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Abstract

While many large-scale software systems intensively implement variability to reuse software and speed up devel-
opment, they often do not document it, hampering its comprehension. This is especially the case for variability-rich
object-oriented (OO) systems that heavily rely on existing OO mechanisms (i.e., inheritance, overloading and some pat-
terns) to implement it in a single codebase. With no traceability information, the variability is buried in the codebase,
hampering its identification, analysis, and understanding. While variability management becomes increasingly difficult
over the system evolution, the implementation mechanisms also bring additional complexity to the codebase, which
eventually leads to technical debt, threatening even more the software quality.

In this article, we report on the design and evaluation of an extensible visualization, VariCity , that exhibits zones
of high density of OO variability implementations. It relies on the city metaphor to represent the classes of the system
as buildings whose dimensions are used to show variability metrics inherent to the implementation classes. They are
linked together through streets depicting usage relationships and grouping in neighborhoods classes using each other.
The extensibility of VariCity is demonstrated with VariMetrics, which highlights OO quality metrics on the buildings,
revealing quality-critical classes concentrating variability implementations. We evaluate the visualization capacity to
reveal zones concentrating variability implementations and being quality-critical by applying it to multiple variability-
intensive open source software systems. We also report on a controlled experiment comparing the gain brought by the
visualization with to the use of an IDE.

Keywords: software variability, reverse-engineering, software visualization, software cities, program comprehension,
software quality

1. Introduction

Whatever their scale and their domain, recent software-
intensive systems and applications are more and more vari-
ability intensive [1, 2, 3]. Software variability is usually
defined as the ability of a software artifact (i.e., system
or element that enables to develop it) to be efficiently
extended, changed, customized, or configured towards a
specific context [4]. Variability can be seen as an antic-
ipated change that evolves over time [5], calling for ap-
propriate management techniques for software engineers
of variability-intensive systems.

Being a key element in most systems [1], variability
management has been heavily studied, notably leading to
the Software Product Line (SPL) [6, 7] and product fam-
ily [4] paradigms. In the SPL paradigm, the domain vari-
ability, commonly documented and managed in terms of
features in a feature model [8], is clearly separated from the
implemented variability, which is mapped from the domain
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variability, using most of the times a single implementa-
tion technique. In this context, implementation techniques
can be diverse, reusing existing mechanisms such as pre-
processor directives [9], or being completely specific with a
specialized form of modules [7]. The implemented variabil-
ity may also be managed through an implemented-related
feature model [10, 11], but the main benefits of an SPL are
to reason on consistency at the domain level and from a
configuration, to derive a consistent software product [12].

However, many variability-rich software systems intro-
duce variability progressively or manage diversity in their
functionalities without following a complete SPL approach.
Many of them are object-oriented and implemented in a
single codebase in which variability among the obtainable
software products is realized using traditional techniques
(i.e., inheritance, parameters, overloading, and some de-
sign patterns such as strategy and factory) [13, 14, 4].
These mechanisms being also used to structure the imple-
mentation, the variability is buried in the codebase, ham-
pering its identification, analysis, and understanding as
there is no traceability with domain information [15, 16].
In this work, we target OO codebases that are not as-
sociated in any way with additional information regard-
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ing variability (e.g., UML-based variability description,
source code annotations). As a consequence, managing
this variability becomes increasingly difficult throughout
the evolution of the system [4, 17, 18], eventually leading
to technical debt [19, 20]. The technical debt represents
short-term applications of design and implementation con-
structs that make future modifications more costly or im-
possible, thus impacting system’s maintainability and evo-
lution [20]. Applied to variability mechanisms, it led to the
term of variability debt [21], which is especially character-
ized by the lack of knowledge on implemented variability
in the source code, with the same kind of negative im-
pacts. Therefore there is a need for a solution to facilitate
the comprehension of OO variability implementations and
their quality in single code bases that do not contain any
other information except the implementation mechanisms.
The identification of such implementations can then be
exploited in different ways, from the maintenance of the
variable system to some variability reengineering [22] or
a migration to a full software product lines [23]. For ex-
ample, the result of the underlying detection used in our
solution (i.e., symfinder) has been successfully mapped
to a domain feature model in two different variable sys-
tems [24, 25]. However, we only focus in this article on a
visualization adapted to the identification of the OO imple-
mented variabilities to facilitate variability comprehension
of large OO systems.

Comprehending properties of software systems is of-
ten assisted by visualizations [26, 27, 28] which, relying
on metaphors to represent them [29, 30], help their under-
standing [31]. On one side, while visual approaches have
been proposed to understand variable systems [32], they
focus on domain variability [33, 34] that is often not docu-
mented in the case of OO systems [35]. The symfinder ap-
proach [36, 37] and its extension symfinder-2 [38] proposed
to identify OO variability implementations rely on a graph
to represent them. However, tackling large codebases is
known to be a weak point of graph visualizations [39]. On
the other side, metaphors scaling on large systems have
been proposed such as the metaphor of the city [40]. This
metaphor has been adapted to represent multiple proper-
ties of OO systems such as quality metrics [41] and their
evolution [42] with a city shape based on packages. How-
ever, the proposed organizations are not adapted to rep-
resent OO variability implementation mechanisms as their
identification relies on dense zones of classes with high vari-
ability metrics and the usage relationships between these
classes.

In this paper, we propose a visualization, VariCity ,
that relies on the metaphor of the city to reveal zones of
high density of variability implementations in an OO sys-
tem. Classes with metrics about the OO mechanisms (e.g.,
number of overloaded methods in a class) are obtained by
reusing the symfinder toolchain [36]. In the visualization,
buildings represent classes linked together through streets
representing usage relationships (i.e., composition, aggre-
gation). While the buildings dimensions are used to rep-

resent computed variability metrics inherent to the classes
(i.e., overloads of methods and constructors), their color
and texture allow representing quality metrics. Configura-
tion options are provided to tailor a view on a subpart of
the studied system and display only the variability of in-
terest for the user. We also demonstrate the extensible na-
ture of VariCity by introducing the VariMetrics extension
which exploits software quality metrics to reveal critical
zones concentrating technical debt. One can choose the
quality metrics to be displayed, some displaying strategies
(red-to-green sequence, saturation, crackled texture) and
how to combine them, to tailor the visualization according
to their needs. The capacity of the visualizations to reveal
zones concentrating variability implementations and be-
ing quality-critical has been evaluated by applying them
to multiple variability-intensive open source software sys-
tems implemented in Java. We also report on a controlled
experiment comparing the gain brought by the visualiza-
tion with the use of an IDE on a mid-size variable OO
system.

An earlier version of the presented approach appeared
at the VISSOFT’2021 conference [43] in which we intro-
duced VariCity . The VariMetrics extension of VariCity
adding support for quality metrics on the view has been
presented at the SPLC’2022 conference [44]. This article
substantially extends these publications by

• providing a more complete validation on the VariC-
ity visualization, with quantitative measurements on
the identified zones of variability;

• providing a similar validation on the VariMetrics vi-
sualization, which was only validated through usage
scenarios [44];

• providing a controlled experiment evaluating the gain
of using VariCity compared to an Integrated Devel-
opment Environment (IDE) with 2 separated groups
of 24 users.

The remainder of the paper is organized as follows.
Section 2 introduces OO variability implementations and
how they can be identified. Section 3 defines the require-
ments for a view to comprehend OO variability imple-
mentations and introduces the city metaphor. Section 4
presents VariCity , detailing the view’s organization and
the visual axes used to represent variability, and its exten-
sion VariMetrics. In Section 5, we apply the visualizations
on multiple open source Java systems and show their ca-
pacity to reveal zones concentrating variability implemen-
tations (Sections 5.1 and 5.2). We also evaluate how the
quality metrics visualization, when available, reveals in-
debted classes concentrating variability implementations
(Section 5.3). We report on a controlled experiment con-
ducted to evaluate the comprehensibility of the visualiza-
tion by real users in Section 6. Threats to the validity of
our approach and its limitations are discussed in Section 7,
while Section 8 presents related work. Finally, Section 9
concludes the paper and discusses future work.
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2. Background

Many object-oriented software systems become pro-
gressively variability rich and do not follow the full soft-
ware product line paradigm [6, 7]. Their domain variabil-
ity (i.e., features) is then not very well documented and is
not made explicit within code assets, potentially causing
technical debt [21]. In this context, comprehending the
variability at code level is crucial for its management. Ac-
tivities related to comprehension can be as diverse as main-
taining or evolving the code, mapping the implemented
variability to domain features [17], or conducting an on-
boarding process for newcomers [45].

2.1. Implemented variabilities in object-oriented systems

Variability in object-oriented systems can be distin-
guished in code assets through three different parts: core,
commonalities, and variations [46, 47, 48]. The core part
corresponds to assets included in any of the final software
products [46]. A commonality is a common part between
the related variations of code assets, while the variations
indicate how and when should code assets vary [1]. Com-
monalities and variations are respectively abstracted in
terms of variation points (vp-s) and variants [49, 50, 51],
which are both related to concrete elements in code as-
sets [52]. A variation point identifies one or more locations
where the variation will occur, while the way that a varia-
tion point is going to vary is expressed by its variants [49].

In object-oriented variability-rich systems implemented
within a single codebase, the implementation of these vari-
ability elements reuses different existing mechanisms and
techniques, such as inheritance, parameters, constructor
and method overloading, or some software design patterns [13,
14, 4, 53]. Figure 1 shows an example of variability im-
plemented using inheritance (the Plot superclass repre-
sents the vp while its subclasses represent the variants),
constructor overloading (the PiePlot constructor is a vp
with two variants being its two overloads) and method
overloading (the addDomainMarker method is a vp with
two variants being its two overloads). As the code units
that structure the systems are classes, it has been shown
that they do not align well with the implemented vari-
ability or the domain features [54, 7]. This hampers the
comprehension of variability as classes cannot be directly
used to understand the variability implementations. Vari-
ability implementation techniques have been analyzed ac-
cording to different taxonomies [14, 55, 13, 56, 7], and
it has been acknowledged that there is currently no ap-
proach to represent vp-s with variants in all forms of code
assets [32]. In our proposition, we do not consider UML-
based product lines, such as the ones that could be built
with dedicated support like SMarty [57], nor codebases
with variability-related annotations. In both cases, such
additional information could be used and related to what
is analyzed within the VariCity toolchain, while in this
paper we focus on codebases with variability implemented

with object-oriented techniques and with no other associ-
ated models.

Besides, if a complete representation of the implemented
variability is not possible, it may be possible to compre-
hend it through SPL migration techniques. The techniques
rely on diverse approaches, such as feature location, fea-
ture identification [58, 59, 22], feature delimitation (with
annotations) [9], or feature modularization [7]. However,
in all these techniques features tend to describe the do-
main variability of an SPL or a variability-rich system,
but are required to be known in advance [11, 51]. As do-
main variability is hardly documented in variability-rich
systems [35], and with a single codebase, reengineering of
features from clones of a system cannot be used [60]. In
our context, migrating thus requires substantial manual
effort and implies a complete paradigm shift.

2.2. Metrics to identify OO variability implementations

Identifying vp-s with variants [61] implemented with
object-oriented techniques in a single codebase is thus a
hard problem by the diversity of the implementations, each
one requiring its own way to be identified [61, 53]. Re-
cently, Tërnava et al. [36] proposed an approach to iden-
tify OO variability implementation mechanisms and, con-
sequently, vp-s with variants implemented by these tech-
niques in Java systems. Figure 1 depicts the identification
mechanism as implemented in the symfinder toolchain [37,
38] and the different kinds of information computed and
obtained from the static analysis made by the toolchain
through a graph database. Each class is represented as
node in a graph with usage (references to other classes,
cf. Definition 1) and inheritance relationships being edges.
The static analysis adds labels on them together with met-
rics on the usage of variability related mechanisms. A vp
with variants at class level is then labeled VP, and its vari-
ants have a VARIANT label (Definition 2). Classes with
method level vp-s are labeled METHOD LEVEL VP. If a class
is the vp of a design pattern, it is labeled with its name
(e.g., STRATEGY). symfinder is capable of detecting several
implementations techniques, some related to inheritance
(i.e., class subtyping, method and constructor overload-
ing,), the others being design patterns (i.e., strategy, tem-
plate, decorator, and factory). The different metrics on
the number of vp-s and variants per class are also com-
puted. For example, these metrics show that XYPlot ex-
poses much more method vp-s and variants than PiePlot.

It has also been shown that locations in the code con-
centrating such mechanisms denote zones of interest in
terms of variability [36]. Classes being part of such dense
zones, called hotspots, exhibit two properties [38]: an indi-
vidual density (Definition 3) representing a concentration
of variability implementation mechanisms inside the class
(overloads of methods and constructors), and a collective
density (Definition 4) representing the proximity in terms
of usage relationship to another class exhibiting variabil-
ity implementations (i.e., vp or variant). They can be
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Figure 1: Depiction of symfinder ’s variability identification mechanism

automatically determined thanks to the previously intro-
duced metrics using thresholds on the minimum number
of variants of a vp and its maximum distance in usage
relationships with another vp or variant (Definition 5).
Consequently, symfinder detects what could be defined as
implementation variability patterns, either by the presence
of specific design patterns or by the concentration of im-
plementation techniques that all together denotes poten-
tial variability implementation locations. Both the design
patterns and the density principle were validated on large
software and for a single system with its software archi-
tect [16]. Besides, it must be noted that cross-cutting
relations or dependencies between implemented variabil-
ity locations cannot be determined by the symfinder tech-
nique. While a feature model could be generated from the
symfinder output, we believe it would not be as useful as a
visualization related to the codebase itself. However, some
additional work has demonstrated that the detected vari-
ability can be mapped to a domain feature model with an
average precision1 and a good recall [24, 25]. The graph
representation was also extended so that the mapped fea-
ture can be read while hovering on the different nodes
representing the implementation classes. This shows the
potential usages of the identification of this implemented
variability, which could range from facilitating mainte-
nance to a migration activity towards an SPL.

