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In this supplementary material, we detail how the bulk elastic parameters C;; and the surface
elastic parameters CZ-S]- vary with the azimuth © in the geometry encountered in a (111) wire of
circular cross-section. The © dependence of C;; and C’fj are determined for copper and for gold
by performing Molecular Statics (MS) calculations with the SMA potential. Expressions of the
deformation state of the wire characterized by wuo, wo and g(R, ©) are derived. Warp displacement
fields obtained in (111) Cu nanowires are shown for two different cross-sections (circular or hexagonal
with {112} surfaces). Finally, we show that in the case of (111) Au nanowires with triangular cross-
sections, the surface shear stress is responsible for the twist of the wires.

I. BULK ELASTIC CONSTANTS

In the framework of the linear elasticity, the bulk energy density ¢ (E) depends only on the second order elastic
constants C;; where ¢ and j range over the values 1,2, ...,6 in the Voigt’s convention. Strain changes the 6 components
S; of the symmetric bulk stress S according to

S; = Ci; E; (1)

using Einstein summation convention and Brugger notation[1] to identify the components in cylindrical coordinates:
S1 = Sgr, S2 = See, S3 = Szz, S4 = Sez, S5 = Srz, S¢ = Sre, and E1 = Egrg, E2 = Eee, E3 = Ezz,
E, =2FE¢yz, E5s = 2ERz, Fg = 2ERe. In a reference frame rotating with the angle © around a (111) direction, only

Ci Cu /13 Cu Ciy Cy Cu Cis Ci
“ 220 115 2“ 0.05 § 220 150 140 10 10 0.05
° 10 o 0.00 S 0 0 0.00
210 —20 720 550058 < 2007 140 130 -10 -10 —0.05
120 %0 60120 0 601 60120 0 60120 0 60120 O 60120 0 60120 0 60120

6
9 (‘l‘J 021 Coy Coy 9 (deg) Co Cy

Con Cys 6
g 100 20 20 0.05 T 220 140 10 10 0.05
210 %0 -20 ' -20 ' ~0.05 < 200 130 -10 ' -10 —0.05
0 60120 0 60 120 0 60120 0 60120 60 120 0 60120 0 60120 0 60120 60 120 0 60120
© (deg) 33 Ca Css Css O (deg) Css Ca Css (&
u 240 0.05 0.05 0.05 é\ 230 0.05 0.05 0.05
E OOOE OOOE 0005 9220E| 0.0 0.005 o.oog
22 . 0.05 S 210 —0.05 —0.05 0.05
0 60120 0 60120 0 60120 60 120 0 60120 0 60120 60120 0 60120
© (deg) C C Cis © (deg) C, Cys C
EL‘ 44 0.05 45 16 E 25 44 0.05 A 10 16
< 35.0 . E o2 —0.05 -10
o e0120° % 60 20 60 120 0 60120 60120 0 60120
O (de f) Css Cse © (deg) Css Cso
F25
L g 375 S22 1g .
Cu <111> Au <111> o 23 -10
D 60 120 60 120 60 120 0 60120
O (deg) Ces © (deg) Ces
£ 55 T34
S C3
T 50 o
60 120 0 60120

 (deg)  (deg)

FIG. 1. Dependence with the azimuth © of the bulk elastic constants C;; for copper (matrix on the left) and for gold (matrix
on the right) in a reference frame rotating with the angle © around a (111) direction, according to Eqs.(2) with values of C?;,
CYy and C3, obtained from the SMA potential.

the following constants Cj; are not null and plotted in Fig. 1, in the case of Cu and Au.:
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(2)

where C7;, CY, and CY, are the usual three independent elastic constants defined for a cubic crystal and where for
© =0, ep is chosen along the [110] direction.
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II. SURFACE ELASTIC PARAMETERS

At the surface, the surface strain energy °(E®) per unit undeformed area depends on the second order elastic
constants C’;j‘- where i and j range over the values 2,3 and 4 in the Voigt’s convention. Surface strain E® changes the

3 components Sis of the symmetric surface stress S° (in linear surface elasticity) according to

S§ =870+ CIE; (3)

i
where Sf’o = S’g’(g, Sg?’o = Sg’g and S’f’o = S’g’g are the 3 surface stress components at ES = 0.

