
HAL Id: hal-04248086
https://hal.science/hal-04248086

Submitted on 18 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-supervised SAR anomaly detection guided with RX
detector

Max Muzeau, Chengfang Ren, Sébastien Angelliaume, Mihai Datcu,
Jean-Philippe Ovarlez

To cite this version:
Max Muzeau, Chengfang Ren, Sébastien Angelliaume, Mihai Datcu, Jean-Philippe Ovarlez. Self-
supervised SAR anomaly detection guided with RX detector. IEEE IGARSS 2023, Jul 2023,
PASADENA, United States. �hal-04248086�

https://hal.science/hal-04248086
https://hal.archives-ouvertes.fr


SELF-SUPERVISED SAR ANOMALY DETECTION GUIDED WITH RX DETECTOR

M. Muzeau1,2 C. Ren1 S. Angelliaume2 M. Datcu3 J.-P. Ovarlez1,2
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ABSTRACT

Anomaly detection in Synthetic Aperture Radar (SAR) im-
ages is an important topic. However, the task is challenging
due to the scarcity of anomalous samples and the lack of an-
notated data, which has led most algorithms in this field to be
unsupervised. To address the issue, this article proposes a new
loss that adds prior information. One of the main functions of
an autoencoder is to reconstruct the input data as accurately as
possible after encoding them in a latent vector. The proposed
loss function guides the network using the Reed-Xiaoli (RX)
detector and replaces any pixels in the input data deemed too
abnormal with normal surrounding values. This approach in-
corporates a priori information in addition to the assumption
that anomalies are largely under-represented compared to the
rest of the image. An ablation study demonstrates that the
proposed loss function improves detection performance.

Index Terms— anomaly detection, deep learning, self-
supervised learning, adversarial autoencoder, SAR

1. INTRODUCTION

Remote sensing is a field of study that is of growing inter-
est due to the increasing number of satellites in orbit, which
provides a vast amount of data, particularly in the case of
synthetic aperture radar (SAR) images. However, a major is-
sue in this field is the lack of annotations. To train practical
deep learning algorithms, it is typically necessary to have ac-
cess to a well-labeled dataset. Without such annotations, we
must use self-supervised algorithms that can learn indepen-
dently. This presents a challenge because finding a suitable
self-supervision task is not straightforward.

The case of anomaly detection, which is the detection of
patterns that differ from their local background, is detailed
in the article for polarimetric SAR images. This research
area has been extensively studied in hyperspectral images [1],
medical images [2], and industrial vision [3]. Some research
has been made in SAR [4] but not as much as in the previously
mentioned fields, although it has a lot of applications, such as
oil slick detection, turbulent ship wake, levee anomaly or ar-
chaeology. This is mainly due to the problem of annotations
and also to the fact that until recently, no denoising algorithms

did not degrade the image’s resolution. One of the most used
algorithms for anomaly detection is the autoencoder or his
modified version, the adversarial autoencoder (AAE) [5]. Be-
cause SAR data is corrupted by a strong noise called speckle
[6], the use of these algorithms is inefficient and a despeck-
ling pre-processing step has to be applied [7, 8]. Furthermore,
the goal of an autoencoder is to reconstruct an image as best
as possible, which is not the goal of anomaly detection.

In this paper, we propose a solution for the issue of lim-
ited labeled data in SAR by introducing a new reconstruction
loss designed for anomaly detection with encoding-decoding
networks. This is achieved by incorporating prior informa-
tion given by any conventional detectors. In our case, An
anomaly probability score for each pixel is generated by the
RX detector [9] before the training. Then, the AAE training
loss is guided by this score, a threshold is fixed to define what
should be considered an anomaly in the reconstruction loss.
Each pixel considered abnormal will then be replaced by sur-
rounding ”normal” values in the input image to force a lousy
reconstruction of these anomalous areas.

2. PROPOSED METHOD

A deep-learning self-supervised algorithm developed explic-
itly for SAR anomaly detection [8] is used to test the proposed
RX self-supervision method. The standard L1 loss function is
replaced with the newly defined loss. A pixel-per-pixel error
and a covariance matrix difference are computed to determine
the anomaly score. Let denote Xc ∈ Ch×w×p the original
complex-valued polarimetric SAR image of size h × w and
depth p and X ∈ Rh×w×p the same image in log-intensity
after the despeckling process explained in [10]. The notation
xi,j characterizes the vector of size p, extracted from the ma-
trix X at position (i, j). An overview of the architecture is
displayed in Fig. 1. Each block will be explained in the fol-
lowing subsections.

