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ON REPRESENTATION OF SOLUTIONS TO THE
HEAT EQUATION

PASCAL AUSCHER AND HEDONG HOU

Abstract. We propose a simple method to obtain semigroup rep-
resentation of solutions to the heat equation using a local L2 con-
dition with prescribed growth and a boundedness condition within
tempered distributions. This applies to many functional settings
and, as an example, we consider the Koch and Tataru space related
to BMO−1 initial data.

1. Introduction

The purpose of this note is to investigate representation for solutions
to the heat equation

(1) ∂tu−∆u = 0

on the upper-half space R1+n
+ := (0,∞)×Rn or on a strip (0, T )×Rn.

That is, when can we assert that u can be represented by the heat
semigroup acting on a data, i.e.,

(2) u(t) := u(t, ·) = et∆u0

for some u0 and all t ∈ (0, T )?
The topic is not new, of course, so let us first briefly comment on

some classical results in the literature.
The most general framework for such a representation is via tem-

pered distributions. More precisely, given u0 ∈ S ′(Rn), then t 7→ et∆u0

lies in C∞([0,∞); S ′(Rn)). Conversely, it has been shown in [Tay11,
Chap. 3, Prop. 5.1] that any u ∈ C∞([0,∞); S ′(Rn)) solving the heat
equation is represented by the heat semigroup applied to its initial
value. Certainly, the argument still works in C1((0,∞); S ′(Rn)) ∩
C([0,∞); S ′(Rn)), which seems to close the topic. But it uses Fourier
transform, so it is not transposable to more general equations (e.g.,
parabolic equations with coefficients). Thus, one may wonder whether
different concrete knowledge, like a growth condition, on the solution
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could lead to a representation, not using Fourier transform. Yet, one
can observe that growth exceeding the inverse of a Gaussian when
|x| → ∞ is forbidden for the representation.

Another framework is that of non-negative solutions. A classical re-
sult by D. Widder [Wid44, Thm. 6] shows that in one-dimensional case,
any non-negative C2-solution u in the strip must be of the form (2) for
some non-negative Borel measure u0. It has been generalized to higher
dimensions and classical solutions of parabolic equations with smooth
coefficients by M. Krzyzanski [Krz64], via internal representation and
a limiting argument. We are also going to use this idea below, but
we want to remove the sign condition. D.G. Aronson later extended it
to non-negative weak solutions of real parabolic equations, see [Aro68,
Thm. 11].

Next, the uniqueness problem is tied with representation but they are
different issues. For instance, let us mention two works giving sufficient
criteria on strips for uniqueness, one by S. Täcklind [Täc36] providing
the optimal pointwise growth condition, and the other by A. Gushchin
[Gus84] providing a local L2 condition with prescribed growth, also
optimal but more amenable to more general equations. In these results,
the growth can be faster than the inverse of a Gaussian when |x| → ∞,
which hence excludes usage of tempered distributions, so uniqueness
can hold without being able to represent general solutions.

With these observations in mind, it seems that we have two very dif-
ferent theories to approach representation (and uniqueness): one only
using distributions and Fourier transform; one not using them at all.
The goal of this note is to make a bridge between them, i.e., to obtain
tempered distributions, not just measurable functions or measures, as
initial data from local integrability conditions. Such conditions may
only include integrability conditions in the interior, completed by a
uniform control.

Let us state our result. A sequence (Tk) of tempered distributions is
bounded if (〈Tk, ϕ〉) is bounded for any ϕ ∈ S (Rn). Recall that any
distributional solution to the heat equation on strips is in fact smooth
by hypoellipticity, see for instance [Hör03, §4.4].

Theorem 1.1. Let 0 < T ≤ ∞. Let u ∈ D ′((0, T ) × Rn) be a distri-
butional solution to the heat equation. Suppose that:

(i) (Size condition) For 0 < a < b < T , there exist C(a, b) > 0 and
0 < γ < 1/4 such that for any R > 0,

(3)

(ˆ b

a

ˆ
B(0,R)

|u(t, x)|2dtdx
)1/2

≤ C(a, b) exp

(
γR2

b− a

)
;
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(ii) (Uniform control) There exists a sequence (tk) tending to 0 such
that (u(tk)) is bounded in S ′(Rn).