To calculate S2° and C; as a function of © for an (111) oriented wire we adopt the method described in Ref [2]
where we construct and then deform slabs whose surface initially exhibits a structure similar to that encountered
locally on the lateral surface of a (111) wire with circular cross-section. Using molecular statics calculations with the
SMA potential, we can then estimate the anisotropy of the surface parameters SZ-S 0 and ij' Their values obtained

for copper and for gold are gathered below in Figs. 2 and 3.

A. S7Y and C; at the surface of (111) circular wire
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FIG. 2. Calculations from different slabs of the surface parameters Sl-s 0 as a function of the azimuth © for the various surface
structures and orientations found around a (111) circular copper wire (on the left) and around a (111) circular gold wire (on
the right). The particularity of the (111) wire is that it has a surface shear component S5 = S50 that varies with ©. Note
that the amplitude of Sf’o is 7 times higher in the case of Au than in the case of Cu.
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FIG. 3. Calculations from different deformed slabs of the surface elastic constants Cisj as a function of © for the surfaces found
around a (111) circular wire. The first line is obtained for Cu and the second for Au.



B. Expressions of the deformation state of the wire characterized by uo, wo and g(R, O)

In the framework of our simplified model where the average radial deformation ug is supposed to be independent
of R and O, it is possible to estimate ug and wqg as a function of the radius of the wire Ry and to show that the warp
function g(R, ©) does not depend on ug and wy for a (111) wire.

For this purpose, it is in principle necessary to start from the expression of the first Piola-Kirchhoff stress tensor P
which, knowing the deformation gradient tensor field F', can be written in our case :

SkRr Sre Srz
P= SR@ S@@ S@Z
(F.rSrRr + F.0Sre + Srz) (F.rSre + F.0S66 + Soz) (F.rSrz + F.050z + Szz)

However, the terms weighted by F,r and F,g can be safely ignored as long as the warp remains moderate, P then
becomes equal to S :

Srr Sre Srz
P~S=|Sre See Sez
Srz Sez Szz
with

Srr = Ci1ug + Craug + Crswo + Crage /R + Cisgg

See = Ciaug + Caaug + Cozwo + Casgp /R + Casgp

Szz = Cizug + Cazug + C3zwp

Sez = Craug + Cagug + Cuagey /R

Srz = Cisuo + Casug + Cs595

Sre = Cisge/R + Cssgp (4)

One can get a first relation that link wg to wg by considering the Gurtin-Murdoch condition P.eg — Div°PS = 0
imposed on the component Sgg at the surface (denoted by Sgrr|r=gr,) :

Srrlrer, = —322 (5)
—Ry o

s,
with S5¢ = Sog + Chuo + Csywo + C5,96(Ro)/Ro
The Gurtin-Murdoch condition is a local relation, but since we are interested here only in the mean value of the
radial strain ug, we consider only the mean values (denoted A = i 0277 AdO) of the surface parameters in Eq.(5) and

replace g(Ry) by its mean value g(Rp). Since this latter is null, we find :

S0
(C11+ Cra + 22 )Uo +(Cis+ 5 ) = —ng (6)

The second relation between ug and wq is obtalned from the condltlon which ensures that the wire is free to relax
along Z ie., [[¢ P.zdA+ [,q P2,dL =0, leadlng in our case to

0 fo.g, ,RARAO + Ry 0 "85 ,dO =0 (7)
with 85, = S50 + Csyug + C5hwo + C. 3g@(R0)/R0. Noting that g(Rp) is null, we find :
‘~S ‘~S oS0
(2013 + 2% Jug + (Cs + 252 Jwo = 2522 (8)
Finally, from Egs. (6) and (8), one obtains ug and wyg as a function of Ry :
1 (013 + %)55’20 — (Cs3 + 2%)55)8 )
uyg = —/— 5
Bo (01 4+ o+ G2)(Css +258) — 2(Cus + 2)(Crs + B2)
¢ -
P (Crs + S R Gy 930 (Cyy + Oy + %52’2
wo = - — (10)

