 is tight for some instances, it provides a rather pessimistic guarantee.

To see this, let us consider another special case, namely multi-target search (Angelopoulos et al.,

2014). In this variant we must locate exactly 1 ≤ t ≤ m− 1 targets that are placed on rays again

unknown to the searcher; this corresponds to di = ∞, for all except of t rays 0 ≤ i∗1 < · · · < i∗t ≤

m − 1 with weights wi∗1 = · · · = wi∗t = W/t. In (Angelopoulos et al., 2014) it was shown that the

competitive ratio of this problem is φ(m − t), which can be rephrased as “searching for t targets

on m rays is as difficult as searching for one target in m− t+ 1 rays”. Note that the competitive

ratio is a decreasing function of t.

The results in (Angelopoulos et al., 2014) open up the possibility that more refined guarantees

than φ(m − 1) may be attainable for weighted search; in particular, we can expect that if many

targets have to be located, in the sense that any solution needs to collect many targets, then

the competitive ratio should decrease. In order to make this precise, we follow a parameterized

approach, in which we study the performance of a strategy not only in terms of m, but also in

terms of some natural parameters that reflect the “hardness” of the instance. More specifically,

given I = {(W, (di, wi)0≤i≤m−1})}, define WI = W and wmax,I = max0≤i≤m−1wi. Then any

strategy, including the offline optimal one that knows I, must locate at least dWI/wmax,Ie targets.

The question then is: what is the competitiveness of weighted search, in terms of both m and the

bound on the number of targets that must be found? Our next result gives a tight bound, and

generalizes the known results on multi-target search.

Theorem 2. Let m ∈ N. Let I ∈ Im be such that wmax,I > 0. If dWI/wmax,Ie < m, then

c(AdSch, I) ≤ φ (m− dWI/wmax,Ie) · opt(I).

Moreover, for every strategy Σ, there exists I ∈ Im with WI
wmax,I

< m such that

c(Σ, I) ≥ φ (m− dWI/wmax,Ie) · opt(I).

In other words, the competitive ratio of AdSch is optimal for instances with a fixed value of

5

dWI/wmax,Ie. However, we can obtain an even stronger performance guarantee. As we show in

the next theorem, we can, rather surprisingly, relate the competitiveness of weighted search to the

maximum number of targets that an ideal solution of optimal cost must locate; in contrast, in

Theorem 2, the competitive ratio is expressed in terms of the minimum number of targets in any

ideal solution (more precisely: a lower bound on this number). For a general instance I ∈ Im, let

sI denote the maximum value of this parameter, see Section 2 for a formal definition. To illustrate

this concept, consider the instance of Figure 1. There are two optimal solutions: one locating the

target (100, 10), and one that locates all other targets. Thus, in this instance, sI = 3.

Theorem 3. Let I ∈ Im. If sI < m, then

c(AdSch, I) ≤ φ(m− sI) · opt(I).

Moreover, for every strategy Σ and every s ∈ {1, . . . ,m− 1} there is I ∈ Im with sI = s such that

c(Σ, I) ≥ φ(m− s) · opt(I).

The extreme cases WI/wmax,I = m and sI = m in the statements of Theorems 2 and 3 respec-

tively, describe the outlier cases in which the optimal strategy must locate all m targets. In this

extreme case, we can prove a very small gap between the upper and the lower bounds, as expressed

in the following theorem.

Theorem 4. Let I ∈ Im. If sI = m, then

c(AdSch, I) ≤ (3 + 2e)opt(I).

Moreover, for every strategy Σ and ε > 0 there is I ∈ Im with sI = m such that

c(Σ, I) ≥ (2− ε)opt(I).

Last, we demonstrate that our results and techniques have further applications in resource allo-

6

cation under uncertainty. In Section 5 we study an application related to the the design of interrupt-

ible algorithms for solving parallel instances of problems, based on contract scheduling (Russell and

Zilberstein, 1991). Previous studies of this problem assumed a static setting, in which the schedule

is determined ahead of time. In our setting, instead, we consider the adaptive setting in which

some of the instances may be deemed solved if the system has made sufficient progress towards

them. We show how to obtain an interruptible system of optimal performance, as measured by the

acceleration ratio (Russell and Zilberstein, 1991).

1.2 Techniques and analysis

In this work we rely on a strategy that searches the rays in a cyclic, i.e., round-robin manner; this

is motivated by the fact that, for the special case of the m-ray search problem, (Gal, 2010) showed

that any optimal search strategy must be cyclic. There are two main challenges that one needs

to address. The first challenge pertains to the design of the strategy itself, and more precisely in

determining the appropriate sequence of search lengths. Unlike most previous work in which for

an optimal strategy it suffices to increase the search lengths by the same factor at each step, in

our setting we show later that such simple rules are very inefficient. We thus introduce an adaptive

strategy in which the search lengths increase depending on the total number of targets found by

the end of each step. The second challenge lies in analyzing this strategy, since the setting is

substantially more complex than the unweighted one. To this end, we relate the competitiveness

of the weighted search problem to that of a related problem which we term subset search. The

objective in the latter problem is, informally, to locate a certain subset of the targets, without

advance knowledge of the specific subset. For this problem, which is of independent interest, we

show strategies that achieve the same competitiveness as strategies that search for any subset of

targets that has the same cardinality as the subset that is sought. This, perhaps surprising, result

establishes a strong upper bound on the competitiveness of the problem and is the main technical

challenge.

To arrive at this result, we first prove essentially tight bounds on the optimal cost, by identifying

appropriate parameters related to the search, and by relaying the cost of our strategy to precisely

those parameters. We then apply an inductive argument on the number of targets discovered by the

strategy in the last m rays that have been explored by the searcher. Some technical difficulties arise

7

from the fact that, unlike the single-target variant, there is no simple expression that describes the

optimal cost, and that the cost of the searcher involves several parameters in a trade-off relation.

Note that the vast majority of previous works on ray searching applies to deterministic algo-

rithms (i.e., pure strategies), and so does ours. In addition, as with previous works, the objective

is not merely to give an asymptotic expression on the competitive ratio (which is a trivial task),

but rather find the exact competitive ratio.

1.3 Further related work

The m-ray search problem, also known as star search, is a generalization of the linear search

problem (Beck, 1964; Beck and Newman, 1970) and has been studied in many variants and settings.

It is known that any optimal search strategy must be defined as a geometric sequence of search

lengths (Gal, 1972; Gal and Chazan, 1976). We refer the reader to Chapters 8 and 9 in the

book (Alpern and Gal, 2003) for results related to search games on a star. In Computer Science,

star search has been studied in parallel (López-Ortiz and Schuierer, 2004; Angelopoulos et al.,

2016), fault-tolerant (Czyzowicz et al., 2019; Kupavskii and Welzl, 2018), randomized (Kao et al.,

1998; Schuierer, 2003; Kao et al., 1996) and stochastic (Jaillet and Stafford, 1993; Kao and Littman,

1997; Bonato et al., 2020) settings. Multi-target searching beyond the competitive ratio was studied

in (Kirkpatrick, 2009; McGregor et al., 2009; Angelopoulos et al., 2014). Other variants include:

searching with turn cost (Demaine et al., 2006; Angelopoulos et al., 2017); searching with an upper

bound on the target distance (Hipke et al., 1999; Bose et al., 2015) or a general hint (Angelopoulos,

2021); and expanding search (Angelopoulos et al., 2019; Angelopoulos and Lidbetter, 2020). These

are only some representative works.

