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In this Letter, we combine atomistic simulations and a continuum model, based on the Gurtin-Murdoch theory
of surface elasticity, to explain the warp previously observed in 〈111〉 gold nanowires. This phenomenon, which
is characterized by the spontaneous formation of nonplanar cross sections, is primarily due to the crystallographic
orientation of the surfaces that can form around a 〈111〉 wire. As a result, the surface stress tensor expressed in the
wire cylindrical coordinates basis presents a nondiagonal shear component denoted SS

�Z (�) whose anisotropy (its
variation with azimuth �) induces bulk stress and warp in the wire. This result is demonstrated by computing SS

�Z

as a function of � and by integrating these atomistic inputs into the continuum model. By adopting this approach,
the warp found in the atomistic simulations is well reproduced analytically for both Au and Cu nanowires having
a circular cross section. This behavior is a fine example of the coupling between surface and bulk stress tensors
involving nondiagonal components. An extension of this modeling to the case of nanowires with a hexagonal
cross section is discussed.

DOI: 10.1103/PhysRevB.108.L161408

By performing microscopy experiments on 〈111〉 gold
nanowires, Roy et al. [1] showed that the cross section of
the nanowire was not planar at the atomic scale. Instead, a
nonuniform displacement of the atomic columns along the
main axis of the wire was observed. This phenomenon, called
wrinkling by these authors, was confirmed from their atom-
istic simulations for 〈111〉 Au nanowires with either a circular
or hexagonal cross section bounded by {110} surfaces.

In this Letter we want to shed light on the interpretation
of this wrinkling by identifying the physical quantities that
are responsible for this phenomenon. Our analysis is based
on a recent work [2] we conducted to explain the formation
of a warp in twisted 〈001〉 copper nanowire, induced by the
coupling between the torsion and the surface shear elastic
constant (which we will denote CS

44). Since wrinkling is finally
nothing else than a form of warp existing in the absence of
torsion of the nanowire, we wish to test the ability of our
continuum mechanics approach based on the Gurtin-Murdoch
(GM) theory of surface elasticity to also predict the wrinkling
in untwisted 〈111〉 wires.

In principle a nonuniform R, � (but not Z) dependent
displacement field uZ along the main axis of the wire (i.e.,
a warp) appears in a cylinder of circular cross section if the
nondiagonal (shear) component of the surface stress (denoted
SS

�Z in cylindrical coordinates) varies with the azimuth �. It
is indeed the anisotropy of SS

�Z that is responsible for the bulk
stress component SRZ . This property is a direct consequence
of the equilibrium conditions at the surface, also called gener-
alized Young-Laplace conditions, which link surface and bulk
stresses.

For reasons of symmetry, however, the shear surface stress
component SS

�Z should be null for all � values in 〈001〉
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and 〈011〉 face-centered cubic (fcc) nanowires of circular
cross section. Indeed, the lateral surface which bounds such
a wire locally resembles a vicinal surface whose axes of
symmetry are aligned with the unit vectors e� and eZ of the
cylindrical coordinates basis, and consequently, its surface
stress is described only by diagonal terms SS

�� and SS
ZZ . In

our previous study, the reason we observed a nonzero SS
�Z was

because the wires were submitted to torsion. In this latter case,
there was an anisotropy of SS

�Z coming from the anisotropic
elastic response to the shear of the lateral surface caused by
the torsion. The intensity of SS

�Z was then proportional to
the surface elastic constant CS

44, which was shown to vary
with �. In the absence of torsion, there is no warp in 〈001〉
nanowires but only a uniform displacement field uZ . So, how
is it possible that a warp (a wrinkling) is observed in 〈111〉
Au nanowires? The explanation is purely geometrical and can
be understood if one examines again the symmetry of the
surfaces that bound a fcc wire of circular section as shown
in Fig. 1. As already mentioned, for wires with 〈001〉 or 〈011〉
orientations in Fig. 1(b), the surface atomic steps are aligned
with the axis of the wire, and thus whatever the azimuth �,
the surface stress is diagonal and described by its components
SS

