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We study the coupled settling, deformation and mixing dynamics of a dense blob of fluid falling in an axially (vertically) linearly stratified Taylor-Couette cell (operated in a laminar stable regime). This configuration allows the independent analysis of stretching dynamics, driven by radial (horizontal) velocity variations, and settling dynamics, driven by buoyancy forces associated with vertical density variations. As the blob settles, it is stretched in the horizontal plane and forms an elongated lamella. Through the competing effects of transverse compression of the lamella due to this shear-induced stretching and broadening due to diffusion, the lamella irreversibly mixes with ambient fluid, thus progressively adjusting its own density towards that of the ambient. Eventually, the lamella settling stops at a final equilibrium position that depends on the ambient vertical density gradient and the rate at which it has been deformed by the horizontal shear. We show how this final position is determined by stretching-enhanced diffusion, i.e. mixing. We demonstrate that a theoretical mixing model compares favourably with experiments with various Froude numbers (quantifying the relative strength of the horizontal shear and the vertical stratification) and construct a new criterion for the energetic 'efficiency' of this mixing process that explicitly captures its inherently diffusive character.

an energetic viewpoint, as irreversible mixing of a statically stable density distribution tends to increase the 'background potential energy' (i.e. the minimum potential energy associated with the notional adiabatic rearrangement of density parcels [START_REF] Winters | Available potential energy and mixing in density-stratified fluids[END_REF]).

Therefore, measures of the 'efficiency' of mixing are often quantified cumulatively as the proportion of injected kinetic energy that irreversibly increases the background potential energy, or instantaneously in terms of the relative size of the rates of destruction of 'available' potential energy (i.e. the difference between the actual potential energy and the background potential energy, notionally available to drive motion) to the dissipation rate of kinetic energy.

Although this energetic approach to mixing quantification is appealing and can (in some circumstances) be connected directly to actual irreversible scalar mixing via the diffusive reduction in scalar variance [START_REF] Caulfield | Layering, instabilities, and mixing in turbulent stratified flows[END_REF], there are non-trivial issues with this conflation of energy reservoir exchanges with diffusive mixing, which conflation is not generically appropriate [START_REF] Tailleux | Available potential energy and exergy in stratified fluids[END_REF]. Even in the simplest case of a 'Boussinesq' fluid with kinematic viscosity 𝜈 and a linear single-component equation of state (i.e. where the density is linearly related to a single scalar with diffusivity 𝐷) this energetic approach to describing mixing has no obvious way to describe or quantify the widely observed dependence of mixing properties on the fluid's Prandtl number Pr = 𝜈/𝐷 [START_REF] Smyth | The efficiency of mixing in turbulent patches: inferences from direct simulations and microstructure observations[END_REF][START_REF] Salehipour | Turbulent diapycnal mixing in stratified shear flows: the influence of Prandtl number on mixing efficiency and transition at high Reynolds number[END_REF][START_REF] Riley | The effect of prandtl number on decaying stratified turbulence[END_REF]) and hence on the molecular properties of the scalar being mixed. Such a result suggests that the exceptionally small-scale diffusive processes are (perhaps unsurprisingly) crucially important for mixing even in (strongly) turbulent flows.

There is thus room for studying stratified mixing where the dynamic effects of buoyancy forces on the fluid flow is decoupled in a controlled way. We focus on a particular 'one-way coupling' situation where the large-scale flow is externally imposed and is unaffected by buoyancy forces. We consider the settling of an initially spherical and relatively dense blob of fluid in a vertically (axially) stratified Taylor-Couette cell, with a constant linear density gradient, and hence constant buoyancy frequency 𝑁 where 𝑁 2 = (-𝑔/𝜌 0 )d𝜌/d𝑧, where 𝑔 is the gravitational acceleration, 𝜌 is the horizontally-averaged density and 𝜌 0 is some reference density. This configuration allows the independent analysis of stretching dynamics (driven by radial (horizontal) velocity variations) and settling dynamics (driven by buoyancy forces associated with vertical density variations), which, crucially do not affect the macroscopic flow velocity distribution. As the blob settles, it is stretched in the horizontal plane and forms an elongated lamella. Through the competing effects of compression transverse to the lamella due to this shear-induced stretching, and broadening due to diffusion, the lamella irreversibly mixes with ambient fluid, thus progressively adjusting its own density towards that of the ambient. The settling stops at a final equilibrium position, where the blob has the same density as the ambient and so there is zero buoyancy force, that depends on the ambient vertical density gradient and the deformation rate (by the horizontal shear) of the blob.

