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In this supplementary material, we detail how the bulk elastic parameters Cij and the surface
elastic parameters CSij vary with the azimuth Θ in the geometry encountered in a 〈111〉 wire of

circular cross-section. The Θ dependence of Cij and CSij are determined for copper and for gold
by performing Molecular Statics (MS) calculations with the SMA potential. Expressions of the
deformation state of the wire characterized by u0, w0 and g(R,Θ) are derived. Warp displacement
fields obtained in 〈111〉 Cu nanowires are shown for two different cross-sections (circular or hexagonal
with {112} surfaces). Finally, we show that in the case of 〈111〉 Au nanowires with triangular cross-
sections, the surface shear stress is responsible for the twist of the wires.

I. BULK ELASTIC CONSTANTS

In the framework of the linear elasticity, the bulk energy density ψ(E) depends only on the second order elastic
constants Cij where i and j range over the values 1,2, ...,6 in the Voigt’s convention. Strain changes the 6 components
Si of the symmetric bulk stress S according to

Si = CijEj (1)

using Einstein summation convention and Brugger notation[1] to identify the components in cylindrical coordinates:
S1 = SRR, S2 = SΘΘ, S3 = SZZ , S4 = SΘZ , S5 = SRZ , S6 = SRΘ, and E1 = ERR, E2 = EΘΘ, E3 = EZZ ,
E4 = 2EΘZ , E5 = 2ERZ , E6 = 2ERΘ. In a reference frame rotating with the angle Θ around a 〈111〉 direction, only
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FIG. 1. Dependence with the azimuth Θ of the bulk elastic constants Cij for copper (matrix on the left) and for gold (matrix
on the right) in a reference frame rotating with the angle Θ around a 〈111〉 direction, according to Eqs.(2) with values of C0

11,
C0

12 and C0
44 obtained from the SMA potential.

the following constants Cij are not null and plotted in Fig. 1, in the case of Cu and Au.:
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where C0
11, C0

12 and C0
44 are the usual three independent elastic constants defined for a cubic crystal and where for

Θ = 0, eR is chosen along the [110] direction.
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II. SURFACE ELASTIC PARAMETERS

At the surface, the surface strain energy ψS(ES) per unit undeformed area depends on the second order elastic
constants CSij where i and j range over the values 2,3 and 4 in the Voigt’s convention. Surface strain ES changes the

3 components SSi of the symmetric surface stress SS (in linear surface elasticity) according to

SSi = SS,0i + CSijE
S
j (3)

where SS,02 = SS,0ΘΘ, SS,03 = SS,0ZZ and SS,04 = SS,0ΘZ are the 3 surface stress components at ES = 0.

To calculate SS,0i and CSij as a function of Θ for an 〈111〉 oriented wire we adopt the method described in Ref [2]
where we construct and then deform slabs whose surface initially exhibits a structure similar to that encountered
locally on the lateral surface of a 〈111〉 wire with circular cross-section. Using molecular statics calculations with the

SMA potential, we can then estimate the anisotropy of the surface parameters SS,0i and CSij . Their values obtained
for copper and for gold are gathered below in Figs. 2 and 3.

A. SS,0i and CSij at the surface of 〈111〉 circular wire
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FIG. 2. Calculations from different slabs of the surface parameters SS,0i as a function of the azimuth Θ for the various surface
structures and orientations found around a 〈111〉 circular copper wire (on the left) and around a 〈111〉 circular gold wire (on

the right). The particularity of the 〈111〉 wire is that it has a surface shear component SS,04 = SS,0ΘZ that varies with Θ. Note

that the amplitude of SS,04 is 7 times higher in the case of Au than in the case of Cu.
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FIG. 3. Calculations from different deformed slabs of the surface elastic constants CSij as a function of Θ for the surfaces found
around a 〈111〉 circular wire. The first line is obtained for Cu and the second for Au.
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B. Expressions of the deformation state of the wire characterized by u0, w0 and g(R,Θ)

In the framework of our simplified model where the average radial deformation u0 is supposed to be independent
of R and Θ, it is possible to estimate u0 and w0 as a function of the radius of the wire R0 and to show that the warp
function g(R,Θ) does not depend on u0 and w0 for a 〈111〉 wire.