�� and SS
ZZ . On the other hand, if we look at the 〈111〉 wire,

it becomes clear that the construction of such a wire leads
to the formation of small surfaces whose axes of symmetry
are not along the cylindrical coordinates basis vectors ({112}
surfaces being an exception). Looking more specifically at
the {110} surfaces shown in Fig. 1(b), we can notice that
for the 〈001〉 wire, the dense atomic rows are perpendicular
to the axis of the wire, whereas for the 〈111〉 wire, they
are alternately rotated by an angle +φ or −φ depending on
the {110} surface observed (among the six existing). From
this observation we can therefore expect that two successive
{110} surfaces encircling the 〈111〉 wire have a nonzero shear
component SS

�Z and of opposite sign. This variation of SS
�Z

with azimuth � should cause a warp. It remains to be seen
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FIG. 1. (a) Illustration of the warp existing in 〈111〉 (but not in
〈001〉 or 〈011〉) fcc nanowires. (b) Representation of the surfaces
bounding these circular cross-section wires; only slices are shown
here.

whether this interpretation is quantitatively valid, which is the
subject of this work.

Let us start by briefly introducing our continuum model,
based on finite strain theory and linear elasticity in the
framework of the GM theory [3]. Since it has been detailed
recently in Ref. [2], we will focus only on the developments
specific to the case that interests us here, i.e., a free, very long
solid circular cylinder composed of a fcc metal and having
its main axis oriented along a 〈111〉 direction. The surface
parameters involved in the model are calculated for two met-
als, gold and copper, from molecular statics (MS) calculations
on slabs with surfaces which are close structurally to those
encountered around these wires. The MS simulations also give
access to the relaxed atomic positions in these wires and to
atomic strain and stress fields allowing us to test the validity
of our continuum mechanics approach.

By adopting a semi-inverse approach, we first propose a
model deformation map which is likely to generate a warp.
Using cylindrical coordinates (R,�, Z ) in the undeformed
configuration, chosen to be the state where all atoms occupy
initially the bulk crystal lattice, and (r, θ, z) in the current
configuration where the free wire is relaxed to its equilibrium
state, we may model the current configuration as follows:

r = (1 + u0)R, θ = �, z = g(R,�) + (1 + w0)Z, (1)

where w0 is the axial contraction induced by the surface stress
(surface atoms are in tension in metals); u0 is the average
radial deformation, which not only can be an expansion (pos-
itive value) but also can correspond to a contraction (negative
value) as we will see in this Letter; and g(R,�) is the warp
displacement to be determined. For the mapping considered
in Eq. (1), one obtains the deformation gradient tensor field:

F = (1 + u0)(er ⊗ eR + eθ ⊗ e�) + (1 + w0)ez ⊗ eZ

+ g′
R ez ⊗ eR + g′

�/R ez ⊗ e�,
(2)

where (eR, e�, eZ ) and (er, eθ , ez ) are the cylindrical coordi-
nates bases in the reference and deformed states, respectively,
and where g′

R = ∂g/∂R and g′
� = ∂g/∂�. The finite strain

tensor E is deduced from E = 1
2 (FT F − I), where I is the

unit tensor [4,5]. Considering that u0, w0, g′
R, and g′

�/R

are small, E takes the simple form E = u0(eR ⊗ eR + e� ⊗
e�) + w0 eZ ⊗ eZ + [g′

�/R(e� ⊗ eZ + eZ ⊗ e�) + g′
R (eR ⊗

eZ + eZ ⊗ eR)]/2.
To account for the difference in elastic behavior on the

surface and inside the bulk, one has to determine the sur-
face deformation gradient FS and the surface strain ES . In
the simple case of a circular cross section of radius R0, FS

is directly deduced [2] from F and reads FS = (1 + u0)eθ ⊗
e� + g′

�(R0)/R0 ez ⊗ e� + (1 + w0)ez ⊗ eZ . Moreover, since

ES = 1
2 (FST FS − IS), where IS = I − eR ⊗ eR denotes the

surface unit tensor at any point of the lateral surface of
the initial circular cylinder [6], we find in the present case
that ES = u0e� ⊗ e� + w0 eZ ⊗ eZ + [g′

�(R0)/R0(e� ⊗ eZ +
eZ ⊗ e�)]/2.

