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MethyLasso: a segmentation approach to analyze DNA methylation patterns 
and identify differentially methylation regions from whole-genome datasets 
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ABSTRACT 
 
DNA methylation is an epigenetic mark involved in the regulation of gene expression and 
patterns of DNA methylation anticorrelates with chromatin accessibility and transcription 
factor binding. DNA methylation can be profiled at the single cytosine resolution in the whole 
genome and has been performed in many cell types and conditions. Computational 
approaches are then essential to study DNA methylation patterns in a single condition or 
capture dynamic changes of DNA methylation levels across conditions. Towards this goal, we 
developed MethyLasso, a new approach based on the segmentation of DNA methylation data, 
that enables the identification of low-methylated regions (LMRs), unmethylated regions 
(UMRs), DNA methylation valleys (DMVs) and partially methylated domains (PMDs) in a single 
condition as well as differentially methylated regions (DMRs) between two conditions. We 
performed a rigorous benchmarking comparing existing approaches by evaluating the 
number, size, level of DNA methylation, boundaries, CpG content and coverage of the regions 
using several real datasets as well as the sensitivity and precision of the approaches using 
simulated data and show that MethyLasso performs best overall. MethyLasso is freely 
available at https://github.com/abardet/methylasso.  
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INTRODUCTION 
 
DNA methylation is an epigenetic mark that consists in the addition of a methyl group to 
cytosines mainly in the context of cytosine-guanine (CpG) dinucleotides. It is involved in the 
regulation of gene expression as it is able to block transcription factors from binding to DNA 
(1, 2). Patterns of DNA methylation anti-correlate with transcription factor binding where 
most of the inactive genome is fully methylated and active regulatory regions bound by 
transcription factors are lowly- or unmethylated (LMRs or UMRs) (3, 4). Large unmethylated 
regions that often mark developmental genes were termed DNA methylation valleys (DMVs) 
(5, 6) and partially methylated domains (PMDs) have been described as large domains with 
heterogeneous methylation levels in immortalized cell lines and cancer samples (7, 8). DNA 
methylation is a reversible mark and demethylation was shown to be induced by transcription 
factor binding (3, 9, 10). DNA methylation patterns are therefore dynamic notably during 
cellular differentiation throughout development and disease conditions such as cancer. 
 
Several experimental approaches have been developed to profile DNA methylation patterns 
(11). Bisulfite conversion (12) and more recently enzymatic conversion (13) followed by high-
throughput sequencing can be applied to profile whole-genome DNA methylation at single 
cytosine resolution (Bis-seq or EM-seq respectively). Computational approaches are then 
essential to study DNA methylation patterns in a single condition or capture dynamic changes 
of DNA methylation levels across conditions. 
 
The identification of hypomethylated regions in a single condition is of great interest as it can 
be used to predict active regulatory regions bound by transcription factors. MethylSeekR (4) 
is the most widely used tool to identify LMRs, UMRs and PMDs. In order to circumvent the 
uncertainty of methylation levels due to the low sequencing coverage of individual CpGs, 
MethylSeekR smooths methylation levels over three consecutive CpGs with a minimal 
coverage of 5 reads. It then identifies hypomethylated regions as stretches of consecutive 
CpGs with methylation below 50%. Since it expects LMRs to be located at CpG-poor regions 
and UMRs to be found at CpG-rich regions called CpG islands, MethylSeekR uses CpG content 
as a threshold to further classify regions as LMRs (e.g. below 30 CpGs) or UMRs (e.g. above 
30 CpGs). False discovery rate (FDR) is computed using shuffled CpG methylation levels. PMDs 
are identified using a Hidden Markov model with sliding windows of 100 consecutive CpGs 
and classified according to the methylation levels. 
 
The identification of differentially methylated regions (DMRs) to compare conditions is one 
of the main analyses performed when investigating DNA methylation patterns. Many tools 
with various approaches have been developed for whole-genome methylation datasets that 
have been reviewed and benchmarked by several studies (14–17). Most approaches first rely 
on the identification of single differentially methylated CpGs (DMCs) and then aggregates 
them into DMRs. One of the first approach developed to identify DMRs is BSmooth (18), which 
applies local likelihood smoothing to overcome potential biases due to low coverage. It 
requires replicates to calls DMCs using a t-test and group the ones above a specific threshold 
into DMRs. RADmeth (19) is based on a beta-binomial regression approach. It calls significant 
DMCs using a log-likelihood ratio test and neighboring DMCs are combined using a weighted 
Z-test to obtain DMRs. DSS (20) is based on a Bayesian hierarchical model based on the beta-
binomial distribution. It can also smooth the methylation values, calls significant DMCs using 
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a Wald test and groups them as DMRs using thresholds such as p-value, minimum length and 
minimum number of CpGs. Defiant (21) employs an approach where the sample’s variance is 
weighted based on coverage. It calls significant DMCs using a Welch’s t-test if several 
replicates are available or a Fisher’s exact test otherwise and uses a weighted Welch 
expansion to identify DMRs. Dmrseq (22), that now replaces BSmooth, also performs 
smoothing and uses the same beta-binomial approach than DSS to call significant DMCs. It 
then uses a continuous autoregressive correlation to identify DMRs and controls for FDR using 
the Benjamini and Hochberg procedure. DMRcate (23) that was first developed for 
methylation array data was recently adapted for whole genome Bis-seq data and uses the 
limma to generate per-CpG t-statistics and kernel smoothing and groups them into DMRs 
using a FDR threshold. 
 
