
HAL Id: hal-04247907
https://hal.science/hal-04247907v1

Submitted on 18 Oct 2023 (v1), last revised 20 Oct 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visualization of Object-Oriented Software in a City
Metaphor: Comprehending the Implemented Variability

and its Technical Debt
Johann Mortara, Philippe Collet, Anne-Marie Dery-Pinna

To cite this version:
Johann Mortara, Philippe Collet, Anne-Marie Dery-Pinna. Visualization of Object-Oriented Software
in a City Metaphor: Comprehending the Implemented Variability and its Technical Debt. Journal of
Systems and Software, In press. �hal-04247907v1�

https://hal.science/hal-04247907v1
https://hal.archives-ouvertes.fr

Visualization of Object-Oriented Software in a City Metaphor: Comprehending the
Implemented Variability and its Technical Debt

Johann Mortara, Philippe Collet, Anne-Marie Dery-Pinna

Université Côte d’Azur, CNRS, I3S, France

Abstract

While many large-scale software systems intensively implement variability to reuse software and speed up devel-
opment, they often do not document it, hampering its comprehension. This is especially the case for variability-rich
object-oriented (OO) systems that heavily rely on existing OO mechanisms (i.e., inheritance, overloading and some pat-
terns) to implement it in a single codebase. With no traceability information, the variability is buried in the codebase,
hampering its identification, analysis, and understanding. While variability management becomes increasingly difficult
over the system evolution, the implementation mechanisms also bring additional complexity to the codebase, which
eventually leads to technical debt, threatening even more the software quality.

In this article, we report on the design and evaluation of an extensible visualization, VariCity , that exhibits zones
of high density of OO variability implementations. It relies on the city metaphor to represent the classes of the system
as buildings whose dimensions are used to show variability metrics inherent to the implementation classes. They are
linked together through streets depicting usage relationships and grouping in neighborhoods classes using each other.
The extensibility of VariCity is demonstrated with VariMetrics, which highlights OO quality metrics on the buildings,
revealing quality-critical classes concentrating variability implementations. We evaluate the visualization capacity to
reveal zones concentrating variability implementations and being quality-critical by applying it to multiple variability-
intensive open source software systems. We also report on a controlled experiment comparing the gain brought by the
visualization to the use of an IDE.

Keywords: software variability, reverse-engineering, software visualization, software cities, program comprehension,
software quality

1. Introduction1

Whatever their scale and their domain, recent software-2

intensive systems and applications are more and more vari-3

ability intensive [1, 2, 3]. Software variability is usually4

defined as the ability of a software artifact (i.e., system5

or element that enables to develop it) to be efficiently6

extended, changed, customized, or configured towards a7

specific context [4]. Variability can be seen as an antic-8

ipated change that evolves over time [5], calling for ap-9

propriate management techniques for software engineers10

of variability-intensive systems.11

Being a key element in most systems [1], variability12

management has been heavily studied, notably leading to13

the Software Product Line (SPL) [6, 7] and product fam-14

ily [4] paradigms. In the SPL paradigm, the domain vari-15

ability, commonly documented and managed in terms of16

features in a feature model [8], is clearly separated from the17

implemented variability, which is mapped from the domain18

Email addresses: johann.mortara@univ-cotedazur.fr (Johann
Mortara), philippe.collet@univ-cotedazur.fr (Philippe Collet),
anne-marie.pinna@univ-cotedazur.fr (Anne-Marie Dery-Pinna)