Then there exists a unique u0 ∈ S ′(Rn) so that u(t) = et∆u0 for all
0 < t < T , where the heat semigroup is understood in the sense of
tempered distributions.

Let us first give some remarks. The L2 condition (i) is only assumed
on interior strips, and its growth is in the order of the inverse of a
Gaussian. It can be proved that this condition alone implies that u(t)
is a tempered distribution for each t > 0. The precise behavior of
C(a, b) is not required, and it could blow up as a → 0. Condition (ii)
provides us with necessary uniformity to define the initial data, which
a priori does not follow from (i).

The conclusion also shows that u has a natural extension to a solution
of the heat equation on (0,∞) × Rn if T < ∞. And if T was already
∞, then we could get a control on u when t→∞ via any knowledge we
might get on u0, e.g., if u0 ∈ L2(Rn) then u(t) is bounded in L2(Rn).

As an interesting remark, the argument is not using Fourier trans-
form at all, and it indeed extends with the same method of proof to
more general parabolic equations with bounded measurable, real or
complex coefficients at the expense of working in more restrictive spaces
than S ′(Rn). The reader can refer to [AMP19], [Zat20], and [AHa] for
the proof and applications of the general result in the context of mea-
surable initial data. Applications towards distributional data for more
general equations will appear in the forthcoming work [AHb].

The consequence for uniqueness is as follows.

Corollary 1.2. Let 0 < T ≤ ∞. Let u ∈ D ′((0, T ) × Rn) be a distri-
butional solution to the heat equation. Suppose that (i) holds and that
there exists a sequence (tk) tending to 0 such that (u(tk)) converges to
0 in S ′(Rn). Then u = 0.

Remark 1.3. Convergence in S ′(Rn) cannot be replaced by conver-
gence in D ′(Rn). The reader can refer to [CK94] for a non-identically
zero solution u ∈ C∞(R2

+)∩C([0,∞)×R) with u(0, x) = 0 everywhere

and |u(t, x)| ≤ C(ε)eε/t for any ε > 0. The continuity implies uniform
convergence of u(t) to 0 on compact intervals as t → 0, and hence
convergence in distributional sense.

Acknowledgement. The authors were supported by the ANR project
RAGE ANR-18-CE40-0012. We would like to thank Ioann Vasilyev
for telling us of Gushchin’s results and Patrick Gérard for stimulating
discussions.
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2. Proof of the theorem

Our main lemma asserts the L2-growth on rectangles of caloric func-
tion implies internal semigroup representation, which is an interesting
fact in its own sake that we did not find in the literature. It can be
seen as a particular case of [AMP19, Thm. 5.1] obtained for general
parabolic equations with time-dependent, bounded measurable and el-
liptic coefficients. For the heat equation, an elementary proof based on
Green’s formula and basic estimates will be given.

Lemma 2.1. Let u ∈ D ′((a, b)×Rn) be a distributional solution to the
heat equation. Suppose that (3) holds. Then when a < s < t < b, for
any h ∈ C∞c (Rn),

(4)

ˆ
Rn
u(t, x)h(x)dx =

ˆ
Rn
u(s, x)(e(t−s)∆h)(x)dx

where the right-hand integral absolutely converges.

The identity (4) can heuristically be called “homotopy identity”, as
it formally shows u(t) = e(t−s)∆u(s) in the sense of distributions. In
fact, once (4) is shown, one can extend it to all h ∈ S (Rn), so that
this holds in the sense of tempered distributions.

Proof. For −∞ < τ ≤ t, define

ϕ(τ, x) := (e(t−τ)∆h)(x),

which satisfies ∂τϕ+∆ϕ = 0 on (−∞, t)×Rn. Green’s formula implies
for any r > 0,

(5)

ˆ
B(0,r)

(u∆ϕ− ϕ∆u)(τ) =

ˆ
∂B(0,r)

(u∇ϕ− ϕ∇u)(τ) · n dσ,

where n is the outer unit normal vector and dσ is the sphere volume
form. Here and in the sequel, unspecified measures are Lebesgue mea-
sures. Newton-Leibniz formula yields

(6)

ˆ t

s

ˆ
B(0,r)

(ϕ∂τu+ u∂τϕ) =

ˆ
B(0,r)

(u(t)ϕ(t)− u(s)ϕ(s)).

