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Abstract: In this paper, the climate and environmental datasets were processed by the
scripts of Generic Mapping Tools (GMT) and R to evaluate changes in climate parameters,
vegetation patters and land cover types in Burkina Faso. Located in the southern Sahel
zone, Burkina Faso experiences one of the most extreme climatic hazards in sub-saharan
Africa varying from the extreme floods in Volta River Basin, to desertification and recur-
rent droughts.. The data include the TerraClimate dataset and satellite images Landsat 8-9
Operational Land Imager (OLI) and Thermal Infrared (TIRS) C2 L1. The dynamics of
target climate characteristics of Burkina Faso was visualised for 2013-2022 using remote
sensing data. To evaluate the environmental dynamics the TerraClimate data were used for
visualizing key climate parameter: extreme temperatures, precipitation, soil moisture, down-
ward surface shortwave radiation, vapour pressure deficit and anomaly. The Palmer Drought
Severity Index (PDSI) was modelled over the study area to estimate soil water balance
related to the soil moisture conditions as a prerequisites for vegetation growth. The land
cover types were mapped using the k-means clustering by R. Two vegetation indices were
computed to evaluate the changes in vegetation patterns over recent decade. These included
the Normalized Difference Vegetation Index (NDVI) and the Soil-Adjusted Vegetation Index
(SAVI) The scripts used for cartographic workflow are presented and discussed. This study
contributes to the environmental mapping of Burkina Faso with aim to highlight the links
between the climate processes and vegetation dynamics in West Africa.

Keywords: environmental monitoring, cartography, image processing, sub-saharan
Africa, R programming
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1. Introduction

Despite years of active research, the role of climate in vegetation remains an unsolved
problem for a number of reasons. First, the response of vegetation to climate has a non-
linear character and complex nature with both direct and indirect effects. A variety of
physical geographic and climatic factors directly contribute to the development of the
vegetation and control the growth and health of vegetation. These include, for instance,
such parameters as temperature and solar radiation, moisture and precipitation, wind and
relief morphometry. The indirect processes include the effects from the climatic param-
eters on soil conditions, health of microorganisms and fauna that constitute a vital part
of the complex biochemical cycle and food chain.
Second, revealing complex interactions between vegetation and climate requires the

analyses of large datasets to highlight the links and correlations between the variables.
This necessarily requires the use of the advanced methods of big data processing. Even
moderate changes in climate variables often result in a noticeable change in vegetation
patters in a spatio-temporal perspective. These can be analysed using technicalmethods of
predictive modelling and simulation of the spatial distribution of the vegetation patterns
across a landscape based on climatic and environmental variables as input data. All
of these factors significantly alter our understanding of how climate-vegetation links
function.
Third, the machine-based quantification of complex climate-vegetation system re-

quires considering not only a full range of the climatic and environmental parameters
that affect vegetation condition and growth but also a temporal delay in reaction of plant
species on climate change. Thus, a complete change in land cover types and landscape
patterns, including boundaries of habitats, may take up to several seasons. Further, sim-
ulating climate-environmental relationships also needs to handle other external factors
such as urban growth and industrial heat sources, water pollution and soil contaminations,
as well as changes in local topography which may have a human-induced (construction
works, career and mining) and natural origin (landslides, soil subsidence).
While all of these factors have been studied (Mather, 1987; Bocksberger et al.,

2016), the problem of the developing advanced methods of data processing is the only
one that we believe is still largely unsolved. Most commercially deployed Geographic
Information System (GIS) are based on the predefined functionality of the software and
have limited embedded algorithms of data processing. They sometimes employ simple
methods of image manipulation which do not take into consideration real features of
datasets. Processing large geospatial datasets becomes even more critical for standard
GIS tools that rely on manual data processing. In contrast, advance solutions proposed
through scripts and programming tools enable to handle geospatial data automatically
and accurately, which is the main focus on this paper.
Satellite image processing are very popular methods successfully used in many

applications of climate and environmental studies including such topics as land cover
/ land use changes (Machwitz et al., 2008; Ouedraogo et al., 2010; Zoungrana et al.,
2015), computation of the vegetation indices, assessment of deforestation and estimation
of burned areas (Musyimi et al., 2017), mapping plant species distribution (Devineau et
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al., 2010) to mention a few. The fundamental importance of remotely sensed data in Earth
observation and environmental monitoring is discussed in a variety of papers (Wilmet,
2010). The main idea behind these methods is to classify remote sensing data by finding
spatial patterns in the types of vegetation coverage contrasting from other land cover
types (e.g., water areas, urban zones, roads). The identification of vegetation area and
land cover types is based on the analysis of the spectral signatures of the pixels on the
image which differ in spectral properties of that object in various bands of the satellite
image (Richards, 2013). Such fundamental properties of various objects on the Earth’s
surface enables their discrimination on the satellite images.
The dynamics in changes of land cover types can be analysed using the correspondent

series of images showing the same spatial extent for various years as time series. However,
these approaches are mostly done using the traditional software developed for satellite
image processing, such as Erdas Imagine or ArcGIS, which are incomplete in two major
aspects: (i) Although handling the datasets using scripts is possible using widgets, e.g.,
developed with the ERDAS Macro Language (EML) or ArcPy in ArcGIS, both the
software remain mostly GUI-oriented. Therefore, manual operational routine in image
processing remains high; (ii) it is not possible to operate with data using console which
significantly optimizes the machine workflow, compared to the traditional state-of-the-art
software. Handling data by scripts run from the console optimizes the workflow though
machine-based automation of data processing which becomes faster and more efficient.
Algorithms for integrating advanced methods into satellite image analysis and car-

tographic data processing have been proposed earlier. Vanhuysse et al. (2017) reported
a case of mapping urban land cover from the Very High Resolution (VHR) optical im-
agery using the Object-Based Image Analysis (OBIA) approach andWorldView-3 stereo
imagery. Van Teeffelen et al. (2001) used the IKONOS image as a source of high spatial
resolution remote sensing data for spectral-based image classification applying contextual
image processing techniques with size of pixel adjusted to the urban buildings. Wagner
and Scipal (2000) formulated the approach of the large-scale soil moisture mapping us-
ing ERS scatterometer data to derive the parameters of climatic conditions that are well
reflected in the remotely sensed data.
The scenes of Moderate Resolution Imaging Spectrometer (MODIS) were integrated