2 Notation & m-ray search

We begin with some useful definitions and facts concerning the problem we study. Given an instance

I ∈ Im of WeightedSearch (WS), we denote by TI = {0, . . . ,m − 1} the set of the m targets

of I. Given S ⊆ TI , we define the total weight of S, denoted by wS as
∑

i∈S wi, and the optimal

8

search cost of S, denoted by dS as

dS = 2
∑
i∈S

di −max
i∈S

di.

The latter is the minimum cost required by the mobile searcher initially located at the origin to

visit all targets in S assuming full information of I (note that the ray with the most distant target

among targets in S is visited last, and that the searcher does not need to return to the origin after

having located all targets). With this notation the optimal cost of the instance I is

opt(I) = min
S⊆TI
{dS : wS ≥W}.

Moreover, we denote by sI the largest number of targets in an optimal solution, that is,

sI = max
{
|S| : S ⊆ TI , wS ≥W, and dS = opt(I)

}
.

The following quantities will appear several times in the forthcoming analysis. Define

bx = 1 +
1

x
and bm,t = bm−t = 1 +

1

m− t
. (2)

Note that for the function φ defined in the introduction we obtain the useful relation

φ(x) = 1 + 2bx+1
x /(bx − 1).

Let us now turn our attention to a special case of weighted search considered in the introduction,

namely the classical m-ray search problem in which there is exactly one target to be found. For this

problem, it was shown in (Gal, 1974) that there exists an optimal cyclic strategy with geometrically

increasing lengths. More specifically, in the i-th step, the strategy searches ray i (mod m) up to

length bim,1. As already mentioned, the (optimal) competitive ratio equals

1 + 2
bmm,1

bm,1 − 1
= φ(m− 1).

9

Concerning the problem in which there are m unweighted targets, one per ray, and the searcher

seeks to locate any subset of exactly t targets, it was shown in (Angelopoulos et al., 2014) that

there is an optimal cyclic strategy, which in the i-th step searches the corresponding ray up to

length bim−t+1,1. The optimal competitive ratio is equal to

1 + 2
bm−t+1
m−t+1,1

bm−t+1,1 − 1
= φ(m− t),

namely the same as the competitive ratio of searching for a single target in a star consisting of

m− t+1 rays. Note that in the unweighted setting, the searcher benefits from knowing the number

t of targets that are sought. This allows (Angelopoulos et al., 2014) to give an non-adaptive optimal

strategy, i.e., one in which in the i-th step the searcher goes up to distance bi from O, for some

appropriate b. As we will argue in the next section, this type of non-adaptive strategy cannot be

efficient for weighted search, because the “right” number of targets that needs to be located is a

parameter that is unknown to the searcher.

3 Strategies and the overall approach

In this section we present the strategy for weighted star search, and the main approach to the

analysis, namely the relation between the competitiveness of WS and SubsetSearch (SS). We

formally define the latter problem as follows. The instance to the problem consists of m unweighted

targets (one per ray) with the target at ray i being at distance di from the origin of the star, as

well as a subset S ⊆ TI of the targets. The distances, as well as the subset S are not known to the

searcher. The search terminates when all targets in S have been discovered; we can assume the

presence of an oracle that announces this event to the searcher and thus prompts the termination.

The cost of the search is defined as the total cost incurred at termination, whereas the cost of the

optimal solution to the instance is the cost for locating all targets in S assuming full information

of the instance, i.e., equal to dS . The following lemma establishes a useful association between the

two problems.

Lemma 5. Suppose there is a strategy Σs for SS such that for any instance Is = (S, d0, . . . dm−1)

we have that c(Σs, Is) ≤ ρ(|S|,m) · dS, where ρ(|S|,m) is a function of |S|,m. Then there is a

strategy Σw for WS such that for any instance Iw of this problem, c(Σw, Iw) ≤ ρ(sI ,m) · opt(Iw).

10

Proof. Let Iw = {W, (d0, w0), . . . , (dm−1, wm−1)} denote an instance of WS. Consider the instance

Is for SS in which m targets are at distances d0, . . . dm−1, and S is defined to be any subset of

targets such that dS = opt(Iw) and |S| = sI . From the definition of sI , such a set exists. Define Σw

for WS as follows: Σw executes Σs until an aggregate target weight of at least W has been located.

Since wS ≥ W , it follows that c(Σw, Iw) ≤ c(Σs, IS). Furthermore, since ΣS has competitive ratio

ρ(sI ,m), we have that c(Σs, IS) ≤ ρ(sI ,m)dS . Thus, c(Σw, Iw) ≤ ρ(sI ,m)opt(Iw).

Lemma 5 demonstrates that the competitiveness of SS is directly related to that of WS. We

thus focus on SS; in particular, we will analyze a strategy which we call AdaptiveSubset (AdSub

for brevity), and which is described by the statement of Algorithm 1. The strategy explores rays

in cyclic order (line 13), and keeps track of the found targets, denoted by f (line 11). On each

iteration, the strategy will search a ray to a length equal to bm,f times the length of the last ray

exploration that did not reveal a target (line 8), until a new target is discovered. Once a target is

found on a ray, the ray is not considered again; namely, the remaining rays are relabeled so as to

maintain a cyclic order (line 12).

Algorithm 1: Strategy AdSub for SS

1 Input: m rays labeled {0, . . . ,m− 1}, subset oracle O
2 f ← 1, r ← 0, D ← 1
3 repeat
4 repeat
5 explore the rth ray up to distance D · bm,f or until a target is found
6 if no target was found then
7 r ← r + 1 (mod m− f + 1)
8 D ← D · bm,f
9 end

10 until a target was found
11 f ← f + 1
12 remove the rth ray and relabel the rays canonically from 0 . . .m− f
13 r ← r (mod m− f + 1)

14 until all targets, according to O, were found

Before we proceed with the analysis, it is instructive to point out that the need for an adaptive

strategy that modifies the search lengths as a function of the number of targets that have been found

seems to be, in a sense, unavoidable. To see this, consider a cyclic strategy that uses geometrically

increasing lengths with a fixed base that may depend only on m. Consider also an instance in

11

which |S|− 1 targets from S are very close to the origin, then the competitive ratio of this strategy

is (more or less) at least the competitive ratio of a strategy that searches one target in m− |S|+ 1

rays; crucially, this ratio is only achieved if the base equals bm−|S|+1,1; see Section 2. Since |S| is

not known in advance, the wrong choice of a base has a detrimental effect on performance.

The above example demonstrates the need for an adaptive strategy that modifies the search

lengths as a function of the number of targets that have been found. However, it is not immediately

clear how to adapt the search lengths. To see this, let us consider an obvious candidate, which

also turns out to be inefficient. Namely, a cyclic, geometric strategy that changes the base of

search lengths once a target is found; more precisely, a strategy that on the i-th step searches the

corresponding ray up to depth bim,t, where t − 1 represents the number of targets found at the

beginning of the step. This strategy has unbounded competitive ratio. To see this, suppose that

|S| = 1, and that in iteration i, the strategy finds on ray r a target that is not in S. Suppose also

that the unique target in S lies on ray (r − 1) mod m and at distance bi−1m,1 + ε, for some ε > 0.

The strategy will discover this target after having spent cost at least 2bi+m−2m,2 (namely, the cost for

searching ray (r − 2) mod m) on iteration m + i − 2). It follows that the competitive ratio is at

least (bm,2/bm,1)
i, which, since i is arbitrary, is unbounded.