Integrating (5) over s < τ < t and adding it to (6), we have

(7)

ˆ
B(0,r)

u(t)ϕ(t)−
ˆ
B(0,r)

u(s)ϕ(s) =

ˆ t

s

ˆ
∂B(0,r)

(ϕ∇u−u∇ϕ)dσdτ.

Note that u(t)ϕ(t) ∈ L1(Rn) as ϕ(t) = h has compact support. We
claim u(s)ϕ(s) also lies in L1(Rn). Indeed, pick ρ > 0 such that
supp(h) ⊂ B(0, ρ). Let κ > 1 be a constant to be determined. Denote
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by C0 the ball B(0, κρ) and by Cj the annulus {x ∈ Rn : κjρ ≤ |x| <
κj+1ρ} for j ≥ 1. We have

(8)

ˆ
Rn
|u(s)||e(t−s)∆h| ≤

∑
j≥0

‖u(s)‖L2(Cj)‖e(t−s)∆h‖L2(Cj).

Note that only terms with j � 1 are of concern as both u(s) and ϕ(s)
are bounded on compact sets. Caccioppoli’s inequality1 and (i) imply

‖u(s)‖2
L2(Cj)

.κ

(
1

(κj+1ρ)2
+

1

s− a

) ˆ b

a

‖u(τ)‖2
L2(B(x,κj+2ρ))dτ

.ρ,a,b
1

s− a
exp

(
2γ

b− a
(κj+2ρ)2

)
.

The heat kernel representation implies

‖e(t−s)∆h‖L2(Cj) . exp

(
−
cd2

j

t− s

)
‖h‖2

for 0 < c < 1/4 and dj := dist(Cj, supp(h)), which asymptotically
equals to κjρ. Pick c close to 1/4 and κ close to 1 so that γ < c/κ4,
and thus for j � 1,

γ <
cd2

j

(κj+2ρ)2
<

cd2
j

(κj+2ρ)2
· b− a
t− s

.

It ensures that the sum in (8) converges and the claim hence follows.
Thus, it suffices to prove that there exists an increasing sequence

(rm) tending to ∞ such that

lim
m→+∞

ˆ t

s

ˆ
∂B(0,rm)

(|ϕ∇u|+ |u∇ϕ|) dτdσ = 0.

Indeed, suppose so, and then applying (7) for (rm) and taking limits
on m imply (4) holds. Let us show the existence of such sequence. Let
0 < λ < 1 be a constant to be determined. Define

Φ(R) :=

ˆ R

λR

rn−1

ˆ t

s

ˆ
∂B(0,r)

(|ϕ∇u|+ |u∇ϕ|) dτdσdr

=

ˆ t

s

ˆ
λR<|x|<R

(|ϕ∇u|+ |u∇ϕ|) dτdx,

1By this we mean the energy estimates obtained by multiplying u with proper
cut-off and seeing this as a solution to the heat equation with localised source term.
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and denote by Φi(R) the i-th term for i = 1, 2. Then, it is enough
to show that Φ(R) is bounded. For Φ1(R), Caccioppoli’s inequality,
kernel representation of the heat semigroup, and (i) altogether imply

Φ1(R) ≤
(ˆ t

s

ˆ
λR<|x|<R

|∇u|2
)1/2(ˆ t

s

ˆ
λR<|x|<R

|ϕ|2
)1/2

.κ

[
1

s− a

(
1 +

t− a
R2

) ˆ b

a

ˆ
|x|<κR

|u|2
]1/2(ˆ t

s

e−
2cd2

t−τ dτ

)1/2

‖h‖2

.a,b,κ

(
t− s
s− a

)1/2

exp

(
− cd2

t− s
+
γ(κR)2

b− a

)
‖h‖2

for sufficiently large R. Here, κ > 1 and 0 < c < 1/4 are constants to
be determined, and d := dist(supp(h), {λR < |x| < R}). Then, pick κ
close to 1, λ close to 1, and c close to 1/4 so that γ < cλ2/κ2, and thus