This process can thus be thought of as an idealisation of the final relatively small-scale irreversible mixing occuring following some dynamically significant stirring associated with a larger-scale flow, and thus has the opportunity to capture the key interplay between stretching and diffusion at the heart of a small-scale description of mixing. Indeed, this process can be studied quantitatively thanks to the lamellar representation of mixing. Decomposing a scalar field into an ensemble of lamellae that concomitantly stretch, diffuse and aggregate has allowed significant progress [START_REF] Villermaux | Mixing versus stirring[END_REF]. At the scale of a unique lamella, two phenomena compete: kinematic deformation (at some shear rate 𝛾 given by the macroscopic flow), and diffusive broadening (at some rate 𝐷/𝑠 2 0 ), where 𝑠 0 is an initial charateristic blob length scale, and 𝐷 is the diffusion coefficient of the scalar field. The ratio of these two rates defines an appropriate Péclet number

Pe := 𝛾𝑠 0 2 𝐷 = RePr, (1.1)
where Re := 𝛾𝑠 2 0 /𝜈 (𝜈 being the kinematic viscosity of the fluid) is the appropriate Reynolds number for the blob's evolution and Pr := 𝜈/𝐷 is the molecular Prandtl number. When

Pe ≫ 1, the mixing time 𝑡 𝑆 ∼ 𝛾 -1 F (Pe) is of order 𝛾 -1 , and importantly is significantly smaller than the diffusion time 𝑠 2 0 /𝐷, and depends on the diffusion properties of the scalar being mixed through a weak function F (Pe) of the Péclet number [START_REF] Villermaux | Mixing versus stirring[END_REF]. In a simple shear, 𝑡 𝑆 ∼ 𝛾 -1 Pe 1/3 , and the post-mixing time concentration and width of the lamella are well understood and documented [START_REF] Ranz | Applications of a stretch model to mixing, diffusion, and reaction in laminar and turbulent flows[END_REF][START_REF] Meunier | How vortices mix[END_REF][START_REF] Souzy | Mixing lamellae in a shear flow[END_REF]).

Simplistically, it seems reasonable that the (appropriately non-dimensionalised) final equilibrium position of such a blob would involve some combination of 1/𝑁 (the buoyancy time scale), and 𝑡 𝑆 (the density homogenisation time scale, independent of 𝑁). However, particularly when Pr ≫ 1 (and so Re ≪ 1 while Pe ≫ 1) viscous drag sets the settling velocity, and so it is at least plausible that the equilibrium position depends on Re too. To investigate the dependence on the various flow parameters of the final equilibrium position, and hence the flow's mixing properties, the rest of this paper is organized as follows. The experimental set-up and measurements are reported in section 2. A theoretical model for the concomitant settling and deforming lamella in a viscous stratified shear flow is introduced in section 3, and compared to the experiments. Some implications of this work for mixing in stratified flows and brief conclusions are drawn in section 4.

Experiments

We show the experimental set-up in figure 1. We use a Taylor-Couette cell whose inner and outer radii are 𝑅 𝐼 = 4 cm and 𝑅 𝑂 = 9 cm, respectively. The inner cylinder is stationary whereas the outer cylinder rotates at a constant angular velocity Ω. By construction, the flow is also stable with respect to centrifugal instability [START_REF] Chandrasekhar | Hydrodynamic and hydromagnetic stability[END_REF]) and the flow is therefore laminar. This configuration gives rise to an azimuthal velocity profile in the radial (where 𝑅 𝑏 is the radial position at which the blob is deposited), independent of the vertical coordinate 𝑧. We fill the cell with a two-thirds glycerol/ one-third linearly stratified salt water, (as shown in figure 1(a)) using the double-bucket method, creating a stratification characterised with a buoyancy frequency of 𝑁 2 ≃ 1.4s -2 .

The stratification suppresses any significant Ekman pumping during an individual experiment, while the kinematic viscosity of the experimental fluid 𝜈 = 2.6 × 10 -5 m 2 • s -1 ensures that the Reynolds number Re ≲ 10 -1 , preventing all potential flow instabilities (without glycerol the initial blob quickly transforms into a vortex ring that destabilises through Rayleigh-Taylor-type instabilities and then desintegrates; these are the kind of instabilities that we aim to damp using a more viscous fluid). The viscosity of the water-glycerol mixture is estimated using parameterisations developed by [START_REF] Cheng | Formula for the viscosity of a glycerol-water mixture[END_REF] and Volk & Kähler (2018).