While an inheritance graph representation and the com-
puted metrics were good enough to validate the relevance
of symfinder ’s identification technique in [36], its exten-
sion to represent the needed additional usage mechanisms
considered in symfinder-2 [38] has demonstrated that the
resulting graph visualization becomes cumbersome to un-
derstand when the number of classes to display increases.
While techniques have been proposed to tackle scalabil-

1the rather low precision is mainly due to the use of a partial
feature model and the absence of mapping to mandatory features in
the two considered systems.

ity issues of graph visualizations [62, 63], the challenge
of tackling large codebases requires a scalable visualiza-
tion, which is known to be a weak point of graph visu-
alizations [39]. Moreover, according to a recent mapping
study Lopez-Herrejon et al. [32], while many visual repre-
sentations of variability management approaches are pro-
posed in the context of SPLs, they most often target do-
main variability (e.g., features in a feature model). These
visual representations cannot then be reused directly.

Consequently, while identifying the variability imple-
mentations (i.e., variation points and their variants) di-
rectly in code assets is the first activity to comprehend
variability, it does not find satisfactory support at medium
to large scales.

3. Motivations

In this section, we determine the requirements a vi-
sualization to assist the comprehension of OO variability
implementation mechanisms needs to fulfill (Section 3.1).
We then introduce the city metaphor and examine to what
extent it can respect such requirements (Section 3.2).

3.1. Requirements

As program comprehension is seen as a process of both
information seeking [64] and feature location [58], it is ob-
vious that even if our problem is not related to domain fea-
tures in a classic SPL terminology, identifying vp-s with
variants is indeed a comprehension problem. Moreover,
SPLs and variable software in general are known to be
complex and difficult to apprehend [45], and tools are
essential to illustrate software reuse concepts [65]. We
then first advocate that this context naturally calls for
visualization-based solutions as they are often used as sup-
ports to assist the comprehension of large software sys-
tems [66, 67, 68, 28] and aspects related to their imple-
mented variability [69, 34, 33]. As the essence of software
visualization consists of creating an image of software by
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means of visual objects that represent structure and/or
behavior, we believe it is well suited to enable perception
of variability implementations with a closer fit to the user
mental model.

The goal of such a visualization being to assist the
comprehension of variability implemented using OO mech-
anisms, it must therefore (i) reveal zones of interest as
described in Section 2.2 (i.e., zones exhibiting individual
and collective density). As the variability metrics and the
involved mechanisms to be displayed are diverse and of
heterogeneous nature (classes, links between them, design
patterns), displaying a view with all classes (and their us-
age / inheritance relationships) altogether would overload
the visualization. Therefore, it should also (ii) provide
configuration options allowing to display only the classes
(and related relationships /metrics) of interest for the user
as described by the Shneiderman information seeking man-
tra [70]: overview first, zoom and filter, then details on de-
mand. Finally, understanding the quality of OO variability
implementation mechanisms is essential as it can poten-
tially harm their comprehensibility. While we could imag-
ine navigating between a specific visualization and a tool
specific to quality metrics, this would be cumbersome as it
would require manually finding and mapping information
having heterogeneous representations. The view should
therefore be able to (iii) display quality metrics. State-
of-the-art proposes a plethora of quality metrics to mea-
sure several properties of a software system [71], ranging
from the architecture [72] to the source code level [73, 74].
Since no metric is relevant for all software systems due to
the elusive definition of quality [75], software practition-
ers need to pick and combine different metrics to obtain a
quality measure relevant for their use case. Being able to
configure the quality metrics to display is therefore essen-
tial. We synthesize the determined requirements for our
visualization as follows:

Requirement 1. Reveal zones of interest (i.e., zones ex-
hibiting individual and collective density).

Requirement 2. Provide configuration options allowing
to display only the classes (and related relationships /met-
rics) of interest for the user.

Requirement 3. Display quality metrics and provide op-
tions to configure them.

Basing ourselves on this list of requirements, there is a
need to find an appropriate visualization allowing to fulfill
it.

3.2. On the city metaphor

A first approach could be to evolve the symfinder ’s
graph visualization to improve its scalability [62, 63], but
as multiple visualizations rely on metaphors to get an un-
derstandable graphical representation [30], we sought for
an appropriate metaphor. The city metaphor [29] has
been applied to multiple types of metrics on software sys-
tems: dynamic behavior (such as concurrency between

classes [76] or memory consumption of heaps [77]), and
static properties such as dependency and communication
links between components [78].

Visualization cities have also been proposed to under-
stand OO software systems, with first CodeCity [41, 40]
that uses buildings to represent classes, grouping them in
districts representing packages. A temporal dimension was
also added to visualize the evolution of the metrics through
multiple versions of the system, first in CodeCity [79] and
also in a more recent visualization called m3triCity [80,
81]. The Evo-Streets [42] approach also uses the city meta-
phor, but uses streets to represent the package decompo-
sition instead of nested boxed areas in CodeCity. Mul-
tiple approaches also reuse the city metaphor by adding
other visual dimensions such as arcs between buildings [82,
83] or by adapting it to more immersive techniques, such
as virtual reality for CodeCity [84] and VRCity [85], or
Minecraft for CodeMetropolis [86].

The popularity of this metaphor and the fact that Code-
City showed to help complete program comprehension tasks
[87, 88] led us to the hypothesis that visualization based
on the city metaphor could help the comprehension of OO
variability implementations and their quality. However,
cities such as CodeCity and Evo-Streets are organized re-
lying on the package decomposition. While this arrange-
ment is adapted to identify packages containing quality-
critical classes, it does not allow to represent the inheri-
tance and usage relationships between the classes. These
mechanisms being involved in variability implementations,
displaying them is essential to fulfill Requirement 1. We
thus propose to adapt the city metaphor to display OO
variability implementations.

4. VariCity: a configurable and extensible visual-
ization for variability comprehension

We hereafter detail howVariCity adapts the city metaphor
to the problem of OO variability comprehension by an-
swering Requirements 1, 2 and 3 in Sections 4.1, 4.2 and 4.3
respectively.

4.1. Main principles for revealing zones of interest

Buildings. In CodeCity [79], classes are buildings and
their dimensions evolve according to metrics related to
code quality which are inherent to the represented class,
such as the cyclomatic complexity or the number of lines
of code (LoC). A large number of methods leads to the cre-
ation of a tall and eye-catching building. VariCity aims
to focus the user on classes making heavy use of variabil-
ity implementations (cf. Requirement 1). Therefore, we
choose to shape the dimensions of every building so to rep-
resent the class-based metrics related to variability (i.e.,
the number of variants at method level). A tall building
then shows a large number of method variants, whereas a
large building shows a large number of constructor vari-
ants. In addition the color of buildings (by default yellow
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Table 1: Visual properties and their default color

Representation in VariCity Signification

Buildings

Yellow color Variation point that is part of a hotspot

Blue color Non vp class that is part of a hotspot

Gray color Class that is not part of a hotspot

Pyramide crown Entry point class

Dome crown Strategy pattern

Chimneys crown Factory pattern

Inverted Pyramide crown Template pattern

Sphere crown Decorator pattern

Streets

Plan (red) Street aggregating entry point classes

Plan / Underground (green) Usage relationship

Aerial (blue) Inheritance relationship

for vp-s and blue for non vp-s) distinguishes classes de-
fined as hotspots (cf. Section 2.2). Such classes are part of
dense zones of variability and are vp-s identified by match-
ing one of the two following requirements: (i) they have
a minimum number of variants, 5 in our experiments, or
(ii) they are close in usage to another vp (i.e., they are
situated at less than 3 transitive hops in the usage re-
lationships graph). The shape of the building is altered
according to the design pattern(s) exhibited by the class
(cf. Table 1). A design pattern often involves multiple
classes, however only the vp of the design pattern has a
special crown on it, not to overload the visualization.

Displaying differently classes being hotspots and/or ex-
hibiting design patterns brings to the user insights on highly
variable zones of the project, which she can then explore
in more detail by using the different interactions provided
by the visualization (spanning, zooming).

Streets. Analogously, as the representation proposed
by CodeCity groups classes belonging to the same pack-
age in a district, our objective is to group in the same
neighborhood classes that concentrate a high density of
variability implementations.

As stated in Section 3.2, although the nested districts
allow to efficiently represent the decomposition hierarchy
of classes belonging to nested packages, it is not adapted to
our notion of density of variability implementations which
derives from usage relationships between classes (as a class
can use and/or be used by multiple other classes). We
thus rely on the visualization proposed by Evo-Streets [42],
which uses streets to decompose a hierarchy instead of
boxes. In the original Evo-Streets layout, streets repre-
sent subsystems, with orthogonal branching streets repre-
senting their subsystems. The buildings on a street rep-
resent the modules belonging to this system. We adapt
the visualization with buildings on streets being classes,
and streets departing from a building (instead of another
street) to represent a usage relationship between this class
and every other class whose building is on the street. As
we consider inheritance links as less important for vari-
ability, they are represented as aerial links between build-

(a) Elements displayed by default

(b) Inheritance links and underground usage links appear when hovering
a building

Figure 2: Visual properties of VariCity

ings, being only displayed when hovering over a building.
This enables the user to see the inheritance information
if needed, while the hotspot coloring and streets for usage
bring the most important information first. A summary of
the visual properties is presented in Table 1 and illustrated
in Figure 2.

4.2. Configurable cities

As stated by Requirement 2, configuration options must
be provided to focus the visualization around known points
of interest of the system. The idea is therefore to allow the
users to create a city in line with the most important el-
ements for them and to give a first simplified vision of
the city which does not show all the relationships between
classes.

Input parameters. The visualization algorithm thus relies
on three inputs that focus the view.

Entry point classes. Entry point classes represent
important points of interest for the comprehension of the
system (e.g., endpoint of an API that could be automati-
cally inferred, or complex classes of the system) from which
we start the exploration of the system. Adapting the entry
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Usage density

Street
(usage relationship)

Root street
Entrypoint classes

Figure 3: Placement algorithm

point classes allows to delimit the subpart of the system
to explore.

Usage orientation. The usage orientation can be
set to IN and/or OUT depending on the objective of the
exploration and what the user aims to understand.

• An orientation IN means that the classes displayed
will be the classes using the defined entry points (i.e.,
having it as an attribute or method parameter). This
fits cases where one wants to reuse a part of the
implementation as it will show which classes already
use the entry point so that a newcomer can see how
the class is already used.

• On the opposite, an orientation OUT means that the
classes displayed will be the classes being used by
the defined entry points (i.e., being an attribute or
method parameter of the entry point). This is par-
ticularly adapted in the case one wants to add a new
feature as it enables to see which classes are used by
the entry points to know which classes one may need
to reuse.

• Finally, choosing IN/OUT gives an overview of both
aspects.

Usage level. The usage level is an integer value. With
a usage level of n, all classes distant from an entry point
by n usage relationships will be displayed. For example,
a visualization set up with an entry point, usage orienta-
tion OUT and usage level of 2 will display the entry point,
the classes being used by the entry point, and the classes
used by these classes. Being able to adapt this value is
important as depending on the complexity or the layered
architecture of a system, a given level of usage might be
adapted to it but shows too many classes on another one.
Determining the usage level can only be done empirically.
A level too low might hide important information for the
comprehension of the variability, and a level too high might
display too much information.

Shaping the city. The three input parameters are used to
shape the city. Figure 3 illustrates the city organization.
The root street appears in red and aggregates all the entry
points. Then, starting from them, classes using (or being
used by) them up to the usage level set are displayed. A
street is initiated from an entry point, and for each class
related to it, a building is placed on the border on the
street. In order to exhibit density between classes, we need
to place as close as possible buildings linked by a usage
relationship to the same class. Following this principle,
we place the buildings by decreasing order of width on
both sides of the street, minimizing the total length of the
street to keep the buildings as close as possible.

Our placing algorithm can lead to long straight streets
if a class uses many others. Work presenting techniques to
prevent this behaviour and keep cities compact (such as
folding) exist [89]. However, this information is valuable
in the case of VariCity as it allows to quickly visualize
classes concentrating many usage relationships. It is also
likely to happen that a class is linked through a usage rela-
tionship to multiple visualized classes. In that case, these
additional usage relationships are represented as green un-
derground streets and appear only when hovering the class,
as well as the inheritance relationships not to overload the
visualization2. An example of visualization after genera-
tion is presented in Figure 2a. Additional links appearing
on hover are presented in Figure 2b.

(Re)configuring the view. Since determining values for the
three parameters is dependent on every codebase, they can
then be adapted to gradually explore the system’s vari-
ability by modifying the nature and number of displayed
relationships and classes. We will illustrate in Section 5
how different values for these inputs impact the structure
of the visualization.

Additional options are provided to adapt the visual-
ization, such as visual settings (colors of the visual ele-
ments, padding between the buildings) that may improve
the readability of the visualization. Metrics for the height
and width of the buildings can also be adapted. This pa-
rameter may be useful for the expert that has a particu-
larly deep understanding of the system. For example, if
the method level variability of classes is due to constructor
overloads, it may be useful to use this metric for the height
instead of the width of the buildings. Finally, a blocklist
enables filtering out individual classes or packages consid-
ered as irrelevant.

4.3. Extending VariCity to reveal indebted variability im-
plementations

As stated by Requirement 3, the visualization must
also be extensible, and as first validation of this extensibil-
ity, we should be able to create an extended visualization

2When hovering over, class names are also displayed in a sidebar
for the same reason.
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to display quality metrics and find indebted implementa-
tions of variability.

Wolfart et al. [21] defined variability debt as ”Techni-
cal debt caused by defects and sub-optimal solutions in the
implementation of variability management in software sys-
tems”. Software quality metrics have been recognized as
useful for determining technical debt at the code level, and
in the domain of OO systems, multiple works focus on de-
termining software quality metrics [90, 91, 92, 73, 93, 94],
measuring the system evolution [95, 96], and validating
the relevance of these metrics [97, 98]. Multiple tools and
approaches also exist to compute metrics on an OO code-
base, analyze its quality [99, 100], and determine technical
debt [101]. Such metrics are often exploited in visualiza-
tions [102, 100], such as CodeCity [41] and Evo-Streets [42]
that are now bundled in reference code analysis tools such
as SonarQube3. Such visualizations, however, do not al-
low displaying the use of OO variability implementations
mechanisms. Even in case some experts have good knowl-
edge of the implemented variability of their system, they
will need to observe the quality of the concerned classes
one by one.