(9) γ <
cd2

(κR)2
<

cd2

(κR)2
· b− a
t− s

for sufficiently large R. We hence conclude that Φ1(R) is bounded.
For Φ2(R), the kernel representation of (t1/2∇et∆)t>0 and (i) yield

Φ2(R) ≤
(ˆ b

a

ˆ
λR<|x|<R

|u|2
)1/2(ˆ t

s

ˆ
λR<|x|<R

|∇ϕ|2
)1/2

. e
γR2

b−a

(ˆ t

s

e−
2cd2

t−τ
dτ

t− τ

)1/2

‖h‖2

.
(t− s)1/2

c1/2d
exp

(
− cd2

t− s
+

γR2

b− a

)
‖h‖2.

The same choice for λ and c as above implies (9), and hence the bound-
edness of Φ2(R). This completes the proof. �

Let us recall some topological facts about tempered distributions.

Lemma 2.2. Let X be a Fréchet space and Y be a normed space. Let
I be an index set and {ψα}α∈I be a collection of continuous linear maps
from X to Y . If supα∈I ‖ψα(x)‖Y is bounded for any x ∈ X, then the
family {ψα}α∈I is equicontinuous.

Proof. It is a direct consequence of a generalized version of Banach-
Steinhaus theorem on barrelled spaces, due to the fact that Fréchet
spaces are barrelled spaces, see [Bou03, §III.4]. �

One can easily obtain two corollaries. The pairings below are all
understood in the sense of tempered distributions.
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Corollary 2.3. Let (ϕk) be a sequence converging to ϕ in S (Rn) and
(uk) be a sequence converging to u in S ′(Rn). Then (〈uk, ϕk〉) con-
verges to 〈u, ϕ〉.

Corollary 2.4. Any bounded sequence in S ′(Rn) has a convergent
subsequence.

Let us provide the proof of Theorem 1.1.

Proof of Theorem 1.1. Given 0 < s < t < T , pick a, b so that 0 < a <
s < t < b < T . Applying Lemma 2.1, we get for any h ∈ C∞c (Rn),

(10)

ˆ
Rn
u(t, x)h(x)dx =

ˆ
Rn
u(s, x)(e(t−s)∆h)(x)dx.

Moreover, Corollary 2.4 implies there is a subsequence (tkj) so that
(u(tkj)) converges to some u0 in S ′(Rn) as j → ∞. One can also

easily verify that e(t−s)∆h converges to et∆h in S (Rn) as s→ 0. Thus,
we infer from Corollary 2.3 that

lim
j→∞

〈
u(tkj), e

(t−tkj )∆h
〉

=
〈
u0, e

t∆h
〉
.

Applying (10) for s = tkj and taking limits on j yield u(t) = et∆u0 in
D ′(Rn). As the right-hand side belongs to S ′(Rn), so does u(t) for all
0 < t < T . In particular, it implies u(t) converges to u0 in S ′(Rn) as
t→ 0, so u0 is unique. This completes the proof. �

3. Applications

Our statement covers many functional spaces of common use in anal-
ysis, even when one expects that the initial data is a distribution. To
keep this note short, let us illustrate the result with an example related
to the famous work of H. Koch and D. Tataru on Navier-Stokes equa-
tions [KT01]. More applications will be studied in forthcoming works.
Define the tent space T∞ as the collection of measurable functions u
for which

‖u‖T∞ := sup
B

(
1

|B|

ˆ r(B)2

0

ˆ
B

|u(t, y)|2dtdy

)1/2

<∞,

where B describes balls in Rn and |B| is the Lebesgue measure of
B. Let BMO−1 be the collection of distributions f ∈ D ′(Rn) with
f = div g for some g ∈ BMO(Rn;Cn). The space BMO−1 can be
embedded into S ′(Rn), and identifies with the homogeneous Triebel-
Lizorkin space Ḟ−1

∞,2, with equivalent norms, see, e.g., [Tri83, §5.1].
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Moreover, a well-known characterisation of BMO−1 is that

(11) ‖f‖BMO−1 h ‖et∆f‖T∞ .
In particular, a tempered distribution f lies in BMO−1 if (et∆f)(x) lies
in T∞. Remark that if f belongs to BMO−1, as a function of t ∈ [0,∞),
et∆f is continuous in BMO−1 equipped with its weak star topology (or
equipped with the topology inherited from that of S ′(Rn), by density).