The molecular diffusivity of salt 𝐷 in this mixture is estimated using Stokes-Einstein's formula and found to be 𝐷 ≃ 3.7 × 10 -11 m 2 • s -1 , so that Pr ≃ 7.0 × 10 5 .

We prepare a blob (using the same mixture) to have density

𝜌 0 (= 1.217g • cm -3 ),
corresponding to the background density 𝜌 at the height defined as 𝑧 = 0, located ∼ 0.5𝐻 above the bottom of the container to prevent interactions with the bottom boundary. We form the initial blob at the tip of a syringe that is gently brought towards the surface of the cell.

As soon as the blob touches the surface, it is injected into the liquid bulk by the release of surface tension stresses and slowly falls down due to buoyancy forces, as the surface is a distance 𝑧 = 𝑧 0 above the location where 𝜌 = 𝜌 0 . We dye the blob using fluorescein. The molecular diffusivity of the fluorescein in the salt-water/glycerol mixture is estimated to be of order 𝐷 fluo ≃ 1.6 × 10 -10 m 2 • s -1 , so (𝐷/𝐷 fluo ) 1/3 ≃ 0.6 implying that the evolution of fluorescein concentration is a good proxy to track the evolution of salt concentration and hence density in the settling lamella.

We visualise the settling lamella through laser-induced fluorescence (LIF) of fluorescein using a fixed vertical blue laser sheet (in the 𝑥 -𝑧 plane, perpendicular to the flow) that the lamella crosses as it falls. The data are acquired using a low-light sensitive camera
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Figure 2 shows qualitatively the vertical trajectory of a blob as it settles for various shear rates 𝛾, associated with different rotation rates Ω. In the absence of shear, the blob falls down until its position 𝑧 𝑏 actually reaches 𝑧 = 0, where its (initial, unmixed) density 𝜌 0 is equal to the background density 𝜌(𝑧 = 0) (figure 2(a)). The main blob is followed by a thin filament reorganizing into small secondary blobs, which will not be considered in this paper. This might be the consequence of a Rayleigh-Plateau-type instability, the fluorescin potentially changing the surface tension of the fluid in the settling blob. The (unsheared) blob also seems to start forming a dense core vortex ring, as can be seen for instance in the middle panel of figure 2(a). Such a structure is known to enhance mixing with the surrounding fluid, as discussed in [START_REF] Linden | The interaction of a vortex ring with a sharp density interface: a model for turbulent entrainment[END_REF][START_REF] Camassa | Numerical simulations and experimental measurements of dense-core vortex rings in a sharply stratified environment[END_REF][START_REF] Olsthoorn | Three-dimensional visualization of the interaction of a vortex ring with a stratified interface[END_REF] in the case of strongly stratified interfaces but this effect was not seen here, at least within the precision of our measurements, viscosity potentially preventing the full development of the vortex ring. (Note that, at least for the mixing criterion developed later in section 3.3 for mixing in sheared stratified flows, the actual final position of the (unsheared) blob does not really matter but only the initial potential energy of the lamella and hence its initial position. ) In the presence of shear (Ω ≠ 0), the width 𝜂 of the blob decreases at early times since the blob is stretched in the along-lamella direction. The drag is thus higher and diffusion acts sooner, thus reducing the (driving) buoyancy force. As a consequence, the blob falls more slowly, mixes with the surrounding (less dense) fluid and hence stops before reaching 𝑧 = 0. This effect is clearly visible in figure 3(a), showing the temporal evolution of the vertical position of the blob. Quantitatively, the final position of the lamella, denoted 𝑧 𝑓 , increases from 0.1𝑧 0 to 0.7𝑧 0 when the shear increases from 0.1 to 1s -1 .

