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Abstract

The fracture toughness of glass can be improved by including ceramic reinforcing

platelets. Among others, Al2O3 platelets are proposed as an environmentally

friendly and low-cost solution. One of the critical points in the design of this

composite is the generation of residual stresses after cooling in manufacture,

due to the thermal expansion mismatch between the two materials. In this

paper, the effect of these residual stresses and the role of the volume fraction

are studied, following a methodology based on the Coupled Criterion together

with the Matched Asymptotic Expansion. The model is validated through a

comparison with experimental results found in the literature.

Keywords: Finite Fracture Mechanics, Coupled Criterion, Micro-scale,

Fracture toughness, Residual stresses

1. Introduction

Ceramic platelets are used as a reinforcing constituent in glass matrices to

improve mechanical properties such as fracture toughness [1]. One example is

the borosilicate glass Al2O3 platelet composite, which can be really interesting

for industrial applications due to its low production cost and environmental5

safety [2]. This kind of composite can be used in glass-to-metal seals [3], which
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are widely applied in electrical penetration assemblies [4], solid oxide fuel cells

[5], and implantable medical devices [6]. Adding Al2O3 platelets increases the

fracture properties of glass, that are not enough to overcome the extreme envi-

ronments that sometimes are found in the service conditions [7].10

Borosilicate glass Al2O3 platelet composite was initially introduced by Boc-

caccini et al. [8]. In their study, they performed a material characterization

using scanning electron microscopy (SEM). Two important aspects of the frac-

ture behaviour were investigated: the fracture surface of the composite using

reflected light microscopy, and the increase in fracture toughness of the glass15

when alumina is added, assessed through the singled edge notched beam (SENB)

technique. As later demonstrated [9], both are correlated through the fracture

surface roughness. Furthermore, new experimental measurements of the frac-

ture toughness were conducted in [1], considering the chevron notched specimen

technique. Another related study worth mentioning is [10], which focused on en-20

hancing the fracture toughness through cold-pressing, as opposed to the original

hot-pressing method introduced in [8].

One of the most important characteristics of this composite is the thermal

expansion mismatch between alumina and glass [11]. The thermal coefficient in

alumina is higher than the one in glass, and consequently, compressive residual25

stresses will appear in the matrix after cooling, as well as tensile residual stresses

in the platelet [12]. The effect of this thermal mismatch have been studied

experimentally and numerically. In 1999, Todd et al. [11] measured residual

stresses and their toughening effect in experiments using fluorescence microscopy

to relate the change in the luminiscence spectrum of alumina to stresses. They30

also justified the consideration of isotropic thermal properties in the platelet,

since results do not differ from the anisotropic measurements. The results were

compared to some theoretical models [13] and [14], based on the aspect ratio of

the platelet. Then, in 2001 Cannillo et al. [12] performed numerical simulations

using the finite element method (FEM) to quantify residual stresses. A special35

tool was used to map an image of the material microstructure for the calculation.

Notably, this same tool was also applied in 2003 by Cannillo et al. [15] to
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investigate how cracks are propagated in this kind of materials.

Although there exits a substantial body of literature on reinforcing glass with

alumina platelets, only a limited number of studies have investigated the fracture40

toughness through numerical analyses. The first characterization was conducted

by Cannillo et al. [16] in 2001. Subsequently, in 2022, a new methodology to

design and study platelets composite was introduced in [17]. This approach is

based on the application of the Coupled Criterion (CC) [18] together with the

Matched Asymptotic Expansion (MAE) [19]. However, in both cases only the45

role of a single platelet was considered, and neither of them included the effect

of residual stresses.

Therefore, the main objective of this paper is to complete the numerical

tool introduced in [17] by incorporating the influence of residual stresses and

the volume fraction. For the very first time, this study numerically investigates50

the impact of these two parameters on fracture toughness, determining which

one plays a more significant role. This finding can be particularly valuable

for design optimization. The model presented in this paper is illustrated and

validated using the numerical and experimental studies previously mentioned.

This paper is divided into 6 sections. In Section 2 the new thermomechanical55

problem is described, as well as the mechanical properties of the composite. The

application of the CC together with the MAE is explained in Section 3 and 4,

respectively. Results are shown in Section 5, which is divided in 3 parts. A first

part where the effect of residual stresses is analyzed, a second one including the

effect of the volume fraction, and a final comparison with results found in the60

literature. Final conclusions are drawn in Section 6.

2. Description of the problem

Based on the experiments made in [1] and [8], a symmetric 3-point bending

test with a pre-existing crack Γc under Mode I loading conditions and a cooling

change in temperature ∆θ is considered, see Fig. 1. At the tip of the pre-

existing crack there is a platelet of hexagonal shape oriented a certain angle α,
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whose dimensions are, according to experiments, major axe d = 5 − 25 µm and

thickness t = 0.2d. The platelet is immersed in a volume of glass according

to the volume fraction Vp, the whole being itself immersed in a homogenized

material (see below) called in the following the composite. The major axe and

thickness of the glass envelope are a1 and a2 and fulfill

a1 =
d√
Vp

and a2 =
t√
Vp

. (1)

The interface between the platelet and the matrix is assumed to be strong as

reported in [9].

Figure 1: Scheme of a symmetric 3-point bending test on a cracked specimen after cooling.

A platelet (blue) and its environment (glass in yellow and homogenized material in green) is

located at the tip of the crack.