By combining the insights from both previous examples, we see that not only we have to adapt

the search lengths, but we also have to ensure a smooth transition when such a modification takes

place. This is precisely accomplished in AdSub; when a target is found, say in iteration i, the

search depths in the following rounds do not jump ‘abruptly’ from bi+j to b̃i+j , where b̃ 6= b, but

instead to bi · b̃j , j ≥ 0.

The following lemma, which bounds the competitive ratio of AdSub, is the main technical

result of this work. Its proof is given in Section 4.

Lemma 6. Let m ≥ 2. Let I be an instance of SS in which we seek a non-empty set S ⊆

{0, . . . ,m− 1}. Then

c(AdSub, I) ≤ φ(m− |S|) · dS , if |S| ≤ m− 1, (3)

and c(AdSub, I) ≤ (3 + 2e) · dS, if |S| = m.

Assuming Lemma 6 we show how to obtain Theorem 1. This establishes a tight, albeit worst-

case bound on the competitive ratio.

12

Proof of Theorem 1. From Lemmas 5 and 6 and since φ is increasing, for all I ∈ Im,

c(AdSch, I) ≤ max{3 + 2e, φ(m− 1)} · opt(I).

Moreover, φ(1) = 9 > 3 + 2e, hence the upper bound follows. This bound is tight for the instance I

in which there is only one target of weight w, and WI = w (i.e., standard star search for a single

target in (Gal, 1974)).

In order to prove Theorem 4 we will need the following lemma that addresses the extreme cases.

Lemma 7. Given an instance I of WS for which sI = m or W/wmax,I = m, we have c(AdSch, I) ≤

(3 + 2e)opt(I). Moreover, for every strategy Σ, there exists I such that c(Σ, I) ≥ (2− ε)opt(I), for

arbitrarily small ε.

Proof. The upper bound follows directly from the upper bounds in Lemmas 5 and 6. Remains thus

to show the second part of the lemma. To this end, consider any strategy Σ that has to locate

all m targets (as stipulated by the assumption). Consider any snapshot of the execution of the

strategy at the moment the searcher returns to the origin, and let li denote the depth at which ray

i has been searched. Consider an instance I in which m targets of unit weights are placed such

that there is a target at distance li + ε, for arbitrarily small ε, and WI = m. Then

c(Σ, I) ≥ 2
∑

0≤i≤m−1
li + opt(I),

and for sufficiently small ε, we have that 2
∑m−1

i=0 li ≥ (1 + ε)opt(I), which yields the result.

Having established bounds for the extreme cases, we can now proceed with the proofs of Theo-

rems 2 and 3. Recall that these theorems establish our main parametric results on the competitive

ratio of weighted search.

Proof of Theorem 2. The upper bound in the general case follows from Lemmas 5 and 6. For the

lower bound (the general case), consider an instance I in which all targets have weight w > 0, and

W = tw, for some t ∈ R+. Then any strategy must locate dte targets; from (Angelopoulos et al.,

2014), the competitive ratio is at least φ(m− t) = φ(m− dW/wmax,Ie).

13

Proof of Theorem 3. The upper bound in the general case follows from Lemmas 5 and 6. For the

lower bound in the general case, given s < m, consider an instance I in which W = sw, for some

w > 0, and there are s targets of weight w, while all other targets have weight 0. Suppose that

s − 1 of positive-weight targets are very close to the origin, and can be found at negligible cost.

Thus, on this instance, weighted search is as hard as locating one target in m − (s − 1) rays, and

thus has competitive ratio

1 + 2
bm−s+1
m−s+1,1

bm−s+1,1 − 1
= 1 + 2

bm−s+1
m−s

bm−s − 1

(2)
= φ(m− s).

4 The competitive ratio of AdSub

In this section we determine the competitive ratio of AdSub, by proving Lemma 6. The following

two technical lemmas provide some useful properties of the functions φ and b. Their proofs are

based on Taylor series expansions and convexity arguments, and are given in Appendix A.

Lemma 8. The function φ is increasing and φ(q)− φ(q− 1) ≥ 2e, for all q ∈ N+, where we define

φ(0) = limx→0 φ(x) = 3.

Lemma 9. For q, l ∈ N let

hq,` = b−`−1q+1

(
b`q

bq − 1
+ 1 + bq+1

)
(bq+1 − 1).

Then hq,l ≤ 1 for all 1 ≤ ` ≤ q + 1.

We obtain the following consequence of Lemma 8.

Corollary 10. For every x, y ∈ N+

bx+1
x

bx − 1
+ 2y ≤ bx+y+1

x

bx+y − 1
.

14

Proof. From Lemma 8 we know that for every x ∈ N+

bx+1
x

bx − 1
−

bxx−1
bx−1 − 1

≥ e > 2.

Using a simple inductive argument, it follows that for every y ∈ N+,

bx+y+1
x

bx+y − 1
− bx+1

x

bx − 1
≥ e · y > 2y.

We fix some notation that we will use throughout the proof of Lemma 6. Let s = |S| denote

the cardinality of the sought set of targets, and let t denote the total number of targets discovered

by AdSub at the moment in which all targets in S have been found. That is, f = t + 1 upon

termination. Clearly, we have s ≤ t ≤ m. For each 1 ≤ j ≤ t we say that the strategy in in Phase j

if the number of targets discovered at that point in time is equal to j − 1. That is, the strategy

starts in Phase 1, repeats lines 4–10 in the statement of Algorithm 1 until eventually a target is

found, proceeds to Phase 2, repeats lines 4–10 in the statement until the second target is found,

and so forth. Let `j ≥ 1 be the number of iterations of the loop in lines 4–10 performed in the

j-th phase, with 1 ≤ j ≤ t. Note that in Phase j, the number of rays explored unsuccessfully (i.e.,

without finding a target) equals `j−1, and in the `j-th iteration a target was discovered. Moreover,

let Dj denote the distance of the j-th discovered target, 1 ≤ j ≤ t. Since the last discovered target

must be in S, we obtain the straightforward bound

dS ≥ Dt. (4)

A short roadmap to the proof of Lemma 6 is as follows. We will assume first that |S| < m; at the

end we argue how to handle the remaining case |S| = m. In the first step, we derive an upper bound

on the algorithm’s cost; see Lemma 11. This is a function of several parameters, in particular the

distances of all the targets that have been discovered, and the cost of the unsuccessful explorations

made by the searcher. In the second step we derive upper and lower bounds on the distances of the

discovered targets; this is accomplished in Lemma 12. Note that the lower bound is particularly

useful, since the last discovered target has to be in S and provides a lower bound for dS . In the

15

third (and most technical) step, we combine all these bounds, using an inductive argument, to

arrive at the desired conclusion. This will be accomplished in Lemma 13.

We begin by deriving a bound on the total distance traversed by the searcher, and we write

c(I) = c(AdSub, I) for brevity. Define Yj =
∏

1≤i<j b
`i−1
m,i .

Lemma 11. With the notation in this section

c(I) ≤ 2Yt+1bm,t
bm,t − 1

+ 2
∑

1≤j<t
(Dj + Yj+1) +Dt. (5)

Proof. In Phase 1 the strategy explores the rays in a cyclic fashion to distances bm,1, b
2
m,1, . . . , b

`1−1
m,1

(going through each ray twice), and then discovers a target at distance D1. Similarly, in Phase 2 it

explores the rays to distances b`1−1m,1 bm,2, . . . , b
`1−1
m,1 b

`2−1
m,2 and then discovers a target at distance D2.

