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Baroclinic critical layer in a viscous stratified boundary layer flow on an undulated tilted surface

The present paper investigates theoretically and experimentally the boundary layer generated by a stably stratified fluid flowing horizontally along a surface tilted in the transverse direction and deformed by sinusoidal undulations with crests perpendicular to the flow direction. In the absence of undulations, a weak transverse velocity, proportional to the normal velocity is created such that the flow remains purely horizontal. In the presence of undulations of amplitude h, a stronger transverse flow is generated that exhibits a singular behavior at the critical altitude where the frequency of the perturbation matches the buoyancy frequency of the fluid. This baroclinic critical layer was previously analysed by Passaggia et al. (JFM 751, 663-684, 2014) for a boundary layer flow with a small sliding velocity on the surface. Here, the no-slip boundary condition of the experimental flow is applied. For this purpose, we solve the viscous sub-layer to obtain a complete theoretical model for the solution in the critical layer without any adjusting parameter. The theoretical predictions for the transverse velocity are compared with experimental measurements, and a good quantitative agreement is demonstrated. Compared to the sliding case, the no-slip boundary condition on the surface reduces the amplitude of the critical layer solution by a factor Re -1/3 . As a consequence, the transverse velocity has a maximum in the critical layer of order h, but it still induces a shear rate of order hRe 1/3 .

Introduction

Boundary flows of stratified fluids are often studied in an oceanographic context. Indeed, they have a strong influence on sediments dispersion [START_REF] Rebesco | Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations[END_REF]) but also on the global ocean dynamics. For instance, they affect the global overturning circulation of oceans [START_REF] Kuhlbrodt | On the driving processes of the atlantic meridional overturning circulation[END_REF]) via the currents appearing on Antarctic coastal slopes [START_REF] Baines | Observations and modeling of antarctic downslope flows: A review[END_REF][START_REF] Thompson | The antarctic slope current in a changing climate[END_REF]. This last phenomenon has motivated numerous gravity current studies, which are also relevant for atmospheric applications such as katabatic winds [START_REF] Baines | Mixing in flows down gentle slopes into stratified environments[END_REF][START_REF] Monti | Observations of flow and turbulence in the nocturnal boundary layer over a slope[END_REF][START_REF] Shapiro | Dense water cascading off the continental shelf[END_REF][START_REF] Baines | Mixing regimes for the flow of dense fluid down slopes into stratified environments[END_REF]. Boundary layers are places of intense dissipation [START_REF] Beckebanze | Damping of quasi-twodimensional internal wave attractors by rigid-wall friction[END_REF][START_REF] Davis | Energy budget in internal wave attractor experiments[END_REF][START_REF] Sen | Global energy dissipation rate of deep-ocean lowfrequency flows by quadratic bottom boundary layer drag: Computations from currentmeter data[END_REF]), but also regions where internal gravity waves [START_REF] Garrett | Internal tide generation in the deep ocean[END_REF] and intense meanflow (Le Dizès 2020) are generated.

For large Reynolds numbers, the Blasius boundary layer flow that develop on a plane surface is known to be unstable [START_REF] Schlichting | Boundary-Layer Theory[END_REF]. This 2D viscous instability does not disappear in the presence of stratification (Wu & Zhang 2008a;[START_REF] Chen | Instability of a boundary layer flow on a vertical wall in a stably stratified fluid[END_REF]). However, another instability, of inviscid nature, appears as soon as the stratification and the shearing directions are no longer aligned [START_REF] Candelier | Inviscid instability of a stably stratified compressible boundary layer on an inclined surface[END_REF][START_REF] Chen | Instability of a boundary layer flow on a vertical wall in a stably stratified fluid[END_REF]. This instability which is characterised by an internal gravity wave emission has been observed in other contexts [START_REF] Lindzen | Instability and wave over-reflection in stably stratified shear flow[END_REF][START_REF] Dizès | Radiative instability in stratified vortices[END_REF]. In the present experimental study, the Reynolds number will be too small for any of these instabilities to be present.

Stratified boundary layers are also particularly sensitive to topography. Wu & Zhang (2008b) showed for example that an obstacle can induce a coupling between internal waves and viscous instability modes of the boundary layer. Besides, the presence of an inclination angle between the stratification direction and the boundary has strong consequences on the flow [START_REF] Garrett | Boundary mixing and arrested Ekman layers: Rotating stratified flow near a sloping boundary[END_REF], influencing transport and mixing, as observed by [START_REF] Phillips | An experiment on boundary mixing: mean circulation and transport rates[END_REF] and also reported by [START_REF] Baines | Observations and modeling of antarctic downslope flows: A review[END_REF]. Recently, [START_REF] Puthan | Energetics and mixing in buoyancy-driven near-bottom stratified flow[END_REF] numerically demonstrated that a density perturbation in a stratified fluid above an inclined surface can lead to the generation of a mean oscillating flow along the slope at the frequency N sin α. Furthermore, in the case of a corrugated surface, inclination enables the flow to avoid surface roughness without vertical displacement (inhibited by stratification) by going around the obstacle horizontally. The two swerve regimes (going around with a pure horizontal motion, or above) have been discussed by [START_REF] Maccready | Stratified flow along a corrugated slope: Separation drag and wave drag[END_REF].

The precise structure of a stratified boundary layer developing above an undulated inclined wall has been adressed by [START_REF] Passaggia | Response of a stratified boundary layer on a tilted wall to surface undulations[END_REF] using numerical simulations. Considering small sinusoïdal undulations of a surface, with crest line perpendicular to the flow direction, and slip boundary conditions, they predicted the generation of a strong transverse flow at a specific location in the boundary layer. They further showed that this flow is associated with a resonance mechanism between the Brunt-Väisälä frequency and the forcing of the undulations at a critical point singularity of the inviscid equations.

Such a baroclinic critical layer has been observed in other contexts. [START_REF] Boulanger | Structure of a tilted stratified vortex[END_REF] showed that it was excited when the axis of a vortex was tilted with respect to the direction of the stratification. They demonstrated that a strong axial flow, localized in the baroclinic critical layer was created and could be destabilized [START_REF] Boulanger | Instability of a tilted vortex in stratified fluid[END_REF]. [START_REF] Wang | Nonlinear dynamics of forced baroclinic critical layers[END_REF], 2021) argued that similar critical layers could be responsible of the complex nonlinear dynamics observed in accretion disks [START_REF] Marcus | Three-dimensional vortices generated by self-replication in stably stratified rotating shear flows[END_REF].