2.1. Speckle-free reconstruction network

The deep learning anomaly detection algorithm is composed
of two distinct steps. First, there is a speckle filtering pre-
processing, and second, there is an AAE used to make an
anomaly-free estimation of its input.



Fig. 1. Architecture of the AAE with the RX-guided reconstruction loss for the training phase and the detection phase.

SAR images contain a strong speckle noise. It corrupts
the observations, and when it comes to anomaly detection, it
creates a lot of false alarms. This explains why we need to
remove this noise beforehand. It is essential to notice that
SAR pixels are complex-valued, but with the despeckling al-
gorithm, the phase is lost. We will then work with the inten-
sity values, but the information we gain from removing the
noise is more important than the information we lose by dis-
carding the phase. This is done with the network [10] that is
pre-trained to denoise ONERA X-band data in each polariza-
tion.

Once the speckle is removed, an AAE is used. The princi-
ple is to compress an image patch into a small vector contain-
ing the most information. The vector is then decoded into an
estimation of the input patch. Because of the assumption that
an anomaly rarely occurs, the network will not learn how to
estimate them accurately. Detecting abnormal patterns in the
input patch will be done by comparing the input patch and its
estimation.

To train an AAE, there are two losses: a reconstruction
loss corresponding to the L1 norm between a patch and its
estimation and a latent loss computed by a discriminator in the
latent space to constrain it to follow a Gaussian distribution.

In practice, even if anomalies rarely occur in the training
dataset, the network will, in some cases, be able to reconstruct
them approximately. The statistically informed loss will help
to address this issue.

2.2. Statisically informed reconstruction loss

For the purpose of anomaly detection, an efficient autoen-
coder is not defined by the quality of its reconstruction. The
challenging part is to force a wrong recovery for the anoma-
lies while preserving a good reconstruction in normal areas.
This is why the standard reconstruction loss Lrec = ∥x− x̂∥1
is not adapted for such a task. To add a priori information on
what should be restored or not, Lrec between X and X̂ is re-
placed by the new loss Lrec,RX between X̃ and X̂ (respect

to notations Fig. 1). To do so, the well-known detection al-
gorithm called Reed-Xiaoli [9] is used on the complex SAR
data. The principle is to locally estimate a scene’s param-
eters (covariance matrix and mean vector) and to decide if
the central pixel belongs to the same class as the neighbor-
ing pixels. For each coordinate (k, l), we define the patch
Xc

k,l =
{
xc
i,j

}
i,j∈Be

k,l

, where Be
k,l denotes the set of indices

(i, j) of pixels belonging to Xc
k,l and where the exponent e in-

dicates that the boxcar contains an exclusion window to pre-
vent us from estimating the scene with the test pixel and its
close surroundings. Therefore, we can define the correspond-
ing estimates:

µ̂k,l = |Be
k,l|−1

∑
i,j∈Be

k,l

xc
i,j , (1)

Σ̂k,l =
1

|Be
k,l| − 1

∑
i,j∈Be

k,l

(
xc
i,j − µ̂k,l

) (
xc
i,j − µ̂k,l

)H
, (2)

where µ̂k,l is the Sample Mean Vector estimate of the mean
vector µ, Σ̂k,l is the Sample Covariance Matrix (SCM) esti-
mate of the covariance matrix Σ associated to the complex-
valued image patch Xc

k,l. Then, the RX anomaly score is
evaluated through the following procedure:

RX(xc
k,l) =

(
xc
k,l − µ̂k,l

)H
Σ̂

−1

k,l

(
xc
k,l − µ̂k,l

)
, (3)

From a given intensity denoised image X, this score allows to
define a new image X̃ with less abnormal values:

x̃k,l =

{
xk,l if RX(xc

k,l) ≤ t,

m ({x ∈ Xk,l | RX(xc) ≤ t}) otherwise,
(4)

where the scalar t is a fixed threshold that will determine
whether a pixel will be considered abnormal, where m(.) is
the median operator along the height and width dimensions,
and where vectors x and xc are respectively the intensity and



the complex value of the same pixel coordinates. To explain
(4) more precisely, for every pixel considered abnormal by
RX detector in patch Bk,l, its value is replaced by the median
of the pixels in Bk,l that are normal according to RX.