The VariMetrics extension thus increases the capabil-
ities of VariCity so that experts can choose the quality
metrics they want to display, and how to combine them,
to tailor the visualization according to their needs. To do
so, the symfinder toolchain has been extended to support
fetching of the quality metrics from the SonarCloud API
(4.) or from a local SonarQube instance. While by de-
fault VariCity displays in yellow vp-s being hotspots, in
blue variants being hotspots, and in grey classes not be-
ing hotspots (Figure 4a), other city visualizations such as
CodeCity and Evo-Streets color the buildings to expose
properties inherent to the classes [103, 104]. As we study
variability implemented using OO mechanisms, we advo-
cate that OO quality metrics at the class level are relevant
to identify OO variability debt. We thus propose to use
the walls of the buildings to display quality information
in VariMetrics. Two coloring strategies are proposed: a
coloration following a red-to-green sequence (Figure 4b),
and a saturation keeping the original colors of the build-
ings and lightening or darkening them (Figure 4c). While
VariMetrics should enable some combination of metrics,
combining both coloring strategies leads to bivariate chro-
matic maps, which are known to be difficult to read [105].
On the opposite, applying textures on colors has shown
to be an efficient way to display multiple software quality
metrics [106]. We thus provide a crackled texture (Fig-
ure 4d) variably covering the building, enabling views si-
multaneously exhibiting two quality metrics.

These three visual properties are configurable to be
adapted to the metric they represent, as some quality met-
rics are symptoms of lower quality if they have a high value
(e.g., complexity) but other metrics with such values may

3https://www.sonarqube.org/
4https://sonarcloud.io/web_api

(a) VariCity (b) Red-green (c) Saturation (d) Cracks

Figure 4: Visual properties used to display quality metrics compared
to the original VariCity visualization.

instead indicate good quality (e.g., test coverage). Anal-
ogously, not all projects have similar ranges of values for
the same metric, and proposing a fixed range of values may
not allow revealing a difference of quality in some projects,
thus VariMetrics allows to specify these ranges. It must
be noted that we rely in this article on the quality metrics
allowing to identify OO variability debt, but the users can
configure VariMetrics for the metric they want, as long as
it is inherent to the class.

5. Validating the VariCity visualization approach

To evaluate whether the proposed VariCity approach
is adapted to visualize OO variability implementations, we
aim to answer the following research questions:

RQ1: Does the VariCity view reveal zones concen-
trating variability implementations? This RQ
has for purpose to validate Requirement 1. To an-
swer it, we design VariCity views for 10 variable open
source systems. We then enumerate revealed zones
concentrating variability implementations and man-
ually evaluate their relevance (Section 5.1).

RQ2: Are the configuration capacities useful to re-
veal the zones concentrating variability im-
plementations? This RQ has for purpose to vali-
date Requirement 2. To answer it, we illustrate how
we designed the views presented in RQ1 and show
how modifying the parameters allow to shape differ-
ent cities (Section 5.2).

RQ3: Does the VariMetrics extension allow reveal-
ing indebted zones of variability implementa-
tions? This RQ has for purpose to validate Re-
quirement 3. To answer it, we design VariMetrics
views for 7 variable open source systems. We then
enumerate zones concentrating both variability im-
plementations and critical quality (Section 5.3).

5.1. Answering RQ1

The symfinder toolchain, which detects potential vp-
s with variants, has been applied on ten popular open-
source and variability-rich Java systems [38], being ap-
plications, frameworks, or libraries, with different char-
acteristics (size, variation points, explicit API provided).
We chose to select the same systems to test the results
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Table 2: Subject systems, LoCs obtained with the cloc [107] tool

System Analysed LoC # vp-s/variants
# zones View configuration

revealed relevant # entry point(s) Usage level Usage orientation

Java AWT 67,229 2,501 7 7 1 3 IN/OUT

Apache CXF 656,472 11,028 5 4 1 6 OUT

JUnit 7,717 354 4 4 2 6 IN/OUT

Apache Maven 80,839 1,759 5 5 3 7 OUT

JFreeChart 94,384 2,849 10 7 2 4 OUT

ArgoUML 134,359 2,735 6 6 3 2 IN/OUT

Cucumber 42,662 520 3 1 1 9 IN/OUT

Logbook 225,125 258 6 5 2 4 OUT

Riptide 12,626 320 4 2 1 6 IN/OUT

NetBeans 1,284,416 10,357 8 7 1 5 IN/OUT

of VariCity . Table 2 lists the systems and the deter-
mined VariCity configuration to facilitate the exploration
or deepening of a particular area. For each generated vi-
sualization, we manually identify the revealed zones con-
centrating variability implementations. As detailed in Sec-
tion 4.1, such zones are characterized by buildings of large
dimensions (representing density of variability implemen-
tations in a class), specific buildings for variability-related
design patterns, long streets (representing usage between
such classes), and hotspot classes appearing in color. Then,
we manually examine the involved classes and, relying on
comments and documentation, determine whether they
represent actual variability. We hereafter illustrate this
procedure on the largest studied systems, NetBeans, from
which more than 1.2 MLoC were analyzed.

We configure the visualization to use the endpoint of
the API, namely JavaPlatform5, as the entry point of the
visualization. To have a first overview of the classes being
closely related to the endpoint of the API, both classes
using and being used by JavaPlatform on 5 levels (usage
level 5, orientation IN and OUT) are configured to be shown.
The obtained visualization is shown in Figure 5a.

A neighborhood of tall and colored buildings (circled
in yellow) detaches from the other buildings in the city,
revealing zones with classes heavily using variability im-
plementation techniques. They thus represent a revealed
zone of the visualization, which one can consider being
variability patterns. By zooming and spanning the visu-
alization, we can focus on this precise part of the city
(Figure 5b). The different implemented design patterns
are distinguishable thanks to the special shape of their
buildings (e.g., JavaFix6 is a Strategy, testng.Abstract-
TestGenerator7 and junit.AbstractTestGenerator8 are
Templates). The two last classes are not only design pat-
terns but also hotspots, giving a strong intuition about
the relevance of the potential identified vp. In fact, these
classes allow to generate test code for two different unit

5org.netbeans.api.java.platform.JavaPlatform
6org.netbeans.spi.java.hints.JavaFix
7org.netbeans.modules.testng.AbstractTestGenerator
8org.netbeans.modules.junit.AbstractTestGenerator

test libraries, JUnit9 and TestNG10 and are variants of
the CancellableTask interface11. This zone is thus con-
sidered as relevant as it represents actual variability.

We notice that, as expected, the number of revealed
zones fluctuates between the systems. This can be ex-
plained not only by the fact that being implemented us-
ing OO mechanisms, the structure of the variability is
strictly related to the OO structure of the system. Con-
sequently, as we used for all systems the same thresh-
old values to identify hotspot classes (i.e., ≥ 20 variants
per vp, ≤ 5 usage relationships of distance, cf. Defini-
tion 5), smaller systems like Logbook or Riptide show lit-
tle to no hotspot classes. There is thus a need to con-
figure these thresholds for each project [38]. Neverthe-
less, the obtained results show that revealed zones dense
in variability implementations actually correspond to im-
plemented variability. This is however not the case for
Cucumber, a BDD testing library, for which 3/4 zones do
not represent actual variability (Figure 6). The 1 class
is io.cucumber.core.runner.PickleStepTestStep and
is a variant providing the default implementation of the
io.cucumber.plugin.event.PickleStepTestStep inter-
face. The 2 class is InvalidMethodSignatureException
and is identified as a vp as it has 3 subclasses. However,
it does not implement variability and is only used as a
way to aggregate behaviour between the variants. Finally,
the long street initiating the 3 group has for origin the
CachingGlue class that uses multiple vp-s to aggregate in-
formation in a single representation allowing to cache them
and speed up testing, and therefore does not represent vari-
ability. It is important to notice that as illustrated with
this example, zones are not only revealed by being identi-
fied as hotspots by the underlying identification technique,
but also by the organization of the city grouping together
classes using each other.

Answer to RQ1. As a result, for all the considered
systems, which have also been studied with the extrac-

9https://junit.org/junit5/
10https://testng.org/doc/
11See here and here.
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(a) java package of NetBeans 12.2, usage level 5, orientation IN/OUT,
JavaPlatform as entry point.

(b) Zoom on a hotspot zone

Figure 5: Visual identification of revealed zones dense in variablity
implementations

tion tool symfinder [38], the VariCity visualization reveals
the same zones concentrating variability implementations.
Such zones mainly represent actual variability for a ma-
jority of the systems, thus providing a positive answer to
RQ1. The reader can find in the reproduction package (af-
ter the conclusion), annotated views excerpts that detail,
for each system, the revealed and relevant zones.

5.2. Answering RQ2

While the previous section illustrates that the visual-
ization can exhibit relevant dense zones of variability im-
plementations, it requires as a first step to determine ade-
quate values for the parameters shaping the view (i.e., en-
try point classes, usage orientation and usage level). Here-
after, we illustrate how adapting these parameters allow
shaping the view by detailing how we obtained the view
for one of the projects listed in Table 2, JFreeChart.

①

 ②

③

Figure 6: Revealed zones in the generated visualization for Cucum-
ber. Irrelevant zones are delimited by violet boxes and the relevant
zone by a blue box.

JFreeChart is a library written in Java allowing to draw
different types of charts. As this system is a library, the
endpoint it provides enabling its reuse represents a rele-
vant entry point to start its exploration. We therefore set
as entry point JFreeChart12, being the endpoint of the
library used by the users to create plots. We also set as
entry point Plot13, the superclass of all classes implement-
ing a different type of chart. To visualize the classes of the
system starting by the library’s endpoint, the usage ori-
entation is set to OUT. Finally, the usage level is set to 2
to evaluate a first visualization with a small set of classes,
shown in Figure 7a.

By hovering over Plot, we can see the different dis-
played subclasses of the class (i.e., the variants of the
vp Plot). Two classes, XYPlot14 and CategoryPlot15,
are noticeable due to their important height showing an
important number of method overloads. Besides, they are
both design patterns. As the visualization shows few zones
concentrating variability implementations, we add XYPlot

and CategoryPlot as entry points (Figure 7b). The shape
of the city changes to display the usages related to each
entry point in separated neighborhoods, allowing to better
visualize if (i) a particular entry point is the starting point
of a dense zone of variability implementations, and (ii) a
class is related, to a certain degree, to two entry points
with underground streets. On Figure 7b, an important
number of classes making heavy use of variability imple-
mentations is visible (circled in yellow), and are directly
used by XYItemRenderer16, itself related to both XYPlot

and classes related to CategoryPlot.
While the addition of entry points allows displaying

more classes related to these new entry points, increas-
ing the usage level can be used to broaden the view by

12org.jfree.chart.JFreeChart
13org.jfree.chart.plot.Plot
14org.jfree.chart.plot.XYPlot
15org.jfree.chart.plot.CategoryPlot
16org.jfree.chart.renderer.xy.XYItemRenderer
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PolarPlot
JFreeChart

CategoryPlot

XYPlot

Plot

LegendItem

(a) JFreeChart, usage level 2, orientation OUT, JFreeChart and Plot
as entry points. Displaying links of Plot reveals that XYPlot and
CategoryPlot are subclasses.

(b) Figure 7a after adding XYPlot and CategoryPlot as entry points

org.jfree.chart.plot.
CategoryPlot

org.jfree.chart.plot.
XYPlot

org.jfree.chart.LegendItem

org.jfree.chart.
JFreeChart

org.jfree.chart.plot.Plot
org.jfree.chart.
ChartPanel

org.jfree.data.xy.
XYDataset

(c) Figure 7a after increasing the usage level to 4

Figure 7: Designing JFreeChart’s visualization

visualizing classes being used and/or using each of the al-
ready displayed classes, as shown on Figure 7c. We no-
tice that although the visualization is more furnished, the
noticeable zone issuing from XYItemRenderer is still visi-
ble. Additionally, increasing the usage level led to display-
ing XYDataset17 and the multiple classes it uses (circled
in violet), creating a zone of interest. Therefore, while
adding entry points can be used to focus on some particu-
lar classes, increasing the usage level is particularly useful
to explore the system without any particular focus.

We notice in Table 2 that the values allowing to de-
sign the views differ between the projects. For example,
while a usage level of 4 for JFreeChart leads to a visual-
ization revealing 10 zones (Figure 7c), a usage level of 11
for Cucumber reveals 3 zones (Figure 6). This difference
can be explained not only by the fact that JFreeChart
is larger than Cucumber, but also by the fact that their
organizations are different. Although they are both li-
braries, JFreeChart provides a main endpoint for reuse,
JFreeChart, while Cucumber exposes a much larger num-

17org.jfree.data.xy.XYDataset

ber of classes to reuse, being a BDD testing library.

Answer to RQ2. It results that adapting the view’s
parameters allow to tailor it to display different sets of
classes. Such configuration parameters are therefore es-
sential to design views focusing on a restrained number of
classes regardless of a system’s architecture, thus provid-
ing a positive answer to RQ2.

5.3. Answering RQ3

To answer RQ3 and evaluate whether the extended
VariMetrics visualization enables visualizing indebted zones
of variability implementations, we apply our approach to
multiple open-source systems. We select views with met-
rics combinations revealing the variability implementations
that are shown by VariCity while being the most quality-
critical.

5.3.1. Relevant quality metrics

In the work of Wolfart et al. [21] on the concept of vari-
ability debt, the authors introduce a catalog of ten forms
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of variability debt resulting from an analysis of 52 indus-
trial case studies reporting technical debt issues on vari-
able software systems. We therefore base ourselves on this
work to determine relevant occurrences of variability debt
in our context.