The main objective of the present work is to observe experimentally the baroclinic critical layer in a boundary layer flow and to compare the experimental data with the critical layer predictions. For this purpose, we will also need to extend the theoretical analysis of [START_REF] Passaggia | Response of a stratified boundary layer on a tilted wall to surface undulations[END_REF] to account for the no-slip boundary condition on the undulated surface.

The paper is organised as follows. In section §2, experimental details are given: the set up and vizualisation techniques are first described and the plate design explained. The main parameters of the study and their chosen definition are presented. Section §3 focuses on the derivation of the stratified boundary layer flow on a flat inclined wall, and first comparisons with experimental measurements. This solution constitutes the base flow that is perturbed in section §4 by small undulations of the plate. The extension of [START_REF] Passaggia | Response of a stratified boundary layer on a tilted wall to surface undulations[END_REF] analysis is carried out here. In particular, we solve the viscous sub-layer needed to apply the no-slip boundary condition. A parameterless expression of the transverse velocity in the baroclinic critical layer is obtained and compared to experimental measurements. A good qualitative and quantitative agreement is demonstrated. Section §5 summarizes the main results and briefly discusses an application to a real atmospheric flow. 

A stratified boundary layer experiment

A brief description of the experiment is provided in this section. More details on the facility, stratification method and visualisations' subtleties can be found in the PhD thesis of Christin (2021).

Facility

The experimental setup, sketched in figure 1(a), consists of a PMMA tank 4 m long, 1 m wide and 1 m deep, filled with salty water up to a height H ∼ 85 cm. A trolley is mounted on rails and moved with a ball screw connected to a motor MAC800 D2 of JVL, allowing a horizontal translation of the plate along the tank. The velocity of the trolley is kept constant during each run and vary in the range 1.79 ⩽ U ⩽ 2.98 cm.s -1 .

As shown in the sketch, the plate is fixed to the trolley thanks to four supporting arms. The study is done on the lower side, so that the arms do not perturb the region of interest. The plate consists of a plane entrance zone where the boundary layer can develop before reaching the undulations. This region is needed to obtain a sufficiently large boundary layer width δ in the undulation zone. The corrugated part consists in 5 undulations, of half crest-to-crest height h and wavelength λ (wavenumber k), and is the zone of interest in this study. It is parametrized as ξ(x) = h sin k(x -L u ), for x > L u , where L u is the distance between the leading edge of the plate and the beginning of the sinusoidal part. The transition between plane and undulated parts is smoothed thanks to a bending radius.

Another important element of the present work is α, the angle made between the outward normal of the plate surface e z and the upward vertical e Z . It generates a transverse inclination of the plate and is necessary for the critical layer to exist.

Figure 1(a) also shows a second angle, γ = 2 • , made between the horizontal and the longitudinal direction of the plate. This very small angle is needed to relaminarize the boundary layer as it will be seen in the subsection 2.4.

Stratification

The tank is filled with salty water with a salt concentration increasing linearly with depth. The Brunt-Väisälä frequency is then defined as:

N = - g ρ 0 ∂ρ lin ∂Z ,
where ρ lin is the fluid density, ρ 0 the density at the mean plate height, g the gravity, and Z the coordinate along the vertical. This stratification is obtained using a technique described in the PhD thesis of [START_REF] Bosco | Etude du sillage stratifié d'un cylindre[END_REF] and improved by [START_REF] Christin | Etudes expérimentales en fluide stratifié : couche limite et interactions fluidestructure[END_REF]. It consists in dividing the tank into two parts, one with pure water and the other one with uniformly mixed strongly salty water, and letting the two fluids mix through holes of diameter 0.5 cm drilled in the separation slab. This technique is preferred to the usual "two tanks method" because it requires only one tank, which is far more convenient considering the huge volume used here.

Once realized, the stratification can hold for months if the experiments performed in the tank do not generate a very violent mixing. The density profile is measured by collecting fluid samples along a tank wall in the middle of its length, every 5 cm. It is done once every day before experiments are carried out, thanks to an Anton Paar densitometer DMA 35. Between two consecutive experimental days, the profile is barely observed to change. The slope estimation induces uncertainties on N on the order of 5 %.

Final experiments which lead to the results of section §4.3 are made in a stratification with constant frequency N = 0.85 ± 0.04 rad.s -1 .

Measurement techniques

Two measurement techniques have been used and recorded with a same camera Sony α7s taking 25 frames per second.

Firstly, the flow was qualitatively observed by a shadowgraph method (see setup in yellow on figure 1(b)) which consists in observing the flow illuminated from the back, through a lens. It is based on the fact that the flow induces inhomogeneities in the density field resulting in variations in the light refraction index which reveals the flow structure. The contrast can be adjusted by moving the camera around the focal point of the lens. On the camera is mounted a FE 2.8/50 MACRO lens, while the external lens used to focus the rays on the camera sensor is a PCX condenser lens from Edmund Optics of focal length 50 cm and diameter 25 cm.

The final results, revealing the critical layer, are obtained thanks to a Particle Image Velocimetry (PIV) system shown in green on figure 1(b). This method requires to seed the flow with particles (polydisperse hollow glass spheres from TSI) that are then enlighted by a laser sheet (Z40M18B-F-532-Ip20 from Z LASER of 532 nm wavelength), and to treat the images thanks to a software (DPIVSoft on MATLAB) to deduce the velocity field. This experimental technique is quantitative but complex in its execution, for its purely experimental part as well as its data post-processing.

The seeding particles have been carefully chosen to be good tracers of the flow, meaning that their density (between 1.05 and 1.15 g.cm -3 ) is close to the one of the ambiant fluid (ρ ∈ [1 ; 1.12] g.cm -3 ) to avoid inertial effects, and their diameter between 8 and 12 µm is lower than the size of the smaller structure of interest in the flow. In order to have a precise flow field, a macro lens of focal length 2.8 mm and diameter 90 mm is mounted on the camera. The laser sheet extends in the crossflow direction, placed such that it cuts the plate on its center part along the e y axis. Furthermore, it makes an angle β = 20.0 ± 0.3 • with the longitudinal axis of the plate e x , shown on the bottom sketch (entitled "side view") of figure 1(b). This peculiar disposition enables a scan of the velocity in the whole boundary layer depth since the velocity field is steady. It however requires a complex recontruction of the flow field in real space (see [START_REF] Christin | Etudes expérimentales en fluide stratifié : couche limite et interactions fluidestructure[END_REF]). As the camera axis is aligned with e z (we neglect the very small angle γ), PIV gives the x and y components of the velocity.