Only few approaches define DMRs directly based on the changes of DNA methylation 
differences without any assumption about the data distribution. Metilene (24) performs a 
first pre-segmentation of the genome and then a circular binary segmentation approach is 
used to iteratively reduce the size of the regions to maximize the mean DNA methylation 
difference. Segmentation stops when a minimum of CpGs is reached or when the two-
dimensional Kolmogorov–Smirnov p-value does not improve. Adjusted p-values are also 
provided as well as p-values from a Mann–Whitney U test. 
 
Although many tools have been developed to identify DMRs, the regions identified differ in 
terms of number, level of DNA methylation differences and region boundaries and there is 
limited overlap between DMRs from different approaches. 
 
Here, we present MethyLasso, a new segmentation approach to analyze DNA methylation 
patterns and identify differentially methylation regions from whole-genome datasets. 
MethyLasso models DNA methylation data using a regression framework known as 
generalized additive model. It relies on the fused lasso to estimate regions in which the 
methylation is constant. We apply MethyLasso on data from a single condition to identify 
LMRs, UMRs and DMVs based on DNA methylation levels independently of CpG content as 
well as PMDs. We also adapted MethyLasso to identify DMRs between two conditions. We 
compare MethyLasso to other methods that were shown to perform best in the literature and 
show that MethyLasso outcompetes them. 
 
 
MATERIAL AND METHODS 
 
Input data format 
MethyLasso runs on whole genome DNA methylation data (e.g. Bis-seq or EM-seq) where 
DNA methylation is measured for each cytosine in the genome, which can then be summed 
for each CpG. It should not be applied to reduced representation bisulfite sequencing (RRBS) 
data because the segmentation would group distant cytosines separated by cytosines with no 
coverage. The data takes the form of a matrix containing for each C or CpG position in the 
genome (chromosome, start, end), the percent of methylated sequences (meth) out of the 
total number of sequences covering this position (cov). This can alternatively be calculated 
from the number of methylated Cs (mC) and the number of unmethylated Cs (uC). By default, 
data in a Bismark output format (25) is used (chromosome, start, end, percent_methylation, 
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count_methylated, count_unmethylated but other formats can also be specified (see 
MethyLasso README). MethyLasso only keeps by default positions covered by at least 5 reads 
(program argument -c). 
 
MethyLasso general framework 
MethyLasso models DNA methylation data using a nonparametric regression framework 
known as a Generalized Additive Model. It relies on the fused lasso method (26) to segment 
the genome by estimating regions in which methylation is constant. This model is adapted 
from the one applied for Hi-C data in Binless normalization (27). For a single whole genome 
DNA methylation dataset, the resulting data takes the form of a N-dimensional vector of the 
observed methylated fraction y=M/C from methylated counts M (program argument -mC), 
and total sequencing coverage C (program argument --cov). y is given a normal likelihood with 
unknown true methylation fraction β. A 1D fused lasso prior is then placed on β, resulting in 
a minus log posterior proportional to the L1-penalized weighted least squares target. λ2 

corresponds to the strength of the fusion. 
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We model one set of coefficients β by condition. In the case of multiple replicates per 
condition, or multiple conditions, a design matrix X which maps replicates to conditions is 
built and the mean of y is then Xβ.  We model each chromosome independently. The resulting 
maximum posterior estimate β is a piecewise constant function, which is then used as a basis 
to construct a segmentation of the methylation data. 
 
Identification of low methylated regions (LMRs), unmethylated regions (UMRs) and DNA 
methylation valleys (DMVs) 
Segmentation of the genome 
For each single condition (possibly with multiple replicates), MethyLasso performs a fused 
lasso segmentation of the methylation values with 𝜆"	set to 25 to be able to identify small 
regions of constant methylation. We obtain a vector of methylated fractions β, with one 
coefficient per CpG. This vector is piecewise constant and forms a first crude segmentation of 
the methylome. Segments are split when they contain gaps in between two CpGs of 500 bp 
or more. Their borders are adjusted to start and end on a CpG. Then, for each segment, we 
compute the number of CpGs, mean methylation and standard deviation. 
Identification of LMRs and UMRs 
We first define admissible segments if they have a minimum size of 10 bp and a minimum of 
4 CpGs (program argument -n). Among admissible segments, we define segments of interest 
as those whose methylation is smaller than that of its nearest admissible neighbors (on both 
sides). We then define flanking segments as admissible segments with a minimum size of 300 
bp, which are immediate neighbors to a segment of interest but are not segments of interest 
themselves. Candidate LMRs are defined as segments of interest which are separated from 
their flanking segments by at least 2 standard deviations, whose mean methylation is below 
0.5 and whose flanking segments are no further away than 5,000 bp. Candidate LMRs that 
simultaneously have a CpG count below 10 and flanking segments with a methylation below 
0.5 are not retained in the final LMR call. Candidate LMRs which have a mean methylation 
below 0.1 and simultaneously whose standard deviation is smaller than 0.1 are instead called 
UMRs. Remaining candidate LMRs constitute the final LMR call. Finally, among segments of 
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interest with a mean methylation below 0.1 and standard deviation below 0.1 which were not 
part of the candidate LMR set, we declare those which have a size above 500 bp and more 
than 30 CpGs/kb as additional UMRs. LMRs or UMRs which overlap a DMV (see below) and 
LMRs which overlap a PMD (see below) are not reported. 
Identification of DMVs 
We further group segments whose mean methylation is continuously below 0.1 as long as 
they are not separated by a large gap of 5 kb. Among those merged segments and already 
defined UMRs, we define DMVs if their size is equal or greater than 5 kb. We then recompute 
their number of CpGs, mean methylation and standard deviation. We exclude DMVs that have 
an average distance between CpGs larger than 500 bp.  
Output files 
MethyLasso outputs one file per condition containing the genomic coordinates and 
characteristics of the regions (chromosome, start, end, number of CpGs, mean methylation, 
standard deviation and annotation as LMRs and UMRs including DMVs). It also generates plots 
showing histograms of the reads sequencing depth and CpG methylation from positions with 
at least 5 reads (see MethyLasso README). 
 
Identification of partially methylated domains (PMDs) 
Segmentation of the genome 
For each single condition (possibly with multiple replicates), MethyLasso performs a fused 
lasso segmentation of the standard deviation with 𝜆"	set to 1000 to identify large regions 
where methylation varies widely. Segments are split when they contain gaps in between two 
CpGs of 5 kb or more or when they contain a UMR or DMV. Then, for each segment, we 
compute the number of CpGs, mean methylation and standard deviation.  
Identification of PMDs 
We first define admissible segments if they have a size larger than 5 kb, a minimum of 4 CpGs 
and an average distance between CpGs smaller than 500 bp. PMDs are then defined as 
admissible segments with a mean methylation below 0.7 and a standard deviation above 
0.15. Contiguous PMDs are then merged into a single region. We then recompute their 
number of CpGs, mean methylation and standard deviation. 
Output files 
MethyLasso outputs one file per condition containing the genomic coordinates and 
characteristics of the regions (chromosome, start, end, number of CpGs, mean methylation, 
standard deviation and annotation as PMDs). 
 
Identification of differentially methylated regions (DMRs) 
Segmentation of the genome 
In presence of two conditions (possibly with multiple replicates), the statistical model is 
designed such that one set of coefficients represents the methylation of the reference 
condition, while the remaining sets of coefficients represent the methylation difference of 
the remaining condition to the reference. Each set of coefficients is obtained by a 1D fused 
lasso as described with 𝜆" set to 25 to be able to identify small regions, and yields a 
segmentation of the methylation differences between a condition and the reference. Then, 
for each segment, we compute the number of CpGs, mean methylation difference and 
standard deviation. 
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Identification of DMRs 
We group neighboring segments when their mean methylation difference is below 0.1 
(program argument -d). Their borders are adjusted so that they start and end on a CpG. We 
then recompute their number of CpGs, mean methylation difference and standard deviation. 
We also compute a coverage score for each DMR as the percent of CpGs covered in all samples 
(conditions and replicates) and discard DMRs with a coverage score below 70%. Finally, we 
calculate the Wilcoxon p-value for each DMR by comparing the methylation difference at each 
CpG in the two conditions. False discovery rate (FDR) is controlled using the Benjamini-
Hochberg procedure on the p-values. We retain DMRs with a minimum of 4 CpGs (program 
argument -n), a methylation difference above or equal to 0.1 (program argument -d), a p-
value below or equal to 0.05 (program argument -p). Alternatively, DMRs can also be selected 
according to the FDR threshold (program argument -q). 
Annotation of DMRs using LMRs, UMRs, DMVs and PMDs 
If LMRs, UMRs, DMVs and PMDs were defined in each condition, DMRs will be annotated 
according to those annotations. DMRs are annotated in each condition by the regions with 
which it overlaps most if any and at least 10% for LMRs, UMRs and DMVs and 50% for PMDs. 
Change of annotation is then indicated as from the reference condition to the other e.g. 
LMRtoUMR, (nothing)toPMD, fromDMV(to nothing). 
Output files 
MethyLasso outputs one file containing the genomic coordinates and characteristics of the 
regions (chromosome, start, end, number of CpGs in each condition, coverage score, mean 
methylation in each condition, mean methylation difference, p-value, FDR and annotation). It 
also generates a scatterplot showing the methylation level of the DMRs in the reference 
condition compared to the other condition. 
 
MethyLasso benchmarking 
DNA methylation datasets 
We used whole genome Bis-seq datasets publicly available in the NCBI gene expression 
omnibus (GEO) repository from human embryonic stem cells (ESH1) and fetal lung fibroblasts 
cells (IMR90) (28) (GEO accessions GSM429321, GSM429322, GSM429323 GSM432685 and 
GSM432686 for ESH1 one replicate, GSM432687, GSM432688 and GSM432689 for IMR90 
replicate one, and GSM432690, GSM432691 and GSM432692 for IMR90 replicate two), 
primary human colorectal cancer and normal cells (29) (GEO accessions GSM1204465 and 
GSM1204466 respectively with three replicates each), and mouse hematopoietic stem cells 
(HSC) and multipotent progenitor populations (MPP) (30) (GEO accessions GSM1274424, 
GSM1274425 and GSM1274426 for HSC three replicates and GSM1274433, GSM1274434 and 
GSM1274435 for MPP three replicates). 
Data processing 
Raw sequencing reads were trimmed using trim_galore (version 0.6.4 options -q 20 --
stringency 2) (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and 
mapped to the human genome reference hg38 or the mouse mm10 using bismark (version 
0.22.1) (25). Non-converted and duplicated reads were filtered out using 
filter_non_conversion –percentage_cutoff 50 –minimum_count 5 and deduplicate_bismark. 
Methylation levels were extracted using bismark_methylation_extractor. Methylation was 
summarized per CpG by overlapping the methylation levels per cytosine with CpGs of the 
reference genome using a custom script. 
Simulated DMRs 
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We used whole genome Bis-seq data containing simulated DMRs from Metilene to evaluate 
the performance of MethyLasso and other methods. They simulated DMRs with two different 
backgrounds (homogeneous background 1 and heterogeneous background 2), each with four 
subsets, from the largest methylation difference to the smallest. Each subset has ten 
replicates. Data is available from  http://www.bioinf.uni-
leipzig.de/Software/metilene/Downloads/. 
Comparison with other methods  
For the identification of LMRs, UMRs and PMDs, we compared MethyLasso to MethylSeekR 
(version 3.6.1) (4). MethylSeekR was executed with default settings. Since MethylSeekR does 
not identify DMVs, we called our DMVs as UMRs when comparing UMRs. In order to compare 
methylation levels in LMRs, UMRs and PMDs from the two different programs, we 
recomputed them by first summing the counts from the replicates for each condition to 
calculate the methylation level per CpG and then calculating the mean methylation in the 
region. 
For the identification of DMRs, we compared MethyLasso to six other programs: Defiant 
(1.1.9) (21), Dmrseq (1.6.0) (22), DSS (2.34.0) (20), RadMeth (19), DMRcate (2.14.0) (23) and 
Metilene (0.2-8) (24). We used those programs with default setting except for a minimum 
coverage of 5 reads per CpG, a minimum of 4 CpGs and at least 10% methylation change to 
call DMRs. DSS was run with smoothing since they always recommend to smooth data for 
whole-genome Bis-seq data. We also ran Dmrseq, RadMeth, Metilene and DMRcate with 
more relaxed thresholds in order to obtain the best 150,000 DMRs for colorectal cancer vs. 
normal cells, best 270,000 DMRs for ESH1 vs. IMR90 data and best 5,000 for HSC vs. MPP. In 
order to compare methylation differences in DMRs from the different programs, we 
recomputed them by first summing the counts from the replicates for each condition to 
calculate the methylation level per CpG, then calculating the difference between two 
conditions and finally calculating the mean difference in the region. The DMRs identified by 
the different methods are available to load on the UCSC Genome Browser (My Data / Track 
Hubs) using the following URL https://g-
948214.d2cf88.03c0.data.globus.org/hub_methylasso.txt. 
Computational setup 
Benchmarking was performed on a server using an Intel Xeon Silver CPU (10 cores, 20 threads, 
2.2 GHz and 96GB RAM) and MethyLasso can also run on a MacBook Air with a 1,6 GHz Intel 
Core i5 processor and 8 GB of memory. 
Data analyses  
All genomic data analyses were performed using bash scripts using the command awk and 
bedtools (31) and R for plots and statistics. The upset plots we generated using the intervene 
R package (32). 
 
Software implementation and availability  
MethyLasso’s segmentation code is written in C++ and the regions’ identification code in R. 
MethyLasso’s code and manual as well as the code developed to benchmark the methods are 
available on github at https://github.com/abardet/methylasso. 
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RESULTS 
 
Identification of low-methylated regions (LMRs), unmethylated regions (UMRs) and DNA 
methylation valleys (DMVs) 
MethyLasso is a method that first analyzes DNA methylation patterns in each experimental 
condition independently. It relies on a fused lasso approach to segment the genome by 
estimating regions in which the methylation is constant (see Methods). It fits the model to 
DNA methylation data, segments the data and calls different regions such as LMRs (10 to 50% 
methylation), UMRs (0 to 10% methylation) or DMVs (UMRs larger than 5 kb) according to 
specific thresholds (Figure 1A) (see Methods). One advantage over MethylSeekR is that 
MethyLasso can integrate replicates when available to call each set of regions only once per 
condition. On data from human IMR90 fibroblast cells (28), MethyLasso identified 29,914 
LMRs, 28,308 UMRs including 240 DMVs where MethylSeekR identified more LMRs but less 
UMRs in both replicates independently (Figure 1B and Supplementary Figure 1 for other 
datasets). As expected, UMRs often located at CpG island promoters are larger than LMRs 
(Figure 1C). We observe that LMRs are more often identified by only one of the approaches 
than UMRs (Figure 1B), which can be explained by the fact that UMRs have more CpGs with 
DNA methylation levels constrained within 0 to 10% whereas LMRs can have a broader middle 
range of methylation levels (10 to 50%) with higher variance so are expected to be more 
difficult to identify. When looking at the number of CpGs versus the mean methylation level 
in each of the regions (UMRs + LMRs), we observe that they cluster as expected: regions with 
high CpG density such as CpG islands are mostly unmethylated and regions with low CpG 
density have higher methylation levels (Figure 1D,E and Supplementary Figure 1). However, 
we decided not to include the CpG density as a main parameter to identify UMRs and LMRs 
as some regions with few CpGs can be completely unmethylated (Figure 1D, bottom left 
corner). Therefore, MethyLasso only sets the threshold between LMRs and UMRs according 
to their DNA methylation level matching the original definition (3) from 0 to 10% for UMRs 
and from 10 to 50% for LMRs independently of their CpG density (Figure 1D black line). In 
contrast, MethySeekR sets the threshold between LMRs and UMRs according to their CpG 
density (30 CpGs for IMR90 data) (Figure 1E black line) and therefore some UMRs predicted 
by MethylSeekR are not completely unmethylated whereas some LMRs are (Figure 1E). Since 
MethylSeekR UMRs correspond to regions dense in CpGs, it also explains why they are larger 
than MethyLasso UMRs (Figure 1C). Therefore, because of the difference of definition of the 
regions, 8,913 MethyLasso UMRs are identified as LMRs by MethylSeekR and 1,481 LMRs as 
UMRs (Figure 1B,F and Supplementary Figure 1). Even when both programs agree on calling 
UMRs or LMRs, their region boundaries still differ and even depend on the replicate for 
MethylSeekR (Figure 1G). To evaluate this systematically, we compared the methylation of 
CpGs within UMRs or LMRs to the CpGs immediately upstream or downstream (Figure 1H,I). 
For UMRs, we observe that both MethyLasso and MethylSeekR show significant shifts of DNA 
methylation levels between neighboring CpGs across boundaries. However, MethyLasso 
identifies smaller regions (Figure 1C) that are completely unmethylated whereas 
MethylSeekR includes surrounding CpGs that have higher methylation levels without being 
fully unmethylated (Figure 1H) that might represent CpG island shores (33). For LMRs, we 
observe that CpGs across boundaries have better shifts in DNA methylation level for 
MethyLasso than for MethylSeekR and that CpGs within MethyLasso LMRs have more 
homogenous DNA methylation levels (Figure 1I). Similar findings were obtained in several 
other human or mouse Bis-seq datasets (Supplementary Figure 2). 
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Figure 1 - Identification of low-methylated regions (LMRs), unmethylated regions (UMRs) and DNA 
methylation valleys (DMVs) 
A. Genome browser view of the MethyLasso segmentation of the DNA methylation data in IMR90 cells. 
1. Fit the model to the data. 2. Segment the data. 3. Call the LMRs, UMRs and DMVs. B. Upset plot of 
the number and overlap of UMRs and LMRs called by MethyLasso and MethylSeekR. MethylSeekR 
regions for replicate one are shown. C. Histogram of the size of the LMRs and UMRs called by 
MethyLasso and MethylSeekR. D. Density plot of the number of CpGs versus mean DNA methylation in 
each region from MethyLasso. The black line represents the MethyLasso threshold between LMRs (top) 
and UMRs (bottom). E. Density plot of the number of CpGs versus DNA methylation in each region from 
MethylSeekR. The black line represents the MethylSeekR threshold between LMRs (left) and UMRs 
(right). F. Genome browser view of an example of different annotations of LMRs and UMRs between 
MethyLasso and MethylSeekR. G. Genome browser view of an example of differences in boundaries 
between MethyLasso and MethylSeekR LMR and UMR regions. H. Boxplot of the DNA methylation at 
individual CpGs at UMR boundaries both called by MethyLasso and MethylSeekR. Grey boxes 
correspond to the ten CpGs upstream and downstream of the UMRs. Orange boxes correspond to the 
ten CpGs at the beginning or the end of the UMRs. I. Boxplot of the DNA methylation at individual CpGs 
at LMR boundaries both called by MethyLasso and MethylSeekR. Grey boxes correspond to the three 
CpGs upstream and downstream of the LMRs. Green boxes correspond to the three CpGs at the 
beginning or the end of the LMRs. 
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Identification of partially methylated domains (PMDs) 
MethyLasso identifies PMDs by segmenting the genome into large regions above 5 kb with 
methylation levels below 70% and standard deviation above 0.15 (see Methods). In contrast 
to MethylSeekR, MethyLasso does not perform a preliminary analysis defining if the data 
contains or not PMDs. When calling PMDs on data from human ESH1 embryonic stem cells 
(28) expected not to have any PMDs, MethyLasso indeed found only 61 PMDs. In human 
IMR90 fibroblast data, MethyLasso identified 9,740 PMDs, which are largely overlapping 
PMDs found by MethylSeekR (Figure 2A,B and Supplementary Figure 3). One advantage over 
MethylSeekR is that MethyLasso can integrate replicates when available to call PMDs only 
once for the condition. While only few MethyLasso PMDs were not identified by 
MethylSeekR, a large fraction of MethylSeekR PMDs were not identified by MethyLasso 
(Figure 2A). However, those have a high level of DNA methylation above 70%, which do not 
qualify as PMDs according to MethyLasso thresholds (Figure 2B,C and Supplementary Figure 
3). 
 

 
 

Figure 2 - Identification of partially methylated domains (PMDs) 
A. Upset plot of the number and overlap of PMDs from IMR90 cells called by MethyLasso and 
MethylSeekR. MethylSeekR PMDs called independently for the two replicates are shown. B. Genome 
browser view of an example of PMDs shared by both MethyLasso and MethylSeekR or only found by 
MethylSeekR. Region from hg38 at chr3:154,200,000-155,900,000. C. Boxplot of the mean DNA 
methylation of the MethyLasso PMDs shared with MethylSeekR (grey) or not (red) and of the 
MethylSeekR PMDs shared with MethyLasso (grey) or not (blue). Corresponding Wilcoxon p-value. 
 
Identification of differentially methylated regions (DMRs) 
MethyLasso can also identify DMRs in DNA methylation data from different conditions. It fits 
the model to DNA methylation differences across conditions, segments the data and calls 
DMRs according to specific thresholds such as by default a mean methylation difference 
above 10% and a minimum of 4 CpGs (see Methods). It also annotates the DMRs using the 
previous segmentation from condition one to condition two e.g. LMRtoUMR, 
(nothing)toPMD, fromDMV(to nothing). To evaluate the performance of MethyLasso in 
identifying DMRs, we compared it to six other approaches: Defiant (21), DSS (20), DMRcate 
(23), Dmrseq (22), Radmeth (19) and Metilene (24), using Bis-seq datasets from human colon 
cancer compared to healthy samples (29). MethyLasso identified the most DMRs (n= 272,123) 
in cancer versus healthy samples (Figure 3A). Defiant, DSS and DMRcate also identified 
several hundreds of thousands of DMRs whereas Dmrseq, Radmeth and Metilene identified 
much fewer DMRs (only 23,141 for Metilene) (Figure 3A). In order to compare the different 
tools, we focused our analyses on the best 150,000 DMRs from each method using relaxed 
threshold when fewer regions were identified by default. When looking at the DMRs’ DNA 
methylation differences, Dmrseq and DMRcate mostly identified DMRs with small 
differences, MethyLasso and Defiant identified more DMRs with small differences close to the  
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Figure 3 - Identification of differentially methylated regions (DMRs) 
A. Barplot of the number of DMRs between healthy and colon cancer cells identified by the different 
methods. B. Histogram of the absolute DNA methylation difference in the best 150,000 DMRs called 
by the different methods. C. Histogram of the size of the best 150,000 DMRs called by the different 
methods. D. Genome browser view of an example of DMRs with different region boundaries found by 
all methods. DMR from DMRcate extend much upstream of the region shown (chr5:72417868-
72419158). Methylation difference is shown in percent for all individual CpGs and for DMRs from each 
method. Region from hg38 at chr5:72,418,800-72,419,200. E. Boxplot of the difference of DNA 
methylation at individual CpGs at the best 150,000 DMR region boundaries called by the different 
methods. Grey boxes correspond to the three CpGs upstream and downstream of the DMRs. Colored 
boxes correspond to the three CpGs at the beginning or the end of the DMRs. Comparisons between 
CpGs located out/grey vs. in/red DMRs are significant for all approaches Wilcoxon p-value < 2.2e-16 
 
10% threshold but also some with big differences, whereas DSS, Radmeth and Metilene 
identified mostly DMRs with bigger differences (Figure 3B). When looking at the DMR’s size, 
MethyLasso, Defiant and Metilene identified DMRs with a wide range of sizes whereas other 
approaches have a more limited range with Radmeth DMRs being short, DSS DMRs having an 
intermediate size and Dmrseq and DMRcate DMRs being large (Figure 3C). We also evaluated 
the DMR’s boundaries as we noticed that the DMRs identified by the different tools have 
varying boundaries that can extend to neighboring CpGs with lower methylation differences 
(Figure 3D). To evaluate this systematically, we compared the three first and last CpGs within 
DMRs to the three CpGs immediately upstream or downstream outside DMRs. We observed 
that MethyLasso DMRs have sharp boundaries of DNA methylation differences compared to 
the neighboring CpGs (Figure 3E) and homogenous levels of methylation differences within 
DMRs. Defiant DMRs also have sharp boundaries but the median methylation difference 
within DMRs is less homogenous. In contrast, the methylation differences at the DMR 
boundaries of DSS, DMRcate and Radmeth have a bell shape and the CpGs just outside their 
DMRs still have methylation differences higher than 10% (our threshold), indicating that their 
boundaries are less accurate. DMRcate and Dmrseq DMRs only have small shifts and CpGs in 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2023. ; https://doi.org/10.1101/2023.07.27.550791doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.27.550791


 12 

DMRs have lower DNA methylation differences indicating that their boundaries are not 
accurate. This might be due to the fact that it smooths the data before calling DMRs and 
identifies mainly large DMRs. For Metilene, which is also a segmentation-based approach, it’s 
DMRs boundaries are well defined (Figure 3E). Importantly, we obtained similar results when 
identifying DMRs in completely different datasets: human ESH1 versus IMR90 cells (28) with 
big DNA methylation differences, or mouse hematopoietic stem cells (HSCs) versus 
multipotent progenitors (MPPs) (30) that show small changes in DNA methylation 
(Supplementary Figure 4). Altogether, these analyses show that MethyLasso identifies a 
higher number of DMRs with clear boundaries compared to existing DMR tools. 
 
Consistency of DMRs from different approaches 
Next, we investigated the consistency of MethyLasso DMRs compared to the other methods. 
To compare the DMRs from the different approaches, we first analyzed the overlap between 
the best 150,000 DMRs identified by any approach merged into 386,580 regions. Most are 
shared by at least two approaches (69%) but only 5% are shared by all and a substantial 
fraction is found by only one method (31%) (Figure 4A,B). As expected, the fraction of DMRs 
shared by all and therefore likely to be true increased with an increasing methylation 
difference, with a strong improvement starting at 20% methylation difference 
(Supplementary Figure 5). However, the evaluation of the DMR’s overlap might be 
underestimated since some might be shared but with ranks slightly below our threshold (34). 
Therefore, we asked whether the very best 50,000 DMRs from one approach were identified 
by the best 150,000 DMRs of the other approaches. Out of the best 50,000 DMRs identified 
by MethyLasso, 18.5% were found by all other approaches but 81% were found by some 
others and only 0.5% were not found by any other approach (Figure 4C red, Supplementary 
Figure 6 for examples and all data available for visualization in a UCSC hub, see methods). 
When looking at the difference in methylation of those DMRs, we observed that the DMRs 
found by MethyLasso and others had bigger methylation differences than the ones found by 
Methylasso alone (Figure 4D red). This might be explained by the fact that DMRs with small 
changes in DNA methylation are more difficult to identify. Nevertheless, DMRs found by 
MethyLasso alone had a similar CpG content than the DMRs found by MethyLasso and others 
(including some with many CpGs) (Figure 4E red). This suggests that MethyLasso DMRs are 
likely true. When looking at the best 50,000 DMRs identified by others compared the whole 
150,000 sets, most were also identified by MethyLasso (Figure 4C; 95.1% for Metilene, 87.4% 
for DSS, 66.7% for RADmeth, 65.5 for DMRcate, 62.7% for Dmrseq and 60.1% for Defiant). We 
then analyzed the DMRs found by these other methods but not MethyLasso. Defiant DMRs 
not found by MethyLasso had low methylation differences (Figure 4D orange) and were 
enriched in DMRs with a small number of CpGs (between 4 and 6, Figure 4E orange), which 
could be artifacts. DSS DMRs not found by MethyLasso do not have smaller methylation 
differences (Figure 4D yellow) and lower CpG numbers (Figure 4E yellow), but we observed 
that they had a low coverage of their CpGs below the 70% coverage threshold set by 
MethyLasso (Figure 4F yellow and Supplementary Figure 6 for examples and all data available 
for visualization in a UCSC hub, see methods). Most DMRs from DMRcate are large regions 
(Figure 3C, pink) with low methylation differences (Figure 4D, pink) but some of the ones not 
identified by MethyLasso have a low number of CpGs (Figure 4E pink) and a low coverage of 
their CpGs (Figure 4F pink). Dmrseq DMRs are also large regions (Figure 3C, purple) and have 
overall low methylation differences that are even lower when not found by MethyLasso 
(Figure 4D purple) but still have similar number of CpGs (Figure 4E purple). Radmeth DMRs  
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Figure 4 - Consistency between DMRs from different approaches 
A. Upset plot of the overlap of best 150,000 DMRs called by the different methods merged into 386,580 
regions. Bars corresponding to DMRs identified by MethyLasso are represented in red. B. Barplot 
summarizing the upset plot by summing the number of regions identified by all, some or none of the 
methods. C. Cumulative barplot showing the percent of best 50,000 MethyLasso DMRs overlapping 
with all others 150,000 DMRs, some others or none of the other methods. For other methods, percent 
of their best 50,000 DMRs overlapping with 150,000 DMRs from MethyLasso (+), not MethyLasso but 
others (-/+) or not MethyLasso nor others (-/-). D. Absolute DNA methylation difference in the DMRs 
from the categories in C. E. Cumulative barplot showing the number of CpGs in the DMRs from the 
categories in C. F. Boxplot showing the coverage of CpGs in the DMRs from the categories in C. 
 
that are small in size (Figure 3C, green) have overall higher methylation difference but DMRs 
not found by any others have lower methylation differences (Figure 4D green). However, 
most of Radmeth DMRs not found by MethyLasso have a very low number of CpGs (Figure 4E 
green), which could be artifacts. Finally, only very few Metilene DMRs were not found by 
MethyLasso (Figure 4E blue). Some have a low coverage of its CpGs (Figure 4F blue) and 59 
have no coverage at all for one of the conditions (Supplementary Figure 6 for examples), 
which is due to the fact that Metilene imputes missing data. Importantly, we obtained similar 
results when identifying DMRs in completely different cell lines namely human ESH1 versus 
IMR90 cells (28) with bigger DNA methylation changes or in differentiating cells namely 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2023. ; https://doi.org/10.1101/2023.07.27.550791doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.27.550791


 14 

mouse HSC versus MPP cells (30) with small changes in DNA methylation (Supplementary 
Figures 7 & 8). Altogether, these analyses show that MethyLasso identifies DMRs that are also 
identified by others, and that DMRs from others not identified by MethyLasso tend to have 
features that could come from artifacts. 
 
Sensitivity and precision of the approaches using simulated DMRs 
To evaluate the performance of MethyLasso at identifying DMRs and to compare it to other 
approaches, we called DMRs on simulated data with varying levels of DNA methylation 
differences (data from Metilene, see Methods). We first investigated the sensitivity of the 
approach, which evaluates the fraction of simulated DMRs that are correctly identified or true 
positive rate (Figure 5A). For DMRs with large methylation differences (40 to 60%), which 
should be the easiest to identify, only MethyLasso and Metilene were able to identify all 
simulated DMRs (sensitivity at 1). For DMRs with small methylation differences (10 to 20%), 
which should be more difficult to identify, Defiant and MethyLasso performed best followed 
by Metilene, whereas Dmrseq, DSS, Radmeth and DMRcate performed worse. We then 
investigated the precision of the approach, which evaluates the fraction of predicted DMRs 
that were indeed simulated (Figure 5B). For DMRs with large methylation differences, all 
programs identified well the simulated DMRs. For DMRs with small methylation differences, 
all programs performed well with Radmeth being best closely followed by DSS, DMRcate, 
Metilene, Dmrseq and MethyLasso and Defiant being less precise. Finally, we calculated the 
F1-score i.e. the harmonic mean of the sensitivity and precision and identified MethyLasso 
and Metilene as performing perfectly on DMRs with large differences and MethyLasso 
followed by Metilene and then Defiant on DMRs with small differences (Figure 5C). 
Performances and ranking are similar when a different set of simulated DMRs are used 
(Supplementary Figure 9). In summary, we conclude that MethyLasso outperforms existing 
tools on the analysis of simulated DMRs. 
 

