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INTRODUCTION

Remote sensing is a field of study that is of growing interest due to the increasing number of satellites in orbit, which provides a vast amount of data, particularly in the case of synthetic aperture radar (SAR) images. However, a major issue in this field is the lack of annotations. To train practical deep learning algorithms, it is typically necessary to have access to a well-labeled dataset. Without such annotations, we must use self-supervised algorithms that can learn independently. This presents a challenge because finding a suitable self-supervision task is not straightforward.

The case of anomaly detection, which is the detection of patterns that differ from their local background, is detailed in the article for polarimetric SAR images. This research area has been extensively studied in hyperspectral images [START_REF] Wang | Deep lowrank prior for hyperspectral anomaly detection[END_REF], medical images [START_REF] Baur | Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study[END_REF], and industrial vision [START_REF] Li | CutPaste: Self-supervised learning for anomaly detection and localization[END_REF]. Some research has been made in SAR [START_REF] Mabu | Anomaly detection using convolutional adversarial autoencoder and one-class SVM for landslide area detection from synthetic aperture radar images[END_REF] but not as much as in the previously mentioned fields, although it has a lot of applications, such as oil slick detection, turbulent ship wake, levee anomaly or archaeology. This is mainly due to the problem of annotations and also to the fact that until recently, no denoising algorithms did not degrade the image's resolution. One of the most used algorithms for anomaly detection is the autoencoder or his modified version, the adversarial autoencoder (AAE) [START_REF] Makhzani | Adversarial autoencoders[END_REF]. Because SAR data is corrupted by a strong noise called speckle [START_REF] Goodman | Some fundamental properties of speckle[END_REF], the use of these algorithms is inefficient and a despeckling pre-processing step has to be applied [START_REF] Dalsasso | Selfsupervised training strategies for SAR image despeckling with deep neural networks[END_REF][START_REF] Muzeau | Self-supervised learning based anomaly detection in synthetic aperture radar imaging[END_REF]. Furthermore, the goal of an autoencoder is to reconstruct an image as best as possible, which is not the goal of anomaly detection.

In this paper, we propose a solution for the issue of limited labeled data in SAR by introducing a new reconstruction loss designed for anomaly detection with encoding-decoding networks. This is achieved by incorporating prior information given by any conventional detectors. In our case, An anomaly probability score for each pixel is generated by the RX detector [START_REF] Reed | Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[END_REF] before the training. Then, the AAE training loss is guided by this score, a threshold is fixed to define what should be considered an anomaly in the reconstruction loss. Each pixel considered abnormal will then be replaced by surrounding "normal" values in the input image to force a lousy reconstruction of these anomalous areas.

PROPOSED METHOD

A deep-learning self-supervised algorithm developed explicitly for SAR anomaly detection [START_REF] Muzeau | Self-supervised learning based anomaly detection in synthetic aperture radar imaging[END_REF] is used to test the proposed RX self-supervision method. The standard L 1 loss function is replaced with the newly defined loss. A pixel-per-pixel error and a covariance matrix difference are computed to determine the anomaly score. Let denote X c ∈ C h×w×p the original complex-valued polarimetric SAR image of size h × w and depth p and X ∈ R h×w×p the same image in log-intensity after the despeckling process explained in [START_REF] Dalsasso | SAR2SAR: A semi-supervised despeckling algorithm for SAR images[END_REF]. The notation x i,j characterizes the vector of size p, extracted from the matrix X at position (i, j). An overview of the architecture is displayed in Fig. 1. Each block will be explained in the following subsections.

Speckle-free reconstruction network

The deep learning anomaly detection algorithm is composed of two distinct steps. First, there is a speckle filtering preprocessing, and second, there is an AAE used to make an anomaly-free estimation of its input. SAR images contain a strong speckle noise. It corrupts the observations, and when it comes to anomaly detection, it creates a lot of false alarms. This explains why we need to remove this noise beforehand. It is essential to notice that SAR pixels are complex-valued, but with the despeckling algorithm, the phase is lost. We will then work with the intensity values, but the information we gain from removing the noise is more important than the information we lose by discarding the phase. This is done with the network [START_REF] Dalsasso | SAR2SAR: A semi-supervised despeckling algorithm for SAR images[END_REF] that is pre-trained to denoise ONERA X-band data in each polarization.