The material properties of alumina and glass are recalled in Table 1. It can65

be observed that a range for the alumina strength σa
c and fracture toughness

Ka
IC is estimated [17], since these properties in platelets of alumina are very

difficult to measure. The smallest and biggest values will be called respectively

minor and major in the following. Notice that the superscripts a or g are used

when referring to alumina or glass mechanical properties.70
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Constituents E [GPa] ν αt [10−6/K] σc [MPa] KIC [MPa m1/2]

Borosilicate glass 60 0.23 3.3 56 0.735

Alumina (Al2O3) 402 0.22 8.9 300 − 400 2 − 5

Table 1: Mechanical properties of the constituents. The extreme values of the tensile strength

and toughness of alumina will be called respectively minor and major in the following.

All around the platelet/glass assembly, a homogeneous distribution of platelets

is assumed [8] and therefore the composite is represented through an equivalent

homogenized material, whose mechanical properties depend on Vp in Table 2.

Its Young’s modulus Eapp was measured in [1] and [8], whereas the Poisson’s75

ratio νapp is assumed to be that of glass, since there is not a big difference

between Poisson’s ratios of alumina νa and glass νg, see Table 1.

The thermal expansion coefficient αapp
t for the composite was calculated

using Voigt’s rule of mixtures [20]. The tensile strength and σapp
c was also

measured in [1] and [8]. Finally, two experimental sets of data for the apparent80

fracture toughness Kapp
IC in the composite were included, denoted as [1] referring

to [8] and [2] referring to [1], see Table 2.

Eapp [GPa] νapp αapp
t [10−6/K] σapp

c [MPa] Kapp
IC [MPa m1/2]

Vp = 5% 63 0.22 3.58 67 0.981 0.92

Vp = 10% 70 0.22 3.86 84 1.031 0.952

Vp = 15% 79 0.22 4.14 104 1.281 1.12

Vp = 30% 102 0.22 4.98 150 1.921 1.52

Table 2: Mechanical properties of the equivalent homogenized material for several values of

platelets volume fraction Vp.

The problem illustrated in Fig. 1 is a thermomechanical one. A superposi-

tion principle can be applied to describe the solution U(x1, x2) as the sum of the

solution to a pure mechanical problem U cr and the solution to a thermoelastic
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problem U te

U(x1, x2) = U cr(x1, x2) + U te(x1, x2). (2)

The pure mechanical problem was already developed in [17] and therefore only

the thermoelastic problem is detailed in this paper, its variational formulation

is

Find U te ∈ Wte such that∫
Ω

C : ∇U te : ∇ϕdx1dx2 =

∫
Ω

C : εin : ∇ϕdx1dx2, ∀ϕ ∈ H1(Ω),

(3)

where H1(Ω) denotes the first order Sovolev space. Note that only the smooth-

ness condition is required for the space of admissible solution, since the cooling

occurs without any constraint on the boundaries of the specimen. The inelastic

strain tensor appearing in (3) is

εin = −αt∆θI, (4)

where the temperature change during cooling ∆θ = θ0 − θf is the difference

between the initial temperature θ0, which corresponds in this case to the glass

transition temperature θ0 ≈ 550◦C [11], and the final one θf (the room temper-85

ature), and I is the identity matrix.

As in [17], we assume the plane strain elasticity for simplicity, since we are

primarily interested in the effects of smallness.

3. Matched asymptotic approach in the thermoelastic problem

In the thermoelastic problem described above the platelet located at the

crack-tip is considered a perturbation of Ωd, since its size is much smaller than

the specimen dimensions. Consequently, the MAE can be applied to estimate

the elastic displacement U te
d (x1, x2) in its vicinity, where the lower index d is

used to emphasize the dependence of the solution on the size of the platelet. In

this framework, two expansions are used to approximate U te
d (x1, x2). On the
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one hand, the outer expansion is written as

U te
d (x1, x2) = U te

0 (x1, x2) + small correction, (5)

where U te
0 (x1, x2) is the solution of the same thermoelastic problem defined

in the unperturbed domain Ω0. It is the macroscopic approach in which it is

assumed that the perturbation is too small that it is not appreciable in the spec-

imen which is therefore composed only of the homogenized material. Assuming

this homogenized material to be isotropic, the outer solution U te
0 (x1, x2) can be

easily integrated from

εte
0

(x1, x2) = εin ; σte

0
(x1, x2) = 0 (6)

U0
te(x1, x2) = U0

te(0, 0) + εin [x1, x2]
T
. (7)

This approximation correctly represents U te
d (x1, x2) far away from the pertur-

bation. On the other hand, the inner expansion is characterized by a change of

variable xi = dyi (i = 1, 2) and r = dρ, which defines an unbounded domain

Ωin, see Fig. 2. It is expressed as

U te
d (x1, x2) = U te

d (dy1, dy2) = F te
0 (d)V te

0 (y1, y2) + F te
1 (d)V te

1 (y1, y2) + ... (8)

Figure 2: Scheme of the inner domain.