Model for a mixing lamella

We develop a simple model coupling the vertical motion of a settling lamella with its mixing dynamics and then discuss its implications for mixing more generally. We formulate a timedependent force balance where 𝐹 𝐷 (𝑡) is the drag force, 𝐹 𝐵 (𝑡) is the buoyancy force, 𝜌 𝑏 (𝑡) is the density of the lamella, 𝑉 𝑏 (𝑡) its volume and 𝑧 𝑏 (𝑡) its vertical position:

𝜌 𝑏 𝑉 𝑏 d 2 𝑧 𝑏 d𝑡 2 = 𝐹 𝐷 + 𝐹 𝐵 , (3.1) 
where

𝐹 𝐵 = -[𝜌 𝑏 -𝜌(𝑧 𝑏 )] 𝑉 𝑏 (𝑡)𝑔, 𝜌(𝑧) = 𝜌 0 1 - 𝑁 2 𝑔 𝑧 , (3.2)
and 𝑁 is the (constant) buoyancy frequency. The settling velocity d𝑧 𝑏 /d𝑡 ensures that the Reynolds number of the wake |𝑑𝑧 𝑏 /𝑑𝑡|𝜂/𝜈 ≲ O (10 -3 ). In this Stokes regime, the drag force is proportional to the settling velocity and the length of the lamella ℓ(𝑡)

𝐹 𝐷 = - 𝜋 6 𝛼𝜈𝜌 0 ℓ(𝑡) d𝑧 𝑏 d𝑡 . (3.3)
using the Boussinesq approximation, fixing the density at the reference value 𝜌 0 . The drag coefficient 𝛼 depends on different parameters of the problem such as the viscosity of the fluid, the settling speed of the lamella and its geometry, for instance. It has been taken to be approximately 7, a value that gives good agreement between the experimental data and the theoretical predictions (see figure 3(a)). This value of 𝛼 can be compared to its theoretical value computed assuming that the lamella is an infinite cylinder of radius 𝑠 0 settling at a constant speed 𝑈 (see e.g. [START_REF] Lamb | Hydrodynamics / by Sir Horace Lamb[END_REF])) 𝛼 th = 24/[1/2 -𝛾 𝐸log(𝑈𝑠 0 /4𝜈)] ≃ 5 where 𝑈 = O (10 -3 )m • s -1 is the mean vertical velocity of the settling lamella and 𝛾 𝐸 is Euler's constant. A better drag model (especially for low shear rates 𝛾 ≪ 1) would perhaps consist of a finite volume drag model for spheroids (that importantly evolves as the shape of the lamella changes) such as the one developed by [START_REF] Chwang | Hydromechanics of low-reynolds-number flow. part 2. singularity method for stokes flows[END_REF]. For the sake of simplicity, we did not investigate this option further.

Mass conservation ensures that 𝜌 𝑏 𝑉 𝑏 = 𝜌 0 𝑉 0 where 𝑉 0 = 𝜋𝑠 3 0 /6 is the initial volume of the (assumed spherical) blob. Note that, in the sheared cases, the blob initially (more precisely, before the first passage of the blob through the laser sheet i.e. within one half rotation period) split into a main and secondary blob. The discussion that follows and the model developed here focus on the main blob that does not lose mass except through a weak trailing filament and hence mass conservation seems to be valid. Note that we can reconstruct the main lamella using multiple images as it rotates through the laser sheet and hence estimate its volume.

Using this technique for the second and third passage of the lamella at Ω = 8rpm (experiment presented in figure 2(b)), we find that, within the error bounds of the method, the volume of the lamella is conserved and equal to ∼ 3 × 10 -9 m 3 . Since these measurements are done before the mixing time (estimated to be 169s in this particular case), this further supports that conservation of mass is valid within the approximations done in this work.

We now nondimensionalise all quantities using the initial size of the blob 𝑠 0 and the shear The data is also presented in function of Re/Fr 2 , a parameter that controls the mixing criterion developed in section 3.3. The black dashed line corresponds to the approximation given by (3.10) whereas the thick black line corresponds to a numerical integration of (3.4).

The shaded region corresponds to the range of shear rates 𝛾 for which the lamella settles at 𝑧 𝑓 ≃ 0, i.e. its final density is approximately unchanged.

rate 𝛾 so that ẑ𝑏 ≡ 𝑧 𝑏 /𝑠 0 , ẑ0 ≡ 𝑧 𝑏 /𝑠 0 , t ≡ 𝛾𝑡, ρ𝑏 ≡ 𝜌 𝑏 /𝜌 0 , N ≡ 𝑁/𝛾, V𝑏 ≡ 𝑉 𝑏 /𝑉 0 , l ≡ ℓ/𝑠 0 we obtain

d 2 ẑ𝑏 dt 2 = - 𝛼 Re l d ẑ𝑏 dt - 1 Fr 2 ρ𝑏 ẑ𝑏 -𝛽 1 - 1 ρ𝑏 with l = √︁ 1 + t2 , (3.4) 
where