A natural question is whether all T∞ functions solving the heat equa-
tion are of that form. We answer it in the affirmative.

Theorem 3.1. Given a global distributional solution to the heat equa-
tion u ∈ T∞, there exists a unique u0 ∈ BMO−1 so that u(t) = et∆u0

for any t > 0.

Proof. It suffices to verify the two conditions in Theorem 1.1. Indeed, it
shows that there exists a unique u0 ∈ S ′(Rn) so that u(t) = et∆u0 for
any t > 0. We then get u0 ∈ BMO−1 by (11) since (et∆u0)(x) = u(t, x)
belongs to T∞.

Let us verify the conditions. First, (i) readily follows as for 0 < a <
b <∞,

(12) F (x) :=

(ˆ b

a

ˆ
B(x,b1/2)

|u(t, y)|2dtdy
)1/2

satisfies ‖F‖L∞(Rn) . ‖u‖T∞ .
Next, we claim that there exists M > 0 so that for any ϕ ∈ C∞c (Rn),

(13) sup
0<t<1/2

|〈u(t), ϕ〉| . PM(ϕ)‖u‖T∞ ,

where PM is the semi-norm given by

PM(ϕ) := sup
|α|+|β|≤M

sup
x∈Rn

|xα∂βϕ(x)|.

For fixed 0 < t < 1/2, standard considerations allow one to extend
u(t) to a tempered distribution so that (13) holds for all ϕ ∈ S (Rn),
which proves (ii). As for the claim, fix 0 < t < 1/2 < t′ < 1 and let
ϕ ∈ C∞c (Rn). Using the equation for u and integration by parts,

|〈u(t′), ϕ〉 − 〈u(t), ϕ〉| ≤
ˆ t′

t

ˆ
Rn
|u(s, x)||∆ϕ(x)|dsdx

=

ˆ t′

t

ˆ
B(0,1)

|u(s, x)||∆ϕ(x)|dsdx

+
∞∑
k=1

ˆ t′

t

ˆ
2k−1≤|x|<2k

|u(s, x)||∆ϕ(x)|dsdx.



ON REPRESENTATION OF SOLUTIONS TO THE HEAT EQUATION 9

Denote by I0 the first term and Ik the k-th term in the summation.
Cauchy-Schwarz inequality yields

I0 ≤ |B(0, 1)|(sup
|x|<1

|∆ϕ(x)|)
(

1

|B(0, 1)|

ˆ 1

0

ˆ
B(0,1)

|u(s, x)|2dsdx
)1/2

.n P2(ϕ)‖u‖T∞ .
Similarly, we also have that

Ik .n 2kn( sup
2k−1≤|x|<2k

|∆ϕ(x)|)
(

1

|B(0, 2k)|

ˆ 1

0

ˆ
B(0,2k)

|u(s, x)|2dsdx
)1/2

.n 2−k( sup
x∈Rn

|x|n+1|∆ϕ(x)|)‖u‖T∞ ≤ 2−kPn+3(ϕ)‖u‖T∞ .

We thus obtain

|〈u(t′), ϕ〉 − 〈u(t), ϕ〉| .n Pn+3(ϕ)‖u‖T∞ .
Taking average in t′ ∈ (1/2, 1) implies

|〈u(t), ϕ〉| .n
ˆ 1

1/2

|〈u(t′), ϕ〉|dt′ + Pn+3(ϕ)‖u‖T∞ .

The same argument as above yieldsˆ 1

1/2

|〈u(t′), ϕ〉|dt′ ≤
ˆ 1

1/2

ˆ
Rn
|u(t′, x)||ϕ(x)|dt′dx .n Pn+1(ϕ)‖u‖T∞ .

This completes the proof. �
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