Notice that the inner expansion is a good approximation of the actual solu-90

tion in the vicinity of the platelet. Terms V te
0 (y1, y2) and V te

1 (y1, y2) are defined
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through the matching conditions, in which the outer and inner expansion are

related in an intermediate region, as it was explained in [17],

F0(d) = 1, V te
0 (y1, y2) ∼ U te

0 (0, 0) when ρ → ∞, (9)

F1(d) = d, V te
1 (y1, y2) ∼ εin [y1, y2]

T
when ρ → ∞, (10)

where the symbol ∼ means ”behaves like”. Then, it is obtained that V te
0 (y1, y2) =

U te
0 (0, 0). The term V te

1 (y1, y2) is numerically obtained using FEM on a very

large but bounded domain with a traction free condition along the artificial

outer boundary (6). Therefore,

U te
d (x1, x2) = U te

0 (0, 0) + d V te
1 (y1, y2) + ... (11)

On the other hand, the actual stress tensor σte

d
can be expressed in terms of

the stress tensor in the inner problem,

σte

d
(x1, x2) = σte

d
(dy1, dy2) = C :

(
∇yV

te
1 (y1, y2) − εin

)
+ small correction

(12)

In addition, let us recall the outer and inner expansions of the elastic prob-

lem (refer to [17] for the exact meaning of the terms which, however, can be95

understood quite easily),

The outer expansion

U cr
d (x1, x2) = U cr

0 (x1, x2) + small correction

with the Williams’ expansion

U cr
0 (x1, x2) = U cr

0 (0, 0) + KI r
1/2 uI(r, θ) + ...

and the inner expansion

U cr
d (x1, x2) = U te

0 (0, 0) + KI

√
d V cr

1 (y1, y2) + ...

(13)

We should theoretically include the T-stress in these expansions to be consistent

with (7), but, after trying, it turns out that its influence is negligible in all cases.
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4. The coupled criterion in a heterogenous structure

The crack nucleation and propagation can be predicted by the CC, defined by

two necessary and sufficient conditions: a stress and an energy conditons [21].

Considering a heterogeneous structure with N different materials, the stress

condition is written as a function of the tensile stress σ(s) along the expected

crack path (i.e. prior to any crack extension), using s as a coordinate (plane

strain assumption),

σ̄ =
σ(s)

σc(s)
≥ 1 for 0 ≤ s ≤ δl. (14)

being δl the newly created crack length. The tensile strength σc(s) is defined as

σc(s) =

N∑
i=1

σi
c [H(s− δli−1) −H(s− δli)] , (15)

where H is the Heaviside function and δl0 = 0. Notice that N = 3 is the problem

represented in Fig. 1, whereas N = 2 is used if only a single platelet embedded

in a glass matrix is studied [17]. The stress condition in the thermomechanical

problem (2) is therefore described as

σ̄ =
σcr(s) + σte(s)

σc(s)
≥ 1 for 0 ≤ s ≤ δl, (16)

The energy condition is based on an energy balance between the change in

potential and kinetic energy, ∆Πp and ∆Πk respectively, and the fracture energy

for each material i, Gi
cSi,

∆Πp + ∆Πk +

N∑
i=1

Gi
cSi = 0, (17)

where Si is the newly created crack surface and Gi
c is the critical energy release

rate in each material i. In a bidimensional case, this balance holds per unit

thickness of the specimen,

∆Πp + ∆Πk +

N∑
i=1

Gi
cδli = 0, (18)
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and δli denotes the newly created crack length within each material i. Assuming

the initial state to be quasi-static, ∆Πk ≥ 0, the energy condition can be written

as

Ḡinc = −∆Πp(δl)

δl
· 1

Gc(δl)
≥ 1, (19)

where the parameter Gc(δl) is

Gc(δl) =

∑N
i=1 G

i
cδli

δl
, (20)

in which δl =
∑N

i=1 δli. The change in potential energy ∆Πp(δl) = ∆W (δl),

being W the total strain energy in the system defined as

W (δl) =
1

2

∫
Ω

C : (∇U − εin) : (∇U − εin) dx1dx2, (21)

Using the superposition principle of the thermomechanical problem (2) it comes

out,

W (δl) =
1

2

∫
Ω

C :
(
∇U cr + ∇U te − εin

)
:
(
∇U cr + ∇U te − εin

)
dx1dx2. (22)

Considering (3), the strain energy in the system is rewritten as

W (δl) =
1

2

∫
Ω

C : ∇U cr : ∇U crdx1dx2 −
1

2

∫
Ω

C : ∇U te : ∇U te dx1dx2

+
1

2

∫
Ω

C : εin : εin dx1dx2 = W cr −W te + W in. (23)

Since we are interested in the increment in strain energy, ∆W (δl) = W (δl) −

W (0), the last term W in in the previous expression does not play any role in

the energy condition, then

Ḡinc = −∆Πp

δl
· 1

Gc(δl)
=

(
−∆W cr

δl
+

∆W te

δl

)
· 1

Gc(δl)
≥ 1. (24)

note that there is no coupling term in (23), this a consequence of the boundary

conditions and the variational formulation of the problems. In this problem, the

actual solution is approximated using the MAE. In [17] it was explained how

the tensile stress σcr and the increment in strain energy ∆W cr were obtained in

the mechanical problem using MA approach. In the thermoelastic problem the
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tensile stress σte is calculated applying (12), and the increment in strain energy

∆W te is expressed as

∆W te = d∆Ŵ te. (25)

where ∆Ŵ te is the increment in strain energy in the inner thermoelastic prob-100

lem. Considering that σ̂te(ŝ) and Ŵ te the thermoelastic solution for ∆θ = 1,

the CC is therefore expressed for a general value of ∆θ as

σ̄ =

KI√
d
σ̂cr(ŝ) + ∆θσ̂te(ŝ)

σc(ŝ)
≥ 1, for 0 ≤ ŝ ≤ δlin (26)

Ḡinc =
−(KI)

2 ∆Ŵ cr

δlin
+ d∆θ2

∆Ŵ te

δlin

Gc(δlin)
≥ 1. (27)

where ŝ = s/d. The aim of applying the CC is to calculate the apparent

fracture toughness of the composite Kapp
IC , defined as the minimum value of

KI for which both the stress (26) and the energy (27) condition are fulfilled. In105

particular, Kapp
IC is compared to Kg

IC, the fracture toughness of glass, to study

how glass fracture properties are enhanced when a second constituent (in this

case, alumina) is added.