Re := 𝛾𝑠 2 0 𝜈 ; Fr := 𝛾 𝑁 ; 𝛽 := 𝑔 𝑠 0 𝛾 2 . (3.5)
Fr is a Froude number that compares the buoyancy time scale 1/𝑁 to the shear time 𝛾 -1 , while the parameter 𝛽 compares the inviscid free-fall time √︁ 𝑠 0 /𝑔 to the shear time. For 𝛾 = 0.1 s -1 , we have Re ≃ 10 -2 , Fr 2 ≃ 10 -1 , 𝛽 ≃ 10 4 and Pe ≃ 10 4 . For 𝛾 = 1 s -1 , we have Re ≃ 10 -1 , Fr 2 ≃ 10, 𝛽 ≃ 10 2 and Pe ≃ 10 5 . Thus, this experiment can access weakly stratified (high Fr) and strongly stratified (low Fr) laminar flow regimes, at large Pe. Note that another important dimensionless parameter of our system is the Archimedes number (comparing buoyancy and viscous forces), defined as

Ar := 𝑔𝑠 3 0 [𝜌 0 -𝜌(𝑧 0 )] /𝜌(𝑧 0 ) 𝜈 2 , (3.6)
where 𝜌(𝑧 0 ) is the density of the surrounding fluid at the injection point. The Archimedes number was estimated to be around 4. In the rest of the paper, we will work with dimensionless quantities (unless otherwise stated) and we will therefore drop the hats for clarity.

Figure 4: Time evolution of the scaled concentration of dye (a) and scaled width of the settling lamella (b). Time is scaled using the mixing time 𝑡 𝑆 = 𝛾 -1 Pe 1/3 (in dimensional form). The solid lines correspond to the theoretical predictions (3.8) and (3.9). The inset shows concentration data plotted against unscaled time. Note that the data is collected when the maximal concentration point of the lamella crosses the laser sheet, i.e. twice per rotation period of the lamella around the setup, and not continuously.

Non-diffusive dynamics

Given the low values of Re ≪ 1, the settling dynamics is over-damped, so inertia can be neglected in (3.4) (i.e. d 2 𝑧 𝑏 /d𝑡 2 ≃ 0). Considering the initial regime when the deforming lamella has not yet mixed and its density is still unaltered (i.e. dimensionless 𝜌 𝑏 = 1)

𝑧 𝑏 (𝑡) = 𝑧 0 √︁ 1 + 𝑡 2 + 𝑡 -Re/( 𝛼Fr 2 )
.

(3.7)

We plot this prediction in figure 3(a) (dotted lines). Unlike in the experiment, (3.7) predicts 𝑧 𝑏 → 0 as 𝑡 → ∞. Indeed, in the absence of diffusion the blob is always denser than the surrounding fluid for 𝑧 𝑏 > 0. We thus need to introduce diffusive effects to predict the final position correctly.

Diffusive dynamics

Figure 4(a) shows the temporal evolution of the maximal dye concentration and the corresponding blob width. The shear stretches the blob into a thin lamella enhancing diffusion leading to a decrease of the maximal concentration. We know that for the linear stretching stirring protocol studied here, the diffusion problem (and hence the maximal concentration) depends on the Ranz time 𝜏 [START_REF] Ranz | Applications of a stretch model to mixing, diffusion, and reaction in laminar and turbulent flows[END_REF][START_REF] Villermaux | Mixing versus stirring[END_REF]:

𝐶 max = 𝐶 0 erf 1 4 √ 𝜏 , where 𝜏 = 1 Pe ∫ ℓ(𝑡) 2 d𝑡 = 1 Pe 𝑡 + 𝑡 3 3 . (3.8)
We plot this prediction with solid lines in figure 4(a). There is in an excellent agreement with the experimental measurements although the prediction ignores dynamic buoyancy effects.

The diffusive width of the lamella is equal to the Batchelor thickness given by (see [START_REF] Souzy | Mixing lamellae in a shear flow[END_REF][START_REF] Villermaux | Mixing versus stirring[END_REF]))

𝜂 = 𝑠 √ 1 + 4𝜏 = √︂ 1 + 4(𝑡 + 𝑡 3 /3)/Pe 1 + 𝑡 2 . (3.9)
As shown in figure 4(b), 𝜂 decreases initially and then increases as