 
 
Figure 5 - Sensitivity and precision of the method using simulated DMRs 
Simulated DMRs in different bins of DNA methylation difference from Metilene using a heterogeneous 
background. A. Sensitivity or recall of the predictions measured as the number of true positives among 
all simulated. B. Precision of the predictions measured as the number of true positives among all 
predicted. C. F1 score or accuracy of the predictions measured using both the sensitivity and precision. 
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DISCUSSION 
 
MethyLasso is a new approach to analyze DNA methylation patterns from whole-genome Bis-
seq datasets. It mostly differs from other tools as it is based on a segmentation of the DNA 
methylation patterns. MethyLasso can analyze data from each condition independently and 
can integrate replicates to identify LMRs, UMRs and DMVs by performing a segmentation of 
the DNA methylation levels, and PMDs by performing a segmentation of the DNA methylation 
variation. It differs from MethylSeekR mainly by defining regions of interest based on their 
DNA methylation levels matching their definition (LMR or UMR) rather than based on their 
CpG content (Figure 1D,E). Additionally, we show that MethyLasso performs better at 
defining the region’s boundaries since it does not smooth methylation levels (Figure 1H,I). To 
identify PMDs, MethyLasso focuses on large regions with heterogeneous DNA methylation 
levels and does not identify MethylSeekR PMDs with high and stable methylation levels 
(Figure 2B,C). 
 
MethyLasso can also be applied to compare DNA methylation levels across two conditions 
and can integrate replicates to identify DMRs by performing a segmentation of the DNA 
methylation differences that defines DMRs based on the overall methylation patterns rather 
than grouping individual CpGs. When comparing different tools, the DMRs identified have a 
limited overlap (Figure 4A,B) indicating that the identification of DMRs is a challenging task. 
As expected, DMRs with bigger DNA methylation changes have a higher overlap than DMRs 
with small changes (Supplementary Figure 5). 
 
MethyLasso identifies a large number of DMRs, some with big DNA methylation changes and 
more as expected with small changes close to the cutoff (Figure 3A,B). MethyLasso DMRs 
have a wide range of sizes showing that it can adapt well to the size of potential DMRs (Figure 
3C). The boundaries of the MethyLasso DMRs are well-defined at locations with sharp 
transitions of DNA methylation changes with all CpGs within DMRs having stable high levels 
of DNA methylation and CpGs just outside having stable levels close to the 10% cutoff (Figure 
3E). 99% of the best MethyLasso DMRs are identified by at least one other method indicating 
that they are most likely true positives (Figure 4C). The few DMRs not identified by any of the 
others have small methylation changes and are therefore more difficult to identify. Between 
95% (Metilene) and 60% (Defiant) of the best DMRs from other methods are identified by 
MethyLasso. Most of the ones missed by MethyLasso have small methylation changes. DMRs 
identified by Defiant, RADmeth and DMRcate and not by MethyLasso are mainly DMRs 
containing few CpGs (4 to 6). Some DMRs identified by DSS, DMRcate and Metilene but 
missed by MethyLasso still have high levels of methylation changes but come from regions 
that are not well covered (DSS) or where data was imputed (Metilene). Finally, using 
simulated DMRs with different bins of DNA methylation change, MethyLasso is the approach 
with the best overall results especially in term of sensitivity where it identifies best the 
simulated DMRs with both high and low methylation changes (Figure 5). 
 
Defiant DMRs have a wide range of DNA methylation differences and size and good region 
boundaries. However, they have the least overlap with MethyLasso ones (60%), the most not 
found by any others (6.4%) and those have only few CpGs (Figure 4C,E), all of which indicates 
that they could be artifacts. On simulated data, its sensitivity is high but it surprisingly misses 
DMRs with big methylation changes and its precision is lower than all others (Figure 5). 
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DSS tends to identify DMRs with bigger methylation changes but less well-defined region 
boundaries that might be due to smoothing (Figure 3B, E). It also includes regions with low 
CpG coverage that might bias the methylation levels and represent false positives (Figure 4F 
and Supplementary Figure 6). On simulated data, DSS has a poor sensitivity (Figure 5). 
 
DMRcate identifies large DMRs and does not adapt well to short regions of DNA methylation 
changes resulting in DMRs with small methylation changes (Figure 3B,C). It’s DMR boundaries 
less well-defined, which might be due to smoothing (Figure 3E). On simulated data, DMRcate 
shows to have the worse sensitivity (Figure 5). 
 
Dmrseq also identifies large DMRs with small methylation changes and not well-defined 
boundaries, which might be due to smoothing (Figure 3B,C,E). On simulated data, Dmrseq 
shows to have a poor sensitivity (Figure 5). Additionally, Dmrseq can only be applied if 
replicates are available. 
 
RADmeth identifies a low number of DMRs with small size and therefore less well-defined 
region boundaries (Figure 3B,C,E). On simulated data, RADmeth shows to have a poor 
sensitivity (Figure 5). 
 
Metilene only identifies very few DMRs (more than 10 times less than MethyLasso) with big 
methylation changes even though the threshold is set to 10% (Figure 3A,B). Like MethyLasso, 
Metilene applies a segmentation approach resulting in well-defined region boundaries. The 
overlap between Metilene and MethyLasso DMRs is very high and the few DMRs only 
identified by Metilene are mostly due to the fact that it imputes missing data, generating 
DMRs with artificially high methylation changes (Figure 4F). On simulated data that were 
generated by the authors of Metilene where it might have an advantage, Metilene performs 
worse than MethyLasso in terms of sensitivity and a slightly better in terms of precision 
(Figure 5). 
 
In conclusion, MethyLasso applies a robust segmentation approach to analyze DNA 
methylation patterns either in a single condition to identify LMRs, UMRs, DMVs and PMDs or 
by comparing conditions to identify DMRs. We conducted an extensive benchmark to show 
that MethyLasso performs best compared to state-of-the-art tools. Since DNA methylation 
levels anticorrelate with chromatin accessibility, the identification of LMRs, UMRs and DMRs 
is a powerful approach to predict active regulatory regions bound by transcription factors that 
regulate gene expression. 
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