The present study needs PIV to be accurate for small transverse displacements (of few mm.s -1 ) while measuring large longitudinal velocities (up to ∼ 3 cm.s -1 ) close to the plate. In order to do so, for the highest considered velocities, the image post processing is done twice. Firstly with the regular recorded images, and secondly with displaced images to deduce the apparent velocity of the flow close to the plate. The final flow field considered is the concatenation of both processes.

Design of the plate

The first test plate aimed at simply observing how the boundary layer develops. It consists in a 30 cm long flat part, bevelled at 20 • at its entrance tip, followed by undulations with h = 1 cm and λ = 10 cm.

A shadowgraph visualization of the flow above this plate is shown on figure 2(a). The flow is clearly fully turbulent from the very beginning of the plate (called "the leading edge" in the further discussion), with the presence of recirculation bubbles. Besides, the boundary layer is observed to separate from the surface, generating a black stripe (called "the front" hereafter) evidenced by the white arrow in the shadowgraph. This effect is understood as a consequence of lee waves generated by the leading edge, as the front position scales with 2πU ∞ /N . These waves could possibly generate an adverse pressure gradient leading to the boundary layer separation. The undulation amplitude is also too large as it creates a boundary layer separation after each crest.

All these issues have been solved by working on the design and position of the plate. First, the leading edge has been slimmed and shaped with a smooth curve on its downward part. Second, the whole plate has been inclined in its longitudinal direction of a very low angle γ = 2 • with respect to the horizontal. This forces the current lines to stay attached to the surface and strongly inhibits the generation of the so-called front. Finally, the undulation height h has been reduced to 2.5 % of their wavelength λ.

The latter has been fixed to 10 cm so that the perturbation amplitude is not too small, but such that 5 complete undulations can still be shaped on the plate (the length of the plate is limited by the tank dimensions). The plane entrance zone has been fixed at 91 cm so that the boundary layer is of the largest possible extent. This eases visualizations and ensures that the undulations are indeed within the boundary layer extent.

The final plate is machined in black polyoxymethylene (POM). A shadowgraph of the flow is presented on figure 2(b). The boundary layer flow is clearly nicer when compared with the first plate. No more turbulence is observed, the flow is laminar and follows almost all the undulations. Thin lines seem to be emitted from the plate but they do not correspond to a genuine boundary layer separation, as checked by PIV measurements. Note that shadowgraph visualisations do not show any evidence of a critical layer above the plate: this will require PIV.

Parameters of the study

This study presents results for a unique plate designed to optimize the formation of a critical layer, as it has been discussed in the previous subsection. It is 141 cm long (including a plane entrance zone of 91 cm), 60 cm wide and 2 cm thick after the slim leading edge part. The undulations have a wavelength of λ = 10 cm and a height h = 2.17 0.58 ± 0.02 149 ± 6 5.2 ± 0.5 0.52 6 2.34 0.62 ± 0.03 173 ± 8 5.2 ± 0.5 0.5 7 2.5 0.61 ± 0.02 180 ± 6 5.75 ± 0.5 0.52

Table 1. Summary of experimental data. N = 0.85 ± 0.04 rad.s -1 , λ = 10 cm and α = 118.1 • . The critical velocity Uc = N λ sin α/(2π) is equal to 1.19 cm/s.

0.25 cm. The transverse inclination angle α is kept constant equal to 118.1 • . The natural frequency associated with stratification is set to N = 0.85 ± 0.04 rad.s -1 , by taking the mean density ρ 0 ∼ 1.024 g.cm -3 as the reference density. These quantities lead to a constant theoretical critical velocity U c = λN sin α/2π = 1.19 cm.s -1 . By fitting the measured longitudinal velocity at mid-length of the undulations by U ∞ F ′ (z/δ emp ) with F defined in (3.6) (see section §3 for justification), an empirical boundary layer depth δ emp is determined, varying between 0.58 and 0.75 cm (see table 1). It is the reference scale which will be used to non dimensionalize lengths and to calculate the two non dimensional parameters characterizing the flow, namely the classical Reynolds Re and Froude F r numbers:

Re = U ∞ δ emp /ν, (2.1a) F r = U ∞ /N δ emp . (2.1b)
The kinematic viscosity ν is 1.015±0.005.10 -6 m 2 .s -1 , as the salted water temperature is T ∼ 21.7 • C.

A summary of the parameters associated with each experiment is given in table 1.

Base flow

Theoretical developments

A stationary stratified boundary layer flow above a tilted wall is considered. This first section aims at properly calculating the base flow of this physical situation in the case Re ≫ 1.

The wall is inclined in the cross-stream direction, such that its outward normal e z makes an angle α with the upward vertical e Z , which is the stratification direction (see figure 1(a)).

The fluid is assumed to have both constant kinematic viscosity ν and Brunt-Väisälä frequency N , which is associated with a linear stable stratification

ϱ lin = ϱ 0 (1 -N 2 Z/g),
where g is the gravity. The diffusivity of the quantity generating the stratification is supposed very low compared to the viscosity of the fluid, such that its effect can be neglected. It is a valid assumption for brine solutions like the ones experimentally considered in this paper.

In the absence of motion, the balance between pressure and density terms prescribes:

P lin = ϱ 0 gZ(1 - N 2 2g Z). (3.1)
In the following, only pressure and density deviations from this hydrostatic equilibrium, denoted with regular letter without index, are considered.

From now, when no scaling is specified, velocities will be non-dimensionalized by U ∞ (the uniform longitudinal velocity outside of the boundary layer), lengths by δ (the boundary layer width), pressures by ϱ 0 U 2 ∞ and density by ϱ 0 U 2 ∞ /gδ. The dimensionless equations of motion, under the Boussinesq approximation, are :

∇.u = 0, (3.2a) (u.∇)u = -∇p + 1 Re ∆u -ρe Z , (3.2b) (u.∇)ρ = u.e Z F r 2 , (3.2c)
where u is the dimensional velocity field, u, v and w being respectively the longitudinal, transverse and normal components in the plate reference frame. Considering a transverse α angle forces the introduction of a transverse velocity v as ρ varies along the vertical Z which includes components in both e z and e y directions. This imposes a three dimensional velocity field but as the wall is supposed infinite in the e y direction, unknown functions can be kept independent of the y variable.