More generally, in Phase j, 1 ≤ j < t, the distance traversed equals

2 ·
∏

1≤i<j
b`i−1m,i ·

∑
1≤i<`j

bim,j + 2Dj = 2 ·
∏

1≤i<j
b`i−1m,i ·

b
`j
m,j − bm,j
bm,j − 1

+ 2Dj .

(As usual, the empty product equals 1.) Similarly, and because after locating the t-th target the

searcher does not return to the origin, the distance traversed in the final phase equals

2 ·
∏

1≤i<t
b`i−1m,i ·

b`tm,t − bm,t
bm,t − 1

+Dt.

Using the fact that Yj =
∏

1≤i<j b
`i−1
m,i , where 1 ≤ j ≤ t+ 1, we obtain

c(I) = 2
∑

1≤j≤t
Yj
b
`j
m,j − bm,j
bm,j − 1

+ 2
∑

1≤j<t
Dj +Dt. (6)

Note that for 1 ≤ j ≤ t

Yj
b
`j
m,j − bm,j
bm,j − 1

= (Yj+1 − Yj)
bm,j

bm,j − 1
= (Yj+1 − Yj)(m− j + 1),

16

and consequently

∑
1≤j≤t

Yj
b
`j
m,j − bm,j
bm,j − 1

=
∑

1≤j≤t
(Yj+1 − Yj)(m− j + 1)

= Yt+1
bm,t

bm,t − 1
+
∑

1≤j<t
Yj+1 − Y1 ·m

≤ Yt+1
bm,t

bm,t − 1
+
∑

1≤j<t
Yj+1.

Substituting this into (6) yields the statement of the lemma.

Having accomplished the task of providing an appropriate upper bound for AdSub we proceed

with deriving explicit bounds for the distances of the targets located by the strategy.

Lemma 12. Let Dj be the distance of the j-th discovered target by AdSub. Then

Dj ≤ Yjb
`j
m,j = Yj+1bm,j , for all 1 ≤ j ≤ t. (7)

Moreover, suppose that the j-th discovered target is on ray 0 ≤ r ≤ m− j, and let j′ with 1 ≤ j′ ≤ j

be such that ray r was last explored in Phase j′, prior to discovering the target in Phase j. Then

Dj ≥ Yj′ · b
−m+j+

∑
j′≤i≤j(`i−1)

m,j′ . (8)

Proof. In Phase j, with 1 ≤ j ≤ t, the largest distance to which a ray is explored is Yj · b
`j
m,j . Thus

Dj ≤ Yjb
`j
m,j = Yj+1bm,j . For the lower bound, note that there exists xj with 1 ≤ xj ≤ `j′ − 1 such

that this ray was explored up to a depth of Yj′b
xj
m,j′ , and so Dj ≥ Yj′b

xj
m,j′ . The number of targets

discovered between the last time ray r was explored before discovering the target at distance Dj ,

and the time at which this target was discovered is equal to j − j′ + 1 (including the said target).

Since the number of remaining rays in Phase j′ equals m− j′ + 1, we obtain

m− j′ + 1 = (j − j′ + 1) +

j∑
i=j′+1

(`i − 1) + (`j′ − 1− xj).

17

Thus,
∑

j′≤i≤j(`i − 1)−m+ j = xj , and so Dj ≥ Yj′ · b
−m+j+

∑
j′≤i≤j(`i−1)

m,j′ .

Moreover, for xj as defined in the proof of Lemma 12, since 1 ≤ xj ≤ `j′ − 1 we obtain the

bounds ∑
j′≤i≤j

(`i − 1) ≥ m− j + 1 and
∑
j′<i≤j

(`i − 1) ≤ m− j, (9)

that will be useful later. We also obtain a simpler lower bound on Dj , namely

Dj ≥ Yj · b
`j−m+j−1
m,j for all `j ≥ 1. (10)

To see why (10) holds, note that from definition of Yj , we have that

Yj′ = Yj
∏

j′≤i<j
b1−`im,i ≥ Yj

∏
j′≤i<j

b1−`im,j = Yjb
`j−1
m,j

∏
j′≤i≤j

b1−`im,j ≥ Yjb
`j−1
m,j b

j−m
m,j ,

where the first inequality follows from the fact that bm,h is increasing in h, and the last inequality

follows from (9).

We introduce some additional notation to facilitate the further analysis. Combining (10)

with (7) we infer that for every 1 ≤ j ≤ t there exist γj such that

Dj = γj · Yj+1, where b−m+j
m,j ≤ γj ≤ bm,j .

Moreover, let J be the set of indexes in {0, . . . , t − 1} such that for each j ∈ J we have that the

target discovered in Phase j is in S. That is, we have |J | = |S| − 1 and moreover, strengthening

the bound in (4)

dS ≥
∑
j∈J

Dj +Dt =
∑
j∈J

γj · Yj+1 +Dt. (11)

Let also J = {1, . . . , t− 1} \ J .

With this notation in place, we can now bound the competitive ratio of AdSub, towards the

proof of Lemma 6. We will use the simple fact that for a1, . . . , aN , b1, . . . , bN > 0

∑N
i=1 ai∑N
i=1 bi

≤ max
1≤i≤n

{
ai
bi

}
.

18

Specifically, by applying Lemma 11 and (11), we obtain that

c(I)

dS
≤

2Yt+1bm,t

bm,t−1 + 2
∑

1≤j<t(1 + γj)Yj+1 +Dt∑
j∈J γj · Yj+1 +Dt

=

2Yt+1bm,t

bm,t−1 + 2(
∑

j∈J(1 + γj)Yj+1 +
∑

j∈J(1 + γj)Yj+1) +Dt∑
j∈J γj · Yj+1 +Dt

≤ 2 max
{

max
j∈J

1 + γj
γj

, H
}

+ 1,

where H is defined as

H =

Yt+1bm,t

bm,t−1 +
∑

j∈J Yj+1(1 + γj)

Dt
. (12)

Note that the function (1 + x)/x is decreasing in x. Therefore, as γj ≥ b−m+j
m,j , for any j ∈ J we

have
1 + γj
γj

≤ 1 + bm−jm,j = 1 +

(
1 +

1

m− j

)m−j
≤ 1 + e < 4. (13)

Therefore, (4) gives

c(I) ≤ max {9, 1 + 2H} dS . (14)

Recall that we assume that |S| < m; at the end we will argue how to handle the remaining case

|S| = m. The crucial step in the proof of Lemma 6 will be to show that

H ≤ bq+1
q

bq − 1
, where q = m− |S|. (15)

This will suffice to prove the lemma in the case |S| < m. This is because, from Lemma 8, it follows

that 1+2H ≥ 9, therefore from (14), the competitive ratio of AdSub is at most 1+2H ≤ φ(m−|S|),

for |S| < m. Note that (14) confirms what one expects intuitively, namely that the contribution from

targets in S to the competitive ratio is not significant, and bounded by 9, whereas the contribution

of targets that are not in S to the competitive ratio is more substantial, and more challenging to

bound. In order to bound H, we first define La,b and Ya,b as

La,b =
∑
a≤i≤b

(`i − 1) and Ya,b =
Yb+1

Ya
.