At this stage, we must point out an important difficulty encountered by the

numerical approach of the CC. There is a singularity at the tip of the mother110

crack impinging the matrix/platelet interface and, despite it is located at the

tip of a crack, it differs from the singularity for a crack in the classical theory

of Linear Elastic Fracture Mechanics λ = 0.5, because of the heterogeneous

conditions [22]. The platelet being stiffer than the matrix, it is a so-called weak

singularity with an exponent larger than that of a crack. If the mechanical115

loading (bending) leads to a positive generalized stress intensity factor (GSIF)

of the singularity, on the contrary, the residual stresses tend to close the mother

crack and result in a negative GSIF. There is a competition between them, if

the GSIF related to a mechanical load is small, then residual stresses take over

and the mother crack remains closed. Unfortunately, all this happens in a very120

small neighborhood of the crack tip, where the stress variations are difficult to
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capture numerically due to the singularity, and therefore the calculations are

very mesh dependent.

A way to get rid of this difficulty is to compute the two GSIFs. First, the

GSIF referred to the mechanical problem, kcr, is extracted from U cr
d using the

path independent integral described in [19]

kcr =
Ψ(U cr

d , r−λ u−(θ))

Ψ(rλ u(θ), r−λ u−(θ))
, (28)

where rλ u(θ) is the eigenfunction of the heterogeneous problem, being r−λ u−(θ)

the dual eigenfunction. For the GSIF referred to the thermoelastic problem (kte)125

the right-hand side member in (3) does not vanish in the vicinity of the singular

point, and consequently the integral Ψ is no longer a path-independent integral.

A superposition principle might be used to separate the non-homogeneous part

of U te
d , and therefore to calculate kte.

The inner solution obtained using MAE can be used in the calculation of kcr

and kte. First, the GSIF’s κte and κcr are extracted respectively from V te
1 and

V cr
1 . Then, the corresponding changes are applied using (11) and (13) to obtain

the GSIF’s of the actual problem,

kte = d1−λ∆θ κte (29)

kcr = KI d
1/2−λ κcr. (30)

Then, equality kcr = −kte provides the smaller value Kmin
I of KI such that there

is not a compressive stress and the mother crack opens.

Kmin
I =

√
d∆θ

κte

κcr
. (31)

It is a lower bound of admissible KI. Numerically, the fact that κcr outweighs130

κte, is tricky to detect as already mentioned. We have opted for a check of the

convexity of σ̄(s) as function of s at the first computation points. Hence, the

first and the second derivative of σ̄(s) have been checked in the neighbourhood of

the singularity (at s = 0). The first derivative must be negative for a decreasing

function and the second derivative must be positive to obtain a convex evolution135

of σ̄(s).
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5. Results

This section is divided into 3 parts. First, in subsection 5.1 the influence of

residual stresses is studied without including the effect of the volume fraction,

i.e., considering the role of a single platelet in the thermomechanical problem.140

Then, in subsection 5.2 the volume fraction together with residual stresses is

analysed. Finally, in subsection 5.2.3 a comparison with experimental results

extracted from literature is made to ensure that the model is consistent. Results

are exhibited for different platelet sizes, at the scale of experiments carried out

in [1, 8], i.e. d = 5 − 25µm and at an extended scale d = 3 − 300µm used145

to better capture the size effect on the apparent fracture toughness. Moreover,

two orientations of the platelet are studied, α = 90◦ and α = 0◦. The selection

of these two orientations is based on the numerical study made in [16]. In the

former several expected crack path are analysed, to determine which one governs

the pre-existing crack propagation: a penetration in the platelet, a decohesion150

at the end of the platelet and a deviation along the interface matrix/platelet.

In the Fig. 3 a scheme of these mechanisms is shown.

Therefore, in this section the influence of different parameters (d, α, ∆θ

and Vp) is investigated in order to determine when these factors contribute to

enhance the apparent fracture toughness of the composite, Kapp
IC .155

5.1. Influence of residual stresses. The role of a single platelet

In case of a single platelet, the model considers only two components, alu-

mina and glass, the homogenized material is nothing but glass. For a cooling

down ∆θ = 500 K, the influence of the parameter d in the implementation of

the CC is analysed. Results are also compared with the case where there are160

no residual stresses.

5.1.1. Angle α = 90◦

When the platelet is perpendicular to the pre-existing crack, the expected

crack growth is not known a priori and several possibilities might be analysed

[17]: penetration, decohesion and deflection, see Fig. 3.165
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(a) Penetration (b) Decohesion

(c) Deflection

Figure 3: Schematic view of the inner domain and the expected crack path when α = 90◦.