For this purpose, it is in principle necessary to start from the expression of the first Piola-Kirchhoff stress tensor P
which, knowing the deformation gradient tensor field F, can be written in our case :

P =

 SRR SRΘ SRZ
SRΘ SΘΘ SΘZ

(FzRSRR + FzΘSRΘ + SRZ) (FzRSRΘ + FzΘSΘΘ + SΘZ) (FzRSRZ + FzΘSΘZ + SZZ)


However, the terms weighted by FzR and FzΘ can be safely ignored as long as the warp remains moderate, P then
becomes equal to S :

P ≈ S =

SRR SRΘ SRZ
SRΘ SΘΘ SΘZ

SRZ SΘZ SZZ


with

SRR = C11u0 + C12u0 + C13w0 + C14g
′
Θ/R+ C15g

′
R

SΘΘ = C12u0 + C22u0 + C23w0 + C24g
′
Θ/R+ C25g

′
R

SZZ = C13u0 + C23u0 + C33w0

SΘZ = C14u0 + C24u0 + C44g
′
Θ/R

SRZ = C15u0 + C25u0 + C55g
′
R

SRΘ = C46g
′
Θ/R+ C56g

′
R (4)

One can get a first relation that link u0 to w0 by considering the Gurtin-Murdoch condition P.eR − DivSPS = 0
imposed on the component SRR at the surface (denoted by SRR|R=R0) :

SRR|R=R0
= −S

S
ΘΘ

R0
(5)

with SSΘΘ = SS,0ΘΘ + CS22u0 + CS23w0 + CS24g
′
Θ(R0)/R0

The Gurtin-Murdoch condition is a local relation, but since we are interested here only in the mean value of the

radial strain u0, we consider only the mean values (denoted A = 1
2π

∫ 2π

0
AdΘ) of the surface parameters in Eq.(5) and

replace g(R0) by its mean value g(R0). Since this latter is null, we find :

(C11 + C12 +
CS

22

R0
)u0 + (C13 +

CS
23

R0
)w0 = −S

S,0
ΘΘ

R0
(6)

The second relation between u0 and w0 is obtained from the condition which ensures that the wire is free to relax
along Z i.e.,

∫∫
S
PzZdA+

∫
∂S
PSzZdL = 0, leading in our case to∫ 2π

0

∫ R0

0
SZZRdRdΘ +R0

∫ 2π

0
SSZZdΘ = 0 (7)

with SSZZ = SS,0ZZ + CS23u0 + CS33w0 + CS43g
′
Θ(R0)/R0. Noting that g(R0) is null, we find :

(2C13 + 2
CS

23

R0
)u0 + (C33 + 2

CS
33

R0
)w0 = −2

SS,0
ZZ

R0
(8)

Finally, from Eqs. (6) and (8), one obtains u0 and w0 as a function of R0 :

u0 =
1

R0

2(C13 +
CS

23

R0
)SS,0ZZ − (C33 + 2

CS
33

R0
)SS,0ΘΘ

(C11 + C12 +
CS

22

R0
)(C33 + 2

CS
33

R0
)− 2(C13 +

CS
23

R0
)(C13 +

CS
23

R0
)

(9)

w0 =
2

R0

(C13 +
CS

23

R0
)SS,0ΘΘ − (C11 + C12 +

CS
22

R0
)SS,0ZZ

(C11 + C12 +
CS

22

R0
)(C33 + 2

CS
33

R0
)− 2(C13 +

CS
23

R0
)(C13 +

CS
23

R0
)

(10)

Using Table (I), u0 and w0 expressed in Eqs.(9) and (10) are compared in Fig. 4 to their values obtained from MS
simulations of various 〈111〉 wires with circular cross-section.
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FIG. 4. Influence of the surface elastic constants CSij on the axial contraction w0 and the radial deformation u0 in Cu (on the
left) and Au (on the right) 〈111〉 nanowires of circular cross section given by Eqs.(9) and (10) resulting from the continuum
model (CM). The elastic constants are taken from the Table I. The CM curves are compared to the results of molecular statics
simulations (MS) performed on various 〈111〉 nanowires of different radii R0. The MS value of the radial deformation u0 is
calculated by averaging the radial displacement uR of atoms located at a distance R0/2 < R < 2R0/3 from the center so that

u0 = 1
πR0

∫ 2π

0
uRdΘ.