Using the definition of H (12) , the lower bound on Dt (8) and the fact γj ≤ bm,j , we obtain that

19

for some t′ ≤ t,

H ≤ bm−t−Lt′,t
m,t′

 bm,tYt′,t
bm,t − 1

+
∑
j∈J

(1 + bm,j)Yt′,j

 . (16)

This expression is central in our analysis and will indeed help us bound the contribution of targets

that are not in S. We first define a partition of J into two sets which contain elements in J

that are greater than, and respectively smaller than or equal to t − 1; namely we define J> =

J ∩ {t′, . . . , t − 1} and J≤ = J ∩ {1, . . . , t′ − 1}. Regarding any j ∈ J≤, note that Yt′,j ≤ 1 and

hence b
m−t−Lt′,t
m,t′ (1 + bm,j)Yt′,j ≤ b

m−t−Lt′,t
m,t′ · (1 + bm,j). From (9) we infer that Lt′,t ≥ m− t+ 1 and

so the previous expression is bounded by at most (1 + bm,j)/bm,t′ . Thus, we obtain that

b
m−t−Lt′,t
m,t′ (1 + bm,j)Yt′,j <

1 + bm,t′

bm,t′
≤ 2, j ∈ J≤. (17)

In words, (17) shows that each element in J≤ contributes at most an additive 2 to the bound

in (16). Moreover, note that for every j ∈ J≤

(1 + bm,j)Yt′,j ≤ 1 + bm,j = 1 +
1

m− j
< 1 +

1

m− t′
,

whereas for every j ∈ J>

(1 + bm,j)Yt′,j ≥ 1 + bm,j = 1 +
1

m− j
≥ 1 +

1

m− t′
.

Therefore, the contribution to H of every j ∈ J≤ is smaller than the corresponding contribution of

every j ∈ J>. Thus, in order to bound H we can assume, without loss of generality, that J> has

maximal cardinality.

Combining (16), (17) and the observation on the maximality of J>, we have that

H ≤ G+ 2|J≤|, where G = b
m−t−Lt′,t
m,t′

 bm,tYt′,t
bm,t − 1

+
∑
j∈J>

(1 + bm,j)Yt′,j

 . (18)

The following is the main technical lemma of this section. The lemma will help us bound G, which

in turn will help us prove (15).

20

Lemma 13.

G ≤
b
Q+|J>|+1

Q+|J>|

bQ+|J>| − 1
, where Q = m− t.

Proof. For ease of notation, let us denote |J>| by d. Since J> = J ∩ {t′, . . . , t − 1}, and since we

can assume that J> has maximal cardinality, we have that d = t− t′.

We will prove the lemma by induction on d. The base case, d = 0, follows trivially by direct

substitution. To give some intuition into the inductive step, let us also show the lemma in the case

d = 1, namely when t′ = t− 1. By substituting into the expression of G (18), we have that

G = b
Q−(`t−1)
Q+1

(
b`tQ

bQ − 1
+ (1 + bQ+1)

)
,

and since `t ≥ 1, by applying Lemma 9,

G ≤ bQ−(`t−1)Q+1

b`t+1
Q+1

bQ+1 − 1
=

bQ+2
Q+1

bQ+1 − 1
.

For the inductive step, let us denote by Gd the value of G given that t − t′ = d. By substituting

into (18), we obtain that Gd can be expressed as

Gd = b
Q−

∑d
x=0(`t−x−1)

Q+d

bQ∏d
x=0 b

`t−x−1
Q+x

bQ − 1
+

t−1∑
y=t−d

(1 + bm−y)

y∏
x=t′

b`x−1m,x

 . (19)

We also have that
d∏

x=0

b
`t−x−1
Q+x = b

`t−d−1
Q+d

d−1∏
x=0

b
`t−x−1
Q+x , (20)

and

t−1∑
y=t−d

(1 + bm−y)

y∏
x=t−d

b`x−1m,x =

t−1∑
y=t−(d−1)

(1 + bm−y)

y∏
x=t−d

b`x−1m,x + (1 + bQ+d)b
`t−d−1
Q+d

= b
`t−d−1
Q+d

 t−1∑
y=t−(d−1)

(1 + bm−y)

y∏
x=t−(d−1)

b`x−1m,x + (1 + bQ+d)

 . (21)

21

Denote by Fd the quantity b
Q−

∑d
x=0(`t−x−1)

Q+d . By substituting (20) and (21) into (19) we have that

Gd = Fd · b
`t−d−1
Q+d

 t−1∑
y=t−(d−1)

(1 + bm−y)

y∏
x=t−(d−1)

b`x−1
m,x + (1 + bQ+d)

 ,

and we can thus obtain a recursive expression for Gd, namely

Gd = Fd · b
`t−d−1
Q+d

(
Gd−1
Fd−1

+ 1 + bQ+d

)
. (22)

From the induction hypothesis, we have

Gd−1 ≤
bQ+d
Q+d−1

bQ+d−1 − 1
.

Let Li denote the expression
∑i

x=0(`t−x − 1). Then Fd−1 = b
Q−Ld−1

Q+d−1 , and Fd = bQ−Ld
Q+d . Therefore,

Gd−1

Fd−1
= b

Ld−1+d
Q+d−1 /bQ+d−1 − 1, and from (22) we obtain

Gd ≤ bQ−Ld
Q+d b

`t−d−1
Q+d

(
b
Ld−1+d
Q+d−1

bQ+d−1 − 1
+ 1 + bQ+d

)

≤ bQ−Ld−1

Q+d

b
Ld−1+d+1
Q+d

bQ+d − 1
(Lemma 9)

=
bQ+d+1
Q+d

bQ+d − 1
,

where the conditions for applying Lemma 9 follow from the fact that Ld−1 ≤ Q, from (10). This

completes the inductive step and the proof of the lemma.

We are now ready to prove the competitiveness of AdSub using the above lemma.

Proof of Lemma 6. Consider first the case |S| < m. Recall that it suffices to show (15). We have

|J | = |{1, . . . , t−1}\J | = t−1−(|S|−1) = t−|S|. Moreover, |J>| = d. Therefore, |J≤| = t−|S|−d.

Since H ≤ G+ 2|J≤|, from Lemma 13 we obtain that

H ≤
bm−t+d+1
m−t+d

bm−t+d − 1
+ 2(t− |S| − d) ≤

b
m−|S|+1
m−|S|

bm−|S| − 1
,

22

where the second inequality follows from Corollary 10. We conclude that (15) holds.

It remains to consider the case |S| = m. Here, we adapt (5). Recall that J is the set of indexes

in {0, . . . , t−1} such that for each j ∈ J we have that the target discovered in Phase j is in S. Thus

J = {0, . . . , t− 1} and J = ∅ in this case. Moreover, note that `t = `m = 1, as the last remaining

ray is searched until a target is found without the searcher returning to the origin. Then, the bound

in (5) changes to

c(I) ≤ 2Ymbm,m−1
bm,m−1 − 1

+ 2
m−2∑
j=1

(Dj + Yj+1) + 2Dm−1 +Dm.

Note that bm,m−1 = 2. Proceeding as in (4) we get that

c(I)

dS
≤ 1 + 2 max

{
max
j∈J

1 + γj
γj

,
2Dm−1

2/3Dm−1
,

4Ym
Dm−1/3 +Dm

}
.

From (13), we know that
1+γj
γj
≤ 1 + e. Moreover, we have that Dm ≥ Ym and Dm−1 ≥ Ym/2

by (10). This implies that c(I)
dS
≤ 1 + 2(1 + e), and the proof is completed.

5 Adaptive contract scheduling

In this section, we illustrate an application of SubsetSearch in the context of a classic topic in

AI and real-time systems: the design and performance analysis of interruptible algorithms. Such

algorithms have the appealing property that their performance improves gradually as function

of the available computation time, and can thus output a reasonably efficient solution even if

interrupted at some point in time. Note that not all algorithms have this property. For example,

dynamic programming algorithms may very well output a meaningless solution if, say, they are

interrupted before they fill in the last important column or row in their DP table. Russell and

Zilberstein (Russell and Zilberstein, 1991) call such algorithms contract algorithms, in the sense

that the required computation time is given as part of the input to the algorithm; the algorithm is

guaranteed to output a meaningful, and correct output only if it is allowed an execution time at

least as large as this required computation time.