√
𝑡 when diffusion becomes efficient. Hence, mixing starts when 𝜏 > 1 i.e. when (in dimensionless form) 𝑡 > 𝑡 𝑆 where 𝑡 𝑆 = Pe 1/3 . Interestingly, the equilibrium position is reached at about the same mixing time 𝑡 = 𝑡 𝑆 as shown in figure 3 (a). This is because the difference between the lamella's and the surrounding fluid's density suddenly decreases at 𝑡 = 𝑡 𝑆 , thus cancelling the buoyancy force and stopping the descent of the blob. As a first approximation, we can assume that the final position 𝑧 𝑓 of the settling lamella (formally equal to 𝑧 𝑏 (𝑡 → ∞) where diffusion has been taken into account) is approximated with its predicted position in absence of diffusion (equation (3.7)) at 𝑡 = 𝑡 𝑆 :

𝑧 𝑓 ≃ 𝑧 𝑏 (𝑡 𝑆 ) = 𝑧 0 √︁ 1 + Pe 2/3 + Pe 1/3 -Re/( 𝛼Fr 2 )
.

(3.10)

We compare this theoretical prediction to experimental data in figure 3(b). The prediction slightly overestimates the equilibrium position. Indeed, the lamella does not abruptly stop at the mixing time. However, there is reasonable agreement both in magnitude and trend.

To improve this prediction, we now assume that the (dimensional) density of the lamella 𝜌 𝑏 (𝑡) decreases toward the density of the surrounding fluid 𝜌 with the same temporal dependence as the maximal concentration, i.e. that for 𝑡 < 𝑡 𝑆 the density of the lamella remains relatively constant but converges towards the density of the surrounding fluid for 𝑡 > 𝑡 𝑆 . In other words, we assume, using dimensional quantities that

𝜌 𝑏 (𝑡) -𝜌(𝑧 𝑏 ) = [𝜌 𝑏 (0) -𝜌(𝑧 𝑏 )] erf 1 4 √ 𝜏 , (3.11) 
Rewriting 𝜌 from (3.2) in dimensionless form yields

𝜌 𝑏 (𝑡) = 1 - 1 𝛽Fr 2 𝑧 𝑏 + 1 𝛽Fr 2 𝑧 𝑏 erf 1 4 √ 𝜏 .
(3.12)

Using this expression for the lamella's time-dependent density, the trajectory of the lamella can no longer be derived theoretically from (3.4). We solve the system numerically using a backward differentiation method with adaptive time-stepping, and plot solutions for various values of the shear rate 𝛾 in figure 3(a) (solid lines), demonstrating excellent agreement with the overall time evolution of the vertical trajectory of the blob.

Implications for mixing

The final density of the lamella, and hence the relative amount of mixing it has experienced, can be inferred from the lamella's equilibrium position. The closer the equilibrium position is to its initial position 𝑧 0 , the more the lamella has mixed with the surrounding fluid. In that sense, 𝑧 𝑓 /𝑧 0 in its dimensionless form may be interpreted as a 'mixing efficiency', particularly as it is exactly equal to the ratio between the increase of the background potential energy and the available potential energy of the initial blob, even though the only 'dynamic' effect of the buoyancy has been on the (inertialess) settling of the lamella.

For the linear stretching considered here using (3.10), efficient mixing (𝑧 𝑓 ≃ 𝑧 0 ) requires Re ln(Pe) Fr 2

≪ 3𝛼 = O (10).

(3.13)

This mixing criterion incorporates all the effects involved in the problem. A strong stratification (large 𝑁) must be compensated by a large shear 𝛾 to meet a given efficiency (i.e. keeping Fr fixed). Viscous damping (large 𝜈) will actually slow down settling and favour efficiency.

Significantly, weak diffusion (small 𝐷, and hence larger Pe) will delay mixing, thus reducing efficiency (consistently with simulations as discussed in the Introduction), although through a weak, but nevertheless quantifiable, logarithmic correction, as is classically the case for all stretching-enhanced diffusion processes [START_REF] Villermaux | Mixing versus stirring[END_REF].