As OO variability implementations rely solely on the
standard object mechanisms, the availability of the source
code is the only requirement to identify them. From the
possible causes of variability debt, it is then possible to
find code duplication and system-level structure quality is-
sues. Most often, tests sources are provided along with
the source code, enabling also the identification of lack of
tests.

However, other information is not always available, es-
pecially in the case of open-source systems, such as the
documentation (leaving aside out-of-date or incomplete doc-
umentation, duplicate documentation, old technology in use
and multi-version support), test cases definitions (leaving
aside expensive tests), design choices (leaving aside archi-
tectural anti-patterns) or a list of features and their map-
ping with their implementations (leaving aside poor test of
feature interactions).

It results that relying on the source code and its tests,
we can cover Code duplication, Lack of tests, and System-
level structure quality issues in the implementation. There
is therefore a need, for each of these types of variability
debt, to determine quality metrics allowing their identi-
fication. We choose code block duplication to measure
Code duplication as we believe that line duplications could
lead to multiple duplications not related to variability. We
choose the test coverage to measure Lack of tests. As test
coverage can be measured at multiple granularities (line,
condition, . . . ), we selected a metric aggregating measures
for different granularities. Finally, structure quality is-
sues in the codebase impact maintainability and evolution
of the system and hamper the system’s comprehension.
Therefore, we advocate that assets suffering from this type
of variability debt are hardly understandable, and cogni-
tive complexity [93] appears to be relevant for this pur-
pose [108]. We therefore define test coverage, duplicated
blocks and cognitive complexity as relevant metrics for this
identification.

5.3.2. Subject systems

Appropriate subject systems for this evaluation must
(i) be variability-rich and (ii) provide OO quality met-
rics relevant to identify variability debt (Section 5.3.1).
Although all the subject systems listed in Table 2 match
the first criterion, none of them provides quality metrics.
While we could adapt JFreeChart’s build configuration
to be analyzed by a local SonarQube instance [109], we
could not achieve to do so for the other systems. We
therefore chose 6 other systems for which the quality met-
rics are available on SonarCloud18, allowing us to reuse

18https://sonarcloud.io

Table 3: Subject systems and their available metrics.

Project
Java # vp-s / Available metrics

LoCs variants DB COMP COV

Azureus 5.7.6.0 633,248 10,105 A S ✗

GeoTools 23.5 1,312,727 22,534 A S ✗

JDK 17-10 2,434,983 71,489 S S ✗

JFreeChart 1.5.0 94,203 2,849 S S S

JKube 1.7.0 40,952 795 A S S

OpenAPI Generator 5.4.0 88,172 768 S S S

Spring framework 5.2.13 662,579 12,622 A S ✗

DB – duplicated blocks, COMP – cognitive complexity, COV – coverage
✗ – unavailable metric, A – available metric, S – significant metric (available
and showing differences between classes)

these metrics for our study. Five of them (Azureus,
GeoTools, JKube, OpenAPI Generator and Spring
framework) were chosen as their documentation clearly
states they implement variability. We also picked the Java
Development Kit (JDK) for its large size of circa 2.5M
LoC to evaluate the scalability of the approach. Metrics
for Azureus, GeoTools, Spring framework and Java Devel-
opment Kit (JDK) have been extracted from a catalog of
software projects designed by Irrazábal et al. [110] to an-
alyze their metrics, forking popular open source systems
from their original repositories in the Corpus-2021 GitHub
organization19. All seven systems are depicted in Table 3.

5.3.3. Evaluation process

For each project we first generated a VariCity visual-
ization with the same process as described in Section 5.2.
We then identified manually on each view the classes that
are the most visible for us as described in Section 5.1
to obtain a set of “noticeable classes w.r.t. variability”.
For example, for JFreeChart (Figure 7c), classes such as
JFreeChart, Plot, CategoryPlot, and XYPlot draw at-
tention due to their size and/or the fact that they are
hotspots, as opposed to ChartPanel.

We then determine a relevant VariMetrics view on each
project by systematically applying all available metrics
that are related to variability debt (Section 5.3.1). Dur-
ing this step, it happened that no building stood out for a
given metric (i.e., no class exhibits variability debt), sug-
gesting that the overall quality is decent w.r.t. this metric.
On the opposite, if all classes appear as quality-critical, it
may indicate that this metric has been neglected in qual-
ity requirements for the project as a whole. We thus re-
strained in this evaluation the set of significant metrics
relevant to identify OO variability debt to those showing
some differences in quality between classes. Table 3 sum-
marizes for each system the relevant metrics being avail-
able and significant. While this step was necessary for
us to determine which quality metrics are significant, an
expert will likely already know which metrics are signifi-
cant for their system. We then manually identified on the

19https://github.com/Corpus-2021
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Table 4: Number of noticeable classes due to their variability concentration, criticality, and both aspects for the given views on all subject
systems.

Project

View configuration Noticeable classes w.r.t.

Entry point classes
Usage Usage Metrics

variability criticality both
orientation level (visual property)

Azureus com.aelitis.azureus.core.AzureusCoreComponent OUT 4 COMP (red-green) 74 32 12

GeoTools
org.geotools.data.simple.SimpleFeatureSource

OUT 4 COMP (red-green) 104 27 18
org.geotools.map.MapContent

JDK
java.net.URI

IN 1
COMP (red-green)

84 17 13
java.net.URL DB (cracks)

JFreeChart
org.jfree.chart.JFreeChart

OUT 4
COV (red-green)

35 31 10
org.jfree.chart.plot.Plot DB (cracks)

JKube

org.eclipse.jkube.generator.api.support.BaseGenerator

IN/OUT 7
COV (red-green)

COMP (cracks)
28 115 14org.eclipse.jkube.generator.javaexec.JavaExecGenerator

org.eclipse.jkube.generator.api.Generator

OpenAPI
org.openapitools.codegen.languages.OpenAPIGenerator IN/OUT 6

COV (red-green)
77 51 21

Generator COMP (cracks)

Spring org.springframework.beans.factory.parsing.BeanComponentDefinition
IN 8 COMP (red-green) 57 13 6

framework org.springframework.beans.factory.support.AbstractBeanFactory

org.jfree.chart.plot.
CategoryPlot

org.jfree.chart.plot.
XYPlot

org.jfree.chart.LegendItem

org.jfree.chart.
JFreeChart

org.jfree.chart.plot.Plot
org.jfree.chart.
ChartPanel

org.jfree.chart.renderer.WaferMapRenderer

Figure 8: Figure 7c in VariMetrics. The view is configured to display the test coverage using the red-to-green color scale and the duplicated
blocks using cracks.

views the classes appearing to be quality-critical, regard-
less of their variability, by enumerating the classes that
appeared to be the most cracked and/or red to obtain
a set of “noticeable classes w.r.t. criticality”. For ex-
ample, for JFreeChart (Figure 8), XYPlot, CategoryPlot,
ChartPanel, and WaferMapRenderer are easily discernible.
The quality-critical and variability intense classes of the
project thus correspond to the intersection between the
two sets of classes (i.e., in this example, CategoryPlot
and XYPlot).

We also observed that, in all systems, while fewer classes
are noticeable w.r.t. criticality than w.r.t. variability,
there is no direct relation between variability and quality,
as also shown in Figure 8. Consequently, some vp-s have an
important number of variants and are at the same time re-
liable, such as LegendItem in JFreeChart. On the contray,
one can observe some critical classes that do not contain
variability implementations, such as WaferMapRenderer in
JFreeChart. This shows that, in the studied systems, visu-

alizing both variability and quality is useful to determine
quality-critical variability implementations. To evaluate to
which extent, we calculated for each project the number of
noticeable classes w.r.t. variability, w.r.t. criticality, and
w.r.t. both aspects. The results with the configuration for
each view are reported in Table 4. This shows that repre-
senting on a single view variability and quality information
allows reducing the number of classes appearing as rele-
vant on the visualization between 50% (JKube) and 91%
(Spring framework) compared to the VariCity visualiza-
tion. We believe the mildly encouraging results obtained
on JKube come from its size, so that less variability intense
zones have been identified by VariCity compared to larger
projects. An important number of classes is also notice-
able in this project as it has globally a low code coverage.
Besides, by adapting the thresholds on which the hotspot
detection relies, we could obtain fewer zones and better re-
sults, but we consider these experiments as out of the scope
of this article. The definition of a hotspot is parameterized,
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and determining whether a class is a hotspot depends on
user-defined thresholds, as stated in [38] Nevertheless, we
consider these results as satisfying, because without Vari-
Metrics, finding OO variability debt would have needed
to manually map relevant classes on the VariCity view to
their metrics, which, already on the smallest project being
JKube, represents 28 classes.

Answer to RQ3. While the VariCity view highlights
classes concentrating variability, VariMetrics is able, by
displaying quality metrics on the buildings, to reveal such
classes being quality-critical. Additional configuration pa-
rameters allow to configure the metrics, making the view
applicable to multiple systems. These results thus provide
a positive answer to RQ3.

5.3.4. Summary

By adapting the city metaphor to organize the city
relying on OO variability metrics, the VariCity visualiza-
tion reveals zones concentrating variability implementa-
tions. Such zones have shown to be largely relevant on
the studied subjects systems. Its configuration capabilities
not only allow to design views for multiple systems, but
also to explore a system by focusing the view on a subset
of classes the user finds relevant. Finally, by represent-
ing OO variability implementations and quality metrics in
a unified representation, VariMetrics not only allows to
visualize both classes concentrating variability implemen-
tations and critical classes, but also to focus on specific
zones of OO variability debt.

6. Evaluating the comprehensibility of the VariC-
ity visualization

In Section 5.1, we demonstrated the capacity of VariC-
ity to reveal dense zones of variability implementations.
However, as the authors of the approach designed the
showcased views, the comprehensibility of the visualiza-
tion by actual users has not been evaluated. To fully as-
sess whether VariCity actually helps the comprehension of
the implemented OO variability, there is a need to com-
plete this first assessment by evaluating VariCity in a real
variability comprehension scenario. We thus design a con-
trolled experiment with external users to observe how us-
ing VariCity impacts the time needed to complete vari-
ability comprehension tasks and their difficulty.

6.1. Experimental design

Wettel et al. [88, 87] designed an empirical evaluation
of CodeCity aiming to evaluate whether the view helped
the identification of quality-critical zones in an OO code-
base. They extracted from the literature a wish list of
requirements for their experiment. As we conduct a simi-
lar evaluation, we therefore rely on this list to design our
experiment and detail its design in the remainder of this
section. Table 5 summarizes, for each of these require-
ments, how our design fulfills them or not.

6.1.1. Research Questions

With this experiment, we aim to evaluate the com-
prehensibility of the VariCity visualization. Chen et al.
[111] extracted multiple definitions of software visualiza-
tion from the state-of-the-art and it results that they are
mainly described as (i) making the information they repre-
sent easier to understand, having for goal to (ii) save time
analyzing it. These two dimensions therefore appear as
useful to evaluate the comprehensibility of our approach.
Additionally, since VariCity is presented as a tool to be
used by developers in their workflow, we argue that the
ease of use is also of great significance. Consequently, we
aim with this experiment to answer the following question:

RQ4: Does VariCity help the comprehension of OO
variability implementations?

We decompose this research question as follows:

RQ4.1: Does the use of VariCity increase the correctness
of the solutions to variability identification tasks,
compared to state-of-the-practice tools?

RQ4.2: Does the use of VariCity reduce the time needed
to solve variability identification tasks, compared to
state-of-the-practice tools?

RQ4.3: Is VariCity regarded as easy to use to solve vari-
ability identification tasks compared to state-of-the-
practice tools?

The null and alternative hypotheses derived from these
research questions are described in Table 6.

6.1.2. Subjects

This experiment was realized as part of a reverse engi-
neering graduate course at the Polytech Nice Sophia engi-
neering school. The population is made of 49 students in
the last year of Master’s in Computer Science, specialized
in Software Architecture. As a preliminary part of the
experiment, they were asked to fill an anonymous survey
to better know their level of experience on program com-
prehension and variability. Some gathered information is
detailed in Figure 9.

While it is known that having students as subjects for
controlled experiments does not always give reliable results
as they might not be representative of the target popula-
tion [112], we think that they are representative of a subset
of developers for the two following reasons. First, 38/49
subjects have more than 6 months of professional expe-
rience, mainly thanks to internships and apprenticeships
in industry. Moreover, 43/49 students already had to dis-
cover a system by exploring its codebase. Additionally,
being in the last year of Master’s in Computer Science the
remaining subjects will integrate an industrial company in
the next few months and need to onboard on an unknown
codebase. They thus exactly match the usage scenario
of VariCity . Second, as a part of their curriculum, they
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Table 5: Elements from the experimental design responding to requirements extracted from Wettel et al. [87]’s wish list.

Requirement Experimental design element

Fulfilled requirements

Avoid comparing using a technique against not using it.
Provide the same data to all participants.

As we validate the visualization approach, we give a CSV document opened
with a spreadsheet containing structured information on the classes of the
system visualized with the given settings using VariCity by the other group
(Sections 6.1.3 and 6.1.5).

Provide a not-so-short tutorial of the experimental tool to the participants.
Use the tutorial to cover both the research behind the approach and the
implementation.

To complement the 1h30 lecture given two weeks prior to the experiment, a
short tutorial introducing definitions and demonstrating the tool has been
given before the experiment (Section 6.1.7).

Find a set of relevant tasks.
Include tasks on which the expected result is not always to the advantage
of the tool being evaluated.

The tasks are inspired by the onboarding scenarios in the first evaluation of
VariCity, and some of them are expected to be more easily completed using
the IDE and the CSV document (Section 6.1.6)

Choose real object systems that are relevant for the tasks.
JFreeChart has been chosen for its medium size and because the domain and
the implementation are accessible to the subject students (Section 6.1.3)

Provide all the details needed to make the experiment replicable.
The questionnaires, slides and answers given by the students are available
online at https://deathstar3.github.io/varicity-demo/

Report results on individual tasks.
Additionally to the answers given, subjects were asked for each task to provide
the start and end time, an estimation of their perceived difficulty and the list
of the actions they accomplished to solve the task (Section 6.1.6).