A natural problem that arises is converting a contract algorithm to an interruptible equiva-

lent. This was first studied in (Russell and Zilberstein, 1991), who gave a simple, yet general

23

approach: repeat the contract algorithm with progressively increasing execution times, so that, if

an interruption occurs, the system can benefit from the “longest” execution that has been com-

pleted; this technique is known as contract scheduling. Since then, this problem has been studied

in many variants and settings, e.g., (Bernstein et al., 2002; Zilberstein et al., 2003; Angelopoulos

and López-Ortiz, 2009; Bernstein et al., 2003; López-Ortiz et al., 2014; Angelopoulos et al., 2008;

Angelopoulos, 2015; Angelopoulos and Jin, 2019; Angelopoulos and Kamali, 2021). One of the

generalizations of this problem involves n different problem instances and a single contract algo-

rithm (Zilberstein et al., 2003), and the objective is to obtain an interruptible algorithm over all

n instances. This can be accomplished by a schedule of the form X = ((pi, xi)
∞
i=0. Here, the i-th

execution of the contract algorithm (to which we will refer as the i-th contract) applies to the

instance pi ∈ {0, . . . , n− 1}, and is run for time (length) xi ∈ R+.

In all previous work on contract scheduling, the performance of a schedule X is evaluated by

means of the acceleration ratio (Russell and Zilberstein, 1991). This is a worst-case measure, akin

to the competitive ratio, that captures the overhead incurred by the repeated executions, and which

is defined as follows. Given the schedule X, and pi ∈ {0, . . . , n − 1}, let l(X, p) denote the length

of the longest contract for pi that is completed by time t in X. We also define

`(X, t) = min
p∈{0,...,n−1}

l(X, p),

i.e., `(X, t) is a measure of the progressX has achieved on its least worked instance. The acceleration

ratio of X is defined as

acc(X) = sup
t

t

`(X, t)
. (23)

For contract scheduling with n problem instances, (Zilberstein et al., 2003) showed an optimal

acceleration ratio equal to (φ(n) − 1)/2, which is achieved using the cyclic schedule X = ((i

mod n, ((n+ 1)/n)i)∞i=0. One may observe similarities with the ray search problem; indeed the two

problems share connections, as demonstrated in (Bernstein et al., 2003; Angelopoulos, 2015).

All previous studies of contract scheduling considered a static setting. Namely, the schedule

is determined ahead of time, and consists of an infinite number of contract executions for each

of the n instances. This is to model the requirement that interruptions may appear arbitrarily

far in the future. In practice, however, the system will reach a point at which sufficient progress

24

has been made in one or more problem instances (i.e., the instance has been solved), and thus

would be preferable to allocate computational resources only to the remaining instances, from that

point onwards. This motivates a dynamic setting, in which the schedule must adapt according to

instances that have been solved.

More precisely, suppose that the schedule completes the execution of a contract ci = (pi, xi),

for instance pi. If the system deems the instance pi as solved, then no future contract need to be

assigned to problem pi, i.e., for all cj = (pj , xj), with j > i, we may assume that pj 6= pi. Let St

denote the set of solved instances by time t. Then, we define `(X, t) as minp/∈St
l(X, p) (in words,

the least progress X has made at time t among yet unsolved instances). The definition of the

acceleration ratio then follows again from (23). We refer to this problem as the adaptive contract

scheduling problem. We show how to obtain an optimal schedule for this problem, using ideas from

the analysis of the Subset Search problem.

Theorem 14. There is a schedule for adaptive contract scheduling such that, for any given time

t, if the interruption occurs after time t, then its acceleration ratio is at most (φ(n − st) − 1)/2,

where st < n1 is the number of problem instances that have been solved by time t. Furthermore,

this bound is tight.

Proof. Consider the schedule obtained by Algorithm 2, and which is motivated by Algorithm 1

for SS, with a notable difference. Since s (the number of solved instances) is initialized to 0, the

multiplicative update in lines 5 and 8 of Algorithm 2 is somewhat smaller. For example, the first

contract x0 has length (n+ 1)/n, whereas in Algorithm 1, the first searched length is m/(m− 1).

We note also the that the relabeling in line 13 is solely for the purpose of assigning contract lengths;

all problem instances maintain their original naming.

Let X = ((pi, xi))i denote the schedule of Algorithm 2. Consider an interruption at time t,

which, in worst case, may occur right before a contract execution, say (pj , xj), for some index j, is

about to complete. By the cyclic nature of the algorithm, we have that

t

`(X, t)
≤
∑j

i=0 xi
xj−n+st

. (24)

We will argue that this expression does not exceed (φ(n − st) − 1)/2. Consider an execution of

1Note that in the statement of Theorem 14, it cannot be that st = n, since in that case all problems would have
been solved by time t, and the system would have reached the end of all executions.

25

Algorithm 2: Adaptive Contract Scheduling

1 Input: n problem instances labeled {0, . . . , n− 1};
2 s← 0, r ← 0, D ← 1, i← 0
3 while there are instances that are yet unsolved do
4 repeat
5 execute the i-th contract algorithm on the r-th instance and for length

xi = D · bn,s
6 if the instance is solved then
7 r ← r + 1 (mod n− s)
8 D ← D · bn,s
9 end

10 i← i+ 1

11 until an instance is deemed solved
12 s← s+ 1
13 relabel the instances canonically from 0 . . . n− 1− s
14 r ← r (mod n− s)
15 end

AdSub (Algorithm 1) for SS, on an instance with m = n + 1 rays, constructed as follows. If in

the execution of Algorithm 2, a problem instance pi is deemed solved after a contract of the form

(pi, xi) is completed, then there is a target in ray pi+1, and at distance xi from the origin; however,

this target is not one of the targets sought. Last, there is only one target sought, namely in ray

pj−n+st , and at distance infinitessimally larger than xj−n+st , for the j specified in (24). Then,

AdSub finds the target at cost

C = 2

∑j
i=0 xi

xj−n+st
+ xj−n+st .

Note that in the above instance for SS, there are st + 1 targets sought among n + 1 rays. From

Lemma 6 we know that for st + 1 < n+ 1, i.e., for st < n, we have

C

xj−n+st
≤ φ(n+ 1− (st + 1))⇒

∑j
i=0 xi

xj−n+st
≤ φ(n− st)− 1

2
,

which establishes, with (24) the upper bound on the acceleration ratio for the schedule of Algo-

rithm 2.

To see that this bound is tight, we know from (Zilberstein et al., 2003) that the acceleration ratio

for contract scheduling with n problem instances, in the standard, static variant, is (φ(n) − 1)/2,

which is attained for interruptions T with T →∞. This implies that if st < n instances are solved

26

by some given (and thus finite) time t, then n−st problem instances remain. Therefore, for T →∞,

the contract lengths corresponding to the st solved instances are infinitesimal in comparison to T ,

and thus we obtain a lower bound on the acceleration ratio equal to (φ(n − st) − 1)/2 − ε, for

arbitrarily small ε > 0.

6 Conclusions & Further Research

We introduced and studied a generalization of the classic star search problem in which each ray has

a weighted target, and the objective for the searcher is to locate targets with a certain aggregate.