from 2000 to 2012 as time series for water monitoring using a latitudinal threshold
gradient approach in a semi-arid region of West-Africa (Moser et al., 2014; Zoungrana
et al., 2018). They evaluated yearly cumulative spatiotemporal changes in water extents
and assessed their correlation with the occasion of the drought seasons. Miura et al.
(2019) used a similar strategy to generate a series of Sentinel-1A images and analyse the
repeat cycle of scenes covering the Sapone region in Burkina Faso. Kanmegne Tamga et
al. (2023) also used space borne optical Sentinel-1A data integrated with the Synthetic
Aperture Radar (SAR) and Light Detection and Ranging (LiDAR) data for deriving the
information on the aboveground biomass which is an important indicator of the carbon
cycle serving as one of the parameters of climate change in monitoring global terrestrial
ecosystem.High resolution SAR imageswere applied to perform the hydrologicRS-based
modelling in the Sahel region of Burkina Faso (Martino et al., 2011).
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We argue, however, that nearly all the existing research papers on environmental
mapping of Burkina Faso have focused on using the traditional GIS (Augusseau et al.,
2001; Cecchi et al., 2008; Dimobe et al., 2015; Kadeba et al., 2015; Forkuor et al., 2018;
Idrissou et al., 2022). Such approaches reflected the convenient functionality and char-
acteristics of the most popular GIS software with Graphical User’s Interface (GUI) such
as Erdas Imaging, ArcGIS, ENVI GIS, Idrisi GIS, SAGA GIS and others. In contrast,
the open-source geospatial toolsets and approaches offer more advanced performance of
cartographic data processing in terms of computational effectiveness, speed and effec-
tiveness of mapping. Moreover, a high level of automation and repeatability of scripts
enables optimization of the image classification workflow which results in a higher ac-
curacy. Finally, for developing countries, the cost of ESRI products, ENVI GIS or other
commercial geospatial software can be a serious factor, while GMT andR are free toolsets
available openly to everyone.
In this work, we consider the problem of climate and environmental mapping of

Burkina Faso using programmingmethods. Over the last few years, this topic has received
a growing amount of attention in theEarth sciences and geospatial community (Landmann
et al., 2008; Dimobe et al., 2022a, Lemenkova and Debeir, 2023). We considered the
existing applications of scripting languages in Earth science to propose an effective
and efficient scripting algorithms by Generic Mapping Tools (GMT) (Wessel and Smith,
1991) andR (RCoreTeam, 2022) for cartographic data processing and image analysis.We
used scripts of GMT and R that automate the workflow of the geospatial data processing,
image classification and map generation, thereby facilitating the environmental analysis
based on the remote sensing data processing. The proposed algorithms of GMT and R
perform favorably against the state-of-the-art GIS software on image processing in terms
of accuracy and robustness.
The GMT and R applied for cartographic tasks demonstrate a high level of usability

and a faster workflow through automation and a console-based approach. In particular,
such methods are useful for a pairwise comparison of several environmental parameters
when a series of maps should be plotted for different target years. In such cases, scripts
were optimized to highlight the variability of the continuum fields of the represented
climatic variables using the adjusted colour map palettes. Such strategy produces a good
recognition accuracy for evaluation of the climate shifts in the years 2013–2022. We pro-
pose two distinct approaches by GMT and R to process automatically geospatial datasets
of diverse origin and types: the first (GMT) optimizes the cartographic workflow for
plotting a series of climatic maps; the second (R) is applied for satellite image processing
and automated unsupervised classification. We show that our scripting approach are well
adapted to rapid and accurate processing of the multi-format geospatial datasets and
enable high-quality cartographic visualization.

2. Study area

A sub-saharanAfrican landlocked country situated in the southern Sahel (Fig. 1), Burkina
Faso experiences extreme climatic hazards (Zougmoré et al., 2018). These vary from the
extreme floods in Volta River Basin, one of the most vulnerable regions in West Africa to
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Fig. 1. Topographic map of Burkina Faso, West Africa. Mapping software: GMT scripting toolset.
Data source: GEBCO/SRTM. Cartography: authors

hydrological disasters, desertification (Rochette, 1989; Rasmussen et al., 2001; Capozzi
et al., 2018) and recurrent droughts (Reij et al., 2005; Kasei et al., 2010; Okafor et al.,
2021) caused by the rise in annual temperatures and decreased runoff. The problems
of climate change in sub-saharan Africa are largely discussed in many papers (Olsson,
1993; Waha et al., 2013; Webber et al., 2014; Azibo and Kimengsi, 2015; Waongo et al.,
2015; Ayanlade et al., 2021; Ascott et al., 2022; Emediegwu et al., 2022). Major risks of
climate change include the decline in precipitation and increase in annual temperatures.
As a consequence, such trends results in changed vegetation patterns, deforestation and
desertification inWest Africa, and negatively affect food production in agricultural sector,
both rainfed and irrigated crop yields (Calzadilla et al., 2013).
Climate change issues pose high risks to the vegetation sustainability, food security

in mixed crop–livestock systems (Rigolot et al., 2017). The reported consequences of
the climate impacts in Burkina Faso include changes in land cover types with detected
increase in tree savannah, bare soils and agricultural lands, and decrease in woodland,
gallery forest, shrub savannah andwater areas (Dimobe et al., 2018). At the same time, the
biodiversity loss indicate rapid climate shift and reflect changes in rainfall patterns, de-
cliningwater balance and increased extreme climate events (Hannah et al., 2020). Besides
climate factors, anthropogenic activities contribute to land degradation and deforestation
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through agricultural lands expansion of croplands, which leads to the decrease of woody
savannah and gallery forests in the country. For instance, previous studied (Gaisberger
et al., 2017) mentioned overexploitation, overgrazing, fire, cotton production, mining ac-
tivities, besides climate change, among the major threatening factors to existence of the
selected vulnerable tree species in Burkina Faso. Other studies reported high susceptibil-
ity of the country to mini-droughts, heatwaves, torrential rainfalls, and extreme weather
events (Sorgho et al., 2021). In turn, the issues of social consequences and adaptation
strategies to climate change in Burkina Faso are discussed earlier (Offerle et al., 2005;
Ouedraogo et al., 2012).
Burkina Faso is one of the least developed countries in the world with the highest

level of poverty. Its economy largely depends on the agriculture sector and the use of
natural resources (Barro et al., 2015). Therefore, maintaining environmental sustain-
ability through monitoring and ecological analysis is important for development of this
country. However, recent issues of climate change resulted in continuous degradation in
the agricultural-pastoral potentialities of the country, caused by both the intensive use of
resources (Vall et al., 2017) and climate change (Dimobe et al., 2022b). Common agricul-
tural species mostly planted in semi-urban areas of Burkina Faso include sorghum, millet,
maize and rice as the principal cereals (Arumugam et al., 2023; Séogo and Zahonogo,
2023). Examples of other agricultural products include tomatoes, lettuce, cabbage, beans,
eggplants, etc. (Ouédraogo et al., 2019), typical for the individual small-scale farming
households for subsistence farming. A moderate production of cotton (less than 1 t/ha)
contributed to the development of traditional agrarian cropping systems in the savannah
of Burkina Faso and remains a notable feature of its agricultural and development policies
(Soumaré et al., 2021).
High exposure and low adaptive capacity to climate-related hazards require develop-