Non-fulfilled requirements

Include more than one subject system in the experimental design.
Having a second subject system would have led to four treatments of 12
people each and would have prevented drawing any relevant conclusion.

Involve participants from industry.
Take into account the possible wide range of experience level of the par-
ticipants.

This requirement could not fulfilled due to organizational constraints.
Although apprentice students have more professional experience, the difference
of professional experience with the other students is not important enough to
conclude on whether the performance of subjects differs w.r.t. this parameter
(Section 6.1.2).

Avoid, whenever possible, to give the tutorial right before the test.
Although we gave a long lecture introducing variability concepts about one
month before the experiment, we could not give the more detailed tutorial
before the day of the experiment for organizational constraints (Section 6.1.7)

Limit the amount of time allowed for solving each task.
While the overall set of tasks should be completed in 1h10, we did not limit the
time for each task to prevent fast but less qualitative answers (Section 6.1.6).

Table 6: Null and alternative hypotheses

Null hypotheses Alternative hypotheses

H10 : VariCity does not impact the cor-
rectness of the tasks’ solutions.

H1a : VariCity impacts the correctness
of the tasks’ solutions.

H20 : VariCity does not impact the
time spent to solve the tasks.

H2a : VariCity impacts the time spent
to solve the tasks.

H30 : VariCity does not impact the
tasks’ difficulty.

H3a : VariCity impacts the tasks’ diffi-
culty.

also followed multiple courses prior to the experiment re-
lated to the comprehension of complex code architectures,
thus preventing a bias on their knowledge of these aspects.
This Master’s trains them to be advanced developers in
Java, thus mastering object-oriented programming con-
cepts. They also followed multiple courses prior to the
experiment related to the comprehension of complex code
architectures, thus preventing a bias on their knowledge of
these aspects.

6.1.3. Purpose and variables

Through the three defined research questions, the goal
of this experiment has been set towards evaluating whether
VariCity allows subjects to better identify patterns in-
volved in complex zones of variability implementations

(i.e., the effectiveness of the approach). Additionally, we
aim to assess whether VariCity reduces the time needed for
subjects to answer the tasks and their perceived difficulty
compared to state-of-the-practice tools, i.e., the efficiency
of the approach. Such goals being identical in the empirical
evaluation of CodeCity by Wettel et al. [87], we therefore
share identical dependent and independent variables. We
detail them hereafter.

Independent variables. Our first independent variable con-
cerns the tool used to solve the task. In order to mitigate
the effect of this variable, we must compare our approach
with a state-of-the-practice approach used to achieve an
identical goal, that is, understanding the variability imple-
mented in OO software systems. While comparing VariC-
ity to symfinder-2 would allow evaluating the potential
gain brought by the city metaphor, we cannot consider
it a state-of-the-art approach as it is not used regularly
by the subjects. Therefore, the comparison would be ir-
relevant as between two approaches that subjects do not
master. Since, to the extent of our knowledge, no similar
and commonly used approach exists, we build a baseline
ourselves relying on tools that developers would actually
use to navigate and understand the code artifacts. IDEs
are widely used tools for program comprehension [113].
While a majority of our subject students use the IntelliJ
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Figure 9: Information on the experience of the controlled experiment’s participants

IDEA IDE, we did not impose any particular IDE as (i)
the given tasks (listed in Section 6.1.6) can be answered
using only basic features supported by a large majority of
IDEs (as finding usages, code navigation), thus we do not
expect them to use advanced features that would be spe-
cific to a specific IDE (e.g., tracing, dynamic analysis) and
(ii) we limit the bias regarding the mastering of the IDE
as every subject can use the one they master the most.

VariCity however uses data and metrics that are pre-
viously computed by the identification backend (cf. Fig-
ure 1). Since our goal is to compare the gain of VariCity
compared to the use of an IDE, we should provide the sub-
jects with all information given by VariCity that cannot be
determined using the IDE’s features. The inheritance and
usage relationships between classes being standard navi-
gation features, it is thus possible to infer the variants at
class level, and to determine hotspot classes and design
patterns, whose definitions are given to the subjects. It
results that the only missing information is the number
of overloads of methods and constructors. Although such
metrics could be provided by static analysis tools, Nachti-
gall et al. [114] recently studied how 46 such tools fulfill 36
usability criteria from the literature, revealing that they
are majoritarily limited regarding their usability and ca-
pacity to limit false positives. We therefore collected this
information in a CSV file to complete the baseline, thus
ensuring their correctness and mitigating the risk that sub-
jects will lose time manipulating additional tools. The
structure of the file is given in Table 7. As for the IDE, no
restriction has been imposed on a particular spreadsheet
to manipulate the CSV file for similar reasons. Finally,
we do not provide any documentation on the implemented
features as (i) they are little documented in practice [35]
and (ii) they are not used by VariCity .

Our second independent variable regards the studied

Table 7: Structure of the given CSV containing data on the classes

Class name
Method Constructor

variants variants

org.jfree.chart.ChartPanel 6 5

org.jfree.chart.ChartRenderingInfo 0 2

org.jfree.chart.JFreeChart 17 3

org.jfree.chart.LegendItem 0 10

. . . . . . . . .

Table 8: Detailed statistics on the object system used for the exper-
iment, JFreeChart

#LoCs #classes
#vp-s #variants

class
level

method
level

total
class
level

method
level

total

94,384 990 259 667 926 275 1,648 1,923

object system and its architecture. While a large sys-
tem or with multiple layers of abstraction would require
too much time to be understood in such an experiment,
a too small system would on the opposite not require an
approach as VariCity to help its understanding and there-
fore not allow evaluating its potential gain. For these rea-
sons, we selected JFreeChart 1.5.0 as an object system,
whose characteristics are presented in Table 8. Not only
does its 95k LoC make it a system of medium size, being a
charting library that we studied to evaluate symfinder and
symfinder-2 , we know that both the domain and the im-
plementation are accessible to the subject students. For
similar reasons, we selected ArgoUML as a test project
on which the subjects can familiarize themselves before
the actual experiment on JFreeChart (cf. Section 6.1.7).
Given the size of the population, we decided not to exper-
iment on a second object system as the groups for each
treatment would have been too small (around 12 subjects)
to draw any conclusion (cf. Section 6.1.5).
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Dependent variables. Our dependent variables regard the
correctness of the solution given for a task and the time
to complete the task, which respectively allow measuring
the effectiveness and the efficiency of our approach.

6.1.4. Controlled variables

In their experiment, Wettel et al. [87] benefited from a
large panel of subjects from academia (ranging from bach-
elor students to professors) and industry. Therefore, sub-
jects in this panel exhibited large differences in terms of
background of experience, potentially having an influence
on their capacity to complete the tasks. In our case, all
our subjects are students having studied similar topics.
We thus consider as negligible the impact that their differ-
ent professional experiences could have on their capacity
to solve the tasks and therefore do not consider these vari-
ables for our experiment.

6.1.5. Treatments

Due to the homogeneity of profiles constituting our
population (cf. Sections 6.1.2 and 6.1.4), we split the sub-
jects in two groups by relying on a completely randomized
design20:

VariCity (24 subjects). The first group is given a link
to a GitHub repository containing:

• the result of JFreeChart’s and ArgoUML’s analysis
by symfinder-2 , used as input by VariCity ;

• a VariCity configuration file to display the views.

TheVariCity image is distributed as a Docker image hosted
on the Docker Hub, thus requiring no installation on the
students’ computers.

IDE + CSV (25 subjects). The second group is given
a link to a ZIP file containing:

• the source code of JFreeChart and ArgoUML;

• the CSV file containing the variability metrics for
the classes21.

6.1.6. Tasks

The 11 tasks are listed in Table 9 and derive from our
requirements (Section 3.1). The expected answers for each
task are listed in Table A.12. The subjects have 1h10 to
complete all the tasks.

For each task, the subjects are also asked to:

• input the start and end time of the task. With
this information, we aim to evaluate whether the
time spent completing a task differs when usingVariC-
ity or the IDE.

20https://www.itl.nist.gov/div898/handbook/pri/section3/pri331.htm
21Although configuring the view might add or remove classes on

the visualization, the given tasks do not require this action. There-
fore, the given data is strictly identical between both groups.

• rate the difficulty of the task on a scale from 1
to 4. Likert scales are commonly represented with
an odd number of choices, using the median value
as a midpoint (i.e., a neutral level of opinion). How-
ever, in practice, subjects might choose the midpoint
for other reasons [115], for example because they are
unfamiliar with the topic to be evaluated [116] or be-
cause they prefer to avoid providing a negative opin-
ion [117], especially on a five-points scale [118]. As
we believed our subjects could be in such cases, we
preferred to omit the midpoint and defined a scale
from 1 to 4. With this information, we aim to evalu-
ate whether the perceived difficulty for a task differs
when using VariCity or the IDE.

• list the actions they accomplished (e.g., navi-
gating the inheritance in the IDE or zooming on the
visualization). We plan to use this data to better un-
derstand how the tools were used to solve the task
and better understand the causes of the results ob-
tained with the two previous pieces of information.

6.1.7. Operation protocol

Pilot experiment. A pilot experiment with four sub-
jects of various levels of experience (a Master’s student in
computer science, two graduate students in computer sci-
ence working on research topics related to variability and
an associate professor in computer science having experi-
ence with controlled experiments) was held to evaluate the
whole experimental setup. This dry run allowed us to re-
fine some aspects of the experiment such as the time limit.
As defining a time limit for each task can cause subjects
to go through the tasks faster [119], we did not set any in
our pilot experiment. However, we realized that since vari-
ability comprehension is complex by nature [35], our test
subjects tended to get stuck as they were unsure about
their answers. We thus decided to impose a global time
limit to prevent this behaviour, while leaving the subjects
manage the time they spend on each task.

Before the experiment. A lecture of one hour and
a half introducing the main concepts related to variability
was given to the students from both groups on January
12, 2022. As a result, a majority of students felt confident
about their knowledge of variability concepts and termi-
nologies at the moment of the experiment (cf. Figure 9).

The day of the experiment (February 23, 2022).
On the day of the experiment, a short lecture was given
to all the students, presenting definitions and examples
of the various terminologies used in the tasks (about 45
mins). Then, after splitting, each group benefited from a
short session to fill the preliminary questionnaire aiming
to gather personal information (cf. Section 6.1.2), setup
their environment and familiarize with the tools they will
manipulate (about 40 mins):

• subjects in the VariCity group were introduced to
the visualization’s features, had to open the visual-
ization for the test project (ArgoUML), and had to
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Table 9: The 11 variability comprehension tasks given to the subjects.

ID Task Goal

1
When discovering the visualization / the code in the IDE and the data
in the spreadsheet, according to you, what classes seem to be
important to explore in priority? For each one of them, explain why.

With this task, we want to evaluate whether the used tools provide
information that guide the user towards a starting point of exploration.

2

Identify 2 variants at class level for each of the following variation
points (cf. Definition 2):

• org.jfree.chart.plot.Plot

• org.jfree.chart.title.TextTitle

Inheritance is a heavily-used mechanism to implement OO variability
(Section 2.1), therefore their identification and exploration is crucial to
identify variability in this context. With this task, we want to evaluate
whether the used tools allow the exploration of such mechanisms.

3

How many classes are linked with a usage relationship to each of the
following classes? Give 3 examples.

• org.jfree.chart.plot.CategoryPlot

• org.jfree.chart.title.CompositeTitle

The collective density of variability implementations is characterized by
a cluster of vp-s linked through usage relationships (Definition 4).
With this task, we want to evaluate whether the used tools allow an
overview of these mechanisms by distinguishing the classes linked by
usage relationships to a given one.

4

Complete the following sentences:

• Classes (1) and (2) have an important number (≥ 5) of subclasses
(i.e., are variation points with an important number of variants
at class level).

• Classes (3) and (4) have an important number (≥ 10) of
overloaded methods and constructors (i.e., are variation points
with an important number of variants at method level).

While usage relationships induce collective density, the individual
density of variability implementations is characterized by the presence
of a vp with an important number of variants at class or method level
(Definition 3). With this task, we want to evaluate whether the used
tools allow an overview of where such mechanisms are concentrated in
the codebase.

5
Identify the 3 classes with the highest individual density higher to the
threshold v = 20 (cf. Definition 3).

For a given density threshold, the number of classes characterized as
dense can remain important depending on the dimensions and
architecture of the studied system. It is therefore important to be able
to focus on the most dense classes. With this task, we want to evaluate
whether the used tools allow this.

6

Give 2 examples of each of the following design patterns (cf. Appendix
B.2):

• Strategy pattern;
• Factory pattern.

Those two design patterns being used to implement OO variability
(Section 2.1), we want to evaluate with this task whether the used
tools allow their identification.

7
What is the distance between the org.jfree.chart.JFreeChart and
org.jfree.chart.title.DateTitle classes?

As the density of OO variability implementations relies on usage
relationships between classes, we aim to evaluate whether
state-of-the-practice tools allow a user to compute the distance
between two given classes.

8
Identify 3 hotspots for an individual density threshold of v = 20 and a
collective density threshold of d = 5 (cf. Definition 5).

The most dense zones concentrating variability implementations are
characterized as vp-s being simultaneously individually and collectively
dense (cf. Definition 5) and it is therefore important to identify them.
With this task, we want to evaluate whether the used tools allow to
identify them.

9

Identify the classes that according to you implement each of the
following features, and specify if they are hotspots for v = 20 and d = 5
(cf. Definition 5):

• “draw a chart” feature;
• “title of the chart” feature.

Variability identification activities being often conducted to help the
comprehension of this variability [35], we aim with this task to evaluate
whether the exploration of the system with the given tools allowed the
subjects to determine the classes involved in the implementation of a
feature.

10
What are according to you the classes to add/reuse/modify to
implement a new type of chart (i.e., to implement a new variant of the
org.jfree.chart.plot.Plot vp) ?

This task aims at evaluating whether completing given the variability
identification tasks actually allowed the subjects to gather enough
knowledge on the implemented domain to determine how to implement
a new feature.

11
Following this observation of JFreeChart, what are according to you
the main abstractions used in this charting library?