Assuming that the bulk strain energy ψ (E) per unit un-
deformed volume and the surface strain energy ψS (ES ) per
unit undeformed area are known, the second Piola-Kirchhoff
stress tensors are defined as S = dψ/dE in the bulk and
SS = dψS/dES at the surface.

In linear elasticity, the bulk energy density ψ (E) depends
only on the elastic stiffness constants Ci j , where i and j range
over the values 1, 2, . . . , 6 in the Voigt convention. Strain
changes the six components Si of the symmetric bulk stress
S according to

Si = Ci jE j (3)

using the Einstein summation convention and Brugger nota-
tion [7] to identify the components in cylindrical coordinates:
S1 = SRR, S2 = S��, S3 = SZZ , S4 = S�Z , S5 = SRZ , S6 =
SR�, and E1 = ERR, E2 = E��, E3 = EZZ , E4 = 2E�Z , E5 =
2ERZ , E6 = 2ER�. Since S and E are expressed in cylindrical
coordinates, the Ci j in Eq. (3) must be written in the reference
frame rotating with the angle � around a 〈111〉 direction.
The expressions of the Ci j are reported in the Supplemental
Material (SM) [8] as a function of � and the usual three
independent elastic constants C0

11, C0
12, and C0

44 defined for a
cubic crystal. At the surface, the surface strain energy ψS (ES )
per unit undeformed area depends on the second-order elas-
tic constants CS

i j , where i and j range over the values 2, 3,
and 4 in the Voigt convention. Surface strain ES changes
the three components SS

i of the symmetric surface stress SS

according to

SS
i = SS,0

i + CS
i jE

S
j , (4)

where SS,0
2 = SS,0

��, SS,0
3 = SS,0

ZZ , and SS,0
4 = SS,0

�Z are the three
surface stress components at ES = 0.

To calculate SS,0
i and CS

i j as a function of � for an 〈111〉-
oriented wire, we adopt the method described in Ref. [2]
where we construct and then deform slabs whose surface ini-
tially exhibits a structure similar to that encountered locally on
the lateral surface of a 〈111〉 wire with circular cross section.
Using MS calculations with the tight-binding second mo-
ment approximation (SMA) potential (parameters are taken
from Refs. [9,10] for Cu and Au), we can then estimate the
anisotropy of the surface parameters SS,0

i and CS
i j . Their values

obtained for copper and for gold are shown in the SM [8].
The behavior of SS,0

�Z as a function of �, which is of particular
interest to us in this Letter, is shown in Fig. 2. The calculation
shows that SS,0

�Z takes extreme values for {110} surfaces with
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FIG. 2. Plot, as a function of �, of the surface parameter SS,0
�Z ,

introduced in Eq. (4) and calculated from MS simulations using the
SMA potential, on various Au and Cu slabs presenting different
vicinal surfaces (hkl ) and sharing the same [111] direction corre-
sponding to the nanowire axis. As an example, the case of a slab
with (41̄3̄) surfaces corresponding to a value of � ≈ 46.1◦ is shown.

opposite signs for two successive {110} surfaces around the
wire (separated by 60◦). It can also be noted from Fig. 2 that
the amplitude of this SS,0

�Z oscillation with � is much smaller
for copper than for gold.

As the surface and volume elastic properties (SS,0
i , CS

i j , and
Ci j , respectively) were calculated in cylindrical coordinates, it
is now possible to determine the deformation state of the wire
characterized by u0, w0, and g(R,�) in Eq. (1).