C0
11 C0

12 C0
44 SS,0ΘΘ SS,0ZZ CS22 CS23 CS33

Cu 〈111〉 169 GPa 127 GPa 69 GPa 1.02 J/m2 0.94 J/m2 -8.09 J/m2 -2.17 J/m2 -12.196 J/m2

Au 〈111〉 184 GPa 154 GPa 42 GPa 0.89 J/m2 0.90 J/m2 -5.51 J/m2 -0.30 J/m2 -6.38 J/m2

TABLE I. Values of the bulk elastic constants C0
11, C0

12 and C0
44 given by the SMA potential for Cu and Au are recalled. The

average values of the surface elastic parameters which appear in Eqs. (9) and (10) are calculated from Figs. 2 and 3.

It should be remembered, however, that this comparison must be read with care. Indeed, if w0 is observed in the
simulations as being constant over the entire wire cross-section, this is not the case for u0 = (r −R)/R, which varies
with Θ and R. In Fig. 4, to extract u0 from the simulations, an average value over Θ is calculated, showing that
this average value changes little if it is performed far from the surface for R = R0/2 or for R = 2R0/3, for example.
From Fig. 4, we can see that Eqs. (9) and (10) remain fairly reliable for predicting w0 and u0 for 〈111〉 oriented
wires. However, taking surface elastic constants into account does not significantly improve the description, unlike
in the case of 〈100〉 copper wire previously studied in Ref [2]. For the 〈111〉 wires considered in this work, the main
interest of the model is to be able to capture the change in sign of u0 depending on the metal considered. We can see
that the contraction of the wire along its axis is not systematically accompanied by radial expansion (u0 positive).
This is the case of copper, for which we observe a radial contraction (u0 is negative) that cannot be explained simply
with isotropic elasticity. Indeed, according to Ref [3], this latter predicts a ratio u0

w0
= 3ν−1

2(ν−1) where ν represents the

Poisson’s ratio that is equal to 0.34 for copper [4]. Using Eqs. (9) and (10), this aspect is clarified in the Letter and
the ratio u0/w0 is estimated as a function of the C0

11, C0
12 and C0

44 more accurately.
The last point discussed in this section is the expression of the warp function g(R,Θ) for a 〈111〉 wire. The latter

can be easily established if we consider u0 to be independent of R and Θ.
Let’s first consider the third equilibrium equation given by DivP = 0 :

∂PzR
∂R

+
PzR
R

+
1

R

∂PzΘ
∂Θ

+
∂PzZ
∂Z

= 0 (11)

Noting that PzZ does not vary with Z and assuming that P ≈ S, we have :

∂SRZ
∂R

+
SRZ
R

+
1

R

∂SΘZ

∂Θ
= 0 (12)

where SRZ and SΘZ are given by Eqs. (4). Considering the symmetry properties of the Cij given by Eqs.(2) for the
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〈111〉 zone axis, and the expressions of SRZ and SΘZ in Eqs.(4), Eq.(12) leads to the following condition on g(R,Θ) :

g′′R +
g′R
R

+
g′′Θ
R2

= 0 (13)

where g′′R = ∂g′R/∂R, g′R = ∂g/∂R and g′′Θ = ∂2g/∂Θ2.
Taking into account the threefold symmetry of the boundary conditions on the lateral surface of the nanowire, we

seek an expression of g(R,Θ), solution of Eq.(13), having the following form:

g(R,Θ) =

∞∑
N=1

gNR
3N sin 3NΘ (14)

where the gN coefficients are determined in this work by applying the Gurtin-Murdoch surface conditions. From these
latter we have :

PzR
∣∣
R=R0

=
1

R0

∂PSzΘ
∂Θ

+
∂PSzZ
∂Z

(15)

which in the present case takes the simple form :

(FzRSRR + FzΘSRΘ + (1 + w0)SRZ)
∣∣
R=R0

=
1

R0

∂

∂Θ

(
(1 + w0)SSΘZ + FSzΘS

S
ΘΘ

) (16)

where

FzRSRR= g′R

(
C11u0 + C12u0 + C13w0 + C14

g′Θ
R

+ C15g
′
R

)
,

FzΘSRΘ=
g′Θ
R

(C46
g′Θ
R

+ C56g
′
R),

SRZ = C55g
′
R,

SSΘZ = SS,0ΘZ + CS24u0 + CS34w0 + CS44

g′Θ(R0)