For penetration (Fig. 3a) two scenarios are examined, called minor and

major, corresponding to the minor and major values of alumina strength and

toughness in Table 1. These two scenarios have been named penetration major

and minor for the sake of simplicity. As shown in Fig. 4, both converge to

the same values of Kapp
IC for d > 150 µm, which means that alumina fracture170

properties play no longer a role in the damage propagation. The reason is that

for d > 150 µm it is the mother crack opening condition which prevails, while,

for d < 150 µm they do play a role, the greater the alumina fracture properties,

the higher Kapp
IC . It is compared to Kmin

I and, as expected, both curves are

above.175

Moreover, for α = 90◦ the singularity exponent in the heterogeneous problem

is a real number λ = 0.638, and therefore our numerical calculations can be

compared to Kmin
I . As expected, both curves are above.
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Figure 4: Comparison between the theoretical minimum Kmin
I and the apparent fracture

toughness Kapp
IC obtained for the major and the minor values of alumina strength and tough-

ness (see Table 1), for the penetration case.

The same comparison is carried out for the deflection mechanism (Fig. 3c)

with similar conclusions (Fig. 5).180

Figure 5: Comparison between the theoretical minimum Kmin
I and the apparent fracture

toughness Kapp
IC obtained for the deflection case.

In the decohesion case (Fig. 3b), the situation is slightly different because
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the crack does not initiate at the mother crack tip but at the corner of the

platelet (which undergoes also a singularity), then this mechanism can occur

even if the mother crack is closed. The only point to check is the opening or not

of the pre-existing crack to be sure that the appropriate boundary conditions185

prevail along the crack faces. It has been checked that it is either opened or

fully closed.

The three cases are compared in Fig. 6. The actual apparent fracture tough-

ness is the minimum value of Kapp
IC among the three curves which corresponds

to the predominant mechanism. It can be pointed out that Kapp
IC is lower than190

Kg
IC for long platelets d > 98 µm. In fact, for d > 132 µm the CC predicts a

breakage by a lateral decohesion during cooling, which agrees with experimental

observations [11].

For short platelets d < 98 µm the toughening effect depends on alumina

fracture properties. In the major case the predominant toughening mechanism195

is either decohesion or deflection, and Kapp
IC > Kg

IC in the whole range. In the

minor case, Kapp
IC > Kg

IC only for d = 51−98 µm, and the governing mechanism

is either a penetration or a decohesion. In both the major and the minor cases,

there is an optimal platelet size that corresponds to the highest value of the

actual Kapp
IC for each case (Fig. 6).200
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Figure 6: Comparison between decohesion, deflection, penetration minor and major, for α =

90◦ and ∆θ = 500K. The diamond and the square correspond to the optimal points in the

minor and the major case respectively .

The influence of residual stresses at the scale of experiments d = 5 − 25 µm

is studied in Fig. 7, where the apparent fracture toughness of the composite is

compared for ∆θ = 0 K (no residual stresses) and ∆θ = 500 K. In the major

case a slight enhancement of Kapp
IC with respect to Kg

IC is observed, whereas in

the minor case it is shown that residual stresses do not enhance the toughness,205

since Kapp
IC < Kg

IC in the whole range. The predominant mechanism does not

change with ∆θ, being a lateral decohesion in the major case, which agrees with

predictions made in [12], and a penetration for the minor case.
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(a) Major case (b) Minor case

Figure 7: Influence of ∆θ on Kapp
IC for α = 90◦ at the scale of experiments.

Furthermore, the influence of residual stresses is also analysed for an ex-

tended range of the platelet size d = 3 − 300 µm in Fig. 8, where it is clearly210

observed that residual stresses reduce the apparent fracture toughness when

considering very long platelets. In both cases residual stresses promote a lateral

decohesion as the predominant mechanism, specially for long platelets.

(a) Major case (b) Minor case

Figure 8: Influence of ∆θ on Kapp
IC for α = 90◦ in an extended range of d. The square, circular

and triangular symbols represent decohesion, deflection and penetration, respectively.

5.1.2. Angle α = 0◦

When the platelet is aligned with the pre-existing crack, α = 0◦, a crack215

growth through the interface glass/alumina is expected, as shown in Fig. 9.
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Figure 9: Schematic view of the inner domain and the expected crack path when α = 0◦

The difficulty described in Section 4 is still present and even worsen insofar

as the exponent of the crack tip singularity impinging the corner of the platelet

is a complex number, λ ± i ε = 0.535 ± i 0.054. The same complex character

holds for the GSIFs κte and κcr which can however still be extracted from V te
1220

and V cr
1 using again the path independent integral described in [19], [23, 24].

And this is still true for the actual GSIFs kte and kcr derived from (11)) and

(13) through (29) and (30). However, contrary to the previous case, it is thus

impossible to compare them to know if the mechanical loading prevails on the

residual stresses. However, it can be noted that because of the smallness of the225

imaginary part ε of the singular exponent, the oscillations inherent in this kind of

solutions develop on such a small scale that they have no physical significance.

Then, (31) can be replaced by a condition of decrease and convexity of the

tensile stress associated with the singular terms to define Kmin
I . In other words,

we determine the value of Kmin
I considering that σ̄(s) in the vicinity of the230

singularity must be a decreasing and convex function.

The effect of residual stresses and the platelet size on Kapp
IC is studied in Fig.

10 for ∆θ = 0 K and ∆θ = 500 K, at the two families of scales described in the

previous section, d = 5−25 µm and d = 3−300 µm. Clearly, a toughening effect

(Kapp
IC > Kg

IC) is never observed at the experimental scale, with and without235

residual stresses, as shown in Fig. 10a. In fact, residual stresses reduce the

apparent fracture toughness in the composite. Interestingly, when considering
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an extended scale, see Fig. 10b, Kapp
IC is higher than Kg

IC for d > 60µm, for both

∆θ = 0 K and 500 K. In the latter, two different evolution of Kapp
IC are observed.