With this task, we aim at evaluating whether the exploration of the
system with the given tools allowed the subjects to better understand
the domain implemented in the system.
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Figure 10: Percentage of subjects having given at least a partial
answer for each task

answer a few questions ensuring that they can inter-
pret the visualization accurately;

• subjects in the IDE + CSV group were introduced
to the data they are given, had to open the test
project’s codebase in their IDE, and had to answer
a few questions ensuring that they can interpret the
data accurately.

After this session, the subjects had 1h10 to answer the
tasks, having for only help a cheat sheet of the defini-
tions detailed in the lecture and detailed in Appendix B.
Finally, the students filled out a questionnaire aiming to
gather their feedback on the experiment.

6.2. Results

We detail hereafter the results obtained from our ex-
periment. Due to the limited time allocated for the ex-
periment, not all subjects could finish all the tasks. 17/24
subjects in the VariCity group and 14/25 subjects in the
IDE group gave at least a partial answer (i.e., filled at
least one of the answer fields of the task) to all the tasks.
Figure 10 presents, for each task, the percentage of sub-
jects having given at least a partial answer. We observe
a drop in the percentage of answers at task 7 and 8 for
the IDE and VariCity groups respectively for two reasons.
First, we ordered the tasks in increasing order of difficulty
as we perceived it. Then, we made the choice not to im-
pose a time limit for each task as we were unsure about
the average time that the subjects would take depending
on the tool(s) they use and feared a too low answers rate.
Therefore some subjects took more time than they should
have on the first tasks and happened to be late at the end
of the experiment. In the following results, we considered
answers that are at least partial. We also performed for
each task a statistical test on the obtained answers, dura-
tions and perceived difficulty for both groups to determine

(a) IDE + CSV group

(b) VariCity group

Figure 11: Correctness of the answers given by the two groups.

the significance of the difference in the obtained results is
and thus validate our hypotheses from Table 6. Obtained
p-values for each task are listed in Table 10.

6.2.1. Answer to RQ4.1

Figure 11 presents the correctness of the answers given
by the two groups on each task. For tasks 2 to 9 included,
we compute the correctness of an answer to a task by cal-
culating the percentage of correct answer elements. For
example, when 2 names of classes are expected, the cor-
rectness is 0% if no class is in the expected set of classes,
50% for 1 class, and 100% for both classes in the set. Tasks
1, 10 and 11 being open questions, the correctness of the
given answers has been evaluated manually based on the
presence of expected elements as listed in Table A.12.

We notice that subjects using VariCity globally gave
more accurate answers to the tasks than subjects using the
IDE + CSV combination. For a number of tasks, we be-
lieve this is due to the layout of the visualization and the
choice of visual axes. For example, using the dimensions of
the buildings to represent their methods and constructors
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Table 10: p-values obtained by comparing the sets of answers, durations and perceived difficulty of both VariCity and IDE + CSV groups on
each task. Values in orange are in the ]0.05, 0.06] range while values in red show statistically better results for the IDE + CSV group.

Task 1 2 3 4 5 6 7 8 9 10 11

Correctness 0.96453 0.84286 1.64023× 10−14 0.00024 0.07749 8.56822× 10−13 0.00259 0.00481 0.24788 0.89565 0.03911

Task duration 0.16519 0.00484 0.01191 0.61467 0.29706 4.72027× 10−8 0.00334 0.00122 0.71231 0.80312 0.90128

Perceived difficulty 0.76113 0.18915 0.10044 0.66913 0.25888 1.26422× 10−7 0.00551 2.22208× 10−5 3.43713× 10−5 0.33002 0.64472

overloads, and aerial links for subclasses exhibiting indi-
vidual density helped subjects to complete task 4 (find-
ing vp-s with an important number of class or method
level variants, p = 0.00024). Similarly, choosing to use
streets to represent usage relationships helps their under-
standing, exhibiting collective density, and helped subjects
to complete tasks 3 (finding classes linked through us-
age relationships to a given one, p = 1.64023 × 10−14)
and 7 (finding the distance between two given classes,
p = 0.00259). Answering tasks 6 (finding design pat-
terns, p = 8.56822 × 10−13) and 8 (identifying hotspots,
p = 0.00481) was facilitated by the automatic computa-
tion of dense zones and design patterns provided by the
symfinder-2 approach used by VariCity and their visual-
ization using crowns on buildings and colors respectively.

We notice however that using VariCity does not im-
prove the correctness of the answers to all the tasks com-
pared to the IDE + CSV combination. This is the case
for task 9 for which the obtained correctness values are
too similar between both groups to determine an impact
from VariCity (p = 0.24788). This task was divided in two
parts, (i) the identification of classes implementing a given
feature, and (ii) indicating whether they were hotspots or
not. To answer the first part, subjects from both groups
mainly relied on the names of the classes that are given by
both VariCity and the IDE, leading to similarly accurate
answers.

Comparable correctness results are also obtained on
task 2 (p = 0.84286) where the goal was to give two vari-
ants at class level (i.e., two subclasses) for two vp-s. Both
VariCity and the IDE allow searching a class by its name
and easy access to the subclasses of a given class (by hov-
ering its building in VariCity , and a button in the sidebar
of the IDE to navigate the inheritance hierarchy). Ana-
lyzing the actions achieved by the subjects in both groups
confirms that they heavily relied on these features, and a
majority of the subjects in the IDE + CSV group did not
use the CSV file. Comparable results are also obtained
on task 1 (p = 0.96453), which aimed at listing classes
that appeared as important to observe when discovering
the visualization or the codebase. This can be explained
by the fact that a majority of subjects from both groups
sought for classes maximizing their number of method level
variants, either by identifying tall and large buildings on
the visualization or by sorting the CSV file’s data in the
spreadsheet using the columns for the number of method
and constructor variants, optionally summing them. Task
10 also shows comparable results (p = 0.89565). Subjects
were asked what classes would need to be added or reused

to implement another type of chart. Multiple subjects us-
ing VariCity pointed out that according to them, their
answers to this task were limited by not having the source
code (e.g., “Not knowing the library, it is hard to find all
the classes linked to a feature.”, “The tool allows me to
have an idea, but is maybe not precise enough regarding
the implementation of the classes.”), suggesting that this
limitation prevented VariCity to assist in solving this task.
However, this limitation did not prevent them to grasp the
main abstractions used in the library as the correctness is
in average better for this group on task 11 (p = 0.03911).

Finally, subjects from the IDE + CSV group perform
slightly better on task 5 (p = 0.07749), which consisted
of the three most individually dense classes. For the IDE
+ CSV group, obtaining the answer to this task consisted
in finding the classes maximizing the sum of their method
and constructor overloads, and was achieved by most stu-
dents. On the opposite, VariCity displays those two pieces
of information using the height and width of the buildings,
making it less intuitive to identify the buildings maximiz-
ing both aspects. As a result, some subjects from this
group not only indicated tall but also wide buildings that
were maximizing their constructors’ overloads but not the
total method variants.

It results that subjects using VariCity gave statistically
more correct answers on 6/11 tasks compared to subjects
using the IDE + CSV combination. Such tasks focus on
identifying complex variability implementation patterns
which is eased by to the organization of the information
provided by the city metaphor as well as its computation
of other information such as the presence of a design pat-
tern or a hotspot. Given these encouraging results and
the little rate of wrong answers given, we choose not to
exclude them from the analyses answering RQ2 and RQ3.

6.2.2. Answer to RQ4.2

Figure 12 presents the distribution of the time spent
on each task for both groups. It results from this figure
and from the obtained p-values (Table 10) that no tool
performs better on all the tasks.

VariCity performs better on tasks 3 (p = 0.01191), 6
(4.72027 × 10−8), 7 (p = 0.00334) and 8 (p = 0.00122)
as it directly exhibits on the visualization the presence
of hotspots and design patterns, while IDE users need to
identify them manually. The structure of the city based on
usage relationships also helped the subjects to identify the
distance and usage relationships between two classes while
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Figure 12: Distribution of the completion time (in minutes) for each
task when using VariCity or the IDE

IDE users needed to explore the code. Regarding task 5,
while Figure 12 shows a more reduced range of durations
suggesting a positive impact of VariCity for this task, the
obtained p-value of 0.29706 does not allow us to conclude.

Concerning task 2 (p = 0.00484), subjects with the IDE
performed better. As the answers given by the two groups
on task 1 were of equivalent correctness, we suppose that
students with VariCity needed some more time to discover
the view and get familiar with it. Completing task 2 is
equivalent to finding the subclasses of a given class, an
action that the subjects are used to accomplish regularly
with their IDE. This is confirmed by the fact that 23/25
subjects in the IDE group used the IDE only to complete
the task. Therefore, subjects in this group were on average
faster than subjects in the VariCity group that had to find
the information in a visualization they were less familiar
with. While Figure 12 shows a more reduced range of
durations suggesting a positive impact of the IDE for task
1, the obtained p-value of 0.16519 does not allow us to
conclude.

Finally, on tasks 4 (p = 0.61467), 9 (p = 0.71231), 10
(p = 0.80312) and 11 (p = 0.90128), the performances of
both approaches appear as equivalent. To complete task 4,
finding the classes with an important number of variants
at method level consisted in looking at the corresponding
column in the CSV for the IDE group, and in looking at
high and/or wide buildings in the visualization, suggest-
ing that all subjects had a clear idea of where to find this
information. Regarding the number of variants at class
level, while subjects in the IDE group heavily relied on
class diagrams reverse-engineered with the IDE, subjects
in the VariCity group mainly hovered over random classes
until finding the information, suggesting that finding class
level variants in VariCity is not intuitive. We would ex-
pect task 9 to take less time using VariCity . In practice, it
results that the average time spent is equivalent as multi-

Figure 13: Distribution of the difficulty values for each task when
using VariCity (plain colors) or the IDE (striped pattern). The
students which did not finish are represented in the DNF category.

ple subjects from the IDE group did not give the hotspot
information. However, correlating this result with the fact
that 50% of subjects indicated the maximum perceived dif-
ficulty (cf. Figure 13) is a strong indication that this part
of the task was too difficult for the IDE group. Finally,
tasks 10 and 11 (finding classes needed to implement a new
type of chart, finding the main abstractions) require few
interactions with the tools apart from simple class search-
ing, explaining the similar average time spent.

It results that the subjects in the IDE group performed
better on single tasks they are familiar with (e.g., finding
a class, navigating inheritance). On the opposite, identi-
fying complex zones concentrating variability implemen-
tations is more efficient in VariCity (e.g., design patterns,
hotspots). While determining the individual density of
variability appears to be equally time consuming thank to
the CSV file, determining the collective density of vari-
ability and hotspots is more efficient by the organization
of the VariCity view.

6.2.3. Answer to RQ4.3

Figure 13 presents the distribution of the difficulty as
perceived by the subjects on each task for both groups.
We notice a difference in perceived difficulty in favor of
VariCity on tasks 6 to 9 which are focused on identifying
design patterns, hotspots and distance between classes.
This result is confirmed by the obtained p-values for these
tasks, listed in Table 10. This is also coherent with the re-
sults obtained regarding the time spent completing these
tasks. Tasks 6, 7 and 8 took considerably more time for
subjects using the IDE compared to subjects using VariC-
ity . This is not the case for task 9 as, as explained in the
previous section, an important number of subjects did not
give information about the presence of a hotspot and only
partially completed the task.
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Regarding the other tasks, while subjects using VariC-
ity globally tended to give lesser difficulty values than sub-
jects using the IDE, they are not enough to exhibit a sig-
nificant difference and thus prevent us from concluding on
any impact VariCity could have on these tasks. Similarly,
although difficulties 1 and 2 are more represented in the
IDE + CSV group on task 2, this difference is not signif-
icant enough to demonstrate the impact of the use of the
IDE on this task (p = 0.18915).

It results that subjects in the VariCity group find it
easier to complete 4/11 tasks compared to subjects in the
IDE group, representing tasks related to the identification
of zones concentrating variability implementations using
complex structures, such as design patterns or hotspots
that implement variability at both class and method levels.
While this represents a minority of tasks, it also appears
that no task seemed easier to subjects using the IDE.

6.2.4. Summary

By providing a visual representation of the system’s
classes and exhibiting metrics on their variability, subjects
using VariCity statistically gave more correct answers on
tasks focusing on the identification of complex variability
implementations, thus validating H10 (Table 6). Addi-
tionally, the completion time and the perceived difficulty
of these tasks is statistically reduced (thus validating H20

and H30), demonstrating the visualization’s capacity to
help the identification of complex variability implemen-
tations. A deeper analysis of the actions performed by
subjects from both groups suggests some improvements
for VariCity , especially regarding tasks where the results
appear as equivalent between both groups. Some informa-
tion is more easily accessible with the visualization, such
as the distance in usage between classes or the density of
variability implementations. Other actions were facilitated
with the IDE, such as obtaining a reverse-engineered class
diagram to navigate the inheritance relationships.

Feedback from some subjects in the VariCity group
reveals that although the view allowed to quickly spot im-
portant zones of the system (”The visualization allows us
to easily notice the features present in the system. Classes
that are less important can be ignored to focus on the
ones that have more variability.”), their comprehension
was limited by not having the actual source code (”We
stay really abstract by visualizing the code with VariCity,
a Java IDE would allow us for example to have access to
comments that can help comprehension.”, ”It is hard to un-
derstand how the system works only with the buildings.”).
This feedback suggests that although VariCity helps in
guiding the exploration of a system, having access to the
source code remains of prime importance to have a deep
understanding of it.

As a first step towards addressing this feedback, we
proposed an extension of the VariMetrics approach pro-
viding a full integration of the visualization and its con-
figuration in the JetBrains IntelliJ IDEA IDE [120]. The

visualization is available as a panel in the IDE’s interface
and can be configured through the IDE’s menus as for any
other plugin. This integration also provides bidirectional
navigation between the code opened in the editor and the
visualization.

7. Threats to validity and limitations

Conclusion and construct validity threats are discussed
in Table 11. In the following we analyze internal and ex-
ternal threats, while discussing limitations at the end of
this section.