Ro 0(Cyy +Cra+ § )(C33 +2 33) —2(Cis + & )(C +5 )

Using Table (I), ug and wg expressed in Egs.(9) and (10) are compared in Fig. 4 to their values obtained from MS
simulations of various (111) wires with circular cross-section.
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FIG. 4. Influence of the surface elastic constants C¢; on the axial contraction wo and the radial deformation uo in Cu (on the

left) and Au (on the right) (111) nanowires of circular cross section given by Egs.(9) and (10) resulting from the continuum
model (CM). The elastic constants are taken from the Table I. The CM curves are compared to the results of molecular statics
simulations (MS) performed on various (111) nanowires of different radii Ro. The MS value of the radial deformation ug is
calculated by averaging the radial displacement ug of atoms located at a distance Ro/2 < R < 2Ro/3 from the center so that

uog = %ﬁ’o 027T uRd@.
Ch | Ch | Ch | 888 572 Cs, O3y O3
Cu (111)[169 GPa|127 GPa|69 GPa|1.02 J/m?[0.94 J/m?[-8.09 J/m?[-2.17 J/m?[-12.196 J/m>
Au (111)[184 GPa|154 GPa|42 GPa[0.89 J/m?[0.90 J/m?[-5.51 J/m?[-0.30 J/m?| -6.38 J/m>

TABLE I. Values of the bulk elastic constants C?;, C% and C3, given by the SMA potential for Cu and Au are recalled. The
average values of the surface elastic parameters which appear in Egs. (9) and (10) are calculated from Figs. 2 and 3.

It should be remembered, however, that this comparison must be read with care. Indeed, if wqg is observed in the
simulations as being constant over the entire wire cross-section, this is not the case for ug = (r — R)/R, which varies
with © and R. In Fig. 4, to extract up from the simulations, an average value over O is calculated, showing that
this average value changes little if it is performed far from the surface for R = Ry/2 or for R = 2R/3, for example.
From Fig. 4, we can see that Egs. (9) and (10) remain fairly reliable for predicting wy and ug for (111) oriented
wires. However, taking surface elastic constants into account does not significantly improve the description, unlike
in the case of (100) copper wire previously studied in Ref [2]. For the (111) wires considered in this work, the main
interest of the model is to be able to capture the change in sign of uy depending on the metal considered. We can see
that the contraction of the wire along its axis is not systematically accompanied by radial expansion (ug positive).
This is the case of copper, for which we observe a radial contraction (ug is negative) that cannot be explained simply

with isotropic elasticity. Indeed, according to Ref [3], this latter predicts a ratio Z—‘; = 23(’16:%) where v represents the

Poisson’s ratio that is equal to 0.34 for copper [4]. Using Egs. (9) and (10), this aspect is clarified in the Letter and
the ratio ug/wy is estimated as a function of the CY;, CY, and CY, more accurately.

The last point discussed in this section is the expression of the warp function g(R, ©) for a (111) wire. The latter
can be easily established if we consider uy to be independent of R and O.

Let’s first consider the third equilibrium equation given by DivP =0 :

a-PZR
OR

PzR
R

lapz@
R 00

a-PZZ
0z

=0

Noting that P,z does not vary with Z and assuming that P ~ S, we have :

0SRrz
OR

1 0S¢z
R 00

Srz

=0
R

(12)

where Sgz and Sez are given by Egs. (4). Considering the symmetry properties of the C;; given by Eqgs.(2) for the



(111) zone axis, and the expressions of Sgpz and Sez in Egs.(4), Eq.(12) leads to the following condition on g(R,©) :

" gR g@
JR 4 JO _ 13
9r + R + R2 ( )
where g}, = 99} /OR, g, = 0g/OR and g¢ = 9%g/002>.
Taking into account the threefold symmetry of the boundary conditions on the lateral surface of the nanowire, we
seek an expression of g(R, ©), solution of Eq.(13), having the following form:

9(R,0) = Z gy R*N sin3N© (14)
N=1

where the gy coefficients are determined in this work by applying the Gurtin-Murdoch surface conditions. From these
latter we have :

1 0P%, OP%,

Perlpp, = Ry, 00 o7z (15)

which in the present case takes the simple form :