For d < 36 µm Kapp
IC is decreasing and the energy condition is governing the240

failure, otherwise Kapp
IC is increasing and the stress condition is governing. In

the latter the crack growth is determined by the negative thermal GSIF in the

thermoelastic problem.

(a) Scale of experiments (b) Extented scale

Figure 10: Influence of ∆θ and d on Kapp
IC for α = 0◦ and Vp = 0%.

5.2. Influence of the volume fraction

The mechanical properties of the equivalent homogenized material depend245

on the volume fraction Vp. The values chosen for this study correspond to

the ones found in the literature [1], Vp = 0 %, 5 %, 10 %, 15 % and 30 % (note

that 0 % means a single platelet by abuse of notation). As in Section 5.1, two

orientations of the platelet have been studied, α = 0◦ and α = 90◦.

5.2.1. Angle α = 90◦250

The case of α = 90◦ requires the analysis of three different crack paths

described in Section 5.1.1: deflection, decohesion and penetration.

First, Fig. 11 shows the influence of Vp and d on Kapp
IC in the major case at

scale of experiments for ∆θ = 0K and 500K. In general, a greater toughening

effect is observed when increasing Vp, whereas little differences related to ∆θ255

are noticed.
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As shown in Fig. 11a, for ∆θ = 0K and Vp = 0 % the predominant mech-

anism is a lateral decohesion, except for d = 5µm, where it is the penetration.

On the other hand, for Vp > 0 %, the deflection mostly governs the failure.

Only in case of Vp = 10 % and d = 5µm the governing mechanism changes to260

penetration. Interestingly, intermediate values of the volume fraction Vp = 5 %

and 10 % show values of Kapp
IC closer to each other. For instance, for d = 5 µm

and Vp = 10 % the predominant mechanism changes to penetration, and Kapp
IC

is very similar to the one for Vp = 5 %.

(a) ∆θ = 0K (b) ∆θ = 500K

Figure 11: Influence of Vp and ∆θ on Kapp
IC at the scale of experiments for α = 90◦, considering

the major case of alumina fracture properties.

Moreover, for d > 18µm and Vp = 5 % there is a jump in Kapp
IC , and it265

becomes closer to the one obtained for Vp = 10 %. This jump also exists for

Vp > 5 %, but it is not visualized in Fig. 11a because it is located out of

the scale of experiments. The reason why this jump occurs is a change in the

crack increment predicted by the CC. For platelets larger than 18µm the crack

jump ends outside the interface glass/alumina, otherwise it remains inside. An270

example is shown in Fig. 12, where the CC is applied for d = 25µm. The two

dimensionless curves σ̄ and Ḡinc are represented in Fig. 12a as well as the crack

opening when KI = Kapp
IC , in Fig. 12b. It can be observed that in this case

the crack grows inside the interface glass/alumina until s = 11.39µm. Notice

that at the end of the interface glass alumina there is a stress peak due to the275

singularity at the corner point.
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(a) CC curves
(b) Crack opening

Figure 12: Example of the application of the Coupled Criterion for d = 25µm, ∆θ = 0K and

Vp = 5%

Fig. 11b shows the case of ∆θ = 500K, where it can be observed that

penetration is no longer a predominant mechanism at the scale of experiments.

Instead, the predominant mechanism switches from the lateral decohesion (Vp =

0 %) to deflection (Vp > 0 %).280

Similar conclusions can be obtained in the minor case represented in Fig. 13.

The volume fraction has a greater influence on the apparent fracture toughness

than residual stresses. Indeed, in this case residual stresses are not a toughening

mechanism, since they reduce the value of Kapp
IC . Penetration is the predominant

mechanism in both cases, with and without thermal effects, i.e., if the alumina285

fracture properties are not great enough the pre-existing crack always penetrates

the platelet. This observation agrees with experimental observations for large

intersection angles shown in [8]. Moreover, Kapp
IC in the minor case is lower than

Kapp
IC in the major case.

It is worth mentioning the cases Vp = 0 % and 5 % for ∆θ = 500K shown in290

Fig. 13b, where there is a change in the trend of Kapp
IC at d ≈ 22.5µm, explained

by a change in the crack opening. For platelets smaller than d = 22.5µm the

crack penetrates at the moment of failure into the alumina until it is arrested

inside the glass region, whereas for d > 22.5µm the crack growth stops before

reaching the end of the platelet. A similar phenomenon can be observed in Fig.295

13a for very short platelets in the case of Vp = 30 % and ∆θ = 0K.

22



(a) ∆θ = 0K (b) ∆θ = 500K

Figure 13: Influence of Vp and ∆θ on Kapp
IC at the scale of experiments for α = 90◦, considering

the minor case of alumina fracture properties.

Fig. 14 shows the influence of Vp and the platelet size for an extended range

d = 3−300 µm and the major case of alumina fracture properties, omitting the

effect of residual stresses (∆θ = 0K). Different shapes can be observed in the

behaviour of Kapp
IC (d). For high concentrations of alumina Vp > 10 %, where the300

predominant toughening mechanism is always deflection, the behaviour of the

curves is related to a change in the crack opening, depending on the platelet size.