By analogy with the classical Blasius problem on a flat plane (x, z), we introduce the spatial scales

x = Re x, z = z , (3.3)
and the scaling :

u B = ūB , (3.4a) v B = Re -1 vB , (3.4b) w B = Re -1 wB , (3.4c) p B = Re -2 pB , (3.4d) ρ B = Re -2 ρB , (3.4e)
where the "B" index has been added to refer to the Blasius base flow. Using these equalities, the complete system (3.2) can thereby be reduced at leading order to:

∂ ūB ∂ x + ∂ wB ∂ z = 0, (3.5a) ūB ∂ ūB ∂ x + wB ∂ ūB ∂ z = ∂ 2 ūB ∂ z2 , (3.5b) ūB ∂v B ∂ x + wB ∂v B ∂ z = -ρ B sin α + ∂ 2 vB ∂ z2 (3.5c) ūB ∂ wB ∂ x + wB ∂ wB ∂ z = - ∂ pB ∂ z -ρB cos α + ∂ 2 wB ∂ z2 , (3.5d) ūB ∂ ρB ∂ x + wB ∂ ρB ∂ z = Re 2 F r 2 (cos α wB + sin αv B ) . (3.5e)
where it is implicitly assumed that Re/F r and α are O(1).

The two first equations (3.5a,b) correspond to the classical system governing a Blasius boundary layer (e.g. [START_REF] Schlichting | Boundary-Layer Theory[END_REF]). They constitute an independent system for the two velocity components ūB and wB that can be solved in term of a self-similar variable η = z/ √ x using a single function F (η) satisfying

2F ′′′ + F ′′ F = 0, (3.6) 
with the boundary conditions: F ′ (0) = F (0) = 0 and F ′ (η → ∞) = 1 (a prime denotes a derivative with respect to η). The relation between F (η) and the velocity components ūB and wB is:

ūB = F ′ , (3.7a) wB = ηF ′ -F 2 √ x . (3.7b)
Observing now the rest of system (3) suggests the origin of the other scalings: the one for v is the same as for w because of (3.5e), which forces the scaling for ρ in (3.5c), itself leading to the scaling for p in (3.5d).

In the present paper, we shall present experimental results obtained for a fixed angle α = 118.1 • and Froude numbers of the order of unity. We shall therefore be in the limit Re ≫ F r for which the last equation (3.5e) reduces to the right-hand side. This means that the transverse and normal velocities will be proportional in order to cancel the vertical velocity. Streamlines will remain horizontal, as it is often the case in stratified fluids. In this large Re/F r limit, the transverse velocity associated with the Blasius flow will therefore be vB

= - cos α sin α wB = - cos α sin α ηF ′ -F 2 √ x . (3.8)
Once vB is calculated, the density field ρB is obtained through (3.5c). The Blasius equation (3.6) is needed to simplify some terms, such that one can write:

ρB = cos α sin 2 α F ′ F -ηF ′2 -2F ′′ 4x 3/2 . (3.9)
Besides, combining (3.5c) and (3.5d) with (3.8) allows us to express the pressure gradient as a function of the density only:

∂ pB ∂ z = - 1 cos α ρB , (3.10) and obtain pB = 1 x sin 2 α 2F ′ - F 2 2 + η sF ′2 (s)ds .
(3.11)

The system (3.5a-e) has now been fully solved in the experimental parameter range, that is: finite sin α, F r of order one and large Re. These solutions are plotted in Fig. 3 as a function of the normal component. Interestingly, the normal and transverse velocity components and the density perturbation do not vanish at infinity but rather converge toward a finite value. The pressure increases linearly at large z.

In the appendix, we provide some informations on another limit, obtained when α → 0 or F r large, that can also be solved explicitly.

Comparison with experimental measurements

As detailed in section §2.3, a PIV technique has been set up to measure both longitudinal and transverse velocity fields (u and v). Without undulations, the transverse velocity v scales as Re -1 and is thus too small to be measurable. Only the longitudinal velocity u has therefore been measured. It has been plotted for experiment 5 in figure 3 where it is also compared to the theoretical Blasius solution.

The experimental measurement has been taken 5 cm before the start of the undulations, after the boundary layer has developed over L =86 cm from the front edge. A good agreement is observed between theoretical and experimental profiles as figure 3 shows. For z < 0.9, the reflexion of the laser on the plate creates a bright area on the images which perturbs the PIV measurements and leads to wrong velocities. Above the laser reflexion zone, for z > 0.9, both profiles match with a maximum uncertainty of the order of 5%, which confirms the base flow theoretical profile. The spatial diffusion of the boundary layer due to viscous effects suggests that the boundary layer width should be δ theo = νL/U ∞ = 0.58 cm, which is larger than the δ fit = 0.49 cm obtained in figure 3 from the best fit. A similar difference between fitting and theoretical prediction of the order of 20 % is observed for all performed experiments. This difference partly comes from the small longitudinal tilt angle γ = 2 • of the plate. Indeed, in the absence of stratification the streamwise velocity above a tilted plate is given by the Falkner-Skan solution [START_REF] Drazin | Hydrodynamic stability[END_REF] 

ūB = F ′ F S z x(1-m)/2 m + 1 2 with F ′′′ F S + F F S F ′′ F S + β|1 -F ′2 F S | = 0 (3.12)
where β = 2γ/180 and m = β/(2 -β). As shown on Fig. 3(a), this solution is almost undistinguishable from the Blasius solution if x is increased by 10%. It means that the tilt angle γ = 2 • decreases the thickness by 5% which is thus equal practically to 0.55 cm rather than 0.58 cm. This prediction is closer to the measured thickness δ fit = 0.49 cm although still being 10% larger. The remaining difference probably comes from the rounded leading edge.

For the final plots and the calculation of quantitative predictions presented in section §4.3, the thickness δ emp is measured by fitting the longitudinal profile with Blasius in the middle of the sinusoïdal part of the plate, rather than upstream of the undulations as done here for δ fit . It has been checked that the longitudinal flow is not modified by the undulations and that it still matches the Blasius profile. The empirical values are given in table 1. ). In (a), blue dotted symbols correspond to the experimental longitudinal velocity u at the end of the plane entrance zone (86 cm from the front edge) for experiment number 5 (see table 1) with z dimensionalised by δ fit = 0.49 cm. In (a) the red dashed line corresponds to the Falkner-Skan solution (3.12) for x = 1.1 with a tilt angle γ = 2 • . 

Perturbed flow

Experimental transverse velocity field

The tilt angle of the plate breaks the invariance along the y direction and induces a transverse velocity v which is enhanced by the plate undulations. This allows its measurement by PIV. A raw transverse velocity field is displayed in figure 4. The undulations are darkened to ease the visualisation.

First, one can note that the transverse velocity is still very weak. Indeed, its amplitude is of the order of only 5% of the maximum longitudinal velocity U ∞ . This measurement was thus extremely hard to achieve since the noise had to be reduced below 1%. The fine post processing described in section 2.3 was necessary to obtain such an accuracy. Then, one can observe in this field alternate bands of v above the plate upstream of the undulated part. As it was shown in Christin ( 2021), these waves are orographic waves emitted by the front edge. They are of no interest for the present study. Now, focusing on the field above the undulations, inclined lobes of alternatively positive and negative transverse velocity can clearly be identified. They are within the boundary layer and exhibit the wavelength of the undulations. This pattern becomes more pronounced downstream: two undulations seem to be sufficient to settle this oscillating regime forced by the topography.