Let us first recall the equilibrium conditions that must be
satisfied by S and SS . It is convenient to state them from
the first Piola-Kirchhoff stress tensor P, which is defined in
the bulk from the product P = FS and at the surface from
PS = FSSS . In the absence of body force, the bulk equilibrium
condition reads [4,5]

DivP = 0, (5)

where Div is the divergence operator, which will be expressed
in cylindrical coordinates. At the lateral surface of the circular
nanowire, the local equilibrium in the absence of external
load obeys the GM condition [3,11] (also called generalized
Young-Laplace conditions [12]):

P · eR − DivSPS = 0, (6)

where DivSPS is the surface divergence of the superficial
tensor field PS [13]. Finally, to account for the fact that
the nanowire is very long and free to relax along its main
axis (no end effects), the integral equilibrium condition on a
cross section S of normal vector eZ and its circular boundary

∂S reads, far from the wire extremities,∫∫
S

PzZ dA +
∫

∂S
PS

zZ dL = 0, (7)

where dA is the area element on S and dL is the line element
on ∂S in the material configuration, PzZ = ez ⊗ eZ : P and
PS

zZ = ez ⊗ eZ : PS are the components of P and PS involved
in Eq. (7). Finally, for the boundary-value problem considered
in this Letter, the total torque acting on the body must vanish
at equilibrium. This is the case here since the surface shear
stress SS,0

�Z calculated in Fig. 2 is equal to zero when integrated
around the wire (note that this also applies to any wire orien-
tation having a circular cross section). The overall balance of
the moments of forces is therefore verified in the absence of
body force.

Using Eqs. (6) and (7), which relate the surface stress to the
bulk stress, the expressions of u0 and w0 are derived in the SM
[8] as functions of the nanowire radius R0, the mean values of
SS,0

i and CS
i j , and the bulk elastic constants C0

i j . For copper
as well as for gold, our atomistic calculations show that the
terms SS,0

�� and SS,0
ZZ defined in Eq. (4) have very close and

positive average values (≈1 J/m2 for Cu and 0.9 J/m2 for
Au). The surface atoms are therefore in tension and tend
to move closer together, leading to axial contraction of the
wire (w0 < 0). Our continuum model (CM) predicts w0 and
u0 values in very good agreement with those observed in
MS simulations of 〈111〉 nanowires presenting different radii
R0. The comparison between CM curves and MS results is
detailed in the SM [8]. These calculations show, in particular,
that radial expansion (u0 > 0) does not always occur for 〈111〉
wires. It is seen in gold, but not in copper, where a radial
contraction is observed (u0 < 0). This last result falls outside
a simple description with isotropic elasticity [1], which states
that u0

w0
= 3ν−1

2(ν−1) , where ν represents the Poisson’s ratio equal
to 0.34 for copper [14]. Using the CM description established

in this Letter, we find, for large radii R0 and SS,0
�� ≈ SS,0

ZZ , that

u0 ≈ −w0

(
C0

11 + 2C0
12 − 8C0

44

2C0
11 + 4C0

12 + 8C0
44

)
, (8)

which provides a finer criterion (i.e., the sign of C0
11 + 2C0

12 −
8C0

44) to observe either a radial expansion (u0 > 0) or a radial
contraction (u0 < 0) in 〈111〉 wire.

Let us now examine the function g(R,�), which in our
model represents the presumed warp that we are aiming to
rationalize in this Letter. As detailed in the SM [8], applying
the equilibrium condition (5), for u0 constant and for the 〈111〉
zone axis, g(R,�) is the solution of the Laplace equation:

g′′
R + g′

R

R
+ g′′

�

R2
= 0, (9)

where g′′
R = ∂g′

R/∂R and g′′
� = ∂2g/∂�2.