Once the speckle is removed, an AAE is used. The principle is to compress an image patch into a small vector containing the most information. The vector is then decoded into an estimation of the input patch. Because of the assumption that an anomaly rarely occurs, the network will not learn how to estimate them accurately. Detecting abnormal patterns in the input patch will be done by comparing the input patch and its estimation.

To train an AAE, there are two losses: a reconstruction loss corresponding to the L 1 norm between a patch and its estimation and a latent loss computed by a discriminator in the latent space to constrain it to follow a Gaussian distribution.

In practice, even if anomalies rarely occur in the training dataset, the network will, in some cases, be able to reconstruct them approximately. The statistically informed loss will help to address this issue.

Statisically informed reconstruction loss

For the purpose of anomaly detection, an efficient autoencoder is not defined by the quality of its reconstruction. The challenging part is to force a wrong recovery for the anomalies while preserving a good reconstruction in normal areas. This is why the standard reconstruction loss L rec = ∥x -x∥ 1 is not adapted for such a task. To add a priori information on what should be restored or not, L rec between X and X is replaced by the new loss L rec,RX between X and X (respect to notations Fig. 1). To do so, the well-known detection algorithm called Reed-Xiaoli [START_REF] Reed | Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[END_REF] is used on the complex SAR data. The principle is to locally estimate a scene's parameters (covariance matrix and mean vector) and to decide if the central pixel belongs to the same class as the neighboring pixels. For each coordinate (k, l), we define the patch

X c k,l = x c i,j i,j∈B e k,l
, where B e k,l denotes the set of indices (i, j) of pixels belonging to X c k,l and where the exponent e indicates that the boxcar contains an exclusion window to prevent us from estimating the scene with the test pixel and its close surroundings. Therefore, we can define the corresponding estimates:

μk,l = |B e k,l | -1 i,j∈B e k,l
x c i,j ,

Σk,l = 1 |B e k,l | -1 i,j∈B e k,l x c i,j -μk,l x c i,j -μk,l H , (1) 
where μk,l is the Sample Mean Vector estimate of the mean vector µ, Σk,l is the Sample Covariance Matrix (SCM) estimate of the covariance matrix Σ associated to the complexvalued image patch X c k,l . Then, the RX anomaly score is evaluated through the following procedure:

RX(x c k,l ) = x c k,l -μk,l H Σ-1 k,l x c k,l -μk,l , (3) 
From a given intensity denoised image X, this score allows to define a new image X with less abnormal values:

xk,l = x k,l if RX(x c k,l ) ≤ t, m ({x ∈ X k,l | RX(x c ) ≤ t}) otherwise, (4) 
where the scalar t is a fixed threshold that will determine whether a pixel will be considered abnormal, where m(.) is the median operator along the height and width dimensions, and where vectors x and x c are respectively the intensity and the complex value of the same pixel coordinates. To explain (4) more precisely, for every pixel considered abnormal by RX detector in patch B k,l , its value is replaced by the median of the pixels in B k,l that are normal according to RX. Finally, the new reconstruction loss can be defined through the following equation:

L rec,RX = 1 h w p i,j ∥x i,j -xi,j ∥ 1 .
(5)

Anomaly detection method

Once the reconstruction process is performed, a change detection between the input image X and its reconstruction X will highlight badly reconstructed areas. For each pixel, a squared L 2 error is combined with a squared Frobenius norm of the difference of locally estimated covariance matrices. This leads to the anomaly score:

A k,l = λ X k,l -Xk,l 2 2 + (1 -λ) ΣX k,l - Σ X k,l 2 
F . ( 6 
)
where ΣX k,l and Σ X k,l are respectively the SCM of X k,l and Xk,l locally estimated in the boxcar B k,l . The parameter λ ∈ [0, 1] is a scalar factor used to balance the importance of the two values that are normalized separately between 0 and 1 beforehand.