Although the orographic waves have a smaller amplitude than the inclined lobes, they are not negligible. To better reveal the lobes, data are then filtered with a spatial Fourier filter along x at the wavenumber of the undulations in figure 5, which shows 3 wavelengths to give a more detailed image of the velocity field. The Fourier filtered velocity is obtained as

v c (z) cos(kx) + v s (z) sin(kx)
where for each z the Fourier coefficients are defined as

v c (z) = xmax xmin v(x, z) cos(kx)dx/ xmax xmin cos 2 (kx)dx and v s (z) = xmax xmin v(x, z) sin(kx)dx/ xmax xmin sin 2 (kx)dx
with x min the starting point of the undulations and x max the largest position where experimental data are available. The specific pattern develops slightly above the surface of the plate, around z = 1 and have velocity lobes inclined with a small positive angle with respect to the horizontal. Positive lobes are located above the ridge of the undulation whereas negative lobes are located above the depression.

This measured transverse field corresponds to the perturbed transverse flow induced by the undulations. This pattern localized away from the boundary is reminiscent of a critical layer singularity [START_REF] Passaggia | Response of a stratified boundary layer on a tilted wall to surface undulations[END_REF]). In the next section, we provide a complete theory explaining the presence of this pattern. The theory developed in [START_REF] Passaggia | Response of a stratified boundary layer on a tilted wall to surface undulations[END_REF] is extended to account for a no-slip boundary condition and applied to the Blasius profile configuration for a quantitative comparison.

Theoretical developments

The base flow is perturbed with low-amplitude (i.e. h ≪ 1) undulations of the plate, parametrized with a sine function of wavenumber k = O(1) (the wavelength is supposed to be of the same order as the boundary layer width). It is also assumed that the length over which the boundary layer has developed before arriving on the corrugations is large enough so that the boundary layer flow is settled and its width is approximatively constant on the extent of the undulations. The slow longitudinal variable x of the Blasius boundary layer is now related to a local variable x:

x = Re(x -1) = x -Re.

(4.1)

The location x = 1 (where η = z) corresponds to the position in the middle of the undulations. It is there that the boundary layer width δ emp has been estimated and where the flow is analysed. Perturbations being searched as spatial Fourier modes, physical quantities are written as:

u tot = u B + 1 2 hk ue ikx + c.c. , (4.2a 
)

p tot = p lin + p B + 1 2 hk pe ikx + c.c. , (4.2b 
)

ρ tot = ρ lin + ρ B + 1 2 hk ρe ikx + c.c. . (4.2c)
where u, ρ and p are functions of the normal spatial variable z only.

In the bulk of the boundary layer (that is for z = O(1)), the perturbations are expected to be described by inviscid equations. This region corresponds to the inviscid outer layer in the sketch of the different regions shown in figure 6. Viscous effects are present in two localized regions. Very close to the surface of the plate, in a viscous sub-layer, they are needed to apply the no-slip boundary condition at the surface of the plate. The width of this layer is obtained by balancing inertial and viscous effects. For a flat plate, this width is O(Re -1/3 ) owing to the presence of a regular critical point at the wall (i.e. U B (0) = ω/k = 0) (see [START_REF] Drazin | Hydrodynamic stability[END_REF]. For an undulated plate, we obtain the same width scaling as long as h ≪ Re -1/3 . The solution of this viscous sub-layer will provide the boundary conditions for the inviscid outer solution. Viscous effects will also be needed in the baroclinic critical layer to smooth the singularity that appears in the inviscid solution.

The viscous sub-layer

In order to describe the perturbation in a viscous sub-layer of O(Re -1/3 ) width, it is natural to introduce the new normal variable z = z -h sin kx Re -1/3 , (4.3) such that z = 0 corresponds to the deformed boundary. As mentioned above, we further assume that h ≪ Re -1/3 such that the problem remains linear at leading order. In the viscous sub-layer, velocity, pressure and density perturbations are expanded as:

u = ũ, (4.4a) v = Re -1/3 ṽ, (4.4b) w = Re -1/3 w, (4.4c) p = Re -1/3 p, (4.4d) ρ = Re -2/3 ρ. (4.4e)
The boundary conditions on the velocity perturbations are obtained by expanding ūB close to the boundary:

ūB ∼ ū′ B0 η = ū′ B0 zRe -1/3 + h sin kx , (4.5)
where ū′ B0 stands for the derivative of ūB with respect to η for η = 0. The boundary condition u tot (z = 0) = 0 then gives

ũ(0) = i ū′ B0 k , ṽ(0) = 0, w(0) = 0. (4.6)
Now introducing (4.4) and (4.5) in the governing equations (3.2) the following non-dimensionalized system is obtained: 

ikũ + d w dz = 0, (4.7a) ikũū ′ B0 z + wū ′ B0 = -ik p + d 2 ũ dz 2 , (4.7b) ikṽū ′ B0 z + ρ sin α = d 2 ṽ dz 2 , ( 4 
d 3 ũ dz 3 -ikū ′ B0 z dũ dz = 0. (4.8)
Without surprise, we obtain the equation describing perturbations in a viscous critical layer [START_REF] Drazin | Hydrodynamic stability[END_REF]. As already mentioned above, this comes from the fact that the position z = 0 is a regular critical point for the stationary perturbations generated by the wall undulations. Such a critical layer at the wall is also obtained in the asymptotic structure of Tollmien-Schlichting waves in the lower branch of the stability diagram [START_REF] Lin | The theory of hydrodynamic stability[END_REF]. It also corresponds to the lower deck obtained in the triple deck theory describing boundary layer separation [START_REF] Smith | Laminar flow over a small hump on a flat plat[END_REF]Wu & Zhang 2008a;[START_REF] Dong | Receptivity of inviscid modes in supersonic boundary layers due to scattering of free-stream sound by localised wall roughness[END_REF].

Solving this equation allows us to obtain ũ, which gives w thanks to (4.7a), then ṽ through (4.7e), the constant p using (4.7b) and finally ρ using (4.7c).