ment of adaptive strategies in Burkina Faso with aim to control food management, secure
agricultural production and maintain environmental sustainability (Daniel et al., 2013;
Bunclark et al., 2018). Since the country is located in a tropical climate, is has two distinct
seasons – severe dry season which lasts from November to May and wet rainy season
from June to October (Ofori-Sarpong, 1987). The intense raining increases the quantity
of the eroded soil which is greater during the rainy season (Sanou, 1993). As a result,
the intra-seasonal variability in rainfall and precipitation controls soil and vegetation
structure and the periods of agricultural and pastoral activities (Brons et al., 2000).
The increased drought periods and intensity threaten to crop systems and livelihoods

of Burkinabè farmers and pose high risks to sustainable yield harvesting (Salter and
Goode, 1967; Gbode et al., 2022; Sawadogo, 2022). Besides, the decrease of precipi-
tation directly affects the soil structure and biochemistry of plants. For instance, high
salinity of soil which increases during the periods of drought negatively affects the yields
of maize, rice and other grain crops in Burkina Faso. Other consequences of climate
change report variations in catchment hydrology and increased soil erosion, changes
in evapotranspiration, water discharge and pattern of sedimentation (Op de Hipt et al.,
2018; 2019).
The vegetation of Burkina Faso is controlled by the distribution of climate gradients,

and includes the two major landscape types – the Sudanian with typical savannah,
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open woodlands and gallery forests, and the Sahelian with dominated Acacia, steppe
shrubs and scattered trees (Da, 2010). The carbon density in tree aboveground biomass
is increasing significantly from the Sudano-Sahelian zone towards the Sudanian zone.
It is also positively correlated with the mean annual precipitation, which proves that
climatic variables directly affect the dendrometric parameters of trees (Balima et al.,
2021). The Sahelian type of vegetation is distributed in the northern part of the country,
according to the major topographic units with a latitudinal orientation of the dune belts
(Ballouche, 1998). Accordingly, Burkina Faso consists of two major types of landscapes
varying along the major topographic units. The major part of the country is presented by
a flat relief and gentle variations between the elevations, slightly undulating landscape
and occasional isolated hills (Nebie, 1993), while the contrasting southwest includes the
sandstone plateau massif bordered by the cliffs located close to the border with Mali
where the highest peak of the country, the Ténakourou, is located (Fig. 1). A traditional
agricultural farming (millet and sorghum) is being cultivated around Mossi Plateau.
Variations in humidity and aridity over Burkina Faso is the most fundamental factor

which limits crop production, lowers the biomass production and limits the distribution
area of the selected plant species and trees (Adjonou et al., 2020; Dimobe et al., 2020).
Since the degree of moisture depends on the two key parameters – precipitation and
temperature – it naturally differs for the arid northern and semi-arid southern tropics of
the country and thus contributes to the distribution of the different vegetation types.
Spatiotemporal variability in humidity and rainfall variability of Burkina Faso were

studied previously (Oguntunde et al., 2006) with the historical analysis of the dynamics
that showed the decrease in the humidity over the three decades of the past century
with the 1968 being the wettest and 1983 – the driest year. Moreover, other similar
studies which performed the long-term data analysis since 1950s (De Longueville et al.,
2016) report changes in the rainfall pattern in Burkina Faso in the last over 60 years.
These include a general decrease of the total rainfall periods, an increase of the average
rainfall for the wet days and maximum consecutive dry days and a decrease of maximum
consecutive wet days in Burkina Faso. Furthermore, Belemtougri et al. (2021) report
the increase in the observed number of dry months per 49 gauging stations in Burkina
Faso over 1955–1985, which is higher in the northern parts of the country where the
Sahelian vegetation type is dominating, followed by the Sudano-Sahelian and Sudanian
zone, respectively. This indicates the risk of droughts and desertification in the northern
parts of Burkina Faso and shift in vegetation types.
Further, Biasutti (2019) notes that the intensity and frequency of rainfall in Sahel

is connected to the global monsoon circulation which is susceptible to the effects from
the remote oceans. Thus, warming the oceans and the Sahara changes the structure and
position of the regional air circulation which determines seasonal rain accumulation.
These processes well illustrate and explain the observed multidecadal variability in
rainfall trends in the West Africa in general and in Burkina Faso in particular. Besides
the retrospective climate modelling, the existing examples of the predictive climate
prognosis Gaetani et al. (2020) indicated possible scenarios in the expected climate shift
and precipitation change in the West Africa in the near future which may affect the
vegetation patterns in the West Sahel region.
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While drought and desertification are the consequences of the climate-related issues
such as decrease in precipitation and rainfall intensity, the deforestation in Burkina
Faso is mostly triggered by the anthropogenic factors. These include, for instance, the
replacement of the natural forests by rangeland and croplands due to the increased
demand for agricultural land (Etongo et al., 2015). Such patterns in land cover change
largely change the landscape structure in natural ecosystems. Moreover, human-induced
effects are aggravated by the intensive agricultural activities with the use of fertilizers
by the Burkinabè farmers in the Sahelian rural areas (Tarchiani et al., 2021). It is noted
previously that the extent of the vegetation types in Burkina Faso is mostly controlled by
the two factors: naturals constraints from the geomorphology, soil and climatic setting
that determine the extent of the ecozones, and the anthropogenic activities such as
uncontrolled agricultural and pastoral practices that cause degradation of the vegetal
coverage in case of uncontrolled livestock systems and farming (Bandre, 1993).

3. Materials and methods

3.1. Data

This study included various data used for mapping climate parameters and land cover
types. The climatic maps are based on the use of the TerraClimate high-resolution dataset
showing monthly climate parameters (Abatzoglou et al., 2018). The general topographic
map showing study area and the extent of the Burkina Faso in regional and global
scales are based on the GEBCO/SRTM raster grid (GEBCO, 2020). The satellite image
analysis was based on the Landsat-8 OLI/TIRS scenes (USGS, 2015) for Burkina Faso in
years 2013 and 2022 obtained from theUSGS repository (https://earthexplorer.usgs.gov/)
(Fig. 2).

Fig. 2. Data capture from the EarthExplorer repository of the USGS: Landsat-8 OLI/TIRS satellite image,
central Burkina Faso, Ouagadougou. Background image: ESRI World imagery

https://earthexplorer.usgs.gov/
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The detailed information on the Landsat imagery is available in the supporting tech-
nical documentation (USGS, 2022). The Landsat-8 OLI/TIRS images have 11 spectral
bands with resolution of 30 meters in the multispectral channels. Using the Landsat
OLI/TIRS images, we examined the difference in the land cover types and changes in
vegetation patterns coverage between 2013 and 2022. The images were analysed using
the K-means clustering algorithm of the unsupervised classification. The evaluation of
the plant health conditions was computed using two vegetation indices for the 2013
and 2022: the Normalised Difference Vegetation Index (NDVI) and the Soil Adjusted
Vegetation Index (SAVI).