Internal threats. The main threat of our evaluation con-
cerns the fact that both authors and developers of VariC-
ity designed and conducted the evaluation of the approach
in Section 5. The inputs (entry points, usage levels, and
orientations) and quality metrics have been determined
empirically based on their knowledge of the systems and of
VariCity ’s capabilities. Still, even by having a coarse-grain
understanding compared to a real expert, the obtained
visualizations already exhibit satisfying results by reveal-
ing zones of interest in the systems. Although the iden-
tification of these revealed zones concentrating variabil-
ity implementations and/or being quality-critical has been
achieved by the authors that know how to read the visual-
ization, this enumeration has been done systematically re-
lying on determined criteria (e.g., important height/width,
intense color). Finally, the validation of their relevance is
based on documentations and comments in the concerned
classes, giving us confidence in its soundness.

External threats. As VariCity relies on the symfinder tool-
chain to detect variability implementations, it is subject to
the same threat on the considered implementation tech-
niques and the Java-only focus. As for the techniques, in
our work, six main object-oriented techniques are identi-
fied while other mechanisms, functional or at the state-
ment level, could be used to implement variability [53].
Moreover, no cross-cutting variability can be detected by
symfinder while the detection of the usage of the same pa-
rameters in different locations could be a first solution.
However, the identifications made with symfinder were
successful [36] and we reused the same systems for vali-
dation.

Due to organizational constraints, the controlled ex-
periment has been conducted with a population whose
subjects have similar experience and background. Conse-
quently, the size of the population constrained us to con-
duct the experiment on a single system to prevent having
too small groups for each treatment. While those biases
could not be mitigated, we believe the obtained conclu-
sions to be good enough to support the results obtained
in the evaluation in Section 5 as the profile of the sub-
jects match our target population (Section 6.1.2). In fu-
ture work, we will aim at extending this controlled exper-
iment by extending our panel of subjects and diversifying
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Table 11: Actions taken to mitigate conclusion and construct validity threats [121]

Threat Action

Conclusion validity threats

Low statistical power
We mitigated by computing p-values to statistically measure the relevance of the difference in the
answers (Table 10)

Violated assumptions of
statistical tests

We used t-test as our samples are independent and randomly extracted from the same population.

Fishing and the error rate We do not adapt the significance level and keep the standard threshold of 0.05 (Table 10).

Reliability of measures
Completion time is the only measure we rely on that is not an answer from the subjects. While
students were asked to fill the start and end time of each task themselves, the little numbers of outliers
visible on Figure 12 comforts us in the coherence of this data.

Reliability of treatment
implementation

The treatment is strictly identical between all subjects of a same group. VariCity was provided as a
Docker image, preventing possible side effects related to the installation of the tool (Section 6.1.5).

Random irrelevancies in
experimental setting

The experiment was held in an room of the Polytech Nice Sophia engineering school with doors closed
to prevent any distraction. The experiment has also not been interrupted.

Random heterogeneity of
subjects

Threats related to the homogeneity of our population are discussed in the External threats paragraph
in Section 7.

Construct validity threats

Design threats

Inadequate preoperational
explication of constructs

Variability concepts were explained during the lecture given on January 12, 2022. A question in the
pre-experimentation survey aimed at validating their understanding of these notions, which is confirmed
by the answers obtained (Figure 9).

Mono-operation bias
Due to the size of our population, we could run the experiment on a single system only. This threat is
detailed in the Independent variables paragraph in Section 6.

Mono-method bias We defined oracles to evaluate the correctness of the tasks, listed in Table A.12.

Confounding constructs and
levels of constructs

Subjects have similar knowledge levels of variability concepts and of the Java language. Their mastering
of the tools is also equivalent.

Interaction of different
treatments

Each subject does only one treatment.

Interaction of testing and
treatment

Subjects do not evaluate the actions they performed or the code they produced.

Restricted generalizability
across constructs

Although VariCity does not perform better than the IDE + CSV on all tasks, the IDE + CSV performs
statistically better on only one task (cf. Section 6.2.2) while evaluating the completion, thus we consider
that VariCity does not negatively impact either the correctness or the difficulty. Additionally, the only
aspect that subjects using VariCity reported to lack is access to the source code, a limitation we started
tackling with an integration of VariCity in an IDE [120] (cf. Section 6.2.4).

Social threats

Hypothesis guessing Questions have been designed so that they do not give insights on what the answer could be. This pattern
has been observed by our test subjects during the pilot experiment and corrected.Experimenter expectancies

Evaluation apprehension
In such cases, subject apprehending evaluation would try to avoid answering, for example by selecting
the midpoint in a Likert scale [117]. For this reason, we designed a 4-options scale (cf. Table 9). We also
comforted them by stating that there is no wrong answer and that they are not evaluated in any way.
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their background. We also aim at validating whether real
experts are able to determine appropriate inputs in real
settings, including quality metrics.

Limitations. Concerning the structure of the visualiza-
tion, the placement of the buildings on a street only re-
lies on the width of the buildings to compact them in the
street. This implies that the variability represented by the
height of the buildings is not taken into account. Even if
this dimension is largely visible on the visualization, this
might call for an adaptation of the placement algorithm
to take into account both dimensions while placing the
buildings.

Similarly, although we chose to provide as many con-
figuration capabilities as possible so that a user can design
a view matching her needs, combining multiple metrics on
different axes can yet induce cognitive load and hamper
the view’s understanding. While measuring this load is of
prime importance when designing visualizations [122] in-
cluding city-based ones [123, 82] to ensure readability and
usability, it would require in our case to empirically vali-
date our approach with real experts to exchange on their
needs22. We leave this to future work.

By relying on the symfinder toolchain, VariCity inher-
its from its limitations. As mentioned in Section 2.2, the
dependencies between variability implementations are not
detected, and coupling this kind of information with the
symfinder output could be really interesting. On the vi-
sualization side, this would call for adaptations, especially
to not overload the city representation. Regarding hotspot
classes, their identification is based on two thresholds that
are to be determined manually, based on one’s knowledge
of the system [38]. As a result, inappropriate thresholds
result in too few or too many colored buildings. Still,
the dimensions of the buildings, the crowns for the design
patterns and the organization of the view allow to reveal
relevant zones, as it is the case for Cucumber (Figure 6).

8. Related work

In this section, we discuss work related to visual and
tooled approaches to assist for variability management and
program comprehension.

8.1. Visualization in the Software Product Line field

A recent mapping study has shown that visualizations
in the SPL domain mainly target feature models, using
tree or graph representations [32]. These visualizations
are mainly used to facilitate the configuration process over
features. To visualize variability at the code level, some
approaches use colors [124] or bar diagrams [125], while
some others focus on feature traces [33] or feature interac-
tions between features and code [126, 34]. None of them

22Such a validation would also exhibit potential accessibility issues
that can be tackled by extending the existing configuration capabil-
ities.

focus on object-oriented techniques as variability imple-
mentations.

In VariCity , we reused the symmetry-based detection
part of symfinder [36, 38], but this tool also provides a
graph-based visualization in which each class level vp and
variant is represented as a circle node that points out the
used implementation technique, with size and shades of
nodes indicating the presence of OO variability implemen-
tation mechanisms. These nodes are linked with both in-
heritance and usage relationships being different kinds of
edges, forming a set of disconnected graphs. While this
visualization allows showing some dense zones of variabil-
ity and has filtering capabilities, it has only been used for
the validation of the capabilities of symfinder in identi-
fying potential vp-s and variant. It is not adapted for
comprehending variability as in our considered scenarios,
especially in large-scale systems in which the resulting vi-
sualization is not usable (approx. 4k nodes for NetBeans).

8.2. Visualization for software comprehension

Most of the time spent in software maintenance is ded-
icated to understanding the software system itself. Rep-
resenting source code through adapted abstractions and
metaphors helps in understanding and software visualiza-
tion has been successfully experimented with and applied
to do so [127, 128]. While visualizations centered on code
lines or classes have been proposed, more attention has
been put on visualizing the architecture of software, with
treemaps [127, 128] or city metaphors, which we have dis-
cussed in Section 3.2. These visualizations usually comple-
ment more classical ones that aim at understanding rela-
tionships, with graphs or UML diagrams extracted through
static analysis. Node-link graph visualizations can eas-
ily represent dependencies but become confusing on very
large applications, while dependency structure matrices
has been shown to help in identifying software dependen-
cies [127, 128]. On its side, the usage of UML diagrams
have been shown to be only helpful to experienced engi-
neers when provided with a codebase [129]. Such diagrams
can also help when no comments are provided in code [130],
but need to be extracted from it (as opposed to diagrams
from the requirement phases) to be useful.

Our visualization problem being metric-based, we have
naturally turned to software metaphors that are adapted [127,
128]. Besides the city, other metaphors have also been pro-
posed. The Software Cartography visualization [131] ex-
plores the map metaphor, displaying code assets as islands
made of classes using common terminologies. CodeSur-
veyor [132] uses a cartographic metaphor representing high-
level architectural components containing directories and
source files as continents decomposed in countries and states.
Metrics on the source files are used to determine the size of
the nested regions. The island metaphor has also been pro-
posed to represent OSGi23 systems in virtual reality [133].

23https://www.osgi.org/
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A system is an archipel made of islands representing OSGi
bundles. An island is decomposed in regions containing
buildings, depicting packages and the classes they contain.
However, such approaches do not represent relationships
between classes. Code Park [134] displays classes as rooms
in a 3D environment, that can be explored in first-person
view as in a game. Rooms are organized by their position
in the directory structure, and their dimensions evolve ac-
cording to the size of the class they represent. The content
of the class is displayed as wallpapers on the internal walls
of the room. Although this metaphor allows displaying the
code and the high-level information about some metrics,
it does not allow to represent variability metrics.

8.3. Tools for program comprehension

Multiple tooled approaches to assist the user in soft-
ware comprehension activities have been proposed as plu-
gins for popular IDEs, such as VRLifeTime [135], an In-
telliJ plugin to ”visualize lifetime for Rust programs and
help programmers avoid lifetime-related mistakes”, or Ar-
Code [136], an IntelliJ plugin to suggest API misuse cor-
rections. These plugins are centered on comprehending
the structure of the codebase, where VariCity focuses on
comprehending the implemented variability of the system.

Full environments have also been proposed to help soft-
ware comprehension, such as SolidFX [137], which pro-
vides a set of visualizations and tools to help to under-
stand a C/C++ codebase, or Hunter [138], a complete en-
vironment providing a graph visualization of JavaScript
source code. Not only those two solutions are not appli-
cable to Java codebases, but they also focus on quality
metrics to support code comprehension. SolidFX com-
bines such metrics with reverse-engineered UML diagrams
of the project. Hunter’s graph uses nodes to represent JS
files, with their size varying with the number of LoCs, and
edges for usage relationships. On the opposite, VariCity
aims to facilitate the comprehension of the implemented
variability by guiding the user towards the parts of the
codebase that contain heavy use of variability implemen-
tations.

More specifically, IDE plugins to assist feature location
activities have also been designed. FeatureDashboard [139]
is an Eclipse plugin that allows visualizing known map-
pings between features and code assets as well feature an-
notations in a codebase. This approach has been extended
with a notation for embedded feature annotation and the
FAXE (Feature Annotation eXtraction Engine) [140] tool
to process such annotations. HAnS [141] is an IntelliJ
plugin to assist the management and edition of feature
annotations in code assets. Using these plugins, how-
ever, requires having the list of the implemented features
and their mapping with the code assets, and are therefore
not adapted to our context. FLAT3 [142] is an Eclipse
plug-in performing feature location in an opened project.
This location is performed statically based on names of
classes and methods, and dynamically using tests execu-
tion traces. The obtained results can be used to annotate

the corresponding artifacts. A visualization is provided,
representing classes as boxes with rows of pixels corre-
sponding to sections of code that are highlighted if they
implement a given feature. Although it performs feature
location, this plugin does not identify variability imple-
mented with OO mechanisms.

9. Conclusion

Object-oriented software systems often reuse OOmech-
anisms to implement their variability in a single codebase.
As these implementations are not explicit, their compre-
hension is very difficult, if not impossible. In this paper,
we proposed VariCity , a configurable and extensible 3D
visualization adapting the city metaphor to exhibit zones
of high density of variability implementations. The pro-
vided configuration options allow the user to design views
focusing on a subpart of the system, enabling comprehen-
sion of the variability at fine grain. The proposed solution
has been extended to support additional metrics on prop-
erties of the studied system such as its quality, creating
the VariMetrics visualization. The application of VariC-
ity and VariMetrics on several open source systems writ-
ten in Java showed the capacity of the visualization and its
configuration capabilities to reveal relevant zones concen-
trating variability implementations and/or being quality-
critical. The comprehensibility of the adapted metaphor
has been evaluated with a controlled experiment showing
the gain brought by VariCity to solve variability compre-
hension tasks on a medium-sized system compared to the
use of an IDE.

As a future work, we intend to design a controlled ex-
periment with real developers to comfort or complement
results of the experimentation conducted in Section 6. We
also plan to extend VariCity to take into account addi-
tional information on the implemented variability such as
annotations [143, 144, 145] which, when available, can fur-
ther assist variability comprehension. Finally, we aim to
extend both VariCity and the variability identification ap-
proach [36, 38] to support other languages and help the
comprehension of multi-language systems.

Reproduction package

A reproduction package [146] is publicly available con-
taining:

• the source code of VariCity and its VariMetrics ex-
tension;

• preconfigured views for all systems presented in Ta-
bles 2 and 4;

• annotated screenshots for each view displaying the
revealed and relevant zones detailed in Table 2;

• the Excel file used to obtain the numbers of notice-
able classes presented in Table 4;
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• the source code of the symfinder-2 toolchain enabling
reproduction of these views;

• the subjects’ answers to the comprehension tasks as
well as a Jupyter notebook processing them to obtain
the diagrams showcased in Section 6.
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Appendix A. Expected answers

Appendix B. Cheat sheet

This appendix presents the definitions contained in the
cheat sheet handed out to the students before the experi-
ment.

In the following definitions:

• class will indifferently refer to a class or an interface.