For short platelets (d < 40µm) the crack grows until the end of the interface

glass alumina at the moment of failure, whereas for longer platelets the crack

is arrested before reaching the end of the interface. For low concentrations of305

alumina Vp ≤ 10 % different toughening mechanisms are observed. First, for

very short platelets (d < 5µm) the penetration is governing the failure, whereas

for very long platelets (d > 180µm) it is always deflection. For an intermediate

range (d = 5 − 180µm) of the platelet size the concentration of alumina highly

promotes deflection as a toughening mechanism. Hence, for Vp = 0 % it is a310

lateral decohesion in the whole range, whereas this range is much smaller when

increasing Vp.
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Figure 14: Effect of Vp on Kapp
IC at the extended scale for ∆θ = 0K and α = 90◦, considering

the major case of alumina fracture properties.

The effect of residual stresses is analysed in Fig. 15. First, it is observed

that for very long platelets the crack grows in a lateral decohesion after cooling

without mechanical loads, since Kapp
IC = 0. This happens when the platelet315

size is higher than a threshold that increases with growing Vp. Indeed, the

phenomenon is no longer observed in the selected range of d for Vp = 30 %,

although a strong reduction of Kapp
IC can be noticed.

In general, the combination of two effects is shown in Fig. 15. On the one

side, the presence of residual stresses promotes decohesion as a predominant320

mechanism, as it was already mentioned in Section 5.1.1. On the other hand,

deflection is more likely to occur for a higher concentration of platelets (i.e. a

higher Vp). Moreover, for Vp ≥ 10 % a jump in Kapp
IC is observed, generated by a

change in the crack opening. For instance, for Vp = 30 % and d < 202µm, gov-

erned by deflection, the crack grows until a point either outside of the interface325

alumina glass if d < 4µm, or located at the end of the interface if d = 4−147µm,

or inside the interface d > 148µm.
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Interestingly, when including residual stresses Kapp
IC is no longer increasing

with the platelet size, except for very short platelets or intermediate size and

high concentration of alumina(Vp = 30 %). For this reason, an optimal design330

point for each Vp can be defined, as it was done in Fig. 6. For the sake of

simplicity, they have not been highlighted in Fig. 15, but an example of the

optimal platelet size for Vp = 30 % is d = 12µm, which gives Kapp
IC = 2.32Kg

IC.

Figure 15: Effect of Vp onKapp
IC at the extended scale for ∆θ = 500K and α = 90◦, considering

the major case of alumina fracture properties.

5.2.2. Angle α = 0◦

Fig. 16 shows the influence of Vp with and without residual stresses, when335

the platelet is parallel to the pre-existing crack, see Fig. 9. It can be observed

that Vp has a scaling effect on Kapp
IC , increasing its value without changing its

evolution with d.

A toughening effect (Kapp
IC > Kg

IC) is observed only for Vp > 5 %, although

for Vp = 10 % the apparent fracture toughness is not enhanced when d > 16µm.340

The maximum enhancement of Kapp
IC with respect to Kg

IC is 1.3. Notice the

toughening effect is generated by the improvement of mechanical properties
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in the composite when increasing Vp, and not as a consequence of including

residual stresses. This conclusion seems to be very difficult to observe through

experiments. Moreover, in this case residual stresses never increase the apparent345

fracture toughness of the composite in this range.

Figure 16: Effect of Vp on Kapp
IC at the scale of experiments for ∆θ = 0K and 500K and

α = 0◦.

The same analysis can be made considering an extended range of d, as it

is shown in Fig. 17. An unpredictable effect of Vp is observed for large values

of d. An increase of Vp generates a higher thermal expansion coefficient in

the equivalent homogenized material, which reduces the compression residual350

stresses generated in the glass matrix during cooling, and consequently the

negative thermal GSIF in the thermoelastic problem. As explained before, the

negative GSIF led to an increase in Kapp
IC , and it would be lower when increasing

Vp. This effect is opposite to the one generated by the enhancement in the

mechanical properties of the homogenized material when Vp is increased, that355

generally leads to a higher apparent fracture toughness. As a consequence,

results are very difficult to estimate a priori when long platelets are considered,

and residual stresses have a greater influence. A particular analysis is necessary

to determine an optimal design of the composite in such region.
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Figure 17: Effect of Vp on Kapp
IC at the extended scale for ∆θ = 0K and 500K and α = 0◦.

Furthermore, a toughening effect due to the presence of residual stresses is360

observed for long platelets, although this effect strongly depends on Vp. For such

platelets, Kapp
IC tends to increase, which means that it is the stress condition that

is governing the failure. In particular, the value of Kapp
IC is determined by the

GSIF associated with the residual stresses, whose role is to close the crack (it

is not possible to talk about positive or negative GSIFs here because they are365

complex in this case, see Section 5.1.2). Notice that the existence of a decreasing

and increasing region in the evolution of Kapp
IC allows us to determine a certain

size of the platelet for which a minimum value of the apparent fracture toughness

is obtained.

5.2.3. Comparison to experiments370

Cannillo et al. [12] computed the residual stresses in the composite. Todd

et al. [11] observed them experimentally and measured the tensile stress in the

platelet through electron microscopy, expressing their results in terms of the

mean stress σ̄p = (σ11 + σ22) /2, whereas the compressive residual stress in the

matrix σ̄m was calculated applying the equilibrium condition.375

A comparison between these results [11, 12] and the ones obtained using

the design tool presented in this work is made in Fig. 18. In order to obtain
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the mean stress, a numerical simulation considering no mechanical loads and no

pre-existing crack in the specimen was performed. It is important to highlight

that in experiments several measurements were made at different points in the380

specimen, and that the only ones centered on the platelets were selected to carry

out the comparison.