As explained in the appendix of [START_REF] Drazin | Hydrodynamic stability[END_REF] textbook, recessive solutions of homogeneous Airy equations such as (4.8) can be expressed in terms of generalized Airy functions A k (z, p), where p denotes the integral order (if p > 0) of the Airy function. The longitudinal velocity ũ is then searched under the form:

ũ = C 0 A 1 (βe iπ/6 z, 1) + C 1 ,
with C 0 and C 1 being two complex constants, and

β = (kū ′ B0 ) 1/3 . (4.9)
Applying the boundary conditions (4.6a-c), the system (4.7a-e) can then be fully solved. The solution in the viscous sub-layer is found to be

ũ(z) = iū ′ B0 k A 1 (β 1/3 e iπ/6 z, 1) A 1 (0, 1) , (4.10a) ṽ(z) = -cot αβ -1 ū′ B0 e -iπ/6 A 1 (βe iπ/6 z, 2) -A 1 (0, 2) A 1 (0, 1) , (4.10b) w(z) = β -1 ū′ B0 e -iπ/6 A 1 (βe iπ/6 z, 2) -A 1 (0, 2) A 1 (0, 1) , (4.10c) p(z) = - β 2 ū′ B0 k 2 A 1 (0, 2) A 1 (0, 1) e iπ/3 , (4.10d) ρ(z) = cos αβ ū′ B0 sin 2 α iβe -iπ/6 z A 1 (βe iπ/6 z, 2) -A 1 (0, 2) -e iπ/6 A 1 (βe iπ/6 z) A 1 (0, 1) .(4.10e)
As explained above, from this solution, we can obtain the boundary conditions to apply to the outer solution. The condition of matching implies that the sub-layer solution as z → ∞ should correspond to the inviscid outer solution as z → 0.

Using the property that lim z→∞ A 1 (z, 2) = 0 and relations between A 1 (0, p) and the Γ function (see [START_REF] Drazin | Hydrodynamic stability[END_REF], we in particular obtain the value of the normal velocity of the outer solution at the wall that should be given by

w(0) = lim z→∞ Re -1/3 w = Re -1/3 β -1 ū′ B0 3 1/3 Γ (4/3) e -iπ/6 . (4.11)

The outer layer

The inviscid layer lying above the viscous sub-layer, the so-called outer layer, has been studied by [START_REF] Passaggia | Response of a stratified boundary layer on a tilted wall to surface undulations[END_REF]: it is in this region that the baroclinic critical layer appears. In [START_REF] Passaggia | Response of a stratified boundary layer on a tilted wall to surface undulations[END_REF], the normal velocity that was forcing the solution in the outer layer was O(1) and proportional to a prescribed longitudinal velocity. Here, it is obtained from the condition of matching with the viscous sub-layer. It is therefore weaker and of order Re -1/3 as prescribed by (4.11).

In the outer layer, velocity, pressure and density perturbations vary with respect to the spatial variables x and z, both non-dimensionalized with δ and exhibit a scaling prescribed by the matching with the sub-layer:

(u, ρ, p) = Re -1/3 (û, ρ, p).
(4.12)

Despite the amplitude factor, the analysis of [START_REF] Passaggia | Response of a stratified boundary layer on a tilted wall to surface undulations[END_REF] can still be applied. One just has to consider a Blasius base flow instead of the tanh profile they considered. As shown in that paper, one obtains after manipulating the system (3.2) a single (Rayleigh) equation for the normal velocity ŵ:

d 2 ŵ dz 2 - ū′′ B ūB ŵ -k 2 1 -(kū B F r) 2 sin 2 α -(kū B F r) 2 ŵ = 0. (4.13)
The boundary condition at z = 0 is now rigorously prescribed by the condition ŵ(0) = lim z→∞ w which gives thanks to (4.11):

ŵ(0) = β -1 ū′ B0 3 1/3 Γ (4/3) e -iπ/6 . (4.14)
The other condition at infinity is that the perturbation should either vanish or be an outgoing wave. These conditions at z equals zero and infinity fully determine the function ŵ if one knows how to treat the branch point singularity present at the position zc where

(kū B (z c )F r) 2 = sin 2 α. (4.15)
At this point, the function ŵ is finite but its derivative ŵ′ exhibits a logarithmic singularity. As explained in [START_REF] Passaggia | Response of a stratified boundary layer on a tilted wall to surface undulations[END_REF], this logarithmic function can be defined as in the classical stability theory [START_REF] Lin | The theory of hydrodynamic stability[END_REF]): the branch cut should be fixed in the upper complex plane (because ū′ Bc > 0). This means that the singularity can be avoided by integrating equation (4.13) in the lower complex plane above the singular point.

Once ŵ is obtained, the other components can be deduced from it. For the transverse velocity v and the density ρ, we get:

v = - sin α cos α ŵ sin 2 α -(kū B F r) 2 , (4.16a) ρ = ikū B cos α ŵ sin 2 α -(kū B F r) 2 . (4.16b)
By contrast with ŵ that remains finite at r c , the outer expressions (4.16ba,b) of v and ρ are singular at r c . The singularity is therefore stronger than at a regular critical point. It corresponds to a so-called baroclinic critical point (e. g. [START_REF] Wang | Nonlinear dynamics of forced baroclinic critical layers[END_REF]. It is associated with a local resonance of the inertial frequency ω -kū B of the perturbation (where the forcing frequency ω vanishes in our case since the undulations are stationary) with the local Brunt-Väisälä frequency ±N sin α in the shear plane. As for a regular critical layer, the regularization of the solution is possible by considering viscous effects in a small region of width O(Re -1/3 ) around the baroclinic critical point. This region corresponds to the viscous baroclinic critical layer.

The viscous baroclinic critical layer

This part is formally strictly equivalent to the one presented by [START_REF] Passaggia | Response of a stratified boundary layer on a tilted wall to surface undulations[END_REF] and the reader is advised to refer to this article to have more details on the analysis.

To describe the fields in the vicinity of the critical position zc , viscous effects need to be reintroduced to smooth out the singularity. The scaling becomes:

u = Re -1/3 ǔ(ž), (4.17a) 
v = v(ž) + Re -1/3 vs (ž), (4.17b) 
w = Re -1/3 ŵc + Re -2/3 w(ž), (4.17c)

p = Re -1/3 p(ž), (4.17d) ρ = ρ(ž) + Re -1/3 ρs (ž), (4.17e) 
where ž = (z -zc )Re 1/3 is the critical layer variable. By introducing this scaling in the governing equations (3.2), one can show that the system can be reduced to an inhomogeneous Airy equation for v:

d 2 v dž 2 -2ikū ′ Bc vž = - i ŵc sign(sin α) cos α F r , (4.18)
where ū′ Bc is the derivative of ūB with respect to η, evaluated at the critical position zc . The other velocity components, the pressure and the density are then given by ρ (4.19d) Note that the log(Re) correction terms that were provided in [START_REF] Passaggia | Response of a stratified boundary layer on a tilted wall to surface undulations[END_REF] are here implicitly included in each expression.