(F.rSrR + Fz0Sre + (1 +wo)Srz) |R:R
1 9 (16)

RO a@ ((1+7,U0)S@Z +F S@@)
where
/
F.rSrr= 9r (Cuuo + Chaug + Cizwg + 014gR + 015912) ;
F.oSro= 2 (046 + Cs69R):
Srz = 05593,
Ry
582 = 59+ Cfmo + G + 05, %010)
0
R, Ry
F580= 1000) (650 1 08 g 1 Cuo + €5, 220)
RO RO
(17)
Neglecting terms involving products between ug, wo, gg(Ro) and ¢z (Ro), we obtain :
gr(Ro,©) =
1 0 S, S, R
Rt 76 (S@§ + C5up + Ciwo + (Sag + 044)9@12300)
(18)

which can be further simplified by considering ug, wo, gg (Ro)/Ro sufficiently small so that Sg’g is the dominant term.

1 9857
RoCs; 0O

9r(Ro,0) = (19)

where Cs5 = £ (C}) — Cf, + CY,). To check that the simplification from Eq. (18) to Eq. (19) is justified for the Cu
and Au cases considered in this work, we plot in Fig. 5 the terms neglected in Eq. (18) for two different radii.
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FIG. 5. Sg’g is found to be the dominant term in Eq.(18). This is verified numerically here by plotting the terms SS’ZO, Cisyuo,

Ciywo, and (Sg’g + Cfg@ which appear in Eq.(18) as a function of the azimut © from MS simulations performed on both

Cu and Au nanowires of ra(?ius Rop = 4nm and Ry = 30nm.

C. (111) Cu nanowire with circular cross-section
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FIG. 6. Warp displacement fields u% (nm) in (111) Cu nanowires of circular cross section (for different radii : Ry = 4, 8 and
30 nm). Comparison of the warp u%(MS) observed in the atomistic simulations with u%(CM) predicted by our continuum
model where the gy coefficients in Eq.(14) are determined from the Fourier analysis of SS’ZO shown in Fig.2.



D. (111) Cu nanowire with an hexagonal cross-section presenting {112} surfaces

Another case that deserves further study is that of copper nanowires with an hexagonal cross-section, but whose
faces are {112} oriented. We have shown that the S§ of these surfaces is null, so the warp can again only be due to
edge effects. We discuss this case here, where a guess of the S; function based on the observation of the S, value per
atom enables us to qualitatively reproduce in Fig. 7 the warp observed in the simulations.
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FIG. 7. Warp displacement fields u% (nm) in (111) Cu nanowires of hexagonal cross section with planar {112} surfaces.
Comparison of the warp u%(MS) observed in the atomistic simulations with u%(CM) predicted by our continuum model
where the gn coefficients in Eq.(14) are determined from the Fourier analysis of a SS’ZO function chosen to roughly reproduce
the fact that only atoms located at the edges have non-zero Sez values, as shown here on the simulated wire slice.

E. (111) Au nanowires with a triangular cross-section presenting {110} surfaces : a remarkable case where
57 induces the twist of the wire

As an extension to this work, it would be interesting to study other cross-sections in detail. Indeed, it is possible
to envisage situations where the surface shear stress Sf’o is such that the resulting torque is non-zero. This is a
particularly interesting case, since it should generate a torsion of the wire. Such a situation would be encountered for
the case of a triangular cross-section which presents only one of the two types of {110} surfaces (and therefore having
the same Sf ¥ value). To illustrate this point, we show in Fig. 8 the results of MS simulations for free (111) wires
with the two types of triangular cross-sections. At equilibrium, they do indeed exhibit a twist whose direction can be
ascribed to the sign of surface shear stress S f 0,

FIG. 8. MS simulations of free [111] wires with a triangular cross-section (top view). The orientations of the lateral surfaces
are (a) : (110), (011), (101) with S5"° ~ - 0.3 Jm~2 , and (b) : (110), (011) et (101) with S;° ~ + 0.3 J.m~2. At equilibrium,
the wires are twisted according to the sign of the torque induced by the surface shear stress Sf’o of the {110} surfaces.
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