Figure 18: Residual stresses found in the literature [12] and [11] and residual stresses obtained

in the simulations (FEM platelet and FEM matrix).

The difference between simulations made in this paper and experiments is

greater for higher volume fractions. The reason could be that when a high

concentration of alumina is considered, some clusters of platelets appear in the385

specimen [1], and therefore the theory of homogenization applied to calculate

the mechanical properties of the composite in our model could differ from reality.

The highest differences between experiments and numerical results are found in

the platelet, where residual stresses calculated in this paper seem to be closer

to experiments than the numerical data found in [12]. Moreover, using our390

design tool with one finite element calculation we are able to obtain the apparent

fracture toughness for any platelet size, since the calculation is made in the inner

domain (see Section 3). This strongly reduce the computational complexity of

the analysis.
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In Fig. 19 a validation of the model by comparison of the apparent fracture395

toughness with simulations is made. For each value of Vp two experimental

measures of Kapp
Ic are considered together with the mean value, see Table 2.

The two extreme orientations of the platelet analyzed in this paper, α = 0◦ and

α = 90◦ are used for the simulations, including the effect of residual stresses.

A good agreement with experiments is observed for low values of Vp, since the400

average of the simulated values of Kapp
IC between 0◦ and 90◦ falls within the

error bar of experiments. For high values of Vp a greater difference is noticed,

which can be explained by the clusters of platelets observed in the specimen

for high concentrations of alumina, as it was mentioned above, that generate

inhomogeneities in the material. Moreover, it is numerically and experimentally405

verified that the fracture toughness increases with the volume fraction of the

composite in the material studied.

Figure 19: Comparison between experiments and simulations.

Throughout this paper, the effect of residual stresses in this kind of com-

posites has been analyzed. Figs. 11b, 13b and 16 show that they do not have

a strong effect in the fracture toughness at the experimental scale, considering410

several values of Vp and two possible orientations α = 0◦ and 90◦. According

to our numerical tool, the apparent fracture toughness estimated with residual
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stresses is slightly greater than without residual stresses (about 10%). These

conclusions were experimentally verified in [1], where Kapp
IC is measured at room

(∆θ ≈ 500◦) and elevated temperature (∆θ ≈ 0◦) for several values of Vp, show-415

ing that there is almost no difference between both cases (about 10%). In fact,

they refer to this phenomenon as an apparent insensitivity of the toughening

increment.

Another important study made in this paper is the path where the crack

may be propagated. For α = 0◦, only a crack deflection is assumed, which is420

the one experimentally observed, but for α = 90◦ several options were analyzed.

At the experimental scale and considering minor properties of alumina, it is

concluded that penetration is the predominant mechanism among all the options

(see Fig. 13b). This observation agrees with experiments in [8], which means

that the alumina used seems to have low alumina fracture properties (although425

this information is unknown a priori). On the other hand, when major properties

of alumina are used the predominant mechanism obtained according to our

numerical tool is a lateral decohesion. This is in better agreement with numerical

studies in [15] and [16].

6. Conclusions430

A complete design tool for platelets composites is presented, particularized

for the case of a glass matrix composite reinforced by alumina platelets. Two key

novelties stand out from this methodology. First, it is a design tool in which

multiple combinations are possible by modifying the input parameters of the

composite, and therefore optimizing the design of platelets composites. Second,435

it offers the possibility to carry out a separate study of the different factors that

are related to the fracture toughness: geometrical factors, such as the volume

fraction, the size and the orientation of the platelet, or environmental factors,

in particular the effect of residual stresses and the change in the pre-existing

crack path. Furthermore, this design tool seems to have an important reduction440

in the computational complexity with respect to other analyses found in the
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literature.

The following list summarizes the main conclusions obtained about the ma-

terial studied throughout the paper:

• Residual stresses: It is not a general rule that they are a toughening445

mechanism. It depends on the size of the platelet and the change in

temperature after cooling. The main parameter that explains why an

enhancement of the apparent fracture toughness of the composite can be

observed is the negative GSIF related to the thermoelastic problem (or

its counterpart in the complex case). It is associated with a compression450

at the crack-tip, that must be overcome for crack propagation. Moreover,

residual stresses promote lateral decohesion at the end of the platelet as

a predominant failure mechanism in the composite. The effect of residual

stresses is so high that the decohesion mechanism at the end of very long

platelets can occur during cooling prior to any mechanical loading.455

• Size of the platelet: when including the thermoelastic effect, longer

platelets lead to a breakage after cooling down.

• Volume fraction: it has a positive scaling effect on the apparent frac-

ture toughness of the composite. When the concentration of alumina is

increased the deflection mechanism is promoted as a failure mechanism if460

alumina fracture properties are great enough, otherwise penetration is the

governing mechanism.

The model proposed was studied at the scale of experiments found in the

literature. First, the volume fraction has a bigger influence on the apparent

fracture toughness than residual stresses, whose effect is very weak. Moreover,465

numerical results were verified by comparison with experimental results. The

best agreement between them was found for low values of the volume fraction.

This is because inhomogeneties were not considered in the analysis.

It is important to highlight that if the numerical tool is applied to a different

material the conclusions obtained about the influence of residual stresses, the470
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size of the reinforcement, or the volume fraction might be different. Indeed,

considering a very high volume fraction would lead to a completely different

approach, even with the same constituents. One example is nacre-like ceramic

made of alumina platelets (where Vp ≈ 90%), analyzed in [25, 26]. In that

kind of materials the crack is propagated in a weak glass interphase between475

platelets.
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