R0
,

FSzΘS
S
ΘΘ=

g′Θ(R0)

R0

(
SS,0ΘΘ + CS22u0 + CS23w0 + CS24

g′Θ(R0)

R0

)
(17)

Neglecting terms involving products between u0, w0, g′Θ(R0) and g′R(R0), we obtain :

g′R(R0,Θ) =

1

R0C55

∂

∂Θ

(
SS,0ΘZ + CS24u0 + CS34w0 + (SS,0ΘΘ + CS44)

g′Θ(R0)
R0

)
(18)

which can be further simplified by considering u0, w0, g′Θ(R0)/R0 sufficiently small so that SS,0ΘZ is the dominant term.

g′R(R0,Θ) =
1

R0C55

∂SS,0ΘZ

∂Θ
(19)

where C55 = 1
3

(
C0

11 − C0
12 + C0

44

)
. To check that the simplification from Eq. (18) to Eq. (19) is justified for the Cu

and Au cases considered in this work, we plot in Fig. 5 the terms neglected in Eq. (18) for two different radii.
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FIG. 5. SS,0ΘZ is found to be the dominant term in Eq.(18). This is verified numerically here by plotting the terms SS,0ΘZ , CS24u0,

CS34w0, and (SS,0ΘΘ +CS44)
g′Θ(R0)

R0
which appear in Eq.(18) as a function of the azimut Θ from MS simulations performed on both

Cu and Au nanowires of radius R0 = 4nm and R0 = 30nm.

C. 〈111〉 Cu nanowire with circular cross-section

FIG. 6. Warp displacement fields uwZ (nm) in 〈111〉 Cu nanowires of circular cross section (for different radii : R0 = 4, 8 and
30 nm). Comparison of the warp uwZ(MS) observed in the atomistic simulations with uwZ(CM) predicted by our continuum

model where the gN coefficients in Eq.(14) are determined from the Fourier analysis of SS,0ΘZ shown in Fig.2.
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D. 〈111〉 Cu nanowire with an hexagonal cross-section presenting {112} surfaces

Another case that deserves further study is that of copper nanowires with an hexagonal cross-section, but whose
faces are {112} oriented. We have shown that the SS4 of these surfaces is null, so the warp can again only be due to
edge effects. We discuss this case here, where a guess of the SS4 function based on the observation of the S4 value per
atom enables us to qualitatively reproduce in Fig. 7 the warp observed in the simulations.

0

1GPa −1GPa

S
s,0

Θ Z

FIG. 7. Warp displacement fields uwZ (nm) in 〈111〉 Cu nanowires of hexagonal cross section with planar {112} surfaces.
Comparison of the warp uwZ(MS) observed in the atomistic simulations with uwZ(CM) predicted by our continuum model

where the gN coefficients in Eq.(14) are determined from the Fourier analysis of a SS,0ΘZ function chosen to roughly reproduce
the fact that only atoms located at the edges have non-zero SΘZ values, as shown here on the simulated wire slice.

E. 〈111〉 Au nanowires with a triangular cross-section presenting {110} surfaces : a remarkable case where
SS4 induces the twist of the wire

As an extension to this work, it would be interesting to study other cross-sections in detail. Indeed, it is possible

to envisage situations where the surface shear stress SS,04 is such that the resulting torque is non-zero. This is a
particularly interesting case, since it should generate a torsion of the wire. Such a situation would be encountered for
the case of a triangular cross-section which presents only one of the two types of {110} surfaces (and therefore having

the same SS,04 value). To illustrate this point, we show in Fig. 8 the results of MS simulations for free 〈111〉 wires
with the two types of triangular cross-sections. At equilibrium, they do indeed exhibit a twist whose direction can be

ascribed to the sign of surface shear stress SS,04 .

(a) (b)

FIG. 8. MS simulations of free [111] wires with a triangular cross-section (top view). The orientations of the lateral surfaces

are (a) : (1̄10), (01̄1), (101̄) with SS,04 ≈ - 0.3 J.m−2 , and (b) : (11̄0), (011̄) et (1̄01) with SS,04 ≈ + 0.3 J.m−2. At equilibrium,

the wires are twisted according to the sign of the torque induced by the surface shear stress SS,04 of the {110} surfaces.
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