= -i v F r , ( 4 
To solve equation (4.18), it is convenient to introduce the generalized Airy functions B k (z, 0) (see [START_REF] Drazin | Hydrodynamic stability[END_REF], that satisfy the inhomogeneous Airy equation:

d 2 dz 2 -z B k (z, 0) = 1, (4.20) 
and behave as 1/z for large |z| (for particular values of arg(z)) to be able to match with the solution in the outer region. An adequate choice of the cubic root of 2ikū ′ Bc allows us to use the function B 1 (z, 0) and write the solution as v = i ŵc sign(sin α) cos α where vceq is defined in (4.22).

(2kū ′ Bc ) 2/3 F r B 1 (-i (2kū ′ Bc ) 1/3 ž, 0). ( 4 
Resulting theoretical fields are presented in figure 7, on the left side, to directly be compared with the corresponding experimental ones obtained thanks to a spatial Fourier filtre applied on PIV data as introduced in §4.1.

It is important to emphasize that the theory has no adjustable parameter except the boundary layer width δ which is slightly modified to better fit with the base flow profile.

Even in the absence of direct fitting, a good qualitative agreement is observed in figure 7 between the experimentally measured fields and the ones predicted by the theory. Indeed, the inclined lobes of alternatively positive and negative transverse velocity generated slightly away from the plate surface are captured. Whereas the theoretical critical layer is thinner than the one effectively observed, both fields show a constant inclination angle Ω (around 10 • ) of the lobes, which are located at a position that gets closer to the plate surface when the towed velocity increases (from experiment 2 to 6). The order of magnitude also seems to be recovered.

Quantitative results

These qualitative agreements can be quantitatively checked.

In order to do so, filtered and theoretical transverse velocity profiles along the normal axis z of a typical experiment (the number 4 in table 1) are plotted in figure 8. The first two graphs, shown in (a) and (b), correspond to the profile at two specific longitudinal positions (x = λ/4δ and 0 respectively) where the imaginary part and the real part of the transverse velocity should be obtained according to the theory. The third graph, shown in (c), presents the norm of v. Note that the theoretical position of the maximum of |v| is slightly smaller than zc . This is due to the moderate value of the Reynolds number and the decreasing behavior of the outer solution |v|. These plots show some previously noted deviations between data such as the larger extent of the experimental critical layer compared to the predicted one, especially visible in (b) and (c). Also, an amplitude difference of the order of 50% is also observed in (c): the amplitude of the velocity in the critical layer is larger than expected. However, the distance from the plate at which the critical layer starts is remarkably well predicted, as well as its first-half profile (up to z ∼ 1.5), which is particularly striking in the second plot. This better agreement for lower z position could be explained by the larger amount of experimental data over which the Fourier filter is applied at these heights. Indeed, as it can be seen in figure 4, the visual range is more and more cropped away from the plate as x increases, so that the complete velocity field over the whole critical layer is only obtained on the first undulations (especially for lower towing velocity experiments). Furthermore, it is on these early undulations (especially the two first ones as it can be seen in figure 4) that the critical layer settles: then the filtered profile resulting from this first part is expected to deviate from the theoretical prediction.

To have a more systematic comparison for each experiment, four characteristic quantities are defined in figure 9 and plotted in figure 10. The first one is the position of the critical layer zc experimentally defined as the z position of the norm maximum value, itself corresponding to the second checked quantity. The third one is the angle Ω made by the velocity lobe with respect to the plate surface, and the last one is the phase φ max indicating the relative position of the lobes compared to the undulations. Again, theoretical and experimental results show a good agreement, especially considering the completeness of the theory that does not require any direct fitting between data.

The upper left plot confirms the lowering position of the critical layer with the increase of kF r (and then in U ∞ as it is the only varying parameter). It goes from +∞ when kF r → sin α (i.e U ∞ tends to the critical velocity), to 0 when kF r increases. This can be easily understood as the critical velocity (kept constant in these experiments as k, N and α are fixed) is reached for smaller z when the boundary layer profile has to match a higher velocity at "infinity". Experimental values all lie above the theoretical line. It could be explained by the fact that the Blasius boundary layer is not a perfect model above the undulations which tend to widen the boundary layer thickness by generating a larger normal velocity than expected above a plane wall. Still, experimental values are close to the theoretical line and seem to validate the model.

Concerning the critical layer amplitude (upper right graph), the theoretical predicted value is globally smaller than the one observed, but the model seems more and more accurate with increasing kF r. The stronger deviation for lower towing velocity experiments could be explained by the same phenomenon as discussed above, about the cropped visual range. However, considering the range of potential theoretical values suggested by the dotted lines indicating the extreme k values experimentally studied, the model seems to catch the essence of the critical layer amplitude behaviour.

The lower graphs show the phase φ max on the left and the inclination angle Ω of the lobes on the right which are theoretically expected to be constant for kF r > 1.4, that is in global agreement with experimental measurements.

Conclusion

In this paper, a coupled theoretical and experimental approach has been presented to study a stratified boundary layer above an inclined sinusoidal wall.

The experimental study of a stratified boundary layer generated by a towing plate has been found to be particularly challenging. The shape of the leading edge of the plate, its overall longitudinal inclination and the height/wavelength ratio of the undulations had to be empirically studied and adjusted to limit boundary layer separation, and lee waves generation. These issues have been solved using a thin rounded leading edge, a longitudinal angle of the plate of 2 • and undulations with h = 0.25 cm and λ = 10 cm. Shadowgraph was performed to check the qualitative laminar aspect of the boundary layer. The flow was then measured by PIV, which is a quantitative visualisation technique set up so that the longitudinal and transverse velocity fields could be obtained on the whole width of the boundary layer. The wide range of velocities involved and the specific position of the laser sheet used to scan the boundary layer have led to a complex data post processing.

The longitudinal velocity profile has been convincingly fitted with the Blasius profile predicted by the theory. The base flow obtained by analysis was then perturbed with small undulations of the plate, and the perturbations searched in the form of monochromatic Fourier modes. A viscous sub-layer has been added in the perturbation analysis to take into account the no-slip boundary condition and obtain rigorous boundary conditions for the inviscid outer problem that was already considered in [START_REF] Passaggia | Response of a stratified boundary layer on a tilted wall to surface undulations[END_REF]. This sub-layer analysis was necessary to be able to compare quantitatively the experimental data with the theory. It leads to a complete theory with no adjustable parameter except the boundary layer width δ obtained by fitting the Blasius profile on the measured longitudinal base flow.