We showed that weighted search can be reduced to another problem, namely the subset search

problem, and we proposed and analyzed an efficient search strategy for both problems. The crux

in the analysis is to apply a parameterized (or adaptive) approach, which incorporates parameters

that capture the “hardness” of the instance. We also demonstrated an application of weighted

search in the design of interruptible algorithms based on adaptive contract scheduling.

Weighted search has applications in other domains, e.g., in the setting of caching games such as

the scatter hoarder’s problem of (Alpern et al., 2011), in which a hider distributes resources across a

number of locations, and a searcher tries to retrieve them given some bound on the total search cost.

Another research direction is to study weighted star search under measures beyond the competitive

ratio; see e.g., (Kirkpatrick, 2009) for such a study in the unweighted setting. Moreover, it would be

compelling to consider search problems in which the searcher has some limited information about

the setting. For example, a relevant scenario is when the weights or the distances are known up

to a permutation of the rays. Designing optimal algorithms, under parameterized analysis in such

settings is an important future research challenge.

7 Acknowledgments

This research benefited from visiting fellowships by the Center for Advanced Studies of the Uni-

versity of Munich (CAS-LMU) and by Sorbonne University. Konstantinos Panagiotou received

funding from the European Research Council, ERC Grant Agreement 772606-PTRCSP.

27

References

Alpern, S., Fokkink, R., Lidbetter, T., and Clayton, N. S. (2011). A search game model of the

scatter hoarder’s problem. Journal of the Royal Society Interface, 9(70):869–879.

Alpern, S. and Gal, S. (2003). The theory of search games and rendezvous. Kluwer Academic

Publishers.

Angelopoulos, S. (2015). Further connections between contract-scheduling and ray-searching prob-

lems. In Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJ-

CAI), pages 1516–1522.

Angelopoulos, S. (2021). Online search with a hint. In Proceedings of the 12th Innovations in

Theoretical Computer Science Conference (ITCS), pages 51:1–51:16.

Angelopoulos, S., Arsénio, D., and Dürr, C. (2017). Infinite linear programming and online search-

ing with turn cost. Theoretical Computer Science, 670:11–22.

Angelopoulos, S., Arsénio, D., Dürr, C., and López-Ortiz, A. (2016). Multi-processor search and

scheduling problems with setup cost. Theory of Computing Systems, pages 1–34.

Angelopoulos, S., Dürr, C., and Lidbetter, T. (2019). The expanding search ratio of a graph.

Discrete Applied Mathematics, 260:51–65.

Angelopoulos, S. and Jin, S. (2019). Earliest completion scheduling of contract algorithms with end

guarantees. In Proceedings of the 28th International Joint Conference on Artificial Intelligence

(IJCAI), pages 5493–5499.

Angelopoulos, S. and Kamali, S. (2021). Contract scheduling with predictions. In Proceedings of

the 35th AAAI Conference on Artificial Intelligence, AAAI 2021, pages 11726–11733. AAAI

Press.

Angelopoulos, S. and Lidbetter, T. (2020). Competitive search in a network. European Journal of

Operational Research, 286(2):781–790.

28

Angelopoulos, S. and López-Ortiz, A. (2009). Interruptible algorithms for multi-problem solving.

In Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI),

pages 380–386.

Angelopoulos, S., López-Ortiz, A., and Hamel, A. (2008). Optimal scheduling of contract algorithms

with soft deadlines. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence

(AAAI), pages 868–873.

Angelopoulos, S., López-Ortiz, A., and Panagiotou, K. (2014). Multi-target ray searching problems.

Theoretical Computer Science, 540:2–12.

Baeza-Yates, R., Culberson, J., and Rawlins, G. (1993). Searching in the plane. Information and

Computation, 106:234–244.

Beck, A. (1964). On the linear search problem. Naval Research Logistics, 2:221–228.

Beck, A. and Newman, D. (1970). Yet more on the linear search problem. Israel Journal of

Mathematics, 8:419–429.

Bellman, R. (1963). An optimal search problem. SIAM Review, 5:274.

Bernstein, D. S., Finkelstein, L., and Zilberstein, S. (2003). Contract algorithms and robots on rays:

unifying two scheduling problems. In Proceedings of the 18th International Joint Conference

on Artificial Intelligence (IJCAI), pages 1211–1217.

Bernstein, D. S., Perkins, T. J., Zilberstein, S., and Finkelstein, L. (2002). Scheduling contract

algorithms on multiple processors. In Proceedings of the Eighteenth AAAI Conference on

Artificial Intelligence (AAAI), pages 702–706.

Bonato, A., Georgiou, K., MacRury, C., and Pralat, P. (2020). Probabilistically faulty searching

on a half-line - (extended abstract). In LATIN 2020: Theoretical Informatics - 14th Latin

American Symposium, São Paulo, Brazils, volume 12118 of Lecture Notes in Computer Science,

pages 168–180. Springer.

Bose, P., Carufel, J. D., and Durocher, S. (2015). Searching on a line: A complete characterization

of the optimal solution. Theoretical Computer Science, 569:24–42.

29

Condon, A., Deshpande, A., Hellerstein, L., and Wu, N. (2009). Algorithms for distributional and

adversarial pipelined filter ordering problems. ACM Transaction on Algorithms, 5(2):24:1–

24:34.

Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., and Opatrny, J. (2019). Search on a line

with faulty robots. Distributed Comput., 32(6):493–504.

Demaine, E., Fekete, S., and Gal, S. (2006). Online searching with turn cost. Theoretical Computer

Science, 361:342–355.

Gal, S. (1972). A general search game. Israel Journal of Mathematics, 12:32–45.

Gal, S. (1974). Minimax solutions for linear search problems. SIAM Journal on Applied Mathe-

matics, 27:17–30.

Gal, S. (2010). Search games. Wiley Encyclopedia of Operations Research and Management Science.

Gal, S. and Chazan, D. (1976). On the optimality of the exponential functions for some minimax

problems. SIAM Journal on Applied Mathematics, 30:324—-348.

Hipke, C., Icking, C., Klein, R., and Langetepe, E. (1999). How to find a point in the line within

a fixed distance. Discrete Applied Mathematics, 93:67–73.

Jaillet, P. and Stafford, M. (1993). Online searching. Operations Research, 49:234–244.

Kao, M.-Y. and Littman, M. (1997). Algorithms for informed cows. In Proceedings of the AAAI

1997 Workshop on Online Search.

Kao, M.-Y., Ma, Y., Sipser, M., and Yin, Y. (1998). Optimal constructions of hybrid algorithms.

Journal of Algorithms, 29(1):142–164.

Kao, M.-Y., Reif, J., and Tate, S. (1996). Searching in an unknown environment: an optimal

randomized algorithm for the cow-path problem. Information and Computation, 131(1):63–80.

Kirkpatrick, D. G. (2009). Hyperbolic dovetailing. In Proceedings of the 17th Annual European

Symposium on Algorithms (ESA), pages 616–627.

30

Kupavskii, A. and Welzl, E. (2018). Lower bounds for searching robots, some faulty. In Proceedings

of the 37th ACM Symposium on Principles of Distributed Computing (PODC), pages 447–453.

López-Ortiz, A., Angelopoulos, S., and Hamel, A. (2014). Optimal scheduling of contract algorithms

for anytime problems. Journal of Artificial Intelligence Research, (51):533–554.

López-Ortiz, A. and Schuierer, S. (2004). On-line parallel heuristics, processor scheduling and robot

searching under the competitive framework. Theoretical Computer Science, 310(1–3):527–537.