variability, using most of the times a single implementa-19

tion technique. In this context, implementation techniques20

can be diverse, reusing existing mechanisms such as pre-21

processor directives [9], or being completely specific with a22

specialized form of modules [7]. The implemented variabil-23

ity may also be managed through an implemented-related24

feature model [10, 11], but the main benefits of an SPL are25

to reason on consistency at the domain level and from a26

configuration, to derive a consistent software product [12].27

However, many variability-rich software systems intro-28

duce variability progressively or manage diversity in their29

functionalities without following a complete SPL approach.30

Many of them are object-oriented and implemented in a31

single codebase in which variability among the obtainable32

software products is realized using traditional techniques33

(i.e., inheritance, parameters, overloading, and some de-34

sign patterns such as strategy and factory) [13, 14, 4].35

These mechanisms being also used to structure the imple-36

mentation, the variability is buried in the codebase, ham-37

pering its identification, analysis, and understanding as38

there is no traceability with domain information [15, 16].39

In this work, we target OO codebases that are not as-40

sociated in any way with additional information regard-41

Preprint submitted to Journal of Systems and Software October 18, 2023

ing variability (e.g., UML-based variability description,42

source code annotations). As a consequence, managing43

this variability becomes increasingly difficult throughout44

the evolution of the system [4, 17, 18], eventually leading45

to technical debt [19, 20]. The technical debt represents46

short-term applications of design and implementation con-47

structs that make future modifications more costly or im-48

possible, thus impacting system’s maintainability and evo-49

lution [20]. Applied to variability mechanisms, it led to the50

term of variability debt [21], which is especially character-51

ized by the lack of knowledge on implemented variability52

in the source code, with the same kind of negative im-53

pacts. Therefore there is a need for a solution to facilitate54

the comprehension of OO variability implementations and55

their quality in single code bases that do not contain any56

other information except the implementation mechanisms.57

The identification of such implementations can then be58

exploited in different ways, from the maintenance of the59

variable system to some variability reengineering [22] or60

a migration to a full software product lines [23]. For ex-61

ample, the result of the underlying detection used in our62

solution (i.e., symfinder) has been successfully mapped63

to a domain feature model in two different variable sys-64

tems [24, 25]. However, we only focus in this article on a65

visualization adapted to the identification of the OO imple-66

mented variabilities to facilitate variability comprehension67

of large OO systems.68

Comprehending properties of software systems is of-69

ten assisted by visualizations [26, 27, 28] which, relying70

on metaphors to represent them [29, 30], help their under-71

standing [31]. On one side, while visual approaches have72

been proposed to understand variable systems [32], they73

focus on domain variability [33, 34] that is often not docu-74

mented in the case of OO systems [35]. The symfinder ap-75

proach [36, 37] and its extension symfinder-2 [38] proposed76

to identify OO variability implementations rely on a graph77

to represent them. However, tackling large codebases is78

known to be a weak point of graph visualizations [39]. On79

the other side, metaphors scaling on large systems have80

been proposed such as the metaphor of the city [40]. This81

metaphor has been adapted to represent multiple proper-82

ties of OO systems such as quality metrics [41] and their83

evolution [42] with a city shape based on packages. How-84

ever, the proposed organizations are not adapted to rep-85

resent OO variability implementation mechanisms as their86

identification relies on dense zones of classes with high vari-87

ability metrics and the usage relationships between these88

classes.89

In this paper, we propose a visualization, VariCity ,90

that relies on the metaphor of the city to reveal zones of91

high density of variability implementations in an OO sys-92

tem. Classes with metrics about the OO mechanisms (e.g.,93

number of overloaded methods in a class) are obtained by94

reusing the symfinder toolchain [36]. In the visualization,95

buildings represent classes linked together through streets96

representing usage relationships (i.e., composition, aggre-97

gation). While the buildings dimensions are used to rep-98

resent computed variability metrics inherent to the classes99

(i.e., overloads of methods and constructors), their color100

and texture allow representing quality metrics. Configura-101

tion options are provided to tailor a view on a subpart of102

the studied system and display only the variability of in-103

terest for the user. We also demonstrate the extensible na-104

ture of VariCity by introducing the VariMetrics extension105

which exploits software quality metrics to reveal critical106

zones concentrating technical debt. One can choose the107

quality metrics to be displayed, some displaying strategies108

(red-to-green sequence, saturation, crackled texture) and109

how to combine them, to tailor the visualization according110

to their needs. The capacity of the visualizations to reveal111

zones concentrating variability implementations and be-112

ing quality-critical has been evaluated by applying them113

to multiple variability-intensive open source software sys-114

tems implemented in Java. We also report on a controlled115

experiment comparing the gain brought by the visualiza-116

tion with the use of an IDE on a mid-size variable OO117

system.118

An earlier version of the presented approach appeared119

at the VISSOFT’2021 conference [43] in which we intro-120

duced VariCity . The VariMetrics extension of VariCity121

adding support for quality metrics on the view has been122

presented at the SPLC’2022 conference [44]. This article123

substantially extends these publications by124

• providing a more complete validation on the VariC-125

ity visualization, with quantitative measurements on126

the identified zones of variability;127

• providing a similar validation on the VariMetrics vi-128

sualization, which was only validated through usage129

scenarios [44];130

• providing a controlled experiment evaluating the gain131

of using VariCity compared to an Integrated Devel-132

opment Environment (IDE) with 2 separated groups133

of 24 users.134

The remainder of the paper is organized as follows.135

Section 2 introduces OO variability implementations and136

how they can be identified. Section 3 defines the require-137

ments for a view to comprehend OO variability imple-138

mentations and introduces the city metaphor. Section 4139

presents VariCity , detailing the view’s organization and140

the visual axes used to represent variability, and its exten-141

sion VariMetrics. In Section 5, we apply the visualizations142

on multiple open source Java systems and show their ca-143

pacity to reveal zones concentrating variability implemen-144

tations (Sections 5.1 and 5.2). We also evaluate how the145

quality metrics visualization, when available, reveals in-146

debted classes concentrating variability implementations147

(Section 5.3). We report on a controlled experiment con-148

ducted to evaluate the comprehensibility of the visualiza-149

tion by real users in Section 6. Threats to the validity of150

our approach and its limitations are discussed in Section 7,151

while Section 8 presents related work. Finally, Section 9152

concludes the paper and discusses future work.153

2

2. Background154

Many object-oriented software systems become pro-155

gressively variability rich and do not follow the full soft-156

ware product line paradigm [6, 7]. Their domain variabil-157

ity (i.e., features) is then not very well documented and is158

not made explicit within code assets, potentially causing159

technical debt [21]. In this context, comprehending the160

variability at code level is crucial for its management. Ac-161

tivities related to comprehension can be as diverse as main-162

taining or evolving the code, mapping the implemented163

variability to domain features [17], or conducting an on-164

boarding process for newcomers [45].165

2.1. Implemented variabilities in object-oriented systems166

Variability in object-oriented systems can be distin-167

guished in code assets through three different parts: core,168

commonalities, and variations [46, 47, 48]. The core part169

corresponds to assets included in any of the final software170

products [46]. A commonality is a common part between171

the related variations of code assets, while the variations172

indicate how and when should code assets vary [1]. Com-173

monalities and variations are respectively abstracted in174

terms of variation points (vp-s) and variants [49, 50, 51],175

which are both related to concrete elements in code as-176

sets [52]. A variation point identifies one or more locations177

where the variation will occur, while the way that a varia-178

tion point is going to vary is expressed by its variants [49].179

In object-oriented variability-rich systems implemented180

within a single codebase, the implementation of these vari-181

ability elements reuses different existing mechanisms and182

techniques, such as inheritance, parameters, constructor183

and method overloading, or some software design patterns [13,184

14, 4, 53]. Figure 1 shows an example of variability im-185

plemented using inheritance (the Plot superclass repre-186

sents the vp while its subclasses represent the variants),187

constructor overloading (the PiePlot constructor is a vp188

with two variants being its two overloads) and method189

overloading (the addDomainMarker method is a vp with190

two variants being its two overloads). As the code units191

that structure the systems are classes, it has been shown192

that they do not align well with the implemented vari-193

ability or the domain features [54, 7]. This hampers the194

comprehension of variability as classes cannot be directly195

used to understand the variability implementations. Vari-196

ability implementation techniques have been analyzed ac-197

cording to different taxonomies [14, 55, 13, 56, 7], and198

it has been acknowledged that there is currently no ap-199

proach to represent vp-s with variants in all forms of code200

assets [32]. In our proposition, we do not consider UML-201

based product lines, such as the ones that could be built202

with dedicated support like SMarty [57], nor codebases203

with variability-related annotations. In both cases, such204

additional information could be used and related to what205

is analyzed within the VariCity toolchain, while in this206

paper we focus on codebases with variability implemented207

with object-oriented techniques and with no other associ-208

ated models.209

Besides, if a complete representation of the implemented210

variability is not possible, it may be possible to compre-211

hend it through SPL migration techniques. The techniques212

rely on diverse approaches, such as feature location, fea-213

ture identification [58, 59, 22], feature delimitation (with214

annotations) [9], or feature modularization [7]. However,215

in all these techniques features tend to describe the do-216

main variability of an SPL or a variability-rich system,217

but are required to be known in advance [11, 51]. As do-218

main variability is hardly documented in variability-rich219

systems [35], and with a single codebase, reengineering of220

features from clones of a system cannot be used [60]. In221

our context, migrating thus requires substantial manual222

effort and implies a complete paradigm shift.223

2.2. Metrics to identify OO variability implementations224

Identifying vp-s with variants [61] implemented with225

object-oriented techniques in a single codebase is thus a226

hard problem by the diversity of the implementations, each227

one requiring its own way to be identified [61, 53]. Re-228

cently, Tërnava et al. [36] proposed an approach to iden-229

tify OO variability implementation mechanisms and, con-230

sequently, vp-s with variants implemented by these tech-231

niques in Java systems. Figure 1 depicts the identification232

mechanism as implemented in the symfinder toolchain [37,233

38] and the different kinds of information computed and234

obtained from the static analysis made by the toolchain235

through a graph database. Each class is represented as236

node in a graph with usage (references to other classes,237

cf. Definition 1) and inheritance relationships being edges.238

The static analysis adds labels on them together with met-239

rics on the usage of variability related mechanisms. A vp240

with variants at class level is then labeled VP, and its vari-241

ants have a VARIANT label (Definition 2). Classes with242

method level vp-s are labeled METHOD LEVEL VP. If a class243

is the vp of a design pattern, it is labeled with its name244

(e.g., STRATEGY). symfinder is capable of detecting several245

implementations techniques, some related to inheritance246

(i.e., class subtyping, method and constructor overload-247

ing,), the others being design patterns (i.e., strategy, tem-248

plate, decorator, and factory). The different metrics on249

the number of vp-s and variants per class are also com-250

puted. For example, these metrics show that XYPlot ex-251

poses much more method vp-s and variants than PiePlot.252

It has also been shown that locations in the code con-253

centrating such mechanisms denote zones of interest in254

terms of variability [36]. Classes being part of such dense255

zones, called hotspots, exhibit two properties [38]: an indi-256

vidual density (Definition 3) representing a concentration257

of variability implementation mechanisms inside the class258

(overloads of methods and constructors), and a collective259

density (Definition 4) representing the proximity in terms260

of usage relationship to another class exhibiting variabil-261

ity implementations (i.e., vp or variant). They can be262

3

Automatic identification of
variability implementations

Codebase

Identified potential
vp-s and variants

JFreeChart

types: CLASS, VP, FACTORY, METHOD_LEVEL_VP

constructorVPs: 1
constructorVariants: 3
methodVPs: 7
methodVariants: 17

attributes: Plot, Title, …

Plot

types: CLASS, ABSTRACT, VP, VARIANT,
METHOD_LEVEL_VP, FACTORY, STRATEGY

constructorVPs: 0
constructorVariants: 0
methodVPs: 3
methodVariants: 6

attributes: AxisLocation, PlotRenderingInfo,
PiePlot, MeterPlot, …

subclasses: PiePlot, XYPlot, MeterPlot,
CategoryPlot, …

XYPlot

types: CLASS, STRATEGY, VP, VARIANT,
METHOD_LEVEL_VP

constructorVPs: 1
constructorVariants: 2
methodVPs: 30
methodVariants: 77

attributes: Plot, Title, …

subclasses: CombinedDomainXYPlot, …

PiePlot

types: CLASS, VP, VARIANT, METHOD_LEVEL_VP

constructorVPs: 1
constructorVariants: 2
methodVPs: 4
methodVariants: 9

attributes: Plot, Title, …

subclasses: RingPlot,…

VP

V V

VPV
V

Figure 1: Depiction of symfinder ’s variability identification mechanism

automatically determined thanks to the previously intro-263

duced metrics using thresholds on the minimum number264

of variants of a vp and its maximum distance in usage265

relationships with another vp or variant (Definition 5).266

Consequently, symfinder detects what could be defined as267

implementation variability patterns, either by the presence268

of specific design patterns or by the concentration of im-269

plementation techniques that all together denotes poten-270

tial variability implementation locations. Both the design271

patterns and the density principle were validated on large272

software and for a single system with its software archi-273

tect [16]. Besides, it must be noted that cross-cutting274

relations or dependencies between implemented variabil-275

ity locations cannot be determined by the symfinder tech-276

nique. While a feature model could be generated from the277

symfinder output, we believe it would not be as useful as a278

visualization related to the codebase itself. However, some279

additional work has demonstrated that the detected vari-280

ability can be mapped to a domain feature model with an281

average precision1 and a good recall [24, 25]. The graph282

representation was also extended so that the mapped fea-283

ture can be read while hovering on the different nodes284

representing the implementation classes. This shows the285

potential usages of the identification of this implemented286

variability, which could range from facilitating mainte-287

nance to a migration activity towards an SPL.288

While an inheritance graph representation and the com-289

puted metrics were good enough to validate the relevance290

of symfinder ’s identification technique in [36], its exten-291

sion to represent the needed additional usage mechanisms292

considered in symfinder-2 [38] has demonstrated that the293

resulting graph visualization becomes cumbersome to un-294

derstand when the number of classes to display increases.295

While techniques have been proposed to tackle scalabil-296

1the rather low precision is mainly due to the use of a partial
feature model and the absence of mapping to mandatory features in
the two considered systems.

ity issues of graph visualizations [62, 63], the challenge297

of tackling large codebases requires a scalable visualiza-298

tion, which is known to be a weak point of graph visu-299

alizations [39]. Moreover, according to a recent mapping300

study Lopez-Herrejon et al. [32], while many visual repre-301

sentations of variability management approaches are pro-302

posed in the context of SPLs, they most often target do-303

main variability (e.g., features in a feature model). These304

visual representations cannot then be reused directly.305

Consequently, while identifying the variability imple-306

mentations (i.e., variation points and their variants) di-307

rectly in code assets is the first activity to comprehend308

variability, it does not find satisfactory support at medium309

to large scales.310

3. Motivations311

In this section, we determine the requirements a vi-312

sualization to assist the comprehension of OO variability313

implementation mechanisms needs to fulfill (Section 3.1).314

We then introduce the city metaphor and examine to what315

extent it can respect such requirements (Section 3.2).316

3.1. Requirements317

As program comprehension is seen as a process of both318

information seeking [64] and feature location [58], it is ob-319

vious that even if our problem is not related to domain fea-320

tures in a classic SPL terminology, identifying vp-s with321

variants is indeed a comprehension problem. Moreover,322

SPLs and variable software in general are known to be323

complex and difficult to apprehend [45], and tools are324

essential to illustrate software reuse concepts [65]. We325

then first advocate that this context naturally calls for326

visualization-based solutions as they are often used as sup-327

ports to assist the comprehension of large software sys-328

tems [66, 67, 68, 28] and aspects related to their imple-329

mented variability [69, 34, 33]. As the essence of software330

visualization consists of creating an image of software by331

4

means of visual objects that represent structure and/or332

behavior, we believe it is well suited to enable perception333

of variability implementations with a closer fit to the user334

mental model.335

The goal of such a visualization being to assist the336

comprehension of variability implemented using OO mech-337

anisms, it must therefore (i) reveal zones of interest as338

described in Section 2.2 (i.e., zones exhibiting individual339

and collective density). As the variability metrics and the340

involved mechanisms to be displayed are diverse and of341

heterogeneous nature (classes, links between them, design342

patterns), displaying a view with all classes (and their us-343

age / inheritance relationships) altogether would overload344

the visualization. Therefore, it should also (ii) provide345

configuration options allowing to display only the classes346

(and related relationships /metrics) of interest for the user347

as described by the Shneiderman information seeking man-348

tra [70]: overview first, zoom and filter, then details on de-349

mand. Finally, understanding the quality of OO variability350

implementation mechanisms is essential as it can poten-351

tially harm their comprehensibility. While we could imag-352

ine navigating between a specific visualization and a tool353

specific to quality metrics, this would be cumbersome as it354

would require manually finding and mapping information355

having heterogeneous representations. The view should356

therefore be able to (iii) display quality metrics. State-357

of-the-art proposes a plethora of quality metrics to mea-358

sure several properties of a software system [71], ranging359

from the architecture [72] to the source code level [73, 74].360

Since no metric is relevant for all software systems due to361

the elusive definition of quality [75], software practition-362

ers need to pick and combine different metrics to obtain a363

quality measure relevant for their use case. Being able to364

configure the quality metrics to display is therefore essen-365

tial. We synthesize the determined requirements for our366

visualization as follows:367

Requirement 1. Reveal zones of interest (i.e., zones ex-368

hibiting individual and collective density).369

Requirement 2. Provide configuration options allowing370

to display only the classes (and related relationships /met-371

rics) of interest for the user.372

Requirement 3. Display quality metrics and provide op-373

tions to configure them.374

Basing ourselves on this list of requirements, there is a375

need to find an appropriate visualization allowing to fulfill376

it.377

3.2. On the city metaphor378

A first approach could be to evolve the symfinder ’s379

graph visualization to improve its scalability [62, 63], but380

as multiple visualizations rely on metaphors to get an un-381

derstandable graphical representation [30], we sought for382

an appropriate metaphor. The city metaphor [29] has383

been applied to multiple types of metrics on software sys-384

tems: dynamic behavior (such as concurrency between385

classes [76] or memory consumption of heaps [77]), and386

static properties such as dependency and communication387

links between components [78].388

Visualization cities have also been proposed to under-389

stand OO software systems, with first CodeCity [41, 40]390

that uses buildings to represent classes, grouping them in391

districts representing packages. A temporal dimension was392

also added to visualize the evolution of the metrics through393

multiple versions of the system, first in CodeCity [79] and394

also in a more recent visualization called m3triCity [80,395

81]. The Evo-Streets [42] approach also uses the city meta-396

phor, but uses streets to represent the package decompo-397

sition instead of nested boxed areas in CodeCity. Mul-398

tiple approaches also reuse the city metaphor by adding399

other visual dimensions such as arcs between buildings [82,400

83] or by adapting it to more immersive techniques, such401

as virtual reality for CodeCity [84] and VRCity [85], or402

Minecraft for CodeMetropolis [86].403

The popularity of this metaphor and the fact that Code-404

City showed to help complete program comprehension tasks405

[87, 88] led us to the hypothesis that visualization based406

on the city metaphor could help the comprehension of OO407

variability implementations and their quality. However,408

cities such as CodeCity and Evo-Streets are organized re-409

lying on the package decomposition. While this arrange-410

ment is adapted to identify packages containing quality-411

critical classes, it does not allow to represent the inheri-412

tance and usage relationships between the classes. These413

mechanisms being involved in variability implementations,414

displaying them is essential to fulfill Requirement 1. We415

thus propose to adapt the city metaphor to display OO416

variability implementations.417

4. VariCity: a configurable and extensible visual-418

ization for variability comprehension419

We hereafter detail howVariCity adapts the city metaphor420

to the problem of OO variability comprehension by an-421

swering Requirements 1, 2 and 3 in Sections 4.1, 4.2 and 4.3422

respectively.423

4.1. Main principles for revealing zones of interest424

Buildings. In CodeCity [79], classes are buildings and425

their dimensions evolve according to metrics related to426

code quality which are inherent to the represented class,427

such as the cyclomatic complexity or the number of lines428

of code (LoC). A large number of methods leads to the cre-429

ation of a tall and eye-catching building. VariCity aims430

to focus the user on classes making heavy use of variabil-431

ity implementations (cf. Requirement 1). Therefore, we432

choose to shape the dimensions of every building so to rep-433

resent the class-based metrics related to variability (i.e.,434

the number of variants at method level). A tall building435

then shows a large number of method variants, whereas a436

large building shows a large number of constructor vari-437

ants. In addition the color of buildings (by default yellow438

5

Table 1: Visual properties and their default color

Representation in VariCity Signification

Buildings

Yellow color Variation point that is part of a hotspot

Blue color Non vp class that is part of a hotspot

Gray color Class that is not part of a hotspot

Pyramide crown Entry point class

Dome crown Strategy pattern

Chimneys crown Factory pattern

Inverted Pyramide crown Template pattern

Sphere crown Decorator pattern

Streets

Plan (red) Street aggregating entry point classes

Plan / Underground (green) Usage relationship

Aerial (blue) Inheritance relationship

for vp-s and blue for non vp-s) distinguishes classes de-439

fined as hotspots (cf. Section 2.2). Such classes are part of440

dense zones of variability and are vp-s identified by match-441

ing one of the two following requirements: (i) they have442

a minimum number of variants, 5 in our experiments, or443

(ii) they are close in usage to another vp (i.e., they are444

situated at less than 3 transitive hops in the usage re-445

lationships graph). The shape of the building is altered446

according to the design pattern(s) exhibited by the class447

(cf. Table 1). A design pattern often involves multiple448

classes, however only the vp of the design pattern has a449

special crown on it, not to overload the visualization.450

Displaying differently classes being hotspots and/or ex-451

hibiting design patterns brings to the user insights on highly452

variable zones of the project, which she can then explore453

in more detail by using the different interactions provided454

by the visualization (spanning, zooming).455

Streets. Analogously, as the representation proposed456

by CodeCity groups classes belonging to the same pack-457

age in a district, our objective is to group in the same458

neighborhood classes that concentrate a high density of459

variability implementations.460

As stated in Section 3.2, although the nested districts461

allow to efficiently represent the decomposition hierarchy462

of classes belonging to nested packages, it is not adapted to463

our notion of density of variability implementations which464

derives from usage relationships between classes (as a class465

can use and/or be used by multiple other classes). We466

thus rely on the visualization proposed by Evo-Streets [42],467

which uses streets to decompose a hierarchy instead of468

boxes. In the original Evo-Streets layout, streets repre-469

sent subsystems, with orthogonal branching streets repre-470

senting their subsystems. The buildings on a street rep-471

resent the modules belonging to this system. We adapt472

the visualization with buildings on streets being classes,473

and streets departing from a building (instead of another474

street) to represent a usage relationship between this class475

and every other class whose building is on the street. As476

we consider inheritance links as less important for vari-477

ability, they are represented as aerial links between build-478

(a) Elements displayed by default

(b) Inheritance links and underground usage links appear when hovering
a building

Figure 2: Visual properties of VariCity

ings, being only displayed when hovering over a building.479

This enables the user to see the inheritance information480

if needed, while the hotspot coloring and streets for usage481

bring the most important information first. A summary of482

the visual properties is presented in Table 1 and illustrated483

in Figure 2.484

4.2. Configurable cities485

As stated by Requirement 2, configuration options must486

be provided to focus the visualization around known points487

of interest of the system. The idea is therefore to allow the488

users to create a city in line with the most important el-489

ements for them and to give a first simplified vision of490

the city which does not show all the relationships between491

classes.492

Input parameters. The visualization algorithm thus relies493

on three inputs that focus the view.494

Entry point classes. Entry point classes represent495

important points of interest for the comprehension of the496

system (e.g., endpoint of an API that could be automati-497

cally inferred, or complex classes of the system) from which498

we start the exploration of the system. Adapting the entry499

6

1
234

5

Usage density

Street
(usage relationship)

Root street
Entrypoint classes

Figure 3: Placement algorithm

point classes allows to delimit the subpart of the system500

to explore.501

Usage orientation. The usage orientation can be502

set to IN and/or OUT depending on the objective of the503

exploration and what the user aims to understand.504

• An orientation IN means that the classes displayed505

will be the classes using the defined entry points (i.e.,506

having it as an attribute or method parameter). This507

fits cases where one wants to reuse a part of the508

implementation as it will show which classes already509

use the entry point so that a newcomer can see how510

the class is already used.511

• On the opposite, an orientation OUT means that the512

classes displayed will be the classes being used by513

the defined entry points (i.e., being an attribute or514

method parameter of the entry point). This is par-515

ticularly adapted in the case one wants to add a new516

feature as it enables to see which classes are used by517

the entry points to know which classes one may need518

to reuse.519

• Finally, choosing IN/OUT gives an overview of both520

aspects.521

Usage level. The usage level is an integer value. With522

a usage level of n, all classes distant from an entry point523

by n usage relationships will be displayed. For example,524

a visualization set up with an entry point, usage orienta-525

tion OUT and usage level of 2 will display the entry point,526

the classes being used by the entry point, and the classes527

used by these classes. Being able to adapt this value is528

important as depending on the complexity or the layered529

architecture of a system, a given level of usage might be530

adapted to it but shows too many classes on another one.531

Determining the usage level can only be done empirically.532

A level too low might hide important information for the533

comprehension of the variability, and a level too high might534

display too much information.535

Shaping the city. The three input parameters are used to536

shape the city. Figure 3 illustrates the city organization.537

The root street appears in red and aggregates all the entry538

points. Then, starting from them, classes using (or being539

used by) them up to the usage level set are displayed. A540

street is initiated from an entry point, and for each class541

related to it, a building is placed on the border on the542

street. In order to exhibit density between classes, we need543

to place as close as possible buildings linked by a usage544

relationship to the same class. Following this principle,545

we place the buildings by decreasing order of width on546

both sides of the street, minimizing the total length of the547

street to keep the buildings as close as possible.548

Our placing algorithm can lead to long straight streets549

if a class uses many others. Work presenting techniques to550

prevent this behaviour and keep cities compact (such as551

folding) exist [89]. However, this information is valuable552

in the case of VariCity as it allows to quickly visualize553

classes concentrating many usage relationships. It is also554

likely to happen that a class is linked through a usage rela-555

tionship to multiple visualized classes. In that case, these556

additional usage relationships are represented as green un-557

derground streets and appear only when hovering the class,558

as well as the inheritance relationships not to overload the559

visualization2. An example of visualization after genera-560

tion is presented in Figure 2a. Additional links appearing561

on hover are presented in Figure 2b.562

(Re)configuring the view. Since determining values for the563

three parameters is dependent on every codebase, they can564

then be adapted to gradually explore the system’s vari-565

ability by modifying the nature and number of displayed566

relationships and classes. We will illustrate in Section 5567

how different values for these inputs impact the structure568

of the visualization.569

Additional options are provided to adapt the visual-570

ization, such as visual settings (colors of the visual ele-571

ments, padding between the buildings) that may improve572

the readability of the visualization. Metrics for the height573

and width of the buildings can also be adapted. This pa-574

rameter may be useful for the expert that has a particu-575

larly deep understanding of the system. For example, if576

the method level variability of classes is due to constructor577

overloads, it may be useful to use this metric for the height578

instead of the width of the buildings. Finally, a blocklist579

enables filtering out individual classes or packages consid-580

ered as irrelevant.581

4.3. Extending VariCity to reveal indebted variability im-582

plementations583

As stated by Requirement 3, the visualization must584

also be extensible, and as first validation of this extensibil-585

ity, we should be able to create an extended visualization586

2When hovering over, class names are also displayed in a sidebar
for the same reason.

7

to display quality metrics and find indebted implementa-587

tions of variability.588

Wolfart et al. [21] defined variability debt as ”Techni-589

cal debt caused by defects and sub-optimal solutions in the590

implementation of variability management in software sys-591

tems”. Software quality metrics have been recognized as592

useful for determining technical debt at the code level, and593

in the domain of OO systems, multiple works focus on de-594

termining software quality metrics [90, 91, 92, 73, 93, 94],595

measuring the system evolution [95, 96], and validating596

the relevance of these metrics [97, 98]. Multiple tools and597

approaches also exist to compute metrics on an OO code-598

base, analyze its quality [99, 100], and determine technical599

debt [101]. Such metrics are often exploited in visualiza-600

tions [102, 100], such as CodeCity [41] and Evo-Streets [42]601

that are now bundled in reference code analysis tools such602

as SonarQube3. Such visualizations, however, do not al-603

low displaying the use of OO variability implementations604

mechanisms. Even in case some experts have good knowl-605

edge of the implemented variability of their system, they606

will need to observe the quality of the concerned classes607

one by one.608

The VariMetrics extension thus increases the capabil-609

ities of VariCity so that experts can choose the quality610

metrics they want to display, and how to combine them,611

to tailor the visualization according to their needs. To do612

so, the symfinder toolchain has been extended to support613

fetching of the quality metrics from the SonarCloud API614

(4.) or from a local SonarQube instance. While by de-615

fault VariCity displays in yellow vp-s being hotspots, in616

blue variants being hotspots, and in grey classes not be-617

ing hotspots (Figure 4a), other city visualizations such as618

CodeCity and Evo-Streets color the buildings to expose619

properties inherent to the classes [103, 104]. As we study620

variability implemented using OO mechanisms, we advo-621

cate that OO quality metrics at the class level are relevant622

to identify OO variability debt. We thus propose to use623

the walls of the buildings to display quality information624

in VariMetrics. Two coloring strategies are proposed: a625

coloration following a red-to-green sequence (Figure 4b),626

and a saturation keeping the original colors of the build-627

ings and lightening or darkening them (Figure 4c). While628

VariMetrics should enable some combination of metrics,629

combining both coloring strategies leads to bivariate chro-630

matic maps, which are known to be difficult to read [105].631

On the opposite, applying textures on colors has shown632

to be an efficient way to display multiple software quality633

metrics [106]. We thus provide a crackled texture (Fig-634

ure 4d) variably covering the building, enabling views si-635

multaneously exhibiting two quality metrics.636

These three visual properties are configurable to be637

adapted to the metric they represent, as some quality met-638

rics are symptoms of lower quality if they have a high value639

(e.g., complexity) but other metrics with such values may640

3https://www.sonarqube.org/
4https://sonarcloud.io/web_api

(a) VariCity (b) Red-green (c) Saturation (d) Cracks

Figure 4: Visual properties used to display quality metrics compared
to the original VariCity visualization.

instead indicate good quality (e.g., test coverage). Anal-641

ogously, not all projects have similar ranges of values for642

the same metric, and proposing a fixed range of values may643

not allow revealing a difference of quality in some projects,644

thus VariMetrics allows to specify these ranges. It must645

be noted that we rely in this article on the quality metrics646

allowing to identify OO variability debt, but the users can647

configure VariMetrics for the metric they want, as long as648

it is inherent to the class.649

5. Validating the VariCity visualization approach650

To evaluate whether the proposed VariCity approach651

is adapted to visualize OO variability implementations, we652

aim to answer the following research questions:653

RQ1: Does the VariCity view reveal zones concen-654

trating variability implementations? This RQ655

has for purpose to validate Requirement 1. To an-656

swer it, we design VariCity views for 10 variable open657

source systems. We then enumerate revealed zones658

concentrating variability implementations and man-659

ually evaluate their relevance (Section 5.1).660

RQ2: Are the configuration capacities useful to re-661

veal the zones concentrating variability im-662

plementations? This RQ has for purpose to vali-663

date Requirement 2. To answer it, we illustrate how664

we designed the views presented in RQ1 and show665

how modifying the parameters allow to shape differ-666

ent cities (Section 5.2).667

RQ3: Does the VariMetrics extension allow reveal-668

ing indebted zones of variability implementa-669

tions? This RQ has for purpose to validate Re-670

quirement 3. To answer it, we design VariMetrics671

views for 7 variable open source systems. We then672

enumerate zones concentrating both variability im-673

plementations and critical quality (Section 5.3).674

5.1. Answering RQ1675

The symfinder toolchain, which detects potential vp-676

s with variants, has been applied on ten popular open-677

source and variability-rich Java systems [38], being ap-678

plications, frameworks, or libraries, with different char-679

acteristics (size, variation points, explicit API provided).680

We chose to select the same systems to test the results681

8

https://www.sonarqube.org/
https://sonarcloud.io/web_api

Table 2: Subject systems, LoCs obtained with the cloc [107] tool

System Analysed LoC # vp-s/variants
zones View configuration

revealed relevant # entry point(s) Usage level Usage orientation

Java AWT 67,229 2,501 7 7 1 3 IN/OUT

Apache CXF 656,472 11,028 5 4 1 6 OUT

JUnit 7,717 354 4 4 2 6 IN/OUT

Apache Maven 80,839 1,759 5 5 3 7 OUT

JFreeChart 94,384 2,849 10 7 2 4 OUT

ArgoUML 134,359 2,735 6 6 3 2 IN/OUT

Cucumber 42,662 520 3 1 1 9 IN/OUT

Logbook 225,125 258 6 5 2 4 OUT

Riptide 12,626 320 4 2 1 6 IN/OUT

NetBeans 1,284,416 10,357 8 7 1 5 IN/OUT

of VariCity . Table 2 lists the systems and the deter-682

mined VariCity configuration to facilitate the exploration683

or deepening of a particular area. For each generated vi-684

sualization, we manually identify the revealed zones con-685

centrating variability implementations. As detailed in Sec-686

tion 4.1, such zones are characterized by buildings of large687

dimensions (representing density of variability implemen-688

tations in a class), specific buildings for variability-related689

design patterns, long streets (representing usage between690

such classes), and hotspot classes appearing in color. Then,691

we manually examine the involved classes and, relying on692

comments and documentation, determine whether they693

represent actual variability. We hereafter illustrate this694

procedure on the largest studied systems, NetBeans, from695

which more than 1.2 MLoC were analyzed.696

697

We configure the visualization to use the endpoint of698

the API, namely JavaPlatform5, as the entry point of the699

visualization. To have a first overview of the classes being700

closely related to the endpoint of the API, both classes701

using and being used by JavaPlatform on 5 levels (usage702

level 5, orientation IN and OUT) are configured to be shown.703

The obtained visualization is shown in Figure 5a.704

A neighborhood of tall and colored buildings (circled705

in yellow) detaches from the other buildings in the city,706

revealing zones with classes heavily using variability im-707

plementation techniques. They thus represent a revealed708

zone of the visualization, which one can consider being709

variability patterns. By zooming and spanning the visu-710

alization, we can focus on this precise part of the city711

(Figure 5b). The different implemented design patterns712

are distinguishable thanks to the special shape of their713

buildings (e.g., JavaFix6 is a Strategy, testng.Abstract-714

TestGenerator7 and junit.AbstractTestGenerator8 are715

Templates). The two last classes are not only design pat-716

terns but also hotspots, giving a strong intuition about717

the relevance of the potential identified vp. In fact, these718

classes allow to generate test code for two different unit719

5org.netbeans.api.java.platform.JavaPlatform
6org.netbeans.spi.java.hints.JavaFix
7org.netbeans.modules.testng.AbstractTestGenerator
8org.netbeans.modules.junit.AbstractTestGenerator

test libraries, JUnit9 and TestNG10 and are variants of720

the CancellableTask interface11. This zone is thus con-721

sidered as relevant as it represents actual variability.722

723

We notice that, as expected, the number of revealed724

zones fluctuates between the systems. This can be ex-725

plained not only by the fact that being implemented us-726

ing OO mechanisms, the structure of the variability is727

strictly related to the OO structure of the system. Con-728

sequently, as we used for all systems the same thresh-729

old values to identify hotspot classes (i.e., ≥ 20 variants730

per vp, ≤ 5 usage relationships of distance, cf. Defini-731

tion 5), smaller systems like Logbook or Riptide show lit-732

tle to no hotspot classes. There is thus a need to con-733

figure these thresholds for each project [38]. Neverthe-734

less, the obtained results show that revealed zones dense735

in variability implementations actually correspond to im-736

plemented variability. This is however not the case for737

Cucumber, a BDD testing library, for which 3/4 zones do738

not represent actual variability (Figure 6). The 1 class739

is io.cucumber.core.runner.PickleStepTestStep and740

is a variant providing the default implementation of the741

io.cucumber.plugin.event.PickleStepTestStep inter-742

face. The 2 class is InvalidMethodSignatureException743

and is identified as a vp as it has 3 subclasses. However,744

it does not implement variability and is only used as a745

way to aggregate behaviour between the variants. Finally,746

the long street initiating the 3 group has for origin the747

CachingGlue class that uses multiple vp-s to aggregate in-748

formation in a single representation allowing to cache them749

and speed up testing, and therefore does not represent vari-750

ability. It is important to notice that as illustrated with751

this example, zones are not only revealed by being identi-752

fied as hotspots by the underlying identification technique,753

but also by the organization of the city grouping together754

classes using each other.755

756

Answer to RQ1. As a result, for all the considered757

systems, which have also been studied with the extrac-758

9https://junit.org/junit5/
10https://testng.org/doc/
11See here and here.

9

https://github.com/cucumber/cucumber-jvm/blob/ee6b693184b463c023a265fe98fa9ab5ab2ce819/cucumber-core/src/main/java/io/cucumber/core/runner/PickleStepTestStep.java
https://github.com/cucumber/cucumber-jvm/blob/ee6b693184b463c023a265fe98fa9ab5ab2ce819/cucumber-plugin/src/main/java/io/cucumber/plugin/event/PickleStepTestStep.java
https://github.com/cucumber/cucumber-jvm/blob/ee6b693184b463c023a265fe98fa9ab5ab2ce819/cucumber-core/src/main/java/io/cucumber/core/backend/CucumberBackendException.java
https://github.com/cucumber/cucumber-jvm/blob/ee6b693184b463c023a265fe98fa9ab5ab2ce819/cucumber-core/src/main/java/io/cucumber/core/runner/CachingGlue.java
https://junit.org/junit5/
https://testng.org/doc/
https://github.com/apache/netbeans/blob/c084119009d2e0f736f225d706bc1827af283501/java/junit/src/org/netbeans/modules/junit/AbstractTestGenerator.java#L93
https://github.com/apache/netbeans/blob/c084119009d2e0f736f225d706bc1827af283501/java/testng/src/org/netbeans/modules/testng/AbstractTestGenerator.java#L89

(a) java package of NetBeans 12.2, usage level 5, orientation IN/OUT,
JavaPlatform as entry point.

(b) Zoom on a hotspot zone

Figure 5: Visual identification of revealed zones dense in variablity
implementations

tion tool symfinder [38], the VariCity visualization reveals759

the same zones concentrating variability implementations.760

Such zones mainly represent actual variability for a ma-761

jority of the systems, thus providing a positive answer to762

RQ1. The reader can find in the reproduction package (af-763

ter the conclusion), annotated views excerpts that detail,764

for each system, the revealed and relevant zones.765

5.2. Answering RQ2766

While the previous section illustrates that the visual-767

ization can exhibit relevant dense zones of variability im-768

plementations, it requires as a first step to determine ade-769

quate values for the parameters shaping the view (i.e., en-770

try point classes, usage orientation and usage level). Here-771

after, we illustrate how adapting these parameters allow772

shaping the view by detailing how we obtained the view773

for one of the projects listed in Table 2, JFreeChart.774

775

①

 ②

③

Figure 6: Revealed zones in the generated visualization for Cucum-
ber. Irrelevant zones are delimited by violet boxes and the relevant
zone by a blue box.

JFreeChart is a library written in Java allowing to draw776

different types of charts. As this system is a library, the777

endpoint it provides enabling its reuse represents a rele-778

vant entry point to start its exploration. We therefore set779

as entry point JFreeChart12, being the endpoint of the780

library used by the users to create plots. We also set as781

entry point Plot13, the superclass of all classes implement-782

ing a different type of chart. To visualize the classes of the783

system starting by the library’s endpoint, the usage ori-784

entation is set to OUT. Finally, the usage level is set to 2785

to evaluate a first visualization with a small set of classes,786

shown in Figure 7a.787

By hovering over Plot, we can see the different dis-788

played subclasses of the class (i.e., the variants of the789

vp Plot). Two classes, XYPlot14 and CategoryPlot15,790

are noticeable due to their important height showing an791

important number of method overloads. Besides, they are792

both design patterns. As the visualization shows few zones793

concentrating variability implementations, we add XYPlot794

and CategoryPlot as entry points (Figure 7b). The shape795

of the city changes to display the usages related to each796

entry point in separated neighborhoods, allowing to better797

visualize if (i) a particular entry point is the starting point798

of a dense zone of variability implementations, and (ii) a799

class is related, to a certain degree, to two entry points800

with underground streets. On Figure 7b, an important801

number of classes making heavy use of variability imple-802

mentations is visible (circled in yellow), and are directly803

used by XYItemRenderer16, itself related to both XYPlot804

and classes related to CategoryPlot.805

While the addition of entry points allows displaying806

more classes related to these new entry points, increas-807

ing the usage level can be used to broaden the view by808

12org.jfree.chart.JFreeChart
13org.jfree.chart.plot.Plot
14org.jfree.chart.plot.XYPlot
15org.jfree.chart.plot.CategoryPlot
16org.jfree.chart.renderer.xy.XYItemRenderer

10

PolarPlot
JFreeChart

CategoryPlot

XYPlot

Plot

LegendItem

(a) JFreeChart, usage level 2, orientation OUT, JFreeChart and Plot
as entry points. Displaying links of Plot reveals that XYPlot and
CategoryPlot are subclasses.

(b) Figure 7a after adding XYPlot and CategoryPlot as entry points

org.jfree.chart.plot.
CategoryPlot

org.jfree.chart.plot.
XYPlot

org.jfree.chart.LegendItem

org.jfree.chart.
JFreeChart

org.jfree.chart.plot.Plot
org.jfree.chart.
ChartPanel

org.jfree.data.xy.
XYDataset

(c) Figure 7a after increasing the usage level to 4

Figure 7: Designing JFreeChart’s visualization

visualizing classes being used and/or using each of the al-809

ready displayed classes, as shown on Figure 7c. We no-810

tice that although the visualization is more furnished, the811

noticeable zone issuing from XYItemRenderer is still visi-812

ble. Additionally, increasing the usage level led to display-813

ing XYDataset17 and the multiple classes it uses (circled814

in violet), creating a zone of interest. Therefore, while815

adding entry points can be used to focus on some particu-816

lar classes, increasing the usage level is particularly useful817

to explore the system without any particular focus.818

We notice in Table 2 that the values allowing to de-819

sign the views differ between the projects. For example,820

while a usage level of 4 for JFreeChart leads to a visual-821

ization revealing 10 zones (Figure 7c), a usage level of 11822

for Cucumber reveals 3 zones (Figure 6). This difference823

can be explained not only by the fact that JFreeChart824

is larger than Cucumber, but also by the fact that their825

organizations are different. Although they are both li-826

braries, JFreeChart provides a main endpoint for reuse,827

JFreeChart, while Cucumber exposes a much larger num-828

17org.jfree.data.xy.XYDataset

ber of classes to reuse, being a BDD testing library.829

830

Answer to RQ2. It results that adapting the view’s831

parameters allow to tailor it to display different sets of832

classes. Such configuration parameters are therefore es-833

sential to design views focusing on a restrained number of834

classes regardless of a system’s architecture, thus provid-835

ing a positive answer to RQ2.836

5.3. Answering RQ3837

To answer RQ3 and evaluate whether the extended838

VariMetrics visualization enables visualizing indebted zones839

of variability implementations, we apply our approach to840

multiple open-source systems. We select views with met-841

rics combinations revealing the variability implementations842

that are shown by VariCity while being the most quality-843

critical.844

5.3.1. Relevant quality metrics845

In the work of Wolfart et al. [21] on the concept of vari-846

ability debt, the authors introduce a catalog of ten forms847

11

of variability debt resulting from an analysis of 52 indus-848

trial case studies reporting technical debt issues on vari-849

able software systems. We therefore base ourselves on this850

work to determine relevant occurrences of variability debt851

in our context.852

As OO variability implementations rely solely on the853

standard object mechanisms, the availability of the source854

code is the only requirement to identify them. From the855

possible causes of variability debt, it is then possible to856

find code duplication and system-level structure quality is-857

sues. Most often, tests sources are provided along with858

the source code, enabling also the identification of lack of859

tests.860

However, other information is not always available, es-861

pecially in the case of open-source systems, such as the862

documentation (leaving aside out-of-date or incomplete doc-863

umentation, duplicate documentation, old technology in use864

and multi-version support), test cases definitions (leaving865

aside expensive tests), design choices (leaving aside archi-866

tectural anti-patterns) or a list of features and their map-867

ping with their implementations (leaving aside poor test of868

feature interactions).869

It results that relying on the source code and its tests,870

we can cover Code duplication, Lack of tests, and System-871

level structure quality issues in the implementation. There872

is therefore a need, for each of these types of variability873

debt, to determine quality metrics allowing their identi-874

fication. We choose code block duplication to measure875

Code duplication as we believe that line duplications could876

lead to multiple duplications not related to variability. We877

choose the test coverage to measure Lack of tests. As test878

coverage can be measured at multiple granularities (line,879

condition, . . .), we selected a metric aggregating measures880

for different granularities. Finally, structure quality is-881

sues in the codebase impact maintainability and evolution882

of the system and hamper the system’s comprehension.883

Therefore, we advocate that assets suffering from this type884

of variability debt are hardly understandable, and cogni-885

tive complexity [93] appears to be relevant for this pur-886

pose [108]. We therefore define test coverage, duplicated887

blocks and cognitive complexity as relevant metrics for this888

identification.889

5.3.2. Subject systems890

Appropriate subject systems for this evaluation must891

(i) be variability-rich and (ii) provide OO quality met-892

rics relevant to identify variability debt (Section 5.3.1).893

Although all the subject systems listed in Table 2 match894

the first criterion, none of them provides quality metrics.895

While we could adapt JFreeChart’s build configuration896

to be analyzed by a local SonarQube instance [109], we897

could not achieve to do so for the other systems. We898

therefore chose 6 other systems for which the quality met-899

rics are available on SonarCloud18, allowing us to reuse900

18https://sonarcloud.io

Table 3: Subject systems and their available metrics.

Project
Java # vp-s / Available metrics

LoCs variants DB COMP COV

Azureus 5.7.6.0 633,248 10,105 A S ✗

GeoTools 23.5 1,312,727 22,534 A S ✗

JDK 17-10 2,434,983 71,489 S S ✗

JFreeChart 1.5.0 94,203 2,849 S S S

JKube 1.7.0 40,952 795 A S S

OpenAPI Generator 5.4.0 88,172 768 S S S

Spring framework 5.2.13 662,579 12,622 A S ✗

DB – duplicated blocks, COMP – cognitive complexity, COV – coverage
✗ – unavailable metric, A – available metric, S – significant metric (available
and showing differences between classes)

these metrics for our study. Five of them (Azureus,901

GeoTools, JKube, OpenAPI Generator and Spring902

framework) were chosen as their documentation clearly903

states they implement variability. We also picked the Java904

Development Kit (JDK) for its large size of circa 2.5M905

LoC to evaluate the scalability of the approach. Metrics906

for Azureus, GeoTools, Spring framework and Java Devel-907

opment Kit (JDK) have been extracted from a catalog of908

software projects designed by Irrazábal et al. [110] to an-909

alyze their metrics, forking popular open source systems910

from their original repositories in the Corpus-2021 GitHub911

organization19. All seven systems are depicted in Table 3.912

5.3.3. Evaluation process913

For each project we first generated a VariCity visual-914

ization with the same process as described in Section 5.2.915

We then identified manually on each view the classes that916

are the most visible for us as described in Section 5.1917

to obtain a set of “noticeable classes w.r.t. variability”.918

For example, for JFreeChart (Figure 7c), classes such as919

JFreeChart, Plot, CategoryPlot, and XYPlot draw at-920

tention due to their size and/or the fact that they are921

hotspots, as opposed to ChartPanel.922

We then determine a relevant VariMetrics view on each923

project by systematically applying all available metrics924

that are related to variability debt (Section 5.3.1). Dur-925

ing this step, it happened that no building stood out for a926

given metric (i.e., no class exhibits variability debt), sug-927

gesting that the overall quality is decent w.r.t. this metric.928

On the opposite, if all classes appear as quality-critical, it929

may indicate that this metric has been neglected in qual-930

ity requirements for the project as a whole. We thus re-931

strained in this evaluation the set of significant metrics932

relevant to identify OO variability debt to those showing933

some differences in quality between classes. Table 3 sum-934

marizes for each system the relevant metrics being avail-935

able and significant. While this step was necessary for936

us to determine which quality metrics are significant, an937

expert will likely already know which metrics are signifi-938

cant for their system. We then manually identified on the939

19https://github.com/Corpus-2021

12

https://sonarcloud.io
https://github.com/Corpus-2021/Azureus/tree/5.7.6.0
https://github.com/Corpus-2021/geotools/tree/23.5-AnalysisReady
https://github.com/Corpus-2021/jdk/tree/17-10-AnalysisReady
https://github.com/jfree/jfreechart/tree/v1.5.0/src/main/java/org/jfree
https://github.com/eclipse/jkube
https://github.com/OpenAPITools/openapi-generator
https://github.com/Corpus-2021/spring-framework/tree/5.2.13-AnalysisReady
https://github.com/Corpus-2021

Table 4: Number of noticeable classes due to their variability concentration, criticality, and both aspects for the given views on all subject
systems.

Project

View configuration Noticeable classes w.r.t.

Entry point classes
Usage Usage Metrics

variability criticality both
orientation level (visual property)

Azureus com.aelitis.azureus.core.AzureusCoreComponent OUT 4 COMP (red-green) 74 32 12

GeoTools
org.geotools.data.simple.SimpleFeatureSource

OUT 4 COMP (red-green) 104 27 18
org.geotools.map.MapContent

JDK
java.net.URI

IN 1
COMP (red-green)

84 17 13
java.net.URL DB (cracks)

JFreeChart
org.jfree.chart.JFreeChart

OUT 4
COV (red-green)

35 31 10
org.jfree.chart.plot.Plot DB (cracks)

JKube

org.eclipse.jkube.generator.api.support.BaseGenerator

IN/OUT 7
COV (red-green)

COMP (cracks)
28 115 14org.eclipse.jkube.generator.javaexec.JavaExecGenerator

org.eclipse.jkube.generator.api.Generator

OpenAPI
org.openapitools.codegen.languages.OpenAPIGenerator IN/OUT 6

COV (red-green)
77 51 21

Generator COMP (cracks)

Spring org.springframework.beans.factory.parsing.BeanComponentDefinition
IN 8 COMP (red-green) 57 13 6

framework org.springframework.beans.factory.support.AbstractBeanFactory

org.jfree.chart.plot.
CategoryPlot

org.jfree.chart.plot.
XYPlot

org.jfree.chart.LegendItem

org.jfree.chart.
JFreeChart

org.jfree.chart.plot.Plot
org.jfree.chart.
ChartPanel

org.jfree.chart.renderer.WaferMapRenderer

Figure 8: Figure 7c in VariMetrics. The view is configured to display the test coverage using the red-to-green color scale and the duplicated
blocks using cracks.

views the classes appearing to be quality-critical, regard-940

less of their variability, by enumerating the classes that941

appeared to be the most cracked and/or red to obtain942

a set of “noticeable classes w.r.t. criticality”. For ex-943

ample, for JFreeChart (Figure 8), XYPlot, CategoryPlot,944

ChartPanel, and WaferMapRenderer are easily discernible.945

The quality-critical and variability intense classes of the946

project thus correspond to the intersection between the947

two sets of classes (i.e., in this example, CategoryPlot948

and XYPlot).949

We also observed that, in all systems, while fewer classes950

are noticeable w.r.t. criticality than w.r.t. variability,951

there is no direct relation between variability and quality,952

as also shown in Figure 8. Consequently, some vp-s have an953

important number of variants and are at the same time re-954

liable, such as LegendItem in JFreeChart. On the contray,955

one can observe some critical classes that do not contain956

variability implementations, such as WaferMapRenderer in957

JFreeChart. This shows that, in the studied systems, visu-958

alizing both variability and quality is useful to determine959

quality-critical variability implementations. To evaluate to960

which extent, we calculated for each project the number of961

noticeable classes w.r.t. variability, w.r.t. criticality, and962

w.r.t. both aspects. The results with the configuration for963

each view are reported in Table 4. This shows that repre-964

senting on a single view variability and quality information965

allows reducing the number of classes appearing as rele-966

vant on the visualization between 50% (JKube) and 91%967

(Spring framework) compared to the VariCity visualiza-968

tion. We believe the mildly encouraging results obtained969

on JKube come from its size, so that less variability intense970

zones have been identified by VariCity compared to larger971

projects. An important number of classes is also notice-972

able in this project as it has globally a low code coverage.973

Besides, by adapting the thresholds on which the hotspot974

detection relies, we could obtain fewer zones and better re-975

sults, but we consider these experiments as out of the scope976

of this article. The definition of a hotspot is parameterized,977

13

and determining whether a class is a hotspot depends on978

user-defined thresholds, as stated in [38] Nevertheless, we979

consider these results as satisfying, because without Vari-980

Metrics, finding OO variability debt would have needed981

to manually map relevant classes on the VariCity view to982

their metrics, which, already on the smallest project being983

JKube, represents 28 classes.984

985

Answer to RQ3. While the VariCity view highlights986

classes concentrating variability, VariMetrics is able, by987

displaying quality metrics on the buildings, to reveal such988

classes being quality-critical. Additional configuration pa-989

rameters allow to configure the metrics, making the view990

applicable to multiple systems. These results thus provide991

a positive answer to RQ3.992

5.3.4. Summary993

By adapting the city metaphor to organize the city994

relying on OO variability metrics, the VariCity visualiza-995

tion reveals zones concentrating variability implementa-996

tions. Such zones have shown to be largely relevant on997

the studied subjects systems. Its configuration capabilities998

not only allow to design views for multiple systems, but999

also to explore a system by focusing the view on a subset1000

of classes the user finds relevant. Finally, by represent-1001

ing OO variability implementations and quality metrics in1002

a unified representation, VariMetrics not only allows to1003

visualize both classes concentrating variability implemen-1004

tations and critical classes, but also to focus on specific1005

zones of OO variability debt.1006

6. Evaluating the comprehensibility of the VariC-1007

ity visualization1008

In Section 5.1, we demonstrated the capacity of VariC-1009

ity to reveal dense zones of variability implementations.1010

However, as the authors of the approach designed the1011

showcased views, the comprehensibility of the visualiza-1012

tion by actual users has not been evaluated. To fully as-1013

sess whether VariCity actually helps the comprehension of1014

the implemented OO variability, there is a need to com-1015

plete this first assessment by evaluating VariCity in a real1016

variability comprehension scenario. We thus design a con-1017

trolled experiment with external users to observe how us-1018

ing VariCity impacts the time needed to complete vari-1019

ability comprehension tasks and their difficulty.1020

6.1. Experimental design1021

Wettel et al. [88, 87] designed an empirical evaluation1022

of CodeCity aiming to evaluate whether the view helped1023

the identification of quality-critical zones in an OO code-1024

base. They extracted from the literature a wish list of1025

requirements for their experiment. As we conduct a simi-1026

lar evaluation, we therefore rely on this list to design our1027

experiment and detail its design in the remainder of this1028

section. Table 5 summarizes, for each of these require-1029

ments, how our design fulfills them or not.1030

6.1.1. Research Questions1031

With this experiment, we aim to evaluate the com-1032

prehensibility of the VariCity visualization. Chen et al.1033

[111] extracted multiple definitions of software visualiza-1034

tion from the state-of-the-art and it results that they are1035

mainly described as (i) making the information they repre-1036

sent easier to understand, having for goal to (ii) save time1037

analyzing it. These two dimensions therefore appear as1038

useful to evaluate the comprehensibility of our approach.1039

Additionally, since VariCity is presented as a tool to be1040

used by developers in their workflow, we argue that the1041

ease of use is also of great significance. Consequently, we1042

aim with this experiment to answer the following question:1043

RQ4: Does VariCity help the comprehension of OO1044

variability implementations?1045

We decompose this research question as follows:1046

RQ4.1: Does the use of VariCity increase the correctness1047

of the solutions to variability identification tasks,1048

compared to state-of-the-practice tools?1049

RQ4.2: Does the use of VariCity reduce the time needed1050

to solve variability identification tasks, compared to1051

state-of-the-practice tools?1052

RQ4.3: Is VariCity regarded as easy to use to solve vari-1053

ability identification tasks compared to state-of-the-1054

practice tools?1055

The null and alternative hypotheses derived from these1056

research questions are described in Table 6.1057

6.1.2. Subjects1058

This experiment was realized as part of a reverse engi-1059

neering graduate course at the Polytech Nice Sophia engi-1060

neering school. The population is made of 49 students in1061

the last year of Master’s in Computer Science, specialized1062

in Software Architecture. As a preliminary part of the1063

experiment, they were asked to fill an anonymous survey1064

to better know their level of experience on program com-1065

prehension and variability. Some gathered information is1066

detailed in Figure 9.1067

While it is known that having students as subjects for1068

controlled experiments does not always give reliable results1069

as they might not be representative of the target popula-1070

tion [112], we think that they are representative of a subset1071

of developers for the two following reasons. First, 38/491072

subjects have more than 6 months of professional expe-1073

rience, mainly thanks to internships and apprenticeships1074

in industry. Moreover, 43/49 students already had to dis-1075

cover a system by exploring its codebase. Additionally,1076

being in the last year of Master’s in Computer Science the1077

remaining subjects will integrate an industrial company in1078

the next few months and need to onboard on an unknown1079

codebase. They thus exactly match the usage scenario1080

of VariCity . Second, as a part of their curriculum, they1081

14

Table 5: Elements from the experimental design responding to requirements extracted from Wettel et al. [87]’s wish list.

Requirement Experimental design element

Fulfilled requirements

Avoid comparing using a technique against not using it.
Provide the same data to all participants.

As we validate the visualization approach, we give a CSV document opened
with a spreadsheet containing structured information on the classes of the
system visualized with the given settings using VariCity by the other group
(Sections 6.1.3 and 6.1.5).

Provide a not-so-short tutorial of the experimental tool to the participants.
Use the tutorial to cover both the research behind the approach and the
implementation.

To complement the 1h30 lecture given two weeks prior to the experiment, a
short tutorial introducing definitions and demonstrating the tool has been
given before the experiment (Section 6.1.7).

Find a set of relevant tasks.
Include tasks on which the expected result is not always to the advantage
of the tool being evaluated.

The tasks are inspired by the onboarding scenarios in the first evaluation of
VariCity, and some of them are expected to be more easily completed using
the IDE and the CSV document (Section 6.1.6)

Choose real object systems that are relevant for the tasks.
JFreeChart has been chosen for its medium size and because the domain and
the implementation are accessible to the subject students (Section 6.1.3)

Provide all the details needed to make the experiment replicable.
The questionnaires, slides and answers given by the students are available
online at https://deathstar3.github.io/varicity-demo/

Report results on individual tasks.
Additionally to the answers given, subjects were asked for each task to provide
the start and end time, an estimation of their perceived difficulty and the list
of the actions they accomplished to solve the task (Section 6.1.6).

Non-fulfilled requirements

Include more than one subject system in the experimental design.
Having a second subject system would have led to four treatments of 12
people each and would have prevented drawing any relevant conclusion.

Involve participants from industry.
Take into account the possible wide range of experience level of the par-
ticipants.

This requirement could not fulfilled due to organizational constraints.
Although apprentice students have more professional experience, the difference
of professional experience with the other students is not important enough to
conclude on whether the performance of subjects differs w.r.t. this parameter
(Section 6.1.2).

Avoid, whenever possible, to give the tutorial right before the test.
Although we gave a long lecture introducing variability concepts about one
month before the experiment, we could not give the more detailed tutorial
before the day of the experiment for organizational constraints (Section 6.1.7)

Limit the amount of time allowed for solving each task.
While the overall set of tasks should be completed in 1h10, we did not limit the
time for each task to prevent fast but less qualitative answers (Section 6.1.6).

Table 6: Null and alternative hypotheses

Null hypotheses Alternative hypotheses

H10 : VariCity does not impact the cor-
rectness of the tasks’ solutions.

H1a : VariCity impacts the correctness
of the tasks’ solutions.

H20 : VariCity does not impact the
time spent to solve the tasks.

H2a : VariCity impacts the time spent
to solve the tasks.

H30 : VariCity does not impact the
tasks’ difficulty.

H3a : VariCity impacts the tasks’ diffi-
culty.

also followed multiple courses prior to the experiment re-1082

lated to the comprehension of complex code architectures,1083

thus preventing a bias on their knowledge of these aspects.1084

This Master’s trains them to be advanced developers in1085

Java, thus mastering object-oriented programming con-1086

cepts. They also followed multiple courses prior to the1087

experiment related to the comprehension of complex code1088

architectures, thus preventing a bias on their knowledge of1089

these aspects.1090

6.1.3. Purpose and variables1091

Through the three defined research questions, the goal1092

of this experiment has been set towards evaluating whether1093

VariCity allows subjects to better identify patterns in-1094

volved in complex zones of variability implementations1095

(i.e., the effectiveness of the approach). Additionally, we1096

aim to assess whether VariCity reduces the time needed for1097

subjects to answer the tasks and their perceived difficulty1098

compared to state-of-the-practice tools, i.e., the efficiency1099

of the approach. Such goals being identical in the empirical1100

evaluation of CodeCity by Wettel et al. [87], we therefore1101

share identical dependent and independent variables. We1102

detail them hereafter.1103

Independent variables. Our first independent variable con-1104

cerns the tool used to solve the task. In order to mitigate1105

the effect of this variable, we must compare our approach1106

with a state-of-the-practice approach used to achieve an1107

identical goal, that is, understanding the variability imple-1108

mented in OO software systems. While comparing VariC-1109

ity to symfinder-2 would allow evaluating the potential1110

gain brought by the city metaphor, we cannot consider1111

it a state-of-the-art approach as it is not used regularly1112

by the subjects. Therefore, the comparison would be ir-1113

relevant as between two approaches that subjects do not1114

master. Since, to the extent of our knowledge, no similar1115

and commonly used approach exists, we build a baseline1116

ourselves relying on tools that developers would actually1117

use to navigate and understand the code artifacts. IDEs1118

are widely used tools for program comprehension [113].1119

While a majority of our subject students use the IntelliJ1120

15

https://deathstar3.github.io/varicity-demo/

Figure 9: Information on the experience of the controlled experiment’s participants

IDEA IDE, we did not impose any particular IDE as (i)1121

the given tasks (listed in Section 6.1.6) can be answered1122

using only basic features supported by a large majority of1123

IDEs (as finding usages, code navigation), thus we do not1124

expect them to use advanced features that would be spe-1125

cific to a specific IDE (e.g., tracing, dynamic analysis) and1126

(ii) we limit the bias regarding the mastering of the IDE1127

as every subject can use the one they master the most.1128

VariCity however uses data and metrics that are pre-1129

viously computed by the identification backend (cf. Fig-1130

ure 1). Since our goal is to compare the gain of VariCity1131

compared to the use of an IDE, we should provide the sub-1132

jects with all information given by VariCity that cannot be1133

determined using the IDE’s features. The inheritance and1134

usage relationships between classes being standard navi-1135

gation features, it is thus possible to infer the variants at1136

class level, and to determine hotspot classes and design1137

patterns, whose definitions are given to the subjects. It1138

results that the only missing information is the number1139

of overloads of methods and constructors. Although such1140

metrics could be provided by static analysis tools, Nachti-1141

gall et al. [114] recently studied how 46 such tools fulfill 361142

usability criteria from the literature, revealing that they1143

are majoritarily limited regarding their usability and ca-1144

pacity to limit false positives. We therefore collected this1145

information in a CSV file to complete the baseline, thus1146

ensuring their correctness and mitigating the risk that sub-1147

jects will lose time manipulating additional tools. The1148

structure of the file is given in Table 7. As for the IDE, no1149

restriction has been imposed on a particular spreadsheet1150

to manipulate the CSV file for similar reasons. Finally,1151

we do not provide any documentation on the implemented1152

features as (i) they are little documented in practice [35]1153

and (ii) they are not used by VariCity .1154

Our second independent variable regards the studied1155

Table 7: Structure of the given CSV containing data on the classes

Class name
Method Constructor

variants variants

org.jfree.chart.ChartPanel 6 5

org.jfree.chart.ChartRenderingInfo 0 2

org.jfree.chart.JFreeChart 17 3

org.jfree.chart.LegendItem 0 10

.

Table 8: Detailed statistics on the object system used for the exper-
iment, JFreeChart

#LoCs #classes
#vp-s #variants

class
level

method
level

total
class
level

method
level

total

94,384 990 259 667 926 275 1,648 1,923

object system and its architecture. While a large sys-1156

tem or with multiple layers of abstraction would require1157

too much time to be understood in such an experiment,1158

a too small system would on the opposite not require an1159

approach as VariCity to help its understanding and there-1160

fore not allow evaluating its potential gain. For these rea-1161

sons, we selected JFreeChart 1.5.0 as an object system,1162

whose characteristics are presented in Table 8. Not only1163

does its 95k LoC make it a system of medium size, being a1164

charting library that we studied to evaluate symfinder and1165

symfinder-2 , we know that both the domain and the im-1166

plementation are accessible to the subject students. For1167

similar reasons, we selected ArgoUML as a test project1168

on which the subjects can familiarize themselves before1169

the actual experiment on JFreeChart (cf. Section 6.1.7).1170

Given the size of the population, we decided not to exper-1171

iment on a second object system as the groups for each1172

treatment would have been too small (around 12 subjects)1173

to draw any conclusion (cf. Section 6.1.5).1174

16

Dependent variables. Our dependent variables regard the1175

correctness of the solution given for a task and the time1176

to complete the task, which respectively allow measuring1177

the effectiveness and the efficiency of our approach.1178

6.1.4. Controlled variables1179

In their experiment, Wettel et al. [87] benefited from a1180

large panel of subjects from academia (ranging from bach-1181

elor students to professors) and industry. Therefore, sub-1182

jects in this panel exhibited large differences in terms of1183

background of experience, potentially having an influence1184

on their capacity to complete the tasks. In our case, all1185

our subjects are students having studied similar topics.1186

We thus consider as negligible the impact that their differ-1187

ent professional experiences could have on their capacity1188

to solve the tasks and therefore do not consider these vari-1189

ables for our experiment.1190

6.1.5. Treatments1191

Due to the homogeneity of profiles constituting our1192

population (cf. Sections 6.1.2 and 6.1.4), we split the sub-1193

jects in two groups by relying on a completely randomized1194

design20:1195

VariCity (24 subjects). The first group is given a link1196

to a GitHub repository containing:1197

• the result of JFreeChart’s and ArgoUML’s analysis1198

by symfinder-2 , used as input by VariCity ;1199

• a VariCity configuration file to display the views.1200

TheVariCity image is distributed as a Docker image hosted1201

on the Docker Hub, thus requiring no installation on the1202

students’ computers.1203

IDE + CSV (25 subjects). The second group is given1204

a link to a ZIP file containing:1205

• the source code of JFreeChart and ArgoUML;1206

• the CSV file containing the variability metrics for1207

the classes21.1208

6.1.6. Tasks1209

The 11 tasks are listed in Table 9 and derive from our1210

requirements (Section 3.1). The expected answers for each1211

task are listed in Table A.12. The subjects have 1h10 to1212

complete all the tasks.1213

For each task, the subjects are also asked to:1214

• input the start and end time of the task. With1215

this information, we aim to evaluate whether the1216

time spent completing a task differs when usingVariC-1217

ity or the IDE.1218

20https://www.itl.nist.gov/div898/handbook/pri/section3/pri331.htm
21Although configuring the view might add or remove classes on

the visualization, the given tasks do not require this action. There-
fore, the given data is strictly identical between both groups.

• rate the difficulty of the task on a scale from 11219

to 4. Likert scales are commonly represented with1220

an odd number of choices, using the median value1221

as a midpoint (i.e., a neutral level of opinion). How-1222

ever, in practice, subjects might choose the midpoint1223

for other reasons [115], for example because they are1224

unfamiliar with the topic to be evaluated [116] or be-1225

cause they prefer to avoid providing a negative opin-1226

ion [117], especially on a five-points scale [118]. As1227

we believed our subjects could be in such cases, we1228

preferred to omit the midpoint and defined a scale1229

from 1 to 4. With this information, we aim to evalu-1230

ate whether the perceived difficulty for a task differs1231

when using VariCity or the IDE.1232

• list the actions they accomplished (e.g., navi-1233

gating the inheritance in the IDE or zooming on the1234

visualization). We plan to use this data to better un-1235

derstand how the tools were used to solve the task1236

and better understand the causes of the results ob-1237

tained with the two previous pieces of information.1238

6.1.7. Operation protocol1239

Pilot experiment. A pilot experiment with four sub-1240

jects of various levels of experience (a Master’s student in1241

computer science, two graduate students in computer sci-1242

ence working on research topics related to variability and1243

an associate professor in computer science having experi-1244

ence with controlled experiments) was held to evaluate the1245

whole experimental setup. This dry run allowed us to re-1246

fine some aspects of the experiment such as the time limit.1247

As defining a time limit for each task can cause subjects1248

to go through the tasks faster [119], we did not set any in1249

our pilot experiment. However, we realized that since vari-1250

ability comprehension is complex by nature [35], our test1251

subjects tended to get stuck as they were unsure about1252

their answers. We thus decided to impose a global time1253

limit to prevent this behaviour, while leaving the subjects1254

manage the time they spend on each task.1255

Before the experiment. A lecture of one hour and1256

a half introducing the main concepts related to variability1257

was given to the students from both groups on January1258

12, 2022. As a result, a majority of students felt confident1259

about their knowledge of variability concepts and termi-1260

nologies at the moment of the experiment (cf. Figure 9).1261

The day of the experiment (February 23, 2022).1262

On the day of the experiment, a short lecture was given1263

to all the students, presenting definitions and examples1264

of the various terminologies used in the tasks (about 451265

mins). Then, after splitting, each group benefited from a1266

short session to fill the preliminary questionnaire aiming1267

to gather personal information (cf. Section 6.1.2), setup1268

their environment and familiarize with the tools they will1269

manipulate (about 40 mins):1270

• subjects in the VariCity group were introduced to1271

the visualization’s features, had to open the visual-1272

ization for the test project (ArgoUML), and had to1273

17

https://www.itl.nist.gov/div898/handbook/pri/section3/pri331.htm

Table 9: The 11 variability comprehension tasks given to the subjects.

ID Task Goal

1
When discovering the visualization / the code in the IDE and the data
in the spreadsheet, according to you, what classes seem to be
important to explore in priority? For each one of them, explain why.

With this task, we want to evaluate whether the used tools provide
information that guide the user towards a starting point of exploration.

2

Identify 2 variants at class level for each of the following variation
points (cf. Definition 2):

• org.jfree.chart.plot.Plot

• org.jfree.chart.title.TextTitle

Inheritance is a heavily-used mechanism to implement OO variability
(Section 2.1), therefore their identification and exploration is crucial to
identify variability in this context. With this task, we want to evaluate
whether the used tools allow the exploration of such mechanisms.

3

How many classes are linked with a usage relationship to each of the
following classes? Give 3 examples.

• org.jfree.chart.plot.CategoryPlot

• org.jfree.chart.title.CompositeTitle

The collective density of variability implementations is characterized by
a cluster of vp-s linked through usage relationships (Definition 4).
With this task, we want to evaluate whether the used tools allow an
overview of these mechanisms by distinguishing the classes linked by
usage relationships to a given one.

4

Complete the following sentences:

• Classes (1) and (2) have an important number (≥ 5) of subclasses
(i.e., are variation points with an important number of variants
at class level).

• Classes (3) and (4) have an important number (≥ 10) of
overloaded methods and constructors (i.e., are variation points
with an important number of variants at method level).

While usage relationships induce collective density, the individual
density of variability implementations is characterized by the presence
of a vp with an important number of variants at class or method level
(Definition 3). With this task, we want to evaluate whether the used
tools allow an overview of where such mechanisms are concentrated in
the codebase.

5
Identify the 3 classes with the highest individual density higher to the
threshold v = 20 (cf. Definition 3).

For a given density threshold, the number of classes characterized as
dense can remain important depending on the dimensions and
architecture of the studied system. It is therefore important to be able
to focus on the most dense classes. With this task, we want to evaluate
whether the used tools allow this.

6

Give 2 examples of each of the following design patterns (cf. Appendix
B.2):

• Strategy pattern;
• Factory pattern.

Those two design patterns being used to implement OO variability
(Section 2.1), we want to evaluate with this task whether the used
tools allow their identification.

7
What is the distance between the org.jfree.chart.JFreeChart and
org.jfree.chart.title.DateTitle classes?

As the density of OO variability implementations relies on usage
relationships between classes, we aim to evaluate whether
state-of-the-practice tools allow a user to compute the distance
between two given classes.

8
Identify 3 hotspots for an individual density threshold of v = 20 and a
collective density threshold of d = 5 (cf. Definition 5).

The most dense zones concentrating variability implementations are
characterized as vp-s being simultaneously individually and collectively
dense (cf. Definition 5) and it is therefore important to identify them.
With this task, we want to evaluate whether the used tools allow to
identify them.

9

Identify the classes that according to you implement each of the
following features, and specify if they are hotspots for v = 20 and d = 5
(cf. Definition 5):

• “draw a chart” feature;
• “title of the chart” feature.

Variability identification activities being often conducted to help the
comprehension of this variability [35], we aim with this task to evaluate
whether the exploration of the system with the given tools allowed the
subjects to determine the classes involved in the implementation of a
feature.

10
What are according to you the classes to add/reuse/modify to
implement a new type of chart (i.e., to implement a new variant of the
org.jfree.chart.plot.Plot vp) ?

This task aims at evaluating whether completing given the variability
identification tasks actually allowed the subjects to gather enough
knowledge on the implemented domain to determine how to implement
a new feature.

11
Following this observation of JFreeChart, what are according to you
the main abstractions used in this charting library?

With this task, we aim at evaluating whether the exploration of the
system with the given tools allowed the subjects to better understand
the domain implemented in the system.

18

Figure 10: Percentage of subjects having given at least a partial
answer for each task

answer a few questions ensuring that they can inter-1274

pret the visualization accurately;1275

• subjects in the IDE + CSV group were introduced1276

to the data they are given, had to open the test1277

project’s codebase in their IDE, and had to answer1278

a few questions ensuring that they can interpret the1279

data accurately.1280

After this session, the subjects had 1h10 to answer the1281

tasks, having for only help a cheat sheet of the defini-1282

tions detailed in the lecture and detailed in Appendix B.1283

Finally, the students filled out a questionnaire aiming to1284

gather their feedback on the experiment.1285

6.2. Results1286

We detail hereafter the results obtained from our ex-1287

periment. Due to the limited time allocated for the ex-1288

periment, not all subjects could finish all the tasks. 17/241289

subjects in the VariCity group and 14/25 subjects in the1290

IDE group gave at least a partial answer (i.e., filled at1291

least one of the answer fields of the task) to all the tasks.1292

Figure 10 presents, for each task, the percentage of sub-1293

jects having given at least a partial answer. We observe1294

a drop in the percentage of answers at task 7 and 8 for1295

the IDE and VariCity groups respectively for two reasons.1296

First, we ordered the tasks in increasing order of difficulty1297

as we perceived it. Then, we made the choice not to im-1298

pose a time limit for each task as we were unsure about1299

the average time that the subjects would take depending1300

on the tool(s) they use and feared a too low answers rate.1301

Therefore some subjects took more time than they should1302

have on the first tasks and happened to be late at the end1303

of the experiment. In the following results, we considered1304

answers that are at least partial. We also performed for1305

each task a statistical test on the obtained answers, dura-1306

tions and perceived difficulty for both groups to determine1307

(a) IDE + CSV group

(b) VariCity group

Figure 11: Correctness of the answers given by the two groups.

the significance of the difference in the obtained results is1308

and thus validate our hypotheses from Table 6. Obtained1309

p-values for each task are listed in Table 10.1310

6.2.1. Answer to RQ4.11311

Figure 11 presents the correctness of the answers given1312

by the two groups on each task. For tasks 2 to 9 included,1313

we compute the correctness of an answer to a task by cal-1314

culating the percentage of correct answer elements. For1315

example, when 2 names of classes are expected, the cor-1316

rectness is 0% if no class is in the expected set of classes,1317

50% for 1 class, and 100% for both classes in the set. Tasks1318

1, 10 and 11 being open questions, the correctness of the1319

given answers has been evaluated manually based on the1320

presence of expected elements as listed in Table A.12.1321

We notice that subjects using VariCity globally gave1322

more accurate answers to the tasks than subjects using the1323

IDE + CSV combination. For a number of tasks, we be-1324

lieve this is due to the layout of the visualization and the1325

choice of visual axes. For example, using the dimensions of1326

the buildings to represent their methods and constructors1327

19

Table 10: p-values obtained by comparing the sets of answers, durations and perceived difficulty of both VariCity and IDE + CSV groups on
each task. Values in orange are in the]0.05, 0.06] range while values in red show statistically better results for the IDE + CSV group.

Task 1 2 3 4 5 6 7 8 9 10 11

Correctness 0.96453 0.84286 1.64023× 10−14 0.00024 0.07749 8.56822× 10−13 0.00259 0.00481 0.24788 0.89565 0.03911

Task duration 0.16519 0.00484 0.01191 0.61467 0.29706 4.72027× 10−8 0.00334 0.00122 0.71231 0.80312 0.90128

Perceived difficulty 0.76113 0.18915 0.10044 0.66913 0.25888 1.26422× 10−7 0.00551 2.22208× 10−5 3.43713× 10−5 0.33002 0.64472

overloads, and aerial links for subclasses exhibiting indi-1328

vidual density helped subjects to complete task 4 (find-1329

ing vp-s with an important number of class or method1330

level variants, p = 0.00024). Similarly, choosing to use1331

streets to represent usage relationships helps their under-1332

standing, exhibiting collective density, and helped subjects1333

to complete tasks 3 (finding classes linked through us-1334

age relationships to a given one, p = 1.64023 × 10−14)1335

and 7 (finding the distance between two given classes,1336

p = 0.00259). Answering tasks 6 (finding design pat-1337

terns, p = 8.56822 × 10−13) and 8 (identifying hotspots,1338

p = 0.00481) was facilitated by the automatic computa-1339

tion of dense zones and design patterns provided by the1340

symfinder-2 approach used by VariCity and their visual-1341

ization using crowns on buildings and colors respectively.1342

We notice however that using VariCity does not im-1343

prove the correctness of the answers to all the tasks com-1344

pared to the IDE + CSV combination. This is the case1345

for task 9 for which the obtained correctness values are1346

too similar between both groups to determine an impact1347

from VariCity (p = 0.24788). This task was divided in two1348

parts, (i) the identification of classes implementing a given1349

feature, and (ii) indicating whether they were hotspots or1350

not. To answer the first part, subjects from both groups1351

mainly relied on the names of the classes that are given by1352

both VariCity and the IDE, leading to similarly accurate1353

answers.1354

Comparable correctness results are also obtained on1355

task 2 (p = 0.84286) where the goal was to give two vari-1356

ants at class level (i.e., two subclasses) for two vp-s. Both1357

VariCity and the IDE allow searching a class by its name1358

and easy access to the subclasses of a given class (by hov-1359

ering its building in VariCity , and a button in the sidebar1360

of the IDE to navigate the inheritance hierarchy). Ana-1361

lyzing the actions achieved by the subjects in both groups1362

confirms that they heavily relied on these features, and a1363

majority of the subjects in the IDE + CSV group did not1364

use the CSV file. Comparable results are also obtained1365

on task 1 (p = 0.96453), which aimed at listing classes1366

that appeared as important to observe when discovering1367

the visualization or the codebase. This can be explained1368

by the fact that a majority of subjects from both groups1369

sought for classes maximizing their number of method level1370

variants, either by identifying tall and large buildings on1371

the visualization or by sorting the CSV file’s data in the1372

spreadsheet using the columns for the number of method1373

and constructor variants, optionally summing them. Task1374

10 also shows comparable results (p = 0.89565). Subjects1375

were asked what classes would need to be added or reused1376

to implement another type of chart. Multiple subjects us-1377

ing VariCity pointed out that according to them, their1378

answers to this task were limited by not having the source1379

code (e.g., “Not knowing the library, it is hard to find all1380

the classes linked to a feature.”, “The tool allows me to1381

have an idea, but is maybe not precise enough regarding1382

the implementation of the classes.”), suggesting that this1383

limitation prevented VariCity to assist in solving this task.1384

However, this limitation did not prevent them to grasp the1385

main abstractions used in the library as the correctness is1386

in average better for this group on task 11 (p = 0.03911).1387

1388

Finally, subjects from the IDE + CSV group perform1389

slightly better on task 5 (p = 0.07749), which consisted1390

of the three most individually dense classes. For the IDE1391

+ CSV group, obtaining the answer to this task consisted1392

in finding the classes maximizing the sum of their method1393

and constructor overloads, and was achieved by most stu-1394

dents. On the opposite, VariCity displays those two pieces1395

of information using the height and width of the buildings,1396

making it less intuitive to identify the buildings maximiz-1397

ing both aspects. As a result, some subjects from this1398

group not only indicated tall but also wide buildings that1399

were maximizing their constructors’ overloads but not the1400

total method variants.1401

1402

It results that subjects using VariCity gave statistically1403

more correct answers on 6/11 tasks compared to subjects1404

using the IDE + CSV combination. Such tasks focus on1405

identifying complex variability implementation patterns1406

which is eased by to the organization of the information1407

provided by the city metaphor as well as its computation1408

of other information such as the presence of a design pat-1409

tern or a hotspot. Given these encouraging results and1410

the little rate of wrