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ARTICLE OPEN

A database of experimentally measured lithium solid
electrolyte conductivities evaluated with machine learning
Cameron J. Hargreaves1, Michael W. Gaultois1,2, Luke M. Daniels1, Emma J. Watts1,2, Vitaliy A. Kurlin2,3, Michael Moran1,2, Yun Dang1,
Rhun Morris1, Alexandra Morscher1, Kate Thompson1, Matthew A. Wright 1, Beluvalli-Eshwarappa Prasad1, Frédéric Blanc1,2,4,
Chris M. Collins1, Catriona A. Crawford1, Benjamin B. Duff1,4, Jae Evans 1, Jacinthe Gamon1, Guopeng Han1, Bernhard T. Leube1,
Hongjun Niu1, Arnaud J. Perez 1, Aris Robinson1, Oliver Rogan1,2, Paul M. Sharp1, Elvis Shoko1, Manel Sonni1, William J. Thomas1,
Andrij Vasylenko 1, Lu Wang1, Matthew J. Rosseinsky1,2 and Matthew S. Dyer 1,2✉

The application of machine learning models to predict material properties is determined by the availability of high-quality data. We
present an expert-curated dataset of lithium ion conductors and associated lithium ion conductivities measured by a.c. impedance
spectroscopy. This dataset has 820 entries collected from 214 sources; entries contain a chemical composition, an expert-assigned
structural label, and ionic conductivity at a specific temperature (from 5 to 873 °C). There are 403 unique chemical compositions
with an associated ionic conductivity near room temperature (15–35 °C). The materials contained in this dataset are placed in the
context of compounds reported in the Inorganic Crystal Structure Database with unsupervised machine learning and the Element
Movers Distance. This dataset is used to train a CrabNet-based classifier to estimate whether a chemical composition has high or
low ionic conductivity. This classifier is a practical tool to aid experimentalists in prioritizing candidates for further investigation as
lithium ion conductors.

npj Computational Materials             (2023) 9:9 ; https://doi.org/10.1038/s41524-022-00951-z

INTRODUCTION
Energy storage is a key technology to meet growing energy
demand by harnessing renewable sources. Liquid electrolyte-
based lithium ion batteries have been extensively deployed in the
portable electronic and electric vehicle markets. Alternative
batteries that utilize solid state electrolytes (SSEs) avoid the safety
issues associated with organic liquid electrolytes and offer high
energy density by enabling the use of a lithium metal anode1,2.
The most significant obstacle to the adoption of SSEs is the
realization of solid-state materials with the full suite of required
properties, including sufficiently high ionic conductivity, stability
against both lithium metal and the oxidizing cathode material (in
practice this is often kinetic and associated with the formation of
stable electronically insulating interfaces) together with appro-
priate mechanical properties3. As such, considerable research has
been devoted to the discovery and development of SSEs that
meet these requirements4,5.
The amount of time and effort required to discover a suitable

material in any domain has driven the application of machine
learning methods to predict material properties6. Recent works
have used previously published data7,8 to train machine learning
models and predict the ionic conductivity performance of
materials using only their composition9. This approach is limited
by the quality and quantity of the data available to train models.
Literature reports in materials science tend to focus on subsets or
particular families of materials with favourable or promising
properties, leading to many reports on a limited range of
materials10,11. While natural language processing (NLP) tasks have
access to billions of training examples, in experimental materials
science even large datasets typically contain fewer than 10,000
entries12. Due to these comparatively small training sets, it is

imperative that the highest quality data are used to avoid
providing inaccurate data to predictive models. As there are no
large repositories of experimental ionic conductivities currently
available for solid lithium ion conductors to perform a machine
learning investigation, the first step must be sourcing high
quality data.
Machine learning models for material’s figure-of-merit perfor-

mance can be built from knowledge of either the composition
alone, or the structure and composition. While models built from
knowledge of both structure and composition are generally
superior in performance, composition-only models are important
both for general reasons and for specific considerations relevant
to lithium ion conductors. The experimentally measured con-
ductivity of a material derives from its non-averaged structure
which is defined by its composition. This will include structural
defects that cannot be captured fully in an average crystal
structure recorded in a database such as the inorganic crystal
structure database (ICSD), unless the material is fully ordered
without fractional site occupancy or substitutional disorder. Most
structures with lithium ion conductivity that have been reported
in detail (i.e., with the lithium positions) exhibit considerable
disorder of this type. Even the average structure is unavailable for
potential compositions that have not been experimentally
studied, and in addition, many experimental reports of ionic
conductivity give composition but not structural analysis of the
materials investigated. Reported average crystallographic struc-
tures for lithium ion conductors frequently do not give precisely
determined lithium positions because of the low X-ray scattering
power and extensive structural disorder, again raising the
important technical question of the connection between the
potentially decisive local structure and the crystallographically-
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determined average structure. We thus build a dataset for
machine learning models to predict lithium ion conductivity
based on composition. There will be limitations of this approach,
for example, the model will be unable to discriminate between
polymorphs of a given compound. Nevertheless, crystal structure
is not always known nor can it be for entirely novel compositions,
thus a compositional model with low computational requirements
is necessary for screening unexplored chemical space. The most
direct measurement of the ionic conductivity of a material is via
a.c. impedance spectroscopy (ACIS) measurement, usually on a
dense ceramic13. All of the ionic conductivities for the materials
included in this database were measured via ACIS.
For a specialist domain topic like solid electrolyte chemistry, the

task of digesting the presented information requires significant
expertize. Throughout the literature, there are inconsistencies in
how data are presented, which introduces difficulties when
comparing different reports. A broad knowledge of the back-
ground literature is essential for recognizing potentially proble-
matic experimental procedures affecting both composition and
conductivity, uncovering discrepancies in reported data, and
identifying materials and properties that have in fact been
computationally derived rather than experimentally measured
(which problematically and unfortunately may not be clearly
stated in the body of the text in some cases). All of these
challenges increase the difficulty and time required to construct a
high-quality database of experimentally reported data.
Leading NLP approaches have demonstrated their capability to

extract chemical data from the extensive corpus of past scientific
literature14, a process referred to as automated scraping. Text
mining has been demonstrated to be a powerful tool in creating
materials datasets. For example, Court and Cole15 created a
dataset of materials and their associated magnetic ordering
temperatures. This is possible as a magnetic ordering temperature
is reported as a single number usually in the text. Unfortunately
for ionic conductors, the task of finding and pairing compositions,
temperature of measurement, and conductivities is too complex
even for state of the art NLP techniques to be effective. There are
the standard issues of tokenizing chemical formulae consistently,
and parsing correct values in text and tables. In particular, for ionic
conductors with a non-crystalline component, the composition is
reported as a mixture of reactants rather than a stoichiometric
chemical formula. Furthermore, as the vast majority of reported
data is presented in figures with no standardized units for
conductivity and extreme heterogeneity between entries, extract-
ing relevant data is a combined challenge in both the fields of NLP
and computer vision. Accordingly, the creation of a reliable
database is unattainable with present automated capabilities, and
thus a manual approach is employed here.
Previous investigations have predicted the ionic conductivity of

solid-state materials using statistical methods. Due to the aforemen-
tioned difficulties in gathering initial datasets of sufficient size and
quality these approaches build models that are based on relatively
small experimentally-derived datasets (of the order of 40–82
entries)8,9,16. In this study, we have reviewed the literature to gather
a dataset of experimentally reported solid-state lithium ion con-
ductivities which with 403 unique compositions is an order of
magnitude larger than previously available. A statistical overview of
the dataset is presented, with the range of conductivities examined
for each structural prototype. Unsupervised embedding and cluster-
ing techniques are used to partition this dataset into nine families by
compositional similarity, thus assessing the diversity of the dataset.
We develop supervised regression and classification models to predict
the lithium ion conductivity and assess whether a material will
possess an ionic conductivity log10(σ)≥ 4 at room temperature, where
the conductivity is reported in units of S cm–1. The best regression
models achieve a mean absolute error for log10(σ) of 0.85, and the
best classification models have a Matthews Correlation Coefficient
(MCC) of 0.63, assessed under k-folds cross-validation in both cases.

RESULTS AND DISCUSSION
Database construction
A large collection of solid-state lithium electrolyte literature was
gathered, and the ionic conductivities were extracted for the
materials reported in each study. The experimental procedures in
a given source were critically assessed to understand how each
sample was synthesized, characterized, and processed into a
ceramic. We ensure that in each of the studies, samples had clearly
defined compositions and reported direct measurements of the
conductivity taken via ACIS. The values of ionic conductivity in the
database are a mixture of bulk and total values, as the two are not
always distinguished, with only a small number of studies
providing sufficient detail in labelling the reported values as such.
Where exact stoichiometry may be unclear from the given
reagents, any studies that lacked supporting characterization
(such as ICP analysis) to confirm the presence of lithium, were
discarded. The ionic conductivity and material composition are
both of equal importance in the database, as the predictive
models are constructed with these two variables. By ensuring that
data is exclusively gathered from experimental studies of high
calibre, we gain confidence in the quality of the results of
subsequent machine learning analysis. Typically, this requires
extracting the values from an Arrhenius plot and converting each
value from the plotted units (commonly plotted as either σ in S
cm–1 or S m–1, log10(σ), log10(σT), or ln(σT)) to conductivity in S
cm−1 at a specific temperature. In some reports these values may
also be provided in tables, or stated in the main body of text along
with supporting discussion, allowing for cross-checking of the
reported value.
The first stage of the initial literature review was carried out by

an undergraduate student to collate source papers of reported
conductivities from keyword searches using search engines, and
reviews of the field16–20. This survey focussed on tabulating the
physical properties reported in each paper: composition, ionic
conductivity, temperature at which the conductivity was mea-
sured, activation energy, and structural prototype. Following this
initial tabulation, the activation energy was excluded from the
final database as it is not reported frequently enough to warrant
inclusion.
Owing to the complexities described above, further expert

validation of the data was required. The ionic conductivity of a
material is typically determined using ACIS, although it can also be
calculated through molecular dynamics simulations21, or exam-
ined by NMR diffusion experiments22, ion migration studies23, or
entirely different measurements not directly related to ion
transport (e.g., maximum entropy method analysis of diffraction
data24). Even experimental papers which report a measured
conductivity for a material through ACIS may themselves involve a
variety of measurements and sample preparations, creating
uncertainty around reported values. Postgraduate and postdoc-
toral researchers with more than two years direct experience of
battery research with a broad knowledge of background literature
assessed experimental procedures, consistency in sample pre-
paration, quality, and other aspects of the reported data based on
the details provided. Each researcher handled a selection of
entries and was tasked with validating the database entry against
the source report.
Dealing with such a large table of data in spreadsheet form

adds significant challenges. Specifically, working with an online
spreadsheet directly with twenty researchers leads to issues with
version conflicts, edit histories, issues with concurrent user access,
merging changes from multiple users, as well as assigning and
tracking tasks. These issues were avoided by reducing the
individual tasks to their core components through a bespoke
interface developed with the streamlit prototyping library, shown
in Supplementary Fig. 1. The interface was created to present a
single entry from the database with its composition, associated
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conductivity at a specific temperature, and source paper. For each
entry, the researcher was tasked with evaluating the conductivity
at that specific temperature, making note of any mistakes with the
composition, and reported conductivity or temperature from the
source. Positive feedback to researchers was provided through the
presentation of a unique compliment provided by a GPT-2
transformer based language generation model25,26, displayed to
the researcher after evaluating and recording each entry.

Database overview
A database was created with 820 entries collected from
214 sources; each entry contains the ionic conductivity of a
chemical composition at a specific temperature, ranging from 5 to
873 °C, with an expert-assigned structural label. There are 434
different entries (Table 1) in the database for ionic conductivities
experimentally measured at room temperature (15–35 °C). For a
further 31 materials, the room temperature conductivities are
extrapolated from measurements above room temperature, to
obtain a dataset of 465 entries, with 403 unique compositions, as
37 room temperature compositions have conductivities extracted
from multiple reports. The room temperature conductivities span

the range of 5.00 × 10–16 to 2.50 × 10–2 S cm–1, with a mean
log10(σ) of −5.01 and median of −4.41 (Fig. 1). The distribution of
conductivities in this dataset and the associated standard
deviation are estimated by optimizing the parameters of many
probability distribution functions using the Fitter library (github.-
com/cokelaer/fitter); the distribution which fits the data with the
lowest error is an asymmetric Laplace distribution. The inter-
quartile range (50% of the data; materials from the 25th to the
75th centile of log10(σ) in the dataset) spans from −7.30 to −3.03.
During database construction, each material in the dataset was

manually allocated a label, based on the structural prototype the
material belongs to. If the material structure was not discussed
directly in the text and its family could not be deduced with
reasoning, then this composition was assigned the structural label
of Other. The breadth of structural chemistry encompassed by this
dataset is shown by the fifteen unique families present in this set
of expert-curated labels (Supplementary Table 1), which can be
used to partition this database and expose trends that have been
reported in the literature.
In Fig. 2 the distribution of log10(σ) for each structural family for

which room temperature data is available, has been created by
fitting a density kernel to the conductivities. This consists of
placing a Gaussian distribution of fixed height and width at the x
co-ordinate for each conductivity, and summing these together to
approximate the probability density, allowing us to estimate the
spread of reported conductivities. Irregular distributions with long
tails are observed for some structural families. As the majority of
these sets contain fewer than 50 reported materials, reports of
materials with higher conductivities in the literature will lead to
anthropogenically biased distributions27. Anthropogenic bias is
inescapable when constructing a dataset of experimentally
measured properties from the literature. The reduced scientific
interest in undertaking the lengthy characterization of materials
with little importance to electrolyte chemistry, has meant that
materials with very low or negligible conductivity are under-
reported. Distributions will be skewed towards conductivities of
interest, and thus not truly representative of the underlying
chemistry.

Table 1. The number of experimentally reported conductivities
contained within this dataset.

Description Count

ACIS measured conductivities at any temperature 789

ACIS measured conductivities at room temperature (15–35 °C) 434

Room temperature conductivities extrapolated from higher
temperature

31

Total number of conductivities at room temperature 465

Total number of conductivities at any temperature 820

Number of unique compositions with a conductivity at any
temperature

455

Number of unique compositions with a conductivity at room
temperature

403

Fig. 1 Distribution in room temperature conductivities for materials in the dataset. A histogram displaying the 465 room temperature
conductivities (in units of S cm–1) from materials contained in this dataset and the relative distribution of their log10(σ). The mean (x) value of
−5.01, the median (~x) value of −4.41, and the mode (x̂) value of −3.05 are marked on the x-axis. An asymmetric Laplace distribution has been
fit to this data, overlaid in green. The count of each bar is given on the y-axis, with the percentage of materials falling within each percentile
range around the median overlaid on the top axis.
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The room temperature dataset predominantly consists of
NASICON, garnet, perovskite, glass, thio-LISICON, and LISICON
type materials, each with more than 27 members. The anion
chemistries of the materials are provided in Table 2, showing that
75% of the materials in the database are pure oxide compounds
(consisting of 44% NASICON, 19% garnet, 18% perovskite, and 8%
LISICON type materials), 12% are pure sulfides, and 2% are pure
halide compounds. Mixed anion materials (oxyhalides, oxysul-
phides, etc.) make up 11% of the materials included (46% of these
are argyrodites such as Li6PS5Cl, and 16% are antiperovskites such
as Li3OCl). In general, materials containing sulfur as an anion
exhibit higher minimum and maximum conductivities which is
supportive of the outlook that is commonly encountered in the
literature that sulfides exhibit the highest Li ion conductivities.

Machine learning
With a database of materials gathered, unsupervised or supervised
machine learning (ML) may be applied to these compositions to
extract chemical trends. Unsupervised learning involves the
application of embedding and clustering techniques based on
the elements in the material, with no further knowledge of

chemical properties such as conductivity required. Unsupervised
techniques are beneficial as they do not require time-intensive
labelling, and may highlight trends and similarities that may not
be immediately apparent from a large collection of data in a table.
Unsupervised clustering has successfully been applied in previous
investigations to cluster electrolyte materials8 based on crystal
structure through hierarchical clustering applied to the anionic
frameworks of 528 lithium containing structures from the ICSD.
Conversely, supervised techniques attempt to fit a predictive
function for a property to chemical descriptors such that the
property can be predicted for a new material by statistical learning
from known examples in a given training set. Machine learning is
applied to compositional descriptors to predict each material’s
room temperature lithium ion conductivity (a regression task), or
to predict whether each material possesses a room temperature
lithium ion conductivity log10(σ) ≥ 4 (a classification task).
In our previous work, we introduce the Element Movers

Distance (ElMD)28 as a metric to quantify the similarity between
two chemical formulae. This is demonstrated to be an expressive
measure of chemical similarity that aligns with domain expert
judgement. This metric can be incorporated with unsupervised
dimensionality reduction and automated clustering to present
chemical composition data to those who study these spaces. This
brings high-dimensional compositional spaces into concise
structured representations, such as maps, that can be interpreted
by humans. In doing this the landscape of known compositions
can be categorized according to our knowledge of related
materials. Following the methods described previously with the
ElM2D plotting library (github.com/lrcfmd/ElM2D), we construct a
distance matrix of ElMD scores between the compositions in the
ICSD (2021)29 and the compositions contained within the ionic
conductors database here. This metric space is reduced to two
dimensions with principle component analysis (PCA) (Fig. 3). A
Gram centred matrix30 is first obtained from the given distance
matrix, and then singular value decomposition of the Gram matrix
carried forward to obtain the coordinates of each point projected
to the first two principle components. PCA linearly scales each
metric distance to maximally preserve each of the interpoint
relationships across the dataset, which has previously been shown
to closely reflect the true structure of the metric space28. Figure 3

Complete Distribution (465)

Anti-Perovskite (8)
Argyrodite (23)

Garnet (67)

Glass (36)
Glass-Ceramic (7)
LISICON (28)
Lysonite (2)

NASICON (154)

Olivine (6)
Other (17)

Perovskite (64)

Phenakite (3)
Rocksalt (8)
Thio-LISICON (38)
Zircon (4)

-15    -14     -13    -12     -11    -10     -9      -8       -7      -6      -5      -4      -3       -2
Log  (σ)

10

Fig. 2 Distribution of room temperature conductivities across expert-curated structural families. Fitted distribution functions of the room
temperature log10(σ) for all materials within the database separated into expert-curated structural families and scaled by the number of
entries within each family, given in brackets.

Table 2. Chemistries of the materials in the database of 465 room
temperature Li ion conductivities based on anions: pure oxides, oxides
containing at least one other anion, pure sulfides, sulfides containing
at least one other anion, pure halides, and other (which contains
materials such as LiBH4, Li3P, and Li2Ca(NH)2).

Materials No. entries σmin (S cm–1) σmax (S cm–1)

Oxides 346 5.00 × 10–16 6.31 × 10–3

Oxide with other anion(s) 18 1.00 × 10–10 9.38 × 10–4

Sulfides 55 1.60 × 10–10 1.70 × 10–2

Sulfide with other anion(s) 32 8.13 × 10–9 2.50 × 10–2

Halides 7 1.18 × 10–14 1.51 × 10–6

Other 7 2.00 × 10–9 1.00 × 10–3

The minimum and maximum Li ion conductivities at room temperature are
given for each group.
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thus represents the distribution of this dataset in the composi-
tional space of the materials constituting the ICSD.
Each of the lithium-containing compounds of the ICSD are

highlighted against other compositions of the ICSD and the 455
unique compositions from our entire database (i.e., compositions
with data recorded at any temperature) in Fig. 3a, with the expert-
curated labels of the structural families included in the lithium
conductors database in Fig. 3b. Though structure has not been
included in the initial representation, expert-identified structural
families are seen to tend to cluster in this compositional embedding,
reflecting the connection between composition and structure.
Perovskites (Supplementary Fig. 2), NASICONs (Supplementary Fig.
3), thio-LISICONs, and garnets are found in distinct areas of the
compositional map; each of these structural families are grouped
tightly on the map, despite the absence of structural information (Fig.
3b). The lithium ion conducting materials in the database are found
in the same regions of compositional space as known lithium
compounds, and can be seen to match the diversity of lithium
chemistry that has been explored to date reasonably well. This
reflects the anthropogenic bias intrinsic to the research process, as
much of the work devoted to discovering new lithium-containing
materials has been driven by applications in battery technologies.
There are a number of areas of accessible lithium-based chemistry
(compounds seen on the right-hand side of Fig. 3a) where known
materials appear underexplored with regard to ionic conductivity.
This compositional space should be considered in the search for new
families of lithium ion conductors.
Previous work has shown that, while PCA gives an accurate

realization of compositional space with respect to ElMD28, it is not
the best representation for further processing with automated
clustering techniques. The compact and concentric patterns that
these clusters follow are difficult to unravel both visually and
algorithmically, particularly when framed against the noise of so
many unrelated compounds. We find that non-linear dimension
reduction techniques attain a much clearer separation of the
space into distinct regions of compositional similarity, which can
be clustered more consistently (Fig. 4). Uniform manifold
approximation and projection (UMAP) draws apart the points of
a space by first forming a neighbourhood graph of points in the
metric space then embedding this graph to a two-dimensional

plane of projection via Laplacian Eigenmaps to capture global
information31. These 2D distances are then refined through a ball
and spring model32 to capture the local intricacies of the metric
space.
UMAP (Fig. 4a, b) and PCA (Fig. 4c, d) are applied to evaluate the

reduced space of the 403 compositions of room temperature solid
state lithium ion conductors in the database reported here. The
UMAP plot contains several clear regions, which can be separated
into nine distinct clusters using the density-based spatial
clustering of applications with noise (DBSCAN) algorithm33 with
an epsilon radius of 4 (Fig. 4a). The epsilon value determines the
radius of disks that are overlaid on every point in the two-
dimensional plot, which are then used to classify the points into
different clusters. If two points cover each other with overlapping
disks, then these will be assigned the same cluster label. DBSCAN
has the ability to capture dense regions of an embedding, but if
epsilon is too large then the output will fail to separate disjoint
clusters. In this study, epsilon was chosen manually to maximize
consistency between automated clusters and the clusters that can
be visually observed.
Each of these unsupervised ML-derived clusters from Fig. 4a are

chemically reasonable, with clear stoichiometric substitutions or
structural similarities connecting their constituents. This becomes
apparent from comparison with the expert-derived structural
family labelling in Fig. 4b, d. For example, Clusters 0 and 8 from
the automated clustering are predominantly populated by
NASICONs, perovskites are exclusively found in Clusters 5 and 6,
whereas Cluster 4 is almost exclusively garnet structure materials.
In addition to the practical benefits automated embedding and
classification provides to rationally organize materials with
minimal human bias, these clusters have further application in
supervised training. As some data must be withheld from training
and retained to test the performance of a trained model, each
DBSCAN-derived cluster will be used as a testing set in a process
referred to as Leave One Cluster Out Cross Validation (LOCO-CV).
These clusters range in size from 6 materials to 93 materials, with
the training set then typically containing 85–90% of the available
data to train each model. The distributions of log10(σ) for each
LOCO cluster have been plotted in Supplementary Fig. 4, with
basic statistics given in Supplementary Table 2, where many of the

Fig. 3 An embedding of the 127,638 unique compositions (grey) from the ICSD database (2021) with respect to ElMD similarity between
compounds, embedded to 2 principle axes with PCA. a 6972 of these compositions contain lithium (black), and b 455 unique compositions
from this dataset with an experimentally measured conductivity at any temperature. The expert-curated structural label that each
composition belongs to is indicated by the colour scheme given in the legend, with a selection of representative compositions and their
embedded coordinates indicated.
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clusters span similar ranges of conductivity. Given the intra-cluster
chemical consistency and inter-cluster dissimilarity, these assess-
ments are a measure of how each model performs at predicting
the ionic conductivities of materials that are chemically dissimilar
from those on which the model has been trained.

Supervised learning
A dataset of 403 entries is constructed, where compositions with
duplicate room temperature conductivities from differing sources
have been represented by the median of these multiple reported
conductivities. With this dataset in hand, we apply the best
available ML models that can be implemented with minimal
modification, i.e., off the shelf. This is done with traditional
statistical learners (ensemble models) with mat2vec14

composition-based feature vectors34, and deep learning techni-
ques (CrabNet). For statistical learners, we wish to ensure the best
models and associated hyperparameters are chosen, so that we
do not simply overfit to one portion of the data. A simple model

with fixed hyperparameters is not guaranteed to give good
predictions on unseen compounds. Such models may overfit to
the training data, leading to poor predictions on unseen
compositions, or give exceptional performance on certain subsets
of the data with poor performance on the rest. Some of the issues
of overprediction can be remedied by surveying a range of
statistical models35. State of the art techniques for predicting
materials properties through composition apply this principle by
training an ensemble of models, in the belief that each model will
learn to focus on a different set of features. The predictions of
each individual model are combined, which tends to give more
robust predictions across the entire domain. In statistical models,
the ensemble approach is notably used in the random forest (RF)
algorithm36, where large ensembles of decision trees are
randomly constructed and kept or discarded depending on their
predictive quality. The resulting quality of RF predictions depends
on the values of each hyperparameter chosen when initializing
the model, and poor choices can lead to very poor models. To
alleviate this, best practice has traditionally focussed on trialling a

Fig. 4 Embeddings of the 403 unique room temperature solid state electrolytes compositional data. a, b Show the coordinates obtained
from the UMAP embedding algorithm, whilst (c) and (d) arise from PCA. The cluster labels in (a) and (c) are obtained from the DBSCAN
clustering algorithm applied to the UMAP embedded points in (a), with the number of materials in each cluster given in brackets. Cluster
labels in (b) and (d) were assigned from expert review to classify each material under a structural prototype.

C.J. Hargreaves et al.

6

npj Computational Materials (2023)     9 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



range of hyperparameters in combination with one another, but
this is time consuming and does not guarantee that the optimal
configuration will be found. More recent AutoML approaches37

improve on this by framing the choice of statistical model and its
associated hyperparameters as a meta-problem to be solved.
Many separate algorithms and hyperparameters can be trialled
and assessed in combination, with the measured performance
used to update a selection policy for future trials until optimal
combinations are found.
In AutoSklearn38, many types of models and data pre-

processing stages from the scikit-learn library are chained
together to form data processing pipelines. The supplied training
data is shuffled into k-folds cross-validation sets and used to
assess each pipeline, with the performance noted. This perfor-
mance is used to update the parameters of a tree-based Bayesian
optimization selection policy, which will decide the models and
hyperparameters to choose in future iterations, alternating
between exploring untried combinations, and exploiting relation-
ships known to give good results. Given that RFs return more
robust predictions through ensembling many weaker models
together, we would expect an ensemble of effective models to
give even stronger predictions. As simple models are quick to
train, thousands of pipelines can be evaluated during the
AutoSklearn training process. After the allotted training time of
ten minutes, the 50 pipelines with the highest performance are
selected to form a trained ensemble which can be used to predict
unseen data.
In comparison, Compositionally Restricted Attention Based

Networks (CrabNets)39 are an implementation of the transformer
model40 of deep learning. Here, self-attention is employed to learn
how relationships between each of the elemental vectors in a
composition are aligned with a target property. The transformer’s
positional encoder is repurposed as a fractional encoder to
capture the ratio of each element in the composition, which
enables CrabNets to capture similarities and small variations in
stoichiometry with precision. This is particularly relevant for ionic
conductors, where minor substituents (e.g., those controlling the
exact lithium content) can significantly influence the ionic
conductivity because they determine the defect concentrations
and associated local structure that can govern ionic motion.
One shortcoming of deep neural networks such as CrabNets is

that they require large quantities of training data which are
typically unavailable for materials science problems. This limitation
can be alleviated by transfer learning, which involves pretraining
networks on much larger datasets of compounds and their
associated properties, such as the computed energy of formation.
The trained parameters of this network can be exported to
initialize future models for different properties, as opposed to
initializing all of these values randomly. The desired benefit of
pretraining the network on a wider range of compositions and
their associated formation energies, is that the knowledge of
chemical relationships absent in our training set can be
extrapolated to future predictions. By transferring this knowledge
from another domain, the most salient chemical relations are
intended to be well represented in the network. This typically
leads to a faster convergence to the optimal value when training
the neural network on the desired property, and can lead to
improved predictive performance in the target domain. This has
been demonstrated in other investigations41,42, where the
application of transfer learning and neural networks has achieved
state of the art for materials property prediction. In this work we
compare the performance of AutoSklearn ensembles, randomly
initialized CrabNets, and CrabNets that have been pretrained on
compositions and their formation energies from the OQMD43.
Training CrabNets involves iteratively updating many model

parameters of the network on the same dataset multiple times;
each iteration is called a training epoch. Once an iteration has
completed, the millions of model parameters will have been more

finely tuned to align the data with the target property, which
should give a better model than the previous iteration. When
model training begins, we expect poor performance when
predicting properties of materials in the test set, but as the model
is further biased by training data after several epochs, more robust
predictions should be attained. In general, when training neural
networks, the training error steadily decreases over time, as the
parameters of the model get more aligned with the input. After
prolonged training, however, these parameters begin to overfit to
the training data, and the model gets steadily worse at predicting
anything outside the training set44.
The training and testing performance at each epoch can be

plotted on a training curve, which characterizes how performance
evolves with the number of training epochs (Supplementary Figs.
5–8). A training curve can be used to determine the optimal
training time (e.g., number of epochs). Model parameters can be
exported from the training epoch that displays best performance
at test set predictions. Training for sufficiently long time (to see
degradation in test set performance) and then reverting to an
earlier state in training is referred to as early stopping, in contrast
to a priori deciding the number of training epochs, or training
indefinitely. Early stopping across 500 training epochs is applied in
this study, with each model taking the optimal set of training
weights, giving a reasonable measure of how CrabNets with and
without transfer learning perform using standard hyperpara-
meters (discussed in Supplementary Note 1).
The performance of AutoSklearn and CrabNet regression and

classification models at predicting the conductivities of the
materials in this dataset is evaluated through four methods:
control studies, parity plots, scoring metrics, and cross-validation
techniques. We then use the best approach from this assessment
to train final regression and classification models on all
available data.
To give some measure of the worst-case performance, we

provide two control experiments. In the first control experiment,
we take the reported conductivity of each material, shuffle these
labels, and treat the average of five of these shuffled values as an
ensemble prediction from a poor model. This has the effect of
providing a quasi-random prediction that demonstrates how
ensembles can bring predictions closer to the mean (Fig. 5a). In
the second control experiment, we demonstrate how a model
which simply predicts the mean will perform. We take the mean of
all of the room temperature conductivities (−5.02 in log10(σ)) and
treat these as the output prediction for each material, giving the
same prediction for every entry. The true conductivities are
plotted against each of these control predictions to observe the
performance (Fig. 5b).
Plots are an effective method to directly confirm the

performance of a statistical model. For regression tasks, we plot
the actual conductivities of each material against the predicted
conductivities of a trained model. An ideal model would give each
prediction perfectly on the leading diagonal. Dense pointclouds
can be difficult to visually interpret, so errors of each prediction
(ypred − ytrue) are calculated and plotted via histogram to quantify
this distribution of errors. A Student’s t-distribution is fitted to the
errors of all repetitions (without averaging) to provide intervals for
how many predictions are within certain bounds of error for each
model. The shuffled control has a zero-centred gaussian distribu-
tion of errors on the histogram with a standard deviation of 2.34
(Fig. 5c). The mean control has an error of −0.44 below the true
value on average, with 68% of the predictions having an error
within −1.99 to 1.10 of the true log10(σ) (Fig. 5d). Given this worst-
case performance, we may demonstrate how the best composi-
tional models perform at predicting new compositions.
When we have many plots for different models, it becomes

difficult to visually confirm the best performing model. To quantify
which of these models are best performing, we must use statistical
metrics to rank the quality of the output predictions for each
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model. Regression models are often scored via Mean Absolute
Error (MAE) and Pearsons R2 score. The MAE returns the average
difference between each prediction and its known value, where
values closer to 0 reflect stronger model performance. The R2

score shows the correlation between the true and predicted
values, where a 1 is a perfect score, and anything below zero
indicates that on average model predictions perform worse than
simply returning the mean of the test set for all inputs.
For classification tasks, the performance may be demonstrated

via a confusion matrix. This is a 2 × 2 matrix that compares the
predictions made by the classification model against the true
classification labels. An ideal result would have leading values
(True Positives and True Negatives) and zeros elsewhere, but in
reality, many predictions will be False Positives and False
Negatives. For simplicity, however, the most frequently reported
score for classification is accuracy. The accuracy score is defined as
the number of true predictions divided by the total count of
values in the testing set:

accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(1)

On heavily imbalanced datasets with few negative class
instances, the accuracy can return a high score for poor classifiers
that output a single classification. This is due to the small number
of negative instances, which do not significantly alter the
denominator even if they are heavily misclassified (Eq. 1). To
prevent misleading reporting, the MCC45 can be taken as a more

informative score46 by considering the proportion of each class in
the confusion matrix:

MCC ¼ TP � TN � FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FPð Þ � ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FPÞp (2)

The MCC is calculated by taking the difference of the product of
true predictions and the product of false predictions, and dividing
by the geometric mean of all entries in the confusion matrix. This
returns a value from 1 for perfect classifications to −1 for entirely
incorrect classifications. The MCC provides more weighting to the
score for any misclassified values, allowing us to judge the
outcome of the confusion matrix succinctly. By themselves,
isolated scores do not convey the strength of a model and these
must be compared against a known point of reference, such as a
control study, to understand the significance of a particular result.
As an aim of machine learning models is to predict the

behaviour of as-yet unknown materials, it is important to
distinguish between performance in interpolation between
materials that have similar chemistries, where similar structure-
property-composition relationships would be expected, and in
extrapolation to materials characterized by structure and bonding
that is not found in the training set. For example, predicting
performance within a solid solution family with some members in
the training set used would be interpolation, whereas evaluating
the conductivity from a material with a new structure type would
be extrapolation.

Fig. 5 Parity plots and error distribution for two control studies. a The shuffled control parity plot demonstrates each materials actual
conductivity plotted against an average of five randomly selected values across the dataset. c The distribution of errors across all experiments
(without averaging) demonstrates the maximal error bounds we would expect from a poor statistical model, with 68% of predictions falling
between −2.36 to 2.31 away from the true values. b The mean control experiment demonstrates the expected predictions for a model which
has simply learnt the mean value of the dataset. Correspondingly, the distribution of errors (d) is simply a reflection of the distribution of
conductivities around the mean value, and models which form predictions close to the mean will resemble this distribution. A Student’s
t-distribution (orange) is fit to the underlying data, with the mean of this distribution (dark blue), and the first, second, and third standard
deviations away from this mean (light blue) overlaid in (c) and (d). A good model should have a mean of zero, with tight error bounds.
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This question naturally arises when evaluating ML model
performance. Here, it is important that the data being tested
have not been previously used to train the model, but in and of
itself, this does not directly address interpolation versus extra-
polation ability. The standard method of splitting data is via k-
folds cross-validation, where the dataset is split into k equal sets,
and one of these sets is used to test the model. In this report we
take k= 5, where the model is trained on four of these subsets
(80% of the data) and then tested on the fifth (20% of the data).
This process is repeated for each set, and the mean score across all
test sets is used as the final measure of performance. As many of
the compounds in this dataset possess some similarity with one
another, we expect the model should be able to interpolate
relationships between known compositions.
Ideally, we want predictive models to be able to extrapolate

beyond known materials, and statistically infer future chemical
relationships from observed compositions. To test this, we utilize
the DBSCAN labels assigned in Fig. 4 as Leave One Cluster Out
(LOCO) labels to separate the 403 unique room temperature
conductors into testing sets. As the compositions within each
cluster have been confirmed to share chemical similarity, and to
have dissimilarity from other clusters, using each cluster shown in
Fig. 4a as a testing set provides a better estimate of the ability of a
model to screen novel compositions than the k-folds approach,
which will entail greater chemical similarity between the training
and testing sets.
Both of these cross-validation techniques are applied to train

AutoSklearn and CrabNet regressors and classifiers, with the
average of five repetitions of each experiment taken as the final
score. We collate the performance of the two control studies and
the ML models for regression and classification, in Tables 3 and 4
respectively. Plots of all regression models performance can be
found in Supplementary Figs. 9, 10.
The two control studies give the highest MAE and lowest R2

scores between the actual and the predicted values under each
cross-validation scheme. These numbers are important to consider
when evaluating any improvement in predictive performance. All

models perform better than these controls, and under k-folds
cross-validation, and AutoSklearn models perform comparably to
randomly initialized CrabNet models. However, under LOCO-CV,
the AutoSklearn model fails to fit a suitable decision boundary to
predict unseen materials; performance metrics reveal no signifi-
cant improvement over the mean control. CrabNet models are
better than AutoSklearn models at the extrapolatory LOCO task,
and these see improved performance in both MAE and R2

correlation. CrabNet models with transfer learning outperform all
other models across each metric and cross-validation scheme. The
~10% increase in performance of transfer learning regression
models over those initialized randomly suggests that pretraining
in other domains has given the model a clear advantage when
inferring unseen chemical relationships. To demonstrate this
further, three of the regression models parity plots and distribu-
tion of errors are given in Fig. 6. These plots allow us to visually
judge models against one another, and to assess each model’s
performance at predicting materials similar to those within the
training dataset (k-folds) as opposed to materials with unseen
chemistry (LOCO-CV).
The AutoSklearn regression model under LOCO-CV (Fig. 6a)

demonstrates tighter prediction error bounds than the shuffled
control, but still leads to predictions with an error of −0.68 on
average and a standard deviation of 1.55 (Fig. 6d). An ML model
which typically achieves predictions of ionic conductivity within two
orders of magnitude could be interpreted as a positive outcome.
However, comparison to the mean control demonstrates that this
model has not learned a meaningful representation for extrapolating
beyond the chemistries within the training set. The AutoSklearn error
distribution is not an improvement over the mean control, which has
an average error of −0.44 and a standard deviation of 1.54 (Fig. 5d).
CrabNets with and without transfer initialization output a range of
predictions closer to the real values, with tighter error bounds than
AutoSklearn models. The CrabNet regression models with transfer
learning trained under LOCO-CV (Fig. 6b) are not as consistently
skewed as AutoSklearn, with an average error of −0.02 and a
standard deviation of 0.811 (Fig. 6e). These models typically return

Table 3. Regression Performance Metrics Average results of each regression model, judged by Mean Absolute Error and Pearsons R2 metric under
both dataset cross-validation regimes.

Model MAE (k-folds) R2 (k-folds) MAE (LOCO) R2 (LOCO)

Shuffled Control Study 2.31 (0.06) −0.99 (0.13) 2.43 (0.08) −2.6 (0.4)

Mean Control Study 1.71 (0.0) 0 (0) 1.72 (0) −0.46 (0)

AutoSklearn 2.0 1.10 (0.04) 0.46 (0.05) 1.62 (0.08) −0.4 (0.2)

Randomly Initialized CrabNet 0.96 (0.02) 0.55 (0.03) 1.131 (0.006) 0.15 (0.03)

Transfer CrabNet 0.85 (0.02) 0.62 (0.02) 0.99 (0.03) 0.33 (0.02)

The average value of the training performance across the test sets is first calculated for each metric, and then averaged across each of the five repetitions;
standard deviation shown in brackets. Values in bold represent the best performing model under each metric.

Table 4. Classification Performance Metrics Average results of each classification model predicting whether materials possess log10(σ) ≥ 4, judged by
Matthews Correlation Coefficient (MCC) and accuracy under both dataset cross-validation regimes.

Model MCC (k-folds) Accuracy (k-folds) MCC (LOCO) Accuracy (LOCO)

Shuffled Control Study −0.02 (0.03) 0.50 (0.02) 0.00 (0.07) 0.52 (0.03)

Mean Control Study 0 (0) 0.58 (0) 0 (0) 0.64 (0)

AutoSklearn 2.0 0.46 (0.04) 0.74 (0.01) 0.10 (0.05) 0.63 (0.03)

Randomly Initialized CrabNet 0.57 (0.01) 0.786 (0.006) 0.36 (0.01) 0.62 (0.01)

Transfer CrabNet 0.633 (0.002) 0.814 (0.009) 0.38 (0.01) 0.71 (0.01)

The average value of the training performance across the test sets is first calculated for each metric, and then averaged across each of the five repetitions;
standard deviation shown in brackets. Values in bold represent the best performing model under each metric.
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predictions with less error for high and medium conductivity
materials, but often fail to capture the outlying low conductivity
regions. This highlights the complexity of predicting exact materials
properties when there has been little exposure to these unexplored
chemistries. The best regression performance is achieved using
CrabNet models with transfer learning under k-folds cross-validation
(Fig. 6c), which leads to a distribution of errors centred around−0.01,
and a standard deviation of 0.58 (Fig. 6f). As LOCO-CV forces each
model to extrapolate future predictions, it is expected that the
figures of merit will be less attractive than under k-folds cross-
validation. Whereas regression models achieve only a modest
improvement to the bounds set by the respective control studies,
this is not the case for each of the classification models, which we
turn to now.
Table 4 displays the average MCC and accuracy score for each

model’s test set performance across five runs, where it is seen that
control models may seem initially reasonable when judged by
accuracy. A complete table of results under standard metrics may
be found in Supplementary Tables 3 and 4 for comparison,
although we consider MCC to carry the strongest judgement of
model performance. CrabNet models with transfer learning return
the highest MCC of 0.63 under k-folds cross-validation, and
CrabNets without transfer learning return a slightly lower score of
0.57. AutoSklearn models do not give as strong performance, with
an MCC of 0.46, but this is clearly a step improvement on the MCC
scores of the control studies, with accuracy also seen to improve
by some margin when comparing each model to the controls. As
with the regression models, classification models trained under
LOCO-CV return lower scores. This is highlighted by the
AutoSklearn model, which has a particularly poor MCC (close to
the MCC of zero of the two controls) of 0.10 when classifying
LOCO test set materials, despite a promising accuracy score. The
highest scoring LOCO classification model is the CrabNet with

transfer learning; an MCC of 0.38 indicates more of the high
conductive materials are correctly classified as having log10(σ) ≥ 4
than misclassified, which is supported by the high test set
accuracy of 0.73.
The two distinct cross-validation techniques have been applied

to rank these statistical models against one another. However,
interpolation between related materials within known chemistries
(defined as known structure and bonding) should be considered
independently from extrapolating into unknown chemistries
beyond the training data. Accordingly direct comparison should
not be drawn between the metrics for the two different cross-
validation protocols, as these assess different aspects of the
performance of the ML models trained against the dataset. We are
forced to use the data in our possession to assess the quality of
each model. The data arise from the efforts of researchers in the
field, and thus reflect various research trends and foci that have
emerged, rather than directly expressing the possibilities for
structure, bonding, and performance for materials drawn from
element combination at the level of the periodic table. Given this
anthropogenic bias, there will be consistencies and trends within
each chemical family of the dataset.
By separating the materials of the database into clusters by

chemical similarity and testing under LOCO-CV, the reduced
performance compared to validation by k-folds highlights the
challenge of extrapolating known compositional relationships to
other chemical families that may span different ranges of
conductivity. Comparatively, under k-folds cross-validation, each
material in the testing set has a greater likelihood of having
corresponding materials with similar elemental composition to
their own in the training set. The model under assessment thus
has more opportunities to interpolate between compositions in
the training data, allowing it to make stronger predictions as it has

Fig. 6 Parity plots and error distributions for three regression models. AutoSklearn models assessed under LOCO-CV (a), (d) share the most
similarity to the controls in Fig. 5, and are thus judged to be the least effective ML model under investigation. Under LOCO-CV, CrabNet
models with transfer learning offer improved performance, which can be visually confirmed by the spread of points falling closer to the
leading diagonal (b), and the distribution of errors being centred around 0 with a smaller standard deviation (e). ML models give a tighter
distribution of errors when validated with k-folds, with transfer learned CrabNets possessing the most favourable actual vs. true characteristics
(c) and distribution of errors (f).
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to some extent been presented with similar examples during the
training, rather than having them deliberately withheld.
This emphasizes the strength of structure-property-composition

relationships in lithium ion transport. It is reasonable to assume
that ion transport takes place by local hopping through barriers
governed by physical models that are closely connected in their
physiochemical origin across all materials in the dataset regardless
of structure and bonding. However, the changes in structure and
bonding between these machine-identified materials clusters in
which lithium transport occurs by similar, unifying diffusion
mechanisms are sufficient to hinder extrapolation of performance
from one set of chemistry to another, despite no fundamental
change in mechanism taking place between the clusters. This
contrasts with the situation prevailing for example in super-
conductivity, where entirely different mechanisms may govern
high-temperature superconductivity in cuprates and low tem-
perature superconductivity in elemental and alloy systems that
pair by weak-coupling BCS. This mechanistic difference has been
shown to undermine attempts to extrapolate with machine
learning from superconductors with one pairing mechanism to
another47, whereas for lithium ion transport it is the chemistry (the
structure and bonding) that controls performance even under a
unified physical mechanism. Nevertheless, CrabNet models with
transfer learning are seen to consistently outperform both the
control studies and AutoSklearn models at predicting ionic
conductivity. This is shown statistically across all cross-validation
schemes and metrics in both classification and regression models,
and can be visually attested from the parity plots. As such further
discussion will assume these models as the focus unless stated
otherwise.

The Final Models
When screening compositions with machine learning we want to
use the best possible model to increase the likelihood of making
robust predictions. Model performance is typically improved by
using the most training data available, and choosing an optimal
training time. As discussed earlier, the optimal training time can

be determined by assessing the performance vs. epoch training
curve to decide which set of model parameters to use (i.e., early
stopping). An important practical consideration is that any model
to predict ionic conductivity would be most valuable when
screening new materials. Accordingly, to assess the ability of our
ML models to estimate the ionic conductivities of unstudied
materials or novel chemistries, we train a final classifier and a final
regressor on the entire initial database of unique room
temperature conductivities and test it against eleven newly
reported materials that have not been included in the initial
database. We refer to this new set of materials as the experimental
holdout set. These are selected to represent a range of chemistries
and also conductivities, which matches the situation facing the
experimentalist targeting new families of ion-transporting materi-
als: it is desirable to understand the likely lithium conductivity of a
particular composition in order to aid the selection of specific new
chemistries for investigation.
We select CrabNet with transfer learning as the architecture for

these two models, as k-folds and LOCO-CV assessment show that
it offers the best interpolation and extrapolation performance
based on the considerations above. The final CrabNet models are
trained on all unique entries of the initial database presented here.
In the earlier validation investigations, early stopping could be
employed by using the test data to select the set of network
weights at the best performing training epoch on the training
curve. In our final models, a fixed number of training epochs are
determined a priori by assessing the training curves of CrabNets
with transfer learning under LOCO-CV and selecting a training
time which typically attains optimal performance (Supplementary
Note 2). Final models are trained on all unique compositions with
room temperature conductivity (i.e., all 9 LOCO clusters), with the
classification model trained for 98 epochs, and the regression
model trained for 323 epochs.
The performance of these neural networks at classifying or

predicting the log10(σ) of a selection of recently reported materials
is assessed across a range of reported conductivities. The
individual performance for each material in the holdout set is
given in Table 5. As there are more training data available than in
the validation investigations, the final models should have similar
or improved performance to the results observed through cross-
validation. The final classification model predicts whether the
compounds of the experimental holdout set possess high
(log10(σ) ≥ 4) or low ionic conductivity with an accuracy of 0.91
and a MCC of 0.83. The final regression model achieves an MAE of
1.34 on the holdout set, with an R2 score of 0.51. The performance
of the final model against this necessarily small holdout set is
consistent with the more robust performance indicators obtained
from the previous validation investigations.
Despite the disparity in chemistries between the majority oxide

training set and the more varied experimental holdout set
(Supplementary Fig. 11), it appears from these metrics and also
from consideration at the level of individual materials, that the
regressor predicts properties reasonably. Compositions with
exceptionally high conductivity are underestimated by the
regression model. For nine of the eleven materials, the
conductivity has been correctly predicted within two orders of
magnitude, which would be expected for materials related to
Li10GeP2S12, as this is contained in the training data. However, for
the non-oxide materials of the holdout set that are dissimilar to
those in the training set, performance is reasonable even when
these materials have crystal structures that differ from other
materials included in the training set. Li3.3SnS3.3Cl0.7 is the first
lithium ion conducting defect stuffed wurtzite based on
hexagonal close packed S2– anions48. Li3P5O14 has an ultrapho-
sphate crystal structure defined by extended anionic layers, and is
also structurally distinct from materials included in the training
set49. Given that these are structurally differentiated materials, the
ionic conductivities have been reasonably predicted (within 1.69

Table 5. Final regression and classification model predictions of the
experimental holdout set.