McGregor, A., Onak, K., and Panigrahy, R. (2009). The oil searching problem. In Proceedings of

the 17th European Symposium on Algorithms (ESA), pages 504–515.

Russell, S. J. and Zilberstein, S. (1991). Composing real-time systems. In Proceedings of the 12th

International Joint Conference on Artificial Intelligence (IJCAI), pages 212–217.

Schuierer, S. (2003). A lower bound for randomized searching on m rays. In Computer Science in

Perspective, pages 264–277.

Zilberstein, S., Charpillet, F., and Chassaing, P. (2003). Real-time problem-solving with contract

algorithms. Annals of Mathematics and Artificial Intelligence, 39(1–2):1–18.

A Technical proofs

Proof of Lemma 8. Define the function

h(x) = (x+ 1)

(
1 +

1

x

)x
.

Then φ(x) = 1 + 2h(x), and the monotonicity of both φ and h follows from the simple fact that

(1 + 1/x)x is increasing. Moreover, by direct computation we obtain that φ(1) − φ(0) > 2e and

φ(2)− φ(1) > 2e. Let

H(x) = h(x)− h(x− 1).

We will argue that

H(x) ≤ H(x− 1) for x ≥ 3. (25)

31

Given (25) the claim that φ(q) − φ(q − 1) ≥ 2e, for all q ∈ N+, can be shown as follows. Since

(1 + 1/x)x is monotone increasing, we have that

lim
x→∞

H(x) = lim
x→∞

(x+ 1)

(
1 +

1

x

)x
− x

(
1 +

1

x− 1

)x−1
≤ lim

x→∞
x

(
1 +

1

x− 1

)x−1
− (x− 1)

(
1 +

1

x− 2

)x−2
(From (25))

≤ lim
x→∞

(
1 +

1

x− 2

)x−2
(monotonicity of (1 + 1/x)x)

= e,

and

lim
x→∞

H(x) ≥ lim
x→∞

(
1 +

1

x− 1

)x−1
= e.

Thus, limx→∞H(x) = e. Moreover, (25) guarantees that (H(q))q∈N+ is a non-increasing sequence.

Summarizing, we obtain that H(x) ≥ e for all x ≥ 3 and thus

h(x)− h(x− 1) ≥ e =⇒ φ(x)− φ(x− 1) ≥ 2e,

as claimed.

In order to show (25), note that it is equivalent to

h(x− 1) ≥ h(x) + h(x− 2)

2
for x ≥ 3.

We will argue that h′′(x) < 0 for x ≥ 3, which shows that h is concave for x ≥ 3 and thus satisfies

the above inequality, which completes the proof. Basic calculus reveals that

h′′(x) =
h(x)t(x)

x(x+ 1)
, where t(x) = x(x+ 1) log

(
1 +

1

x

)2

− 1.

Since h(x) and x(x+ 1) are positive, it remains to show that t(x) < 0 for x ≥ 3. Using the Taylor

series expansion of the logarithm we infer that

ln(1 + y) ≤ y − y2/2 + y3/3− y4/4 + y5/5, |y| < 1.

32

Thus

t(x) ≤ x(x+ 1)

(
1

x
− 1

2x2
+

1

3x3
− 1

4x4
+

1

5x5

)2

− 1.

By expanding the right-hand side we obtain that

t(x) ≤ α7x
7 + α6x

6 + α5x
5 + α4x

4 + α3x
3 + α2x

2 + α1x+ α0

3600x9
,

with

α7 = −300, α6 = 300, α5 = −260, α4 = 1420,

and

α3 = −615, α2 = 345, α1 = −216, α0 = 144.

Note that the upper bound for t is less than 0 for x ∈ {3, 4, 5}. Moreover, the values of the αi’s

guarantee that for all x ≥ 3

αix
i + αi−1x

i−1 = (αix+ αi−1)x
i−1 ≤ 0, i ∈ {7, 3, 1},

and thus t(x) ≤ (−260x5 + 1420x4)/3600x9. However, for x ≥ 6, this is negative (since 6 · 260 >

1420), and the proof is completed.

Proof of Lemma 9. Substituting the value of bq and bq+1 yields after some straightforward algebraic

manipulations

hq,` =

(
q
(

1 +
1

q(q + 2)

)`
+

2q + 3

q + 1

(
1− 1

q + 2

)`) 1

q + 2
. (26)

When viewed as a function of `, hq,` is of the form aX` + bY `, for some a, b,X, Y > 0. The second

derivative of this function is aX` ln(X)2 + bY ` ln(Y)2. The positivity of a, b,X, Y implies that this

is always non-negative, and thus hq,` is convex in `; we obtain that hq,` ≤ max{hq,1, hq,q+1} for all

` ∈ [1, q + 1].

It is straightforward to verify that hq,1 = 1. In the remainder we show that hq,q+1 ≤ 1, which

will complete the proof. The cases q = 1, 2, 3 are also verified immediately, so we can further

assume that q ≥ 4. To bound hq,q+1 we will first prove the auxiliary fact

(1 + y)N ≤ 1 + yN + y2N2/2, for all N ∈ N0 and y ≤ N−2. (27)

33

To show (27), let us fix N and y as required. We will show by induction that (1 + y)n ≤ 1 + yn+

y2n2/2 for all 0 ≤ n ≤ N . The case n = 0 is immediate. Moreover, for 0 ≤ n ≤ N − 1, by applying

the induction hypothesis, we have

(1 + y)n+1 ≤ (1 + y)(1 + yn+ y2n2/2) = 1 + y(n+ 1) + (n2 + 2n+ yn2)y2/2.

Together with y ≤ N−2 and n ≤ N this establishes (27).

Before we proceed with bounding hq,q+1 we make two auxiliary observations. First, using the

bound in (27) and that obviously q(q + 2) ≥ q2 we readily obtain

(
1 +

1

q(q + 2)

)q+1
≤
(

1 +
1

q(q + 2)

)(
1 +

1

q + 2
+

1

2(q + 2)2

)
.

Second, using that 1− x ≤ e−x, we obtain

(
1− 1

q + 2

)q+1
=
(

1− 1

q + 2

)q+2
·
(

1 +
1

q + 1

)−1
≤ 1

e
·
(

1 +
1

q + 1

)
.

By substituting both auxiliary observations in (26) and collecting terms we obtain that there are

polynomials P,Q such that

hq,q+1 ≤
(
q
(

1 +
1

q(q + 2)

)(
1 +

1

q + 2
+

1

2(q + 2)2

)
+

2q + 3

(q + 1)e

(
1 +

1

q + 1

)) 1

q + 2
= 1−P (q)/Q(q),

where Q(q) = 2e(q + 2)4(q + 1)2 > 0 and P (q) =
∑5

i=0 αiq
i is a polynomial of degree 5 such that

α5 = 2e− 4, α4 = 17e− 38, α3 = 56e− 144,

all > 0, and

α2 = 88e− 272, α1 = 66e− 256, α0 = 19e− 96,

all < 0. Since α5 > 0 the polynomial P is eventually positive, implying that hq,q+1 ≤ 1 whenever

q is sufficiently large. Moreover, let us write

P (q) = q2(q3α5 + α2) + q(q3α4 + α1) + (q3α3 + α0),

34

Note that (with plenty of room to spare)

43αi > −αi−3, for i ∈ {3, 4, 5}.

and thus q3αi + αi−3 > 0 for all q ≥ 4 and i ∈ {3, 4, 5}. Thus P (q) > 0 for q ≥ 4 and the proof is

completed.

35