Finally, the new reconstruction loss can be defined through
the following equation:

Lrec,RX =
1

hw p

∑
i,j

∥x̃i,j − x̂i,j∥1 . (5)

2.3. Anomaly detection method

Once the reconstruction process is performed, a change de-
tection between the input image X and its reconstruction X̂
will highlight badly reconstructed areas. For each pixel, a
squared L2 error is combined with a squared Frobenius norm
of the difference of locally estimated covariance matrices.
This leads to the anomaly score:

Ak,l = λ
∥∥∥Xk,l − X̂k,l

∥∥∥2
2
+ (1− λ)

∥∥∥∥Σ̂X

k,l − Σ̂
X̂

k,l

∥∥∥∥2
F

. (6)

where Σ̂
X

k,l and Σ̂
X̂

k,l are respectively the SCM of Xk,l and
X̂k,l locally estimated in the boxcar Bk,l. The parameter λ ∈
[0, 1] is a scalar factor used to balance the importance of the
two values that are normalized separately between 0 and 1
beforehand.

3. EXPERIMENTS

An ablation study is realized to test the apport of the new loss.
The architecture is the same as the one described in [8]

3.1. Dataset, training, and hyperparameters

The dataset is a full polarimetric X-band SAR image of size
4800× 30000× 4 acquired by SETHI, the airborne SAR de-
veloped by the ONERA [11]. The resolutions of these images
are about 20 cm in both azimuth and range domains for the
four polarization channels (p = 4).

To train the AAE, we use 163785 patches of size 64 ×
64 grouped in batches of size 128, so we get 1279 batches
for one training epoch with a total of 40 epochs. To update
the weights, we use the optimizer Adam [12] with a cyclical
learning rate [13] that goes linearly from 10−3 to 10−2 in
2558 batches.

For the RX supervision, the SCM and SMV described in
(2) and (1) are estimated with a boxcar of size 39 × 39 and
an exclusion window of size 31 × 31. For (4), the threshold
t is fixed at 0.04, and the boxcar is of size 64 × 64. For the
anomaly detection score defined in (6), the SCM is estimated
with a boxcar of size 11× 11, and λ is equal to 0.68.

For every result, the operation x̃ = min(x, s) is used to
highlight a better dynamic range. For a given percentage p,
the threshold s is fixed such that p% of the pixels are above it.

(a) Intensity (b) Denoised (c) Reconstructed

(d) Reconstructed
with RX

(e) cov - AAE (f) cov - AAE+RX

(g) RX detector (h) L2 - AAE (i) L2 - AAE+RX

Fig. 2. Qualitative evaluation of the apport of the guided RX
loss on real data. L2 and cov are the two parts of (6)

The comparison of the same detection test (Fig. 2 (e), (f), for
example) is always displayed with the same percentage.

3.2. Ablation study

To assess the benefits of the new loss (5), a comparison be-
tween the reconstructions with and without it is presented in
Fig. 2. Images (c) and (d) are almost identical except for the
bright points, which is the initial objective. Without supervi-
sion, a hole can be observed in the center of (e), which makes
only the detection partial. This problem is corrected through
supervision, as shown in (f). We also observe that the L2 met-
ric (i) contains less noise and better defines anomalies with
supervision than (h). Finally, the detection with the RX in (g)
shows that our method contains less noise.

A quantitative evaluation of anomaly detection is per-
formed on synthetic data with exact labels. This evaluation
is illustrated in Fig. 3 where a real SAR image on which we
added test patterns based on real reflectivities is displayed.
The value of λ and the size of the boxcar set above for Eq. (6)
are optimal for both networks. We based the detection perfor-
mances on the area under the receiver operating characteristic
curve (AUC) for the synthetic anomaly image. Because an
important part of the improvement lies in the L2 error, its
results are displayed in addition to the anomaly score. The



(a) test image (b) label (c) L2 - AAE
AUC : 0.780

(d) L2 - AAE+RX
AUC : 0.793

(e) A - AAE
AUC : 0.877

(f) A - AAE+RX
AUC : 0.881

Fig. 3. Quantitative evaluation of the apport of the guided RX loss on synthetic anomalies

L2 metric yields better results with the RX-guided network,
especially for the bright scatterers at the right of the image,
where the test patterns are better defined. These improve-
ments are highlighted in the final anomaly score in (e) and
(f), where the results are less spread out on the edges.

4. CONCLUSION

This article proposes a new learning scheme for encoding-
decoding networks to detect anomalies in SAR images. This
is done by injecting a priori statistical information for the re-
construction loss. The proposed network can replace an ab-
normal pattern with its surrounding area while preserving the
same reconstruction quality for the rest of the image. We pro-
posed here to use the RX detector to guide our neural network.
The experiments show an improvement in the SAR anomaly
detection score. Due to the lack of annotated data in SAR,
we have quantitatively evaluated the detection performance
of this network through a synthetic anomaly dataset. Further
methods of supervision based on the physics of SAR images
or different statistical properties could be investigated to re-
fine the learning strategy.
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