Taking into account the threefold symmetry of the bound-
ary conditions on the lateral surface of the nanowire, we
search for an expression of g(R,�) [solution of Eq. (9)] hav-
ing the following form:

g(R,�) =
∞∑

N=1

gN R3N sin 3N�, (10)

L161408-3
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where the coefficients gN are not null because of the GM
surface conditions in Eq. (6) that link the SS

�Z component to
the bulk stress component SRZ . More precisely, from Eq. (6)
we have

PzR|R=R0 = 1

R0

∂PS
z�

∂�
+ ∂PS

zZ

∂Z
, (11)

which in the present case implies the following condition on
g′(R0,�):

g′
R(R0,�) = 1

R0C55

∂SS,0
�Z

∂�
, (12)

where C55 = 1
3 (C0

11 − C0
12 + C0

44). This key relation is estab-

lished in the SM [8] by considering that u0, w0, g′
�(R0 )
R0

, and

g′
R(R0) are sufficiently small so that SS,0

�Z is the dominant term.
A numerical validation of this approximation is also given
from MS simulations performed on both Cu and Au nanowires
with radii ranging from R0 = 4 nm to R0 = 30 nm.

To determine g′
R(R0,�) and therefore the gN in Eq. (10),

a harmonic analysis of SS,0
�Z is performed from the curves

obtained in Fig. 2.
The Fourier analysis shows that in our case, only the terms

in cos 3N� are necessary to represent SS,0
�Z so that

SS,0
�Z =

+∞∑
N=1

cN cos 3N�, (13)

where cN are the Fourier coefficients. Once the cN are com-
puted, it is straightforward to determine the gN . By combining
Eqs. (10) and (12), we find

gN = −cN

C55R3N
0

, (14)

and therefore the warp displacement field becomes

uw
Z = −1

C55

+∞∑
N=1

cN

(
R

R0

)3N

sin 3N�. (15)

We compare uw
Z obtained from Eq. (15) with the results of

our atomistic simulations. In Fig. 3 for Au nanowires, a very
good quantitative agreement between the two approaches is
observed. Equation (15) shows that the warp has an amplitude
that does not depend on the radius R0 and has an invariant
form if expressed as a function of R/R0 and �. For the case
of Cu nanowires (shown in the SM [8]), the amplitude of the
warp is lower, reflecting the smaller amplitude of SS,0

�Z seen in
Fig. 2. For small radii, atomic step effects are more visible for
copper. However, the main characteristics of the warp remain
well reproduced by the continuum model.

To conclude this work, let us take a closer look at the
gold nanowires for which the warp has been evidenced exper-
imentally [1]. Their cross section being not circular but rather
hexagonal with planar {110} surfaces as shown in Fig. 4, one
can wonder whether our modeling can be extended to this
geometry. This is a delicate question, since the cylindrical
coordinates basis used up to now is no longer suitable for
expressing the surface stress tensor SS correctly. In addition,
we can expect edge effects at the junction of the {110} faces,
which are not taken into account in our continuum model.

FIG. 3. Warp displacement fields uw
Z (nanometers) in 〈111〉 Au

nanowires of circular cross section (for different radii: R0 = 4, 8,
and 30 nm). Comparison of the warp uw

Z (MS) observed in the atom-
istic simulations with uw

Z (CM) predicted by the continuum model in
Eq. (15) where the cN (1 � N � 48) are determined from the Fourier
analysis of SS,0

�Z shown in Fig. 2.

Despite these limitations, it is interesting to note that the
present study also provides some answers. Indeed, if we look
first at the case of the gold nanowire shown in Fig. 4, it is clear
that two successive {110} surfaces present different in-plane
orientations and therefore the opposite SS

4 values (close to the
±0.3 J/m2) found in Fig. 2 for � = 0◦ and � = 60◦. Thus the
case of the hexagonal cross section with planar {110} surfaces
resembles the case of a circular cross section where SS,0

�Z (�)
varies as a periodic step function. Following this idea, and
using Eq. (12), one can determine the corresponding Fourier
coefficients gN that describe g(R,�) in Eq. (10) and therefore
the warp uw