Theoretical transverse velocity fields have been compared to raw experimental data and experimental data filtered at the wavelength of the undulations. A good qualitative agreement has been demonstrated. Both show localized lobes of alternatively positive and negative transverse velocity, detached from the surface of the plate and with a barely constant low inclination angle with respect to the plate surface.

Besides, the critical layer can be characterized by four parameters which are: its posi-tion above the plate z c , v max (the maximum transverse velocity in a lobe), the inclination angle of the lobe Ω and their relative position compared to the plate undulation defined by the phase φ max . Experimental and theoretical values of these quantities have been compared and, again, a convincing agreement has been shown. It is worth emphasizing that the viscous sub-layer introduces a reducing factor of order Re -1/3 in the amplitude of the transverse velocity in the critical layer compared to the one found by [START_REF] Passaggia | Response of a stratified boundary layer on a tilted wall to surface undulations[END_REF]. This significantly reduces the expected amplitude of the phenomenon: the transverse velocity is now of order h whereas it was predicted as O(hRe 1/3 ) in the previous paper. This explains why only weak transverse velocities have been observed. The generated shear rate is larger than the velocity since it is here of order hRe 1/3 . However, it must remain smaller than O(1) for the linear analysis done in this paper to be valid. For larger amplitudes h, it is necessary to do a non-linear analysis of the viscous sub-layer. Intuitively, we may expect a forcing of the normal velocity outside of the sub-layer independent of the Reynolds number. This would lead to an amplitude of the velocity inside the critical layer proportional to Re 1/3 , as for a slip boundary condition. This would justify the use of slip boundary conditions, which is commonly used for the study of lee waves [START_REF] Legg | Mixing by oceanic lee waves[END_REF][START_REF] Bühler | Waves and mean flows[END_REF]). However, it will also generate harmonics and modify the mean velocity profile. The problem is thus far more complex and we leave this for future work. Furthermore, it will be necessary to look at the critical layer in a turbulent boundary layer in order to describe real geophysical flows for which Reynolds numbers can be of order 10 8 . Declaration of Interests. The authors report no conflict of interest.

  Figure 1. (a) Schematic of the experimental setup indicating the main axes. The horizontal/vertical coordinates (X, Y, Z) are rotated with an angle α around the X-axis to give the new coordinates (x, y, z). The plate is in the (x, y) plane such that its outgoing normal ez is tilted with an angle α with respect to eZ (i.e. with an angle π -α with respect to g). The plate is tilted around the y axis by a small angle γ = 2 • to prevent boundary layer separation. The undulations have a wavelength λ and an amplitude h. (b) Schematic of the visualization setup including both shadowgraph (in yellow) and PIV (in green).

Figure 2 .

 2 Figure 2. Compilation of shadowgraph pictures of the flow above the entrance zone of the plate for two different leading edge profiles at towing speed U∞ = 2.65 cm.s -1 and N = 1.06 ± 0.06 rad.s -1 . (a) α = 180 • , γ = 0 • . (b) α = 168.7 • , γ = 2 • . The transverse angle α has been observed to have no influence on the boundary layer quality.

Figure 3 .

 3 Figure3. Normal profiles of the longitudinal velocity (a), the normal and transverse velocity (b), the density (c) and the pressure (d). Solid black lines correspond to the stratified Blasius solution (3.7-3.11) for x = 1 with F solution of (3.6). In (a), blue dotted symbols correspond to the experimental longitudinal velocity u at the end of the plane entrance zone (86 cm from the front edge) for experiment number 5 (see table1) with z dimensionalised by δ fit = 0.49 cm. In (a) the red dashed line corresponds to the Falkner-Skan solution (3.12) for x = 1.1 with a tilt angle γ = 2 • .

Figure 4 .

 4 Figure 4. Raw data of the transverse velocity field above the plate for experiment number 4.

Figure 5 .

 5 Figure 5. Transverse velocity field for experiment number 4, after applying a Fourier filter at the wavelength of the undulations along x.

Figure 6 .

 6 Figure 6. Scheme of the different layers studied.

  (4.7b) with respect to z yields a homogeneous Airy equation on dũ/dz:

Figure 7 .

 7 Figure 7. Theoretical (vp) and Fourier-filtered experimental transverse velocity fields for two wavelengths of experiments number 2, 4 and 6 (from the top to the bottom). For details see table 1. The four other fields are presented in Christin (2021).

Figure 8 .

 8 Figure 8. Filtered (dots) and theoretical (full lines) transverse velocity profiles for experiment number 4 for two x positions and the norm.

2Figure 9 .Figure 10 .

 910 Figure 9. Scheme defining the quantities experimentally measured and theoretically computed for comparison in figure 10.
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Appendix A. Inclined boundary layer flow in a stratified fluid

In section §3.1, we have given the equations that govern the stationary boundary layer flow on an inclined surface in a stratified fluid. We have provided the general scalings, obtained when Re ≫ 1, Re/F r = O(1) and α = O(1), for which the Blasius solution is recovered for the longitudinal and normal velocities. We have further shown that when Re/F r is large, the system of equations can be fully solved in terms of the self-similar function involved in the Blasius equation. This limit, called limit 1, corresponds to the experiments we have analysed. There exists another limit, called limit 2, obtained for small angles, or large Froude numbers that can also be completely solved and that we want to present now.

For this purpose, it is useful to introduce the new parameter R α defined by

The square of this parameter measures the ratio of the magnitudes of the v term with respect of the ρ terms in equation (3.5e). The limit 1 was obtained when the balance in that equation was between w and v terms, which means R α ≫ 1. This limit is obtained for small α if the condition Re sin ≫ 1 is also satisfied. The other limit of interest is obtained when R α ≪ 1 and F r ≫ 1. In this limit, the balance in equation (3.5e) is between w and ρ terms. The adequate scalings in this limit are then

)

which give the parameterless system:

(A 3f)

As for limit 1, (A 3a) and (A 3b) constitute the Blasius equations for u * B and w * B which are then known quantities. Self-similar forms can also be obtained for the other quantities. p * B1 and ρ * B can be deduced from the Blasius profile using (A 3d) and (A 3f) respectively. Then, v * B and p * B2 are obtained from (A 3c) and (A 3e). The different quantities can be analytically expressed as functions of the Blasius solution F and its derivatives:

Both regions where limits 1 and 2 are obtained have been indicated in figure 11 for values of α of order 1 (left), small (center) and null (right). Note that when α = 0, only the limit 2 is obtained when F r ≫ 1. In that case, v naturally vanishes, but a pressure correction (p * B2 ) associated with the density correction is still present.