Composition Measured
conductivity
(log10(σ))

CrabNet
regression
prediction
(log10(σ))

CrabNet
classifier
prediction
(log10(σ) ≥ 4)

Li10.35Ge1.35P1.65S12
50 −1.85 −3.60 1

Li10.35[Sn0.27Si1.08]P1.65S12
51 −1.96 −3.50 1

Li10GeP2S11.7O0.3
52 −1.99 −3.06 1

Li10GeP2S11.4O0.6
52 −2.07 −3.07 1

Li10[Si0.3Sn0.7]P2S12
51 −2.09 −2.66 1

Li9.42Si1.02P2.1S9.96O2.04
53 −3.49 −3.67 1

Li3.35P0.93S3.5O0.5
48 −4.04 −2.67 1

Li3.3SnS3.3Cl0.7
54 −4.49 −3.62 0

Li4.3AlS3.3Cl0.7
49 −5.09 −7.14 0

Li3P5O14
55 −6.04 −7.73 0

LiAlP2O7
56 (Very low) −6.32 0

CrabNets with transfer learning are trained on all 403 unique compositions
and the associated log10(σ) or classification target at room temperature.
The experimentally measured log10(σ) of each of the 11 materials in the
holdout set are given alongside a predicted log10(σ) and conductivity class
for the material from the final models, the boundary against which the
classification is performed has been marked in black.
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of the true log10(σ)) by a regression model that is based purely on
composition. These models can be used as screening tools to
motivate the further study of candidate materials and phase fields,
and assist in the prioritization of resource commitment for
experimental synthetic work.
Given the intended purpose as a screening tool, and the more

favourable metrics demonstrated by the classification model, a
reliable classification of high conductivity materials is more helpful
than an absolute estimate of the ionic conductivity from the
regressor. There are fewer materials with exceptionally high or low
conductivity in the database, and as such there will be greater
uncertainty when predicting a specific conductivity for materials
in these extrema. Training on classification features gives a more
balanced distribution of positive and negative class labels, which
gives the model a less skewed dataset for judging its composition-
based decision boundary, as reflected in the more favourable
performance scores of the classification models. Although there is
identified anthropogenic bias present in the dataset, the MCC
score under LOCO-CV improves in comparison to each control.
This leads us to conclude that these classification models predict
with sufficient reliability whether a material has a log10(σ) ≥ 4 for
these to be further employed to screen candidate ionic
conductors (e.g., the material contains lithium and is likely to
have low electronic conductivity). This does not replace expert
chemical knowledge and judgement, instead providing a com-
plementary numerical insight based on the evaluation of data at a
scale hard for human experts to assimilate.
Here we present a dataset of experimentally reported lithium

SSEs. This dataset includes the composition, structural type,
conductivity, and measured temperatures of 789 ACIS measured
conductivities, with 403 unique compositions with an associated
ionic conductivity near room temperature. Multiple stages of data
validation were carried forward by a team of domain experts to
ensure that all data are correctly imported from the literature. The
creation of a reliable database is a task that is particularly difficult
to carry forward with automated tools due to the wide
inconsistencies in how data is reported in the field of ionic
conductors, necessitating lengthy human validation. Automated
scraping would be a viable strategy if all future reports were to
prominently state in the abstract a well-defined composition, ionic
conductivity in common and clearly stated units (e.g., S cm−1), the
temperature at which it was measured (e.g., 298 K) and the
technique used to measure it (e.g., ACIS). With this in mind, we
encourage researchers and journal editors to consider reporting
core findings in this manner, which will enable materials science
researchers to leverage tools from the NLP community to gather
even larger datasets in the future.
The dataset represents the diversity of chemistry spanned by

lithium-containing materials, with a numerical preponderance of
oxide-based examples. There are 15 structural families repre-
sented at room temperature, including oxides, sulfides, halides,
and mixed anion materials. These room temperature compositions
are visualized and clustered with the ElM2D package to partition
the dataset into nine chemically distinct clusters for leave one
cluster cross-validation (LOCO-CV) assessment of the performance
of machine learning models.
Supervised statistical (AutoSklearn) and deep learning (CrabNet)

models have been applied to this dataset to predict the ionic
conductivity of a material from its elemental composition alone.
Regression and classification models have been evaluated with
standard statistical metrics under different cross-validation
regimes to assess their performance at predicting the ionic
conductivities of novel materials. The ionic conductivity of a
material is the product of many chemical and structural
considerations, and also depends on external factors such as
temperature. Further, the measured conductivity can also strongly
depend on sample preparation, the presence of impurity phases,
and crystallite size distribution, which are often discussed

collectively under the nebulous term, ‘sample quality‘ This makes
ionic transport a difficult property to reliably predict from limited
and anthropogenically biased compositional data. Given this
challenge, we go beyond standard statistical metrics by designing
control studies to investigate the models more thoroughly. We
show that CrabNets with transfer learning demonstrate the best
performance under both k-folds and LOCO cross-validation.
We present a classification model that is able to estimate

whether a material has high or low conductivity with reasonable
reliability. This is a practical tool to aid experimentalists in their
decisions to prioritize candidates for further investigation as
lithium ion conductors. Predictions from this model for chemis-
tries dissimilar to those contained in the database are likely to be
less reliable than those of closer chemistries, and materials that
may have received a low conductivity prediction from these
models may still be of interest. This emphasizes the importance of
reporting newly synthesized materials with distinct chemistry and
their measured properties. This should be encouraged even if said
property is not seen as being “exceptional” in comparison to
heavily investigated and optimized materials families that have
seized the attention of many researchers.
Acquiring new data is the only route to improving the

performance of supervised models in outlier conductivity regions.
Diversification of the structure and bonding within studied ionic
conductors expands the predictive utility of these models because
the database on which they are trained is more representative. This
experimental synthetic exploration of uncharted chemical (composi-
tion and structure) space to generate new examples is thus of
foundational importance, regardless of the absolute performance of
the arising material. Each qualitatively distinct material in terms of
differentiated structure and bonding assists our understanding of
where high performing materials may be located in chemical space.
This distinguishes the generation of materials closely related to
existing examples—which is valuable for optimization—from studies
that explore distinct parts of the relevant chemical space. The model
performance here reinforces the importance of exploratory discovery
synthesis coupled with definition of structure-property-composition
relationships for lithium ion transport.

METHODS
Database construction
A visual interface was developed using the python library
Streamlit 0.60.0. Data is read into the application using pandas
1.0.1, with interface fields to select the researcher and currently
presented data entry. The pdfs of each paper, which had been
downloaded during earlier validation stages, were presented to
each researcher on each page by dynamically updating the file
address in an embedded iframe, and running a python 3.7 http
server in the pdf folder. Fields for comments were included in the
application, which were stored in a csv file and updated manually
after each round of validation.

Unsupervised learning
The PCA map of the ICSD was created by using the numpy
1.21.2 singular value decomposition implementation, applied to a
centred 32-bit floating point ElMD28 0.4.15 kernel matrix, to
project the distances of each point to two-dimensional co-
ordinates. UMAP32 embeddings were generated using umap-learn
0.5.2 with an increased spread value of 5, a random seed of 5, and
default parameters otherwise.

Supervised learning
LOCO and k-folds cross validation methods were applied (discussed
previously) using AutoSklearn38 and CrabNet39 models. AutoSklearn
0.14.5 models were trained on 128 vCPUs (dual AMD EPYC 7502)
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with default hyperparameters and a timeout of 600 s. CrabNet
(commit 6296be6b06dde24a5d32e3a42657ef0ba0339344) models
were generated using a batch size of 512, a RobustL1 loss function,
a Lamb lookahead optimizer with stochastic weight averaging, a
cyclic learning rate from 1 × 10–4 to 6 × 10–3, and a Leaky ReLU
activation function. CrabNet models were trained as discussed
previously on an Nvidia Quadro RTX 4000. Experiments may be
replicated using the code provided in the “Code availability” section.

DATA AVAILABILITY
The dataset is freely available for academic use, at http://pcwww.liv.ac.uk/~msd30/
lmds/LiIonDatabase.html in the form of a csv file. Please contact the corresponding
author for all commercial enquiries, as per the licence of the dataset.

CODE AVAILABILITY
Final models and supporting code have been provided as part of this report; neural
network parameter weights are available at https://github.com/lrcfmd/LiIonML.
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