Generalisation

The above results are valid for a linear shear (i.e. ℓ(𝑡) ∼ 𝑡 at large times), but are readily generalized to any stretching flow. For a given ℓ(𝑡), from (3.4) for times 𝑡 ⩽ 𝑡 𝑆 we can obtain the general expression (in the absence of diffusion and in the Re ≪ 1 regime):

𝑧 𝑏 (𝑡) = 𝑧 0 exp - Re 𝛼Fr 2 ∫ 𝑡 0 d𝑡 ′ ℓ(𝑡 ′ ) , (3.14)
For example, if the lamella is exponentially stretched so that ℓ(𝑡) = e 𝑡 , the position 𝑧 𝑏 (𝑡 𝑆 ) is

𝑧 𝑓 ≃ 𝑧 𝑏 (𝑡 𝑆 ) = 𝑧 0 exp - Re 𝛼Fr 2 1 - 1 √ Pe (3.15)
since the mixing time 𝑡 𝑆 = ln(Pe)/2 [START_REF] Batchelor | Small-scale variation of convected quantities like temperature in turbulent fluid part 1. general discussion and the case of small conductivity[END_REF][START_REF] Villermaux | Mixing versus stirring[END_REF] 2003)), a consistent argument for when this 'law' applies in passive scalar mixing can be formulated [START_REF] Villermaux | On dissipation in stirred mixtures[END_REF][START_REF] Villermaux | Mixing versus stirring[END_REF]. Essentially, the (finite) mixing time 𝑡 𝑆 is independent of 𝐷 only when ℓ(𝑡)

diverges in a finite time 𝑡 ★ = 𝑡 𝑆 . In the stratified situation considered here this condition on ℓ(𝑡) is relaxed. As there is an inherent coupling between the lamella settling speed and its density, there is a slowing cascade towards immobility. During this cascade (which does not terminate in finite time) diffusion can disappear, even though diffusion is the actual mechanism driving the density equalization. There is a highly suggestive analogy with the way that viscosity disappears in the infinitely accelerating cascade towards viscous dissipation in the kinetic energy cascade [START_REF] Donzis | Scalar dissipation rate and dissipative anomaly in isotropic turbulence[END_REF], leading to the 'zeroth law of turbulence'.

Discussion

We have explored the fundamental small-scale mechanisms of diffusive mixing in stratified shear flows by analyzing the settling of a dense blob in a simple experimental flow geometry that is constructed to decouple the blob stretching dynamics (driven by horizontal velocity gradients) and the settling (driven by vertical buoyancy forces). We have shown that such mixing results from the simultaneous and competing effects of stretching-enhanced diffusion that tends to mix fluid parcels with different densities, and restoring buoyancy forces that tend to return vertically perturbed parcels to their initial position.

We have shown that the blob settling dynamics is amenable to a standard mixing analysis in a shear flow that naturally leads to a criterion for mixing efficiency (equations (3.13) and

Rapids articles must not exceed this page length (3.16)) This criterion confirms that mixing by overturning density gradients is prevented in sufficiently strongly stratified flows and that mixing in stratified shear flows is principally controlled by velocity-shear-induced stretching. Furthermore, it also explicitly captures the dependence of the mixing efficiency on the molecular diffusivity of the scalar being mixed as well as the previously empirically observed property that mixing efficiency decreases with Pr. It confirms (yet again) that 'history matters' in mixing problems as the time-integrated effect of both settling and stretching must be tracked to quantify accurately the associated diffusive irreversible mixing and that the exceptionally small-scale diffusive processes are crucially important for mixing [START_REF] Villermaux | Mixing versus stirring[END_REF]; [START_REF] Caulfield | Layering, instabilities, and mixing in turbulent stratified flows[END_REF].

The configuration studied here involves a laminar, time-independent flow, for which the viscosity was large enough to neglect the buoyancy-driven coupling between the density and velocity fields, the vertical settling velocity being sufficiently small. A natural question is therefore whether the mixing criterion derived here remains relevant for unsteady flows at larger Reynolds numbers, as commonly arise in geophysics [START_REF] Gregg | Mixing efficiency in the ocean[END_REF][START_REF] Caulfield | Layering, instabilities, and mixing in turbulent stratified flows[END_REF]. Concentrating on the dynamics of a lamella enables, at least in some sense, the abstraction of the Reynolds number by incorporating the complexity of the flow in the laws describing its stretching. However, as inertial effects become important and the flow becomes turbulent, the 'one-way coupling' considered here will inevitably become 'two-way', with the evolution of the density of lamellae 'dynamically' influencing the velocity field, a key difference between stratified and unstratified flows. However following [START_REF] Batchelor | Small-scale variation of convected quantities like temperature in turbulent fluid part 1. general discussion and the case of small conductivity[END_REF], we speculate that our analysis remains valid at sufficiently small scales, and specifically in the interval of scales between the Kolmogorov scale 𝜂 𝐾 = (𝜈 3 /𝜖) 1/4 (𝜖 being the dissipation rate of turbulent kinetic energy) where (loosely) velocity gradients are smoothed by viscosity and the Batchelor scale 𝜂 𝐵 = 𝜂 𝐾 /Pr 1/2 where scalar gradients are diffused, suggesting that exceptionally small-scale diffusive processes are crucially important for mixing even in strongly turbulent flows. Such an interval occurs in the oceans for example where Pr = O (10).