3.2. Mapping climate parameters in GMT

A series of maps showing variations in the climatic and environmental parameters of
Burkina Faso for years 2013 and 2022 has been plotted using the Generic Mapping Tools
(Wessel et al., 2019) and the existing methods of the cartographic scripting described
earlier (Lemenkova and Debeir, 2022a; 2022b). Mapping climate parameters in GMT
was based on several GMT modules: gmtset, gmtdefaults, grdcut, makecpt, grdimage,
psscale, grdcontour, psbasemap, gmtlogo, psconvert. The method of GMT works on
a modular principle where each cartographic element is plotted using a line of code that
controls its representation. Moreover, the execution of scripts is applicable for plotting
the data of diverse source, formats and resolution. The main principles of the GMT
cartographic methods are described below in details.
First, we refer to themap extent and spatial location as the inevitable definition ofmap.

The target areawas clipped using the coordinates (-6◦W-3◦W,9◦N–15.5◦) from the global
raster in NetCDF format using the ‘grdcut’ module for the area of Burkina Faso: “gmt
grdcut TerraClimate_aet_2013.nc -R-6/3/9/15.5 -Gbf_aet2013.nc”. The spatial extent
is provided in the flag ‘-R’ with defined coordinates extent in WESN extent. Using
GDAL, we extract the necessary metadata from the file by ‘-stats bf_aet2013.nc’ and
define a colour palette according to the extreme values in the data range: “gmt makecpt
-C20_hue_sat_light2.cpt -V -T0/74/1 -Ic > pauline.cpt”.
The image is then visualised using the ’grdimage’ module of GMT with the defined

parameters of the spatial extent (-R), projection (-JM6.5i), the effects of the illumination
on the map (-I+a15+ne0.75) and selected auxiliary features: ‘-X’ defining the offset,
and ‘-t25’ defining the 25% transparency of the background image: “gmt grdimage
bf_aet2013.nc -Cpauline.cpt -R-6/3/9/15.5 -JM6.5i -I+a15+ne0.75 -Xc -t25 -P -K > $ps”.
Plotting the isolines is one of the most widely used of all cartographic techniques: it
visualizes the constant values of the target variables and enables to analyse the additive
relationships between the variables by comparison of several maps if plotted for the
same spatial extent. It is a most widely used element on topographic maps, but is also
applied in climatic maps to visualise spatial variations in data values, e.g., temperature
or evapotranspiration, which helps in the analysis of dynamics. Adding the isolines was
done using the ‘grdcontour’ module of GMT as follows: “gmt grdcontour bf_aet2013.nc
-R -J -C6 -A6 -Wthin,coral4 -O -K� $ps”.



10 Polina Lemenkova, Olivier Debeir

The background geographic elements, such as coastlines, country borders and rivers
were plotted on themap using the ‘pscoast’modulewith defined the representation of lines
as follows: “gmt pscoast -R -J -P -Ia/thinner,blue -Na -N1/thickest,white -W0.1p -Df -O
-K� $ps”. To highlight the study area for a better contrast against the background, a tech-
nique of clippingwas applied using the ‘psclip’ module. This enabled to plot a mapwithin
the masked area for a better contrast against the neighbouring countries by the following
code: “gmt psclip -R-6/3/9/15.5 -JM6.5i BurkinaFaso.txt -O -K � $ps”. A grid added
on a map is used for spatial interpretation of values and identification of their locations.
Plotting a grid was performed using a drawn network of the major Eastings and Northings
and evenly spaced auxiliary horizontal and vertical lines by module ‘psbasemap’: “gmt
psbasemap -R -J -MAP_FRAME_AXES=WEsN –FORMAT_GEO_MAP=ddd:mm:ssF
-Bpxg2f1a1 -Bpyg2f1a1 -Bsxg2 -Bsyg1 -B+t “AET (Actual Evapotranspiration) in Burk-
ina Faso (2013)” -O -K� $ps.
It is crucial to add colour legends on the maps for readability and correct percep-

tion of values. The colour legend was plotted on each of the maps using the ‘psscale’
module of GMT as follows: “gmt psscale -Dg-6.0/8.4+w16.0c/0.15i+h+o0.3/0i+ml+e
-R -J -Cpauline.cpt -Bg5f0.5a10+l"Colormap palette: < ... >” -I0.2 -By+l“mm” -O -K
� $ps”. The final output of the raster file was converted to the high resolution image
using the GhostScript by the ‘psconvert’ module of GMT as follows: “gmt psconvert
BF_aet_2013.ps -A0.5c -E720 -Tj -Z”. The general principle of GMT described above
was applied to plotting all the presented climatic and topographic maps using scripts
that contained all the sequential lines of code with the parameters defined in commands,
as demonstrated above. Each plotted map was executed from a corresponding script for
visualising climate parameters for 2013 and 2022.

3.3. Image processing in R

The satellite image processing was performed to evaluate land cover changes and shift in
patterns of the vegetation coverage in a selected area of Burkina Faso using the libraries
of R language (R Core Team, 2022). The methodology of the satellite image processing
in R is based on the existing workflow (Lemenkova and Debeir, 2022c; 2022d). The
main components of the R scripts include libraries (terra, raster) and auxiliary packages
such as ‘RColorBrewer’, ‘graphics’, and ‘rgdal’. The ‘rgdal’ library was used to handle
spatial data by integrating R with Geospatial Data Abstraction Library (GDAL) (URL:
https://gdal.org/) for processing various spatial data formats, including the GeoTIFF. The
‘rgdal’ was used to apply the GDAL functionality to read the GeoTIFF files into computer
memory, then passes these files to the libraries of R. The import, access and conversion
of raster datasets to geospatial format were further processed by the RStudio desktop.
The calculation of the Normalized Difference Vegetation Index (NDVI) for the

years 2013 and 2022 of the target area of Burkina Faso was performed in RStudio
using the codes presented in appendix A1. The presented script is for the image of
2013. Likewise, this code was applied for the year 2022 with adjusted colour palette
from the RColorBrewer brewer.pal(11, “Spectral”) for the bands of the Landsat image
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LC08_L2SP_195051_20220513_20220519_02_T1. The calculation of the Soil Adjusted
Vegetation Index (SAVI) for the target area of Burkina Faso was performed in RStudio
using the code presented in appendix A2. SAVI Computation with the example of 2013.
The code was adjusted for the other Landsat image on 2022. The unsupervised classi-
fication for both years (2013 and 2022) was performed using the code available in the
appendix A3. Unsupervised Classification and results listed in the appendix for both
cases (2013 and 2022).
Themajor steps included first stacking a collection of the objects from theRasterLayer

class which were initially stored in the Landsat bands. Since the raster files have the same
spatial extent and resolution for the multi-spectral bands (except for thermal band which
was not used for classification in this case), a stack of these files was created using the
RasterStack function of R in ‘raster’ library. Thus, the RasterStack was formed using the
separate Landsat OLI/TIRS bands as layers. Once it was created, a RasterBrick was made
on the next step as a multi-layer raster object. This matrix was used further for clustering
performed as an unsupervised classification of the two images. Its attributes are listed in
the code snippet above showing the coordinate extent, resolution, dimensions and other
metadata. Afterwards, the clustering was done using the ‘unsuperClass’ command of the
‘raster’ library.
The ten classes of the land cover types were selected based on the exist-

ing classification of the dominating land cover classes in Burkina Faso performed
in the Land Cover Land Use project by the Food and Agriculture Organization
of the United Nations (FAO) (URL: https://data.apps.fao.org/catalog/organization/
fao-land-cover-land-use) with the available dataset (URL: https://data.apps.fao.org/
catalog/iso/d5acf3e9-5f60-4338-8a7d-4dfe36acb7d0) as well as the classification sup-
ported by the United States Geological Survey (USGS) (URL: https://eros.usgs.
gov/westafrica/land-cover/land-use-land-cover-and-trends-burkina-faso). The extended
classification covering the whole country was modified and adopted according to the
current extent of the study area located in the central part of the country. As a result, the
following land cover classes were defined: 1) ‘bare soil’, 2) ‘irrigated agricultural areas:
cereals and legumes’, 3) ‘water areas and wetlands’, 4) ‘shrub lands’, 5) ‘savannah sahéli-
enne’ (sahelian short grass savannah), 6) ‘savannah soudanienne’, 7) ‘steppe’, 8) ‘gallery
forests and riparian forests’, 9) ‘forests’, 10) ‘urban settlements’. The computed results
are reported in the appendices.

4. Results and discussion

In this section, a comprehensive description and analysis of the climatic data obtained
from the TerraClimate dataset for Burkina Faso is provided both for 2013 and 2022.
Furthermore, the changes in the parameters in the spatio-temporal extent are compared
with regard to the geographic setting of the country. In Figure 3, the variations in minimal
annual temperature over Burkina Faso for 2013 and 2022 obtained from the interpolated
data from surface observations are shown.

https://data.apps.fao.org/catalog/organization/fao-land-cover-land-use
https://data.apps.fao.org/catalog/organization/fao-land-cover-land-use
https://data.apps.fao.org/catalog/iso/d5acf3e9-5f60-4338-8a7d-4dfe36acb7d0
https://data.apps.fao.org/catalog/iso/d5acf3e9-5f60-4338-8a7d-4dfe36acb7d0
https://eros.usgs.gov/westafrica/land-cover/land-use-land-cover-and-trends-burkina-faso
https://eros.usgs.gov/westafrica/land-cover/land-use-land-cover-and-trends-burkina-faso
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Fig. 3. Minimum temperature for Burkina Faso in (a) 2013 and (b) 2020

The data extent for 2013 ranges from 10.47◦C to 20.56◦C, while the data for 2022 has
the extent from 11.70◦C to 21.20◦C which clearly shows the increase of the temperature
on 1◦C over 9 years. The interannual variability in maximal temperature ranging from
27.78◦C to 37.14◦C in 2013 against 28.20◦C to 37.00◦C in 2020 is compared with spatial
variability in topography of Burkina Faso at regional scale (Fig. 4).

Fig. 4. Maximum temperature for Burkina Faso in (a) 2013 and (b) 2020

The data from from the TerraClimate show an association with the orographic pattern
of the Mossi Plateau and the Ténakourou Mount. Thus, the areas of lower values in
temperature are contoured by the isolines in Figure 4 which correlate with the topography
of the country. This proves that the topography has an impact on the precipitation pattern
in the mountainous regions. The same trend is clearly visible when compared the region
in the south-western part of the country (Ténakourou Mount) where the temperatures
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are lower than the values in the surrounding areas. This further illustrates the effects
of the topography on climate variations and temperature variations. The analysis of the
dynamics of soil moisture over the country (Fig. 5) shows that in 2013 the maximal values
were 172.10 mm/m with a mean of 31.66 mm/m, while in 2022 the maximal value is
only 150.40 mm/m with a mean of 27.92 mm/m, showing the decrease in soil moisture
and the increase in dry lands in Burkina Faso over the recent 9 years. This well correlates
with the data on the potential evapotranspiration (Fig. 6).

Fig. 5. Soil moisture in Burkina Faso in (a) 2013 and (b) 2020

Fig. 6. Potential evapotranspiration (PET) in Burkina Faso in (a) 2013 and (b) 2020

The analysis of the potential evapotranspiration (Fig. 6) indicates the measure of
potential water loss related to the dryness and temperature. Thus, the analysis of data
on 2013 indicate the actual range from 135.40 to 197.50, while the 2022 year shows the
increased data range diapason ranging from 139.00 to 214.90.
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The data on actual evapotranspiration over Burkina Faso (Fig. 7) range from 0
to 76.10 in 2013, while decrease up to 74.30 as the maximal values in 2022, which
shows the decrease in the liquid water supply and the utilized soil water that results in
the changed values of the actual evapotranspiration. Thus, the decrease in liquid water
supply necessarily results in lower values of actual evapotranspiration. The values of
Vapour Pressure Deficit (VPD) for Burkina Faso (Fig. 8) range from the interval 2.18 to
3.53 kPa in 2013 to an interval from 2.19 to 3.38 kPa in 2022. Such variations showing the
narrower range in recent years can be explained as follows. Since the VPD is an auxiliary
data received in the original dataset using data for precipitation, monthly maximum and
minimum temperature, and vapour pressure, the variations in VPD demonstrate changes
related to these climatic parameters.

Fig. 7. Actual evapotranspiration (AET) in Burkina Faso in (a) 2013 and (b) 2020

Fig. 8. Vapour Pressure Deficit (VPD) in Burkina Faso in (a) 2013 and (b) 2020
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The data on Vapour Pressure (VAP) in Burkina Faso (Fig. 9) show the range from
0.45 kPa to 1.44 kPa in 2013, while a shift is notable in 2022 to the range from 0.48 kPa
to 1.41 kPa. Such a narrower diapason of data extent also correlates with the variables
of air temperature, pressure of air, hydrological precipitation process and the porosity
of soil. Likewise, the downward surface shortwave radiation in Burkina Faso (Fig. 10)
demonstrates changes from the 203.50 to 233.10 Wm-2 in 2013 to the intensification of
data in a slightly narrower range from 207.20 to 233.50 Wm-2 in 2022 that reflects the
shift in the related essential climate variable – the intensity of solar energy as a source of
short wave radiation.

Fig. 9. Vapour Pressure (VAP) in Burkina Faso in (a) 2013 and (b) 2020

Fig. 10. Downward Surface Shortwave Radiation (SRAD) in Burkina Faso in (a) 2013 and (b) 2020

The data on average annual wind speed for Burkina Faso (Fig. 11) shows the extent
in data from the minimal at 1.70 m/s to the maximal at 3.38 m/s with a mean of 2.31 m/s
in 2013. In 2022, the data range shifts to a wider difference in values from 1.60 m/s to
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3.89 m/s (Fig. 11) showing a larger range of the extreme wind speed. This well correlates
with the increase of the climatic extreme events, as discussed earlier. The variations in
values of the Palmer Drought Severity Index (PDSI) in Burkina Faso (Fig. 12) shows the
change in the data range from –8.32, to a maximum of 7.03, with a mean of 2.01 in 2013,
while a more recent data show the minimum at –7.20, maximum at 5.92 and a mean of
–2.20 in 2022. The narrower range in the PDSI values indicates a trend to the drought
that supports recent observations on climate change in Burkina Faso with related forest
drought stress, as also observed in other regions of the West Africa.

Fig. 11. Average wind speed in Burkina Faso in (a) 2013 and (b) 2020

Fig. 12. PDSI (Palmer Drought Severity Index) in Burkina Faso in (a) 2013 and (b) 2020

The Normalized Difference Vegetation Index (NDVI) is used to compute the values
of the vegetation greenness using a classifier-based approach in R language (Fig. 13). In
this approach, the basis classes of the NDVI values are defined directly as the categories
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of the vegetation vigour based on the spectral reflectance of the plants in Bands 4 and 5
which correspond to the Red and NIR spectral channels in the Landsat OLI/TIRS images.
These bands are used to indicate vegetation health through the greenness expressed as
the amount of the chlorophyll content in leaves detectable by the NDVI through the
Red/NIR combination of bands. Thus, healthy vegetation has values of near +1, while
medium values are typical for the grassy or shrubby savannah; lower values show sparse
vegetation, while negative values indicate water areas.

Fig. 13. NDVI (a, c) and histogram (b, d) for Burkina Faso in 2013 (a, b) and 2022 (c, d)

The algorithm of computing the NDVI by R is trained to recognize the categories of
high NDVI values that correspond to the green and health vegetation typical for forest
areas. Specifically for Burkina Faso, the majority of the NDVI values for the examined
images show values typical for savannah, that is, around 0.2. A slight decrease in values
is notable when comparing the images for 2013 and 2022 which might indicate the
processes of desertification (Fig. 13).
The Soil-Adjusted Vegetation Index (SAVI) method implements the soil-brightness

correction factor to lessen the effects from the soil brightness (Fig. 14). The use of SAVI
is especially actual for the northern region of Burkina Faso in southern Sahara Desert
where very sparsely vegetated areas are dominated with only sporadic trees. The SAVI
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index is defined as a difference between the NIR and Red bands in the Landsat OLI/TIRS
images adjusted to the soil brightness correction factor (L) set as 1/2 to be suitable for the
most land cover types. For the two examined Landsat OLI/TIRS images of the Burkina
Faso for 2013 and 2022, the majority of SAVI values lie in the range from 0.08 to 0.20
in 2013, while for the 2022 the values shift towards the range of 0.06 to 0.18 showing
a slight decrease in values typical for healthy vegetation (Fig. 14).

Fig. 14. SAVI (a, c) and histogram (b, d) for Burkina Faso in 2013 (a, b) and 2022 (c, d)

The land cover changes and dynamics of deforestation inBurkina Fasowere compared
for the year 2013 (Fig. 15) and 2022 (Fig. 16) using the analysis of clustering results.
While R employs cluster centroids to render the classifier nonlinear and accurate, here
the non-labeled data are used for objectivity of clustering by adopting the explicit object
features by a spectral reflectance of pixels on the images as representations of the land
cover classes and landscape dynamics in Burkina Faso. The appendix B shows the results
of the classifications of the Landsat OLI/TIRS images for each year with reported number
of pixels in each of the 10 land cover classes.
The clustering method in R was introduced by the algorithm in ‘RStoolbox’ library.

The algorithm learns a distance between the cluster centroids and assigns each pixels
to the target class among the available 10 classes. The assignment of pixels is based on
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Fig. 15. Analysis of land use cover (LULC) types Burkina Faso. Landsat-8 OLI/TIRS color composites
(4-3-2) (a) and clusters of LULC based on unsupervised classification (b) for 2013

Fig. 16. Analysis of land use cover (LULC) types in Burkina Faso: Landsat-8 OLI/TIRS color composites
(4-3-2) (a) and clusters of LULC based on the unsupervised classification by K-means clustering (b)

for 2022

the measuring a distance between the pixel value and the centroid of each cluster in the
observation dataset. The major classes include the following land cover types typical
for Burkina Faso: 1) ‘bare soil’, 2) ‘irrigated agricultural areas: cereals and legumes’,
3) ‘water areas and wetlands’, 4) ‘shrub lands’, 5) ‘savannah sahélienne’ (sahelian short
grass savannah), 6) ‘savannah soudanienne’, 7) ‘steppe’, 8) ‘gallery forests and riparian
forests’, 9) ‘forests’, 10) ‘urban settlements’. The difference in the land cover classes is
mapped for 2013 (Fig. 15) and 2022 (Fig. 16). The computed difference in each land
cover class is reported in the appendix for images of 2013 and 2022.
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5. Conclusion

In this paper, we presented an investigation of the climate-environmental relationships
in Burkina Faso, West Africa which integrated remote sensing and climate datasets. The
study showed an overview of the climate issues and environmental challenges in Burkina
Faso, with relation to the agricultural system of the country. To reveal the links between
the climate-related processes and environmental responses, the advanced mapping tools
is essential. To this end, an efficient scripting methods of the GMT and R were applied
for mapping climate-environmental parameters as an integrated tool for accurate and data
visualization. The programming techniques were applied using for automated workflow
of the satellite image processing with a case of geospatial libraries of R language. The
obtained results and observed variations in environmental parameters in Burkina Faso are
discussed at regional scale and at local scale with an enlarged fragment of the study area.
The effectiveness of scripting techniques for cartographic workflow was demonstrated
with respect to mapping climate and environmental parameters and image processing.
The results included computed vegetation indices NDVI and SAVI and classified land
cover changes over the territory of Burkina Faso. For comparison of the environmental
changes, the maps were presented for the years 2013-2022.
To handle complex environmental scenarios encountered in the Burkina Faso due to

the climate change, we propose a pairwise comparative mapping and image processing of
the data on years 2013 and 2020 for each evaluated climatic and environmental parameter.
The presented data visualization by scripts is a semi-automated mapping process run
through a console which is interleaved with adjustment of selected parameters in script
for each map according to the data range and extend.
In this work, we proposed a scripting approach for remotely sensed geospatial data

processing aimed at mapping climate and land cover variables by GMT and R. It is built
on a console-based method of data handling that uses a syntax of programming language
for visualization of spatial datasets. Therefore, prewritten codes are sufficient enough to
achieve a high speed for plotting data (about/less than a second for map visualization)
and a high accuracy of the final outputs as a series of maps. Practical issues of the used
methodology include the advantages of the open source tools.While the commercial GIS,
besides being expensive, sometimes include the unfixed bugs and restricted functionality,
and create a certain dependency of a user on software vendors, open source tools such
as GMT and R are available in full functionality with regular updates of the modified
versions.
Further, the geospatial representation approach offered by the GMT scripting toolset

and R language returns an effective series of maps showing target environmental param-
eters over the area of Burkina Faso, compared pairwise for 2013 and 2022 for the analysis
of the environmental dynamics. Extensive experiments with scripts on TerraClimate and
the Landsat OLI/TIRS satellite images demonstrate that our method is effective and
can be extended on a wider range of complex environmental scenarios in West Africa.
Moreover, practical issues including the data analysis and comparison of the dynamics
of climate variables and vegetation coverage derived from the remote sensing data are
handled under our unified GMT-R framework. Using the GMT and R tools, the image
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processing and mapping were implemented for climate and environmental analysis of
the Burkina Faso. The GMT was used for cartographic data processing and mapping the
climate parameters of the TerraClimate dataset. The scripting method of R is robust to
processing data using unsupervised learning algorithm of k-means clustering that was
used for land cover classification. Libraries of R are capable of efficient image processing
for vegetation mapping and environmental analysis. The partitioning of pixels on the
satellite images into the defined land cover classes categorized into groups according
to the similarity of their spectral reflectances, and demonstrated the difference of land
cover classes for 2013 and 2022 in Burkina Faso. Using R and GMT scripts, we are
able to incorporate the spatial contiguity of the geospatial continuum fields and analyze
their variability over space, thereby fully realizing the potential of the advanced scripting
cartographic methods.

Appendix
Appendix A. R scripts used for satellite image processing

A1. NDVI Computation
library(terra)
install.packages("pals")
library(pals)
library(RColorBrewer)
#comment:"/Users/USERNAME/..." is a sample path for the authors’ folder structure which
should be modified when reusing.
setwd("/Users/USERNAME/Documents/R/52_Image_Processing/
LC08_L2SP_195051_20130520_20200912_02_T1")
# 1. NDVI = (NIR - R) / (NIR + R), i.e., NDVI = (Band 5 – Band 4) / (Band 5 + Band 4).
vi <- function(img, k, i) {
bk <- img[[k]]
bi <- img[[i]]
vi <- (bk - bi) / (bk + bi)
return(vi)}
# For Landsat NIR = 5, red = 4.
filenames <- paste0(’LC08_L2SP_195051_20130520_20200912_02_T1_SR_B’, 1:7, ".tif")
filenames
landsat <- rast(filenames)
landsat
ndvi <- vi(landsat, 5, 4)
# defining color palette
colors <- stepped()
plot(ndvi, col = colors, font.main = 1, main = "NDVI for Landsat-8 OLI/TIRS C1 image
LC08_L2SP_195051_20130520_20200912_02_T1_SR_B: central Burkina Faso", cex.main=0.9)
# Plotting the histogram of the NDVI
hist(ndvi, font.main = 1, main = "NDVI values for Landsat-8 OLI/TIRS C1 image
\nLC08_L2SP_195051_20130520_20200912_02_T1_SR_B: central Burkina Faso",
xlab = "NDVI", ylab= "Frequency", col = "springgreen2", xlim = c(-0.5, 0.5),
breaks = 30, xaxt = "n") axis(side=1, at = seq(-0.6, 0.5, 0.1),
labels = seq(-0.6, 0.5, 0.1))
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A2. SAVI Computation
SAVI = ((Band 5 – Band 4) / (Band 5 + Band 4 + 0.5)) * (1.5).
savi_fun = function(nir, red){
((nir - red) / (nir + red + 0.5)) * 1.5}
savi = lapp(landsat[[c(4, 3)]],
fun = savi_fun)

plot(savi, col = brewer.pal(11, "Spectral"), font.main = 2, main =
"Soil Adjusted Vegetation Index (SAVI) for Landsat-8 OLI/TIRS C1 image
\nLC08_L2SP_195051_20130520_20200912_02_T1_SR_B:
central Burkina Faso", cex.main=1.0)
hist(savi, font.main = 1, main = "SAVI values for Landsat-8 OLI/TIRS C1 image
\nLC08_L2SP_195051_20130520_20200912_02_T1_SR_B: central Burkina Faso",
xlab = "SAVI", ylab= "Frequency", col = "firebrick2", xlim = c(-0.4, 0.4),
breaks = 30, xaxt = "n") axis(side=1, at = seq(-0.4, 0.4, 0.1),
labels = seq(-0.4, 0.4, 0.1))

The same code was repeated for the year 2022 for the files of the Landsat-8 OLI/TIRS
image LC08_L2SP_195051_20220513_20220519_02_T1.

A3. Unsupervised Classification
library(rgdal)
library(raster)
library(terra)
library(RColorBrewer)
library(pals)
library(colorspace)
library(RStoolbox)
library(graphics)
#comment:"/Users/USERNAME/..." is a sample path for the authors’ folder structure which
should be modified to the actual working folder when reusing.
setwd("/Users/USERNAME/Documents/R/52_Image_Processing/
LC08_L2SP_195051_20130520_20200912_02_T1")