EXPERIMENTS

An ablation study is realized to test the apport of the new loss. The architecture is the same as the one described in [START_REF] Muzeau | Self-supervised learning based anomaly detection in synthetic aperture radar imaging[END_REF] 

Dataset, training, and hyperparameters

The dataset is a full polarimetric X-band SAR image of size 4800 × 30000 × 4 acquired by SETHI, the airborne SAR developed by the ONERA [START_REF] Baqué | Sethi: Review of 10 years of development and experimentation of the remote sensing platform[END_REF]. The resolutions of these images are about 20 cm in both azimuth and range domains for the four polarization channels (p = 4).

To train the AAE, we use 163785 patches of size 64 × 64 grouped in batches of size 128, so we get 1279 batches for one training epoch with a total of 40 epochs. To update the weights, we use the optimizer Adam [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] with a cyclical learning rate [START_REF] Smith | Cyclical learning rates for training neural networks[END_REF] that goes linearly from 10 -3 to 10 -2 in 2558 batches.

For the RX supervision, the SCM and SMV described in (2) and (1) are estimated with a boxcar of size 39 × 39 and an exclusion window of size 31 × 31. For (4), the threshold t is fixed at 0.04, and the boxcar is of size 64 × 64. For the anomaly detection score defined in [START_REF] Goodman | Some fundamental properties of speckle[END_REF], the SCM is estimated with a boxcar of size 11 × 11, and λ is equal to 0.68.

For every result, the operation x = min(x, s) is used to highlight a better dynamic range. For a given percentage p, the threshold s is fixed such that p% of the pixels are above it. The comparison of the same detection test (Fig. 2 (e), (f), for example) is always displayed with the same percentage.

Ablation study

To assess the benefits of the new loss (5), a comparison between the reconstructions with and without it is presented in Fig. 2. Images (c) and (d) are almost identical except for the bright points, which is the initial objective. Without supervision, a hole can be observed in the center of (e), which makes only the detection partial. This problem is corrected through supervision, as shown in (f). We also observe that the L 2 metric (i) contains less noise and better defines anomalies with supervision than (h). Finally, the detection with the RX in (g) shows that our method contains less noise.

A quantitative evaluation of anomaly detection is performed on synthetic data with exact labels. This evaluation is illustrated in Fig. 3 where a real SAR image on which we added test patterns based on real reflectivities is displayed. The value of λ and the size of the boxcar set above for Eq. ( 6) are optimal for both networks. We based the detection performances on the area under the receiver operating characteristic curve (AUC) for the synthetic anomaly image. Because an important part of the improvement lies in the L 2 error, its results are displayed in addition to the anomaly score. The 

CONCLUSION

This article proposes a new learning scheme for encodingdecoding networks to detect anomalies in SAR images. This is done by injecting a priori statistical information for the reconstruction loss. The proposed network can replace an abnormal pattern with its surrounding area while preserving the same reconstruction quality for the rest of the image. We proposed here to use the RX detector to guide our neural network. The experiments show an improvement in the SAR anomaly detection score. Due to the lack of annotated data in SAR, we have quantitatively evaluated the detection performance of this network through a synthetic anomaly dataset. Further methods of supervision based on the physics of SAR images or different statistical properties could be investigated to refine the learning strategy.
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 1 Fig. 1. Architecture of the AAE with the RX-guided reconstruction loss for the training phase and the detection phase.
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 2 Fig.2. Qualitative evaluation of the apport of the guided RX loss on real data. L 2 and cov are the two parts of[START_REF] Goodman | Some fundamental properties of speckle[END_REF] 

Fig. 3 .

 3 Fig. 3. Quantitative evaluation of the apport of the guided RX loss on synthetic anomalies