• subclass will indifferently refer to a subclass of a class
or a class implementing an interface (use of extends
or implements in Java). For this reason, although
the studied system is written in Java, the subclass
term may be used in the plural.

Appendix B.1. Varability concepts

Definition 1 (Usage relationship). There is a usage re-
lationship between two classes A and B if A uses B. A uses
B means that B is used as the type of an attribute of A or
of a parameter of a method of A.

Definition 2 (Variation point (vp) and variant). A vari-
ation point can represent:

• a class having at least 2 subclasses. The variants
then represent the subclasses, and are qualified as
class level variants.

• a class which has at least one method or an over-
loaded constructor. The variants then represent the
overloads, and are qualified as method level variants.

• a design pattern (cf. Appendix B.2).

Note: A class can have both class-level and method-level
variants.

Definition 3 (Individual density). A vp is individually
dense for a threshold v if it has at least v variants (at least
v subclasses or at least v method and constructor over-
loads).

Example: A class is individually dense for v = 20 if it
has at least 20 subclasses and/or at least 20 method and
constructor overloads.

Definition 4 (Collective density). A vp is collectively
dense for a threshold d if it is at most d usage relationships
away from another vp (cf. Definition 2).

Example: A class is collectively dense for d = 2 if it
is linked through a usage relationship with a class that is
itself linked through a usage relationship with another vp.

Definition 5 (Hotspot). A hotspot is a class being dense
both individually for a threshold v and collectively for a
threshold d.

Appendix B.2. Design patterns

Definition 6 (Strategy). We define as a Strategy a class
for which at least one of the following two statements is
correct:

• its name ends with Strategy;

• it has at least 2 subclasses and is used as an field in
another class.

Example:

class Algorithm { }

class Algorithm1 extends Algorithm { }

class Algorithm2 extends Algorithm { }

class App {
Algorithm algo;

}

Algorithm has 2 subclasses (Algorithm1 and Algorithm2)
and is used as a field in another class (App), it is thus a
Strategy.

Definition 7 (Factory). We define as a Factory a class
for which at least one of the following two statements is
correct:

• its name ends with Factory;

• it has a method returning an object whose type is a
subclass of the method’s return type.

Example:

class Animal { }

class Dog extends Animal { }

class Cat extends Animal { }

public class AnimalCreator {

Animal create(String animalType) throws
AnimalCreationException {
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Table A.12: The expected answers for the 11 variability comprehension tasks given to the subjects.

ID Task Expected answers

1

When discovering the visualization / the code in the
IDE and the data in the spreadsheet, according to you,
what classes seem to be important to explore in
priority? For each one of them, explain why.

For this open question, we expected in the answer the presence of classes such as CategoryPlot
and XYPlot for which OO variability measures are higher than for other classes, as well as their
subclasses.

2

Identify 2 variants at class level for each of the
following variation points (cf. Definition 2):

• org.jfree.chart.plot.Plot

• org.jfree.chart.title.TextTitle

• For Plot: org.jfree.chart.plot.{PolarPlot, XYPlot, CompassPlot,

MultiplePiePlot, CategoryPlot, ThermometerPlot, PiePlot, WaferMapPlot,

SpiderWebPlot, FastScatterPlot, MeterPlot, dial.DialPlot}
• For TextTitle: org.jfree.chart.title.{ShortTextTitle, DateTitle}

3

How many classes are linked with a usage relationship
to each of the following classes? Give 3 examples.

• org.jfree.chart.plot.CategoryPlot

• org.jfree.chart.title.CompositeTitle

• For CategoryPlot (20 classes): org.jfree.data.category.CategoryDataset,
org.jfree.chart.annotations.CategoryAnnotation,
org.jfree.chart.util.ShadowGenerator,
org.jfree.chart.renderer.category.CategoryItemRenderer,
org.jfree.chart.plot.{CombinedDomainCategoryPlot, CombinedRangeCategoryPlot,

CategoryMarker, DatasetRenderingOrder, CategoryCrosshairState,

PlotRenderingInfo, Marker}, org.jfree.chart.annotations.CategoryAnnotation,
org.jfree.chart.renderer.category.CategoryItemRenderer,
org.jfree.chart.LegendItemCollection, org.jfree.chart.axis.{CategoryAnchor,
ValueAxis, AxisLocation, AxisSpace, CategoryAxis},
org.jfree.chart.ui.RectangleInsets

• For CompositeTitle (2 classes): org.jfree.chart.block.{BlockContainer,
RectangleConstraint}

4

Complete the following sentences:

• Classes (1) and (2) have an important number
(≥ 5) of subclasses (i.e., are variation points with
an important number of variants at class level).

• Classes (3) and (4) have an important number
(≥ 10) of overloaded methods and constructors
(i.e., are variation points with an important
number of variants at method level).

• (1) and (2): org.jfree.data.xy.XYDataset,
org.jfree.data.category.CategoryDataset,
org.jfree.chart.renderer.xy.XYItemRenderer,
org.jfree.chart.needle.MeterNeedle, org.jfree.chart.title.Title,
org.jfree.chart.block.Arrangement, org.jfree.chart.plot.{Plot,
dial.DialLayer}

• (3) and (4): org.jfree.chart.plot.{CategoryPlot, XYPlot, PolarPlot,

SpiderWebPlot, PiePlot, ThermometerPlot, dial.DialPlot},
org.jfree.chart.axis.ValueAxis, org.jfree.chart.JFreeChart,
org.jfree.chart.LegendItem

5
Identify the 3 classes with the highest individual
density higher to the threshold v = 20
(cf. Definition 3).

org.jfree.chart.plot.{CategoryPlot, XYPlot, PolarPlot}

6

Give 2 examples of each of the following design
patterns (cf. Appendix B.2):

• Strategy pattern;
• Factory pattern.

• Strategy: org.jfree.chart.plot.{CategoryPlot, XYPlot, Plot, Marker},
org.jfree.chart.title.{TextTitle, Title}, org.jfree.chart.block.Arrangement,
org.jfree.chart.axis.TickUnit

• Factory: org.jfree.chart.JFreeChart, org.jfree.chart.plot.Plot,
org.jfree.chart.item.LegendItem, org.jfree.chart.block.BlockContainer,
org.jfree.chart.ChartRenderingInfo

7
What is the distance between the
org.jfree.chart.JFreeChart and
org.jfree.chart.title.DateTitle classes?

2

8
Identify 3 hotspots for an individual density threshold
of v = 20 and a collective density threshold of d = 5
(cf. Definition 5).

org.jfree.chart.plot.{CategoryPlot, XYPlot, Plot, PolarPlot,

DefaultDrawingSupplier, dial.DialPointer}, org.jfree.chart.axis.{ValueAxis,
AxisSpace}, org.jfree.chart.title.{TextTitle, LegendTitle, PaintScaleLegend},
org.jfree.chart.JFreeChart, org.jfree.chart.block.BlockContainer,
org.jfree.data.xy.XYDataset, org.jfree.chart.annotations.XYAnnotation,
org.jfree.chart.renderer.xy.XYItemRenderer, org.jfree.chart.ui.Size2D

9

Identify the classes that according to you implement
each of the following features, and specify if they are
hotspots for v = 20 and d = 5 (cf. Definition 5):

• “draw a chart” feature;
• “title of the chart” feature.

• “draw a chart”: org.jfree.chart.plot.{PiePlot3D, PiePlot, RingPlot,

DialPlot, MeterPlot, ThermometerPlot, CompassPlot, WaferMapPlot, Plot,

SpiderWebPlot, CategoryPlot, MultiplePiePlot, FastScatterPlot, PolarPlot,

XYPlot, PlotRenderingInfo, CombinedDomainCategoryPlot, CombinedRangeXYPlot,

CombinedDomainXYPlot, CombinedRangeCategoryPlot, PiePlotState}
• “title of the chart”: org.jfree.chart.title.{ShortTextTitle, TextTitle,

LegendTitle, Title, CompositeTitle, ImageTitle, DateTitle}

10

What are according to you the classes to
add/reuse/modify to implement a new type of chart
(i.e., to implement a new variant of the
org.jfree.chart.plot.Plot vp) ?

For this open question, we expected as part of the answer:

• classes to add: a subclass of Plot, possibly a new class for a dataset such as XYDataset
or CategoryDataset

• classes to reuse: classes being already used by other variants of Plot (e.g., ValueAxis)
• classes to modify: classes already using other variants of Plot that might be extended to
support this new variant

11
Following this observation of JFreeChart, what are
according to you the main abstractions used in this
charting library?

For this open question, we expected to find in the answer terms related to the main implemented
features such as plot, title, axis or legend.27



if(animalType.equals("cat")) {
return new Cat();

}
else if(animalType.equals("dog")) {

return new Dog();
}
throw new AnimalCreationException("Unable to

create a " + animalType);
}

}

The method create(String) in AnimalCreator re-
turns a Cat or a Dog, being subtypes of the method’s re-
turn type (i.e., Animal), it is thus a Factory.

Definition 8 (Decorator). We define as a Decorator a
class for which at least one of the following two statements
is correct:

• its name ends with Decorator;

• it has at least a subclass and has a field whose type
is one of its superclasses having at least 2 subclasses.

Example:

interface Window { }

class SimpleWindow implements Window { }

abstract class AbstractDecorator implements
Window {
Window window;

}

class ConcreteDecorator extends WindowDecorator {
}

AbstractDecorator has a subclass (ConcreteDecorator),
uses the interface it implements as a field (Window), that it-
self has two subclasses (SimpleWindow and WindowDecorator),
AbstractDecorator is thus aDecorator. ConcreteDecorator
will also be identified as a Decorator as its name ends with
Decorator.

Definition 9 (Template). We define as a Template a
class for which at least one of the following two statements
is correct:

• its name ends with Template;

• it is abstract, has at least a subclass and has an
abstract method that is called in a concrete method
of the same class.

Example:

abstract class Algorithm {

abstract void abstractStep ();

void run() {
...
abstractStep ();
...

}
}

Algorithm has an abstract method abstractStep that
is called in the concrete method run, it is thus a Template.
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[16] X. Tërnava, J. Mortara, P. Collet, D. Le Berre, Identifica-
tion and visualization of variability implementations in object-
oriented variability-rich systems: a symmetry-based approach,
Journal of Automated Software Engineering 29 (2022) 1–51.

[17] A. Metzger, K. Pohl, Software product line engineering and
variability management: achievements and challenges, in:
Future of Software Engineering Proceedings, Association for
Computing Machinery, New York, NY, USA, 2014, pp. 70–84.

[18] M. Acher, L. Lesoil, G. A. Randrianaina, X. Tërnava, O. Zen-
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[38] J. Mortara, X. Tërnava, P. Collet, A.-M. Dery-Pinna, Ex-
tending the Identification of Object-Oriented Variability Im-
plementations using Usage Relationships, in: Proceedings of
the 25th ACM International Systems and Software Product
Line Conference - Volume B, SPLC ’21, Association for Com-
puting Machinery, New York, NY, USA, 2021, p. 91–98.

[39] R. Pienta, J. Abello, M. Kahng, D. H. Chau, Scalable graph
exploration and visualization: Sensemaking challenges and op-
portunities, in: 2015 International conference on Big Data and
smart computing (BIGCOMP), IEEE, 2015, pp. 271–278.

[40] R. Wettel, M. Lanza, Visualizing software systems as cities,
in: 2007 4th IEEE International Workshop on Visualizing Soft-
ware for Understanding and Analysis, IEEE, 2007, pp. 92–99.

[41] R. Wettel, M. Lanza, CodeCity: 3D visualization of large-scale
software, in: Companion of the 30th international conference
on Software engineering, 2008, pp. 921–922.

[42] F. Steinbrückner, C. Lewerentz, Understanding software evo-
lution with software cities, Information Visualization 12 (2013)
200–216.

[43] J. Mortara, P. Collet, A.-M. Dery-Pinna, Visualization of
Object-Oriented Variability Implementations as Cities, in:
2021 Working Conference on Software Visualization (VIS-
SOFT), Luxembourg (virtual), Luxembourg, 2021, pp. 76–87.

[44] J. Mortara, P. Collet, A.-M. Dery-Pinna, Customizable Vi-
sualization of Quality Metrics for Object-Oriented Variability
Implementations, in: Proceedings of the 26th ACM Interna-
tional Systems and Software Product Line Conference - Vol-
ume A, SPLC ’22, Association for Computing Machinery, New
York, NY, USA, 2022, p. 43–54.

[45] M. Azanza, A. Irastorza, R. Medeiros, O. Dı́az, Onboard-
ing in Software Product Lines: Concept Maps as Welcome
Guides, in: 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering Education and
Training (ICSE-SEET), IEEE, 2021, pp. 122–133.

[46] C. R. Turner, A. Fuggetta, L. Lavazza, A. L. Wolf, A con-
ceptual basis for feature engineering, Journal of Systems and
Software 49 (1999) 3–15.

[47] J. O. Coplien, Multi-Paradigm Design for C++, Addison-
Wesley Longman Publishing Co., Inc., 1999.

[48] F. Bachmann, P. Clements, Variability in Software Product
Lines, Technical Report CMU/SEI-2005-TR-012, Software En-
gineering Institute, Carnegie Mellon University, Pittsburgh,
PA, 2005.

[49] I. Jacobson, M. Griss, P. Jonsson, Software reuse: architecture
process and organization for business success, volume 285, acm
Press New York, 1997.
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[69] J. Feigenspan, C. Kästner, S. Apel, J. Liebig, M. Schulze,
R. Dachselt, M. Papendieck, T. Leich, G. Saake, Do back-
ground colors improve program comprehension in the# ifdef
hell?, Empirical Software Engineering 18 (2013) 699–745.

[70] B. Shneiderman, The eyes have it: A task by data type taxon-
omy for information visualizations, in: Proceedings 1996 IEEE
Symposium on Visual Languages, IEEE, 1996, pp. 336–343.

[71] F. N. Colakoglu, A. Yazici, A. Mishra, Software product qual-
ity metrics: A systematic mapping study, IEEE Access (2021).
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