Landsat_BF2013 <- list.files("/Users/USERNAME/Documents/R/
52_Image_Processing/LC08_L2SP_195051_20130520_20200912_02_T1")
list.files()
[1] "LC08_L2SP_195051_20130520_20200912_02_T1_SR_B1.TIF"
[2] "LC08_L2SP_195051_20130520_20200912_02_T1_SR_B2.TIF"
[3] "LC08_L2SP_195051_20130520_20200912_02_T1_SR_B3.TIF"
[4] "LC08_L2SP_195051_20130520_20200912_02_T1_SR_B4.TIF"
[5] "LC08_L2SP_195051_20130520_20200912_02_T1_SR_B5.TIF"
[6] "LC08_L2SP_195051_20130520_20200912_02_T1_SR_B6.TIF"
[7] "LC08_L2SP_195051_20130520_20200912_02_T1_SR_B7.TIF"
Landsat_BF2013_stack <- stack(Landsat_BF2013)
Landsat_BF2013_brick <- brick(Landsat_BF2013_stack)
Landsat_BF2013_brick
class : RasterBrick
dimensions : 7281, 7471, 54396351, 7 (nrow, ncol, ncell, nlayers)
resolution : 30, 30 (x, y)
extent : 545085, 769215, 1329285, 1547715 (xmin, xmax, ymin, ymax)
crs : +proj=utm +zone=30 +datum=WGS84 +units=m+no_defs
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source : r_tmp_2023-01-22_145640_95034_42547.grd
names : LC08_L2SP//2_T1_SR_B1, LC08_L2SP//2_T1_SR_B2,
LC08_L2SP//2_T1_SR_B3, LC08_L2SP//2_T1_SR_B4, LC08_L2SP//
2_T1_SR_B5, LC08_L2SP//2_T1_SR_B6,LC08_L2SP//2_T1_SR_B7
min values : 1527, 2952, 8310, 9634, 9791, 9470, 8779
max values : 33177, 35035, 42211, 45735, 48008, 56959, 59325
set.seed(25)
unC <- unsuperClass(Landsat_BF2013_brick, nSamples = 100, nClasses = 10, nStarts = 5)
unC

Appendix B. Results of the computed unsupervised classification (2013): clustering
of the Landsat-8 OLI/TIRS image (2013)

*************** Model ******************
$model
K-means clustering with 10 clusters of sizes
12, 4, 12, 11, 18, 8, 14, 1, 8, 12
Cluster centroids:
LC08_L2SP_195051_20130520_20200912_02_T1_SR_B1
1 9599.417
2 9099.500
3 10990.750
4 10468.000
5 9708.778
6 10022.250
7 9971.857
8 8644.000
9 9177.250
10 10560.250
LC08_L2SP_195051_20130520_20200912_02_T1_SR_B2
1 10457.250
2 9865.500
3 12085.750
4 11398.000
5 10611.333
6 10902.500
7 10907.714
8 9627.000
9 9930.375
10 11580.917
LC08_L2SP_195051_20130520_20200912_02_T1_SR_B3
1 12754.50
2 11941.00
3 15290.75
4 14130.91
5 13067.61
6 13447.00
7 13600.07
8 11957.00
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9 11989.38
10 14613.92
LC08_L2SP_195051_20130520_20200912_02_T1_SR_B4
1 14807.42
2 13264.25
3 18427.08
4 16949.27
5 15231.33
6 16301.62
7 16040.43
8 13009.00
9 13817.12
10 17467.50
LC08_L2SP_195051_20130520_20200912_02_T1_SR_B5
1 18633.08
2 17763.50
3 22331.33
4 21115.36
5 19915.61
6 20343.62
7 20832.00
8 15951.00
9 17179.50
10 21738.67
LC08_L2SP_195051_20130520_20200912_02_T1_SR_B6
1 22669.83
2 19796.75
3 26822.83
4 26232.27
5 23172.50
6 25491.88
7 24233.14
8 16494.00
9 21307.12
10 25430.42
LC08_L2SP_195051_20130520_20200912_02_T1_SR_B7
1 18583.08
2 15760.00
3 22718.25
4 22171.91
5 19110.56
6 21400.00
7 20214.29
8 14339.00
9 17072.25
10 21076.58
Within cluster sum of squares by cluster:
[1] 16849325 7559750 11280118 10249179 31001897 9960346 14629344 0 9426130
[10] 17899304
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*************** Map ******************
$map
class : RasterLayer
dimensions : 7281, 7471, 54396351 (nrow, ncol, ncell)
resolution : 30, 30 (x, y)
extent : 545085, 769215, 1329285, 1547715 (xmin, xmax, ymin, ymax)
crs : +proj=utm +zone=30 +datum=WGS84 +units=m +no_defs
source : r_tmp_2023-01-22_145808_95034_17510.grd
names : class
values : 1, 10 (min, max)

Appendix C. Results of the computed unsupervised classification (2022): clustering
of the Landsat-8 OLI/TIRS image (2022)

unsuperClass results
*************** Model ******************
$model
K-means clustering with 10 clusters of sizes 4, 9, 13, 1, 18, 8, 1, 20, 11, 1
Cluster centroids:
LC08_L2SP_195051_20220513_20220519_02_T1_SR_B1
1 11011.750
2 9336.444
3 10578.769
4 4754.000
5 9667.111
6 8933.125
7 4468.000
8 10271.650
9 9573.818
10 9855.733
LC08_L2SP_195051_20220513_20220519_02_T1_SR_B2
1 11976.25
2 10192.44
3 11707.31
4 7913.00
5 10677.00
6 9790.00
7 7616.00
8 11237.10
9 10389.82
10 10789.40
LC08_L2SP_195051_20220513_20220519_02_T1_SR_B3
1 15083.25
2 12363.67
3 14619.31
4 14343.00
5 13239.39
6 11744.12
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7 11846.00
8 13903.00
9 12660.73
10 13184.67
LC08_L2SP_195051_20220513_20220519_02_T1_SR_B4
1 18347.75
2 14332.78
3 17550.46
4 17431.00
5 15494.72
6 13494.00
7 14428.00
8 16494.15
9 15077.27
10 15543.13
LC08_L2SP_195051_20220513_20220519_02_T1_SR_B5
1 22078.00
2 17967.78
3 21226.54
4 20995.00
5 19791.06
6 16980.62
7 17511.00
8 20518.50
9 18044.82
10 19395.73
LC08_L2SP_195051_20220513_20220519_02_T1_SR_B6
1 26910.00
2 21401.00
3 24825.08
4 24269.00
5 22311.72
6 19593.88
7 18156.00
8 23698.45
9 22910.73
10 23910.80
LC08_L2SP_195051_20220513_20220519_02_T1_SR_B7
1 23312.50
2 17217.22
3 20677.92
4 20391.00
5 18186.56
6 16052.62
7 15714.00
8 19731.05
9 18731.36
10 19561.47
Within cluster sum of squares by cluster:
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[1] 10243744 13359721 29109152 0 28575937 20311570 0 29155830 16295670
[10] 14514939
*************** Map ******************
$map
class : RasterLayer
dimensions : 7721, 7561, 58378481 (nrow, ncol, ncell)
resolution : 30, 30 (x, y)
extent : 545085, 771915, 1322685, 1554315 (xmin, xmax, ymin, ymax)
crs : +proj=utm +zone=30 +datum=WGS84 + units=m + no_defs
source : r_tmp_2023-01-22_155940_745_17510.grd
names : class
values : 1, 10 (min, max)
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