Z . A comparison of the latter [denoted uw
Z (CM)]

with the displacement field uw
Z (MS) obtained from MS simu-

lations on hexagonal gold nanowire is shown in Fig. 4. Both
the amplitudes and shapes of uw

Z (CM) and uw
Z (MS) are very

close, which leads us to conclude that the warp observed
in hexagonal gold wires is mainly caused by the alternating
values of SS

4 observed on each face.
The case of hexagonal copper nanowires, by contrast, is

more difficult to interpret. On the one hand, the intensity of
SS

4 on each {110} face is much lower, as we have already
seen in Fig. 2, and therefore has little influence on the warp.
On the other hand, Fig. 4 shows a strong edge effect, where
the atoms near and on each side of the junction between
two {110} faces exhibit high and opposite S4 values. It is
therefore tempting to try to model these edge effects with a
SS

4 function reflecting the abrupt changes observed at the six
junctions. The function tested in this Letter is illustrated in
Fig. 4; it corresponds to two successive trapezoidal functions
of opposite sign. As shown in Fig. 4, the warp produced by
such a function resembles the displacement field observed in
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FIG. 4. Warp displacement fields uw
Z (nanometers) in 〈111〉 (a) Au and (b) Cu nanowires of hexagonal cross section with {110} surfaces.

Comparison of the warp uw
Z (MS) with uw

Z (CM) predicted by Eq. (15) where the cN are determined from the Fourier analysis of two different
SS,0

�Z functions chosen to roughly reproduce the variations in atomic S�Z observed on the two simulated wire slices (see text).

MS simulations, but the comparison is less convincing than in
the previous gold case; in particular, the R dependence is not
correct. The main interest of this latest modeling is to show
that the warp in these Cu nanowires is mainly due to edge
effects, which certainly requires an appropriate theoretical
treatment involving the consideration of line stress.

As an extension to this work, it would be interesting to
study other cross sections in detail. Indeed, it is possible to
envisage situations where the surface shear stress SS

4 is such
that the resulting torque is nonzero. This is a particularly inter-
esting case, since it should generate a torsion of the wire. Such
a situation would be encountered, for example, in the case of a
hexagonal cross section where the two types of {110} surfaces
(with SS

4 values of opposite sign) have different areas, or in the
limiting case of a triangular cross section which presents only
one of the two types of {110} surfaces (and therefore having
the same SS

4 value). To illustrate this point, we show in the SM
[8] the results of MS simulations for free 〈111〉 wires with a
triangular cross section. At equilibrium, the latter do indeed
exhibit a twist whose direction can be ascribed to the sign of
the surface shear stress SS

4 .
In summary, this study provides a thorough explanation

of the presence of warp in 〈111〉 Au and Cu nanowires of

circular cross section. This phenomenon, which is also known
to appear under the effect of torsion, occurs here sponta-
neously as a result of surface shear stress. More precisely,
we show that it is the anisotropy of the surface shear stress
[the variation of SS,0

�Z (�) around the wire] that represents the
main term responsible for the warp. Indeed, unlike 〈100〉 and
〈110〉 wires where SS,0

�Z (�) is null, the 〈111〉 wires exhibit
a periodic SS,0

�Z (�) due to the crystallographic orientation of
the atomic steps forming the lateral surface of this wire (see
Fig. 1). To quantify this warp, whose cause is primarily geo-
metrical, we first calculate SS,0

�Z (�) from a series of atomistic
simulations performed on slabs having surfaces similar to
those encountered locally for each azimuth � around the
〈111〉 nanowire. Then, the mechanical problem is solved by
using linear elasticity and by adopting a semi-inverse ap-
proach where the trial function g(R,�) describing the warp
is related to SS,0

�Z (�) by the surface equilibrium conditions
given by the GM theory. Comparison of the warp deduced
from the elasticity continuum model with the one observed
in our MS simulations fully confirms our understanding of
the phenomenon. Finally, an extension of this modeling to
the case of nanowires with a hexagonal cross section is
discussed.
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