Finally, if an isolated lamella is the 'quantum' of mixing, randomly stirred mixtures typically involve the aggregation of multiple nearby lamellae [START_REF] Villermaux | Mixing as an aggregation process[END_REF], thus forming larger, apparently uniform in concentration regions in the flow [START_REF] Villermaux | Coarse grained scale of turbulent mixtures[END_REF]. The dynamics of such regions in stratified shear flows is a fascinating topic left for future work.

Figure 1 :

 1 Figure 1: (a) Typical ambient density profile: crosses correspond to experimental measurements; the solid line corresponds to a linear fit. (a,b) Experimental set-up: A (green) blob of density 𝜌 0 is released at the surface of the cell, experiencing a local azimuthal velocity radial shear rate 𝛾. The distance 𝑧 0 is the distance from the surface to the location where the ambient density is 𝜌 0 . Inset shows a reconstruction corresponding to an iso-concentration surface, defining the lamella's time-dependent length ℓ and width 𝜂 ≪ ℓ. This reconstruction consists of multiple frames as the lamella rotates through the laser sheet. (c) Top (offset) views of the settling lamella at five different times (separated by a rotation period), showing ℓ(𝑡) increase approximately linearly (red dashed lines).

Figure 2 :

 2 Figure 2: (a-c) Settling of a dyed lamella of initial density 𝜌 0 released at the surface for different rotation speeds Ω of the outer cylinder. The height 𝑧 0 corresponds to the vertical distance between the surface and the position 𝑧 = 0 where the ambient density 𝜌 = 𝜌 0 .

Figure 1

 1 Figure 1(c) presents (offset) top view visualisations of the blob when it is stretched by the shear, showing that the length ℓ(𝑡) of the blob increases approximately linearly at late times, as determined through the kinematics (for a constant shear rate 𝛾) by ℓ = 𝑠 0 √︃ 1 + (𝛾𝑡) 2 .(2.1)

Figure 3 :

 3 Figure3: (a) Experimental and theoretical(3.4) vertical trajectories of the settling lamellae for various rotation speeds Ω. The position of the blob is scaled by 𝑧 0 and time is scaled by the mixing time 𝑡 𝑆 = 𝛾 -1 Pe 1/3 (in dimensional form). The thick black line corresponds to a numerical integration of (3.4). The dotted black line corresponds to the non-diffusive model (3.7). The black dashed line corresponds to the non-diffusive model (3.7) settled at 𝑡 = 𝑡 𝑆 . Note that the data is collected when the maximal concentration point of the lamella crosses the laser sheet, i.e. twice per rotation period of the lamella around the setup, and not continuously. (b) Dimensionless final position of the settling lamella for various shear rates 𝛾. The data is also presented in function of Re/Fr 2 , a parameter that controls the mixing criterion developed in section 3.3. The black dashed line corresponds to the approximation given by (3.10) whereas the thick black line corresponds to a numerical integration of (3.4). The shaded region corresponds to the range of shear rates 𝛾 for which the lamella settles at 𝑧 𝑓 ≃ 0, i.e. its final density is approximately unchanged.

  in that case. Although consistently with the linear stretching case 𝑧 𝑓 (and hence the efficiency) monotonically decreases as Pr increases, the final position converges to a finite value 𝑧 0 exp[-Re/(𝛼Fr 2 )] in the limit Pe → ∞. Perhaps surprisingly, the blob does not reach 𝑧 = 0 as 𝐷 → 0 since the drag increases so rapidly. Very interestingly, (3.15) demonstrates that when the elongation is

sufficiently rapid (exponential) the final equilibrium position 𝑧 𝑓 is independent of the Péclet number Pe as Pe → ∞, since the analogue of the criterion (3.13), remaining valid as 𝐷 → 0, is Re Fr 2 ≪ 𝛼 = O (10).

(3.16) This result, arising from a deterministic, smooth, non-singular stirring process has a significant implication for scalar dissipation cascades. A classical 'law' of passive scalar turbulence is that 𝐷 |∇𝐶 | 2 remains finite as 𝐷 → 0. Although some counter-examples to this 'law' have been presented (see for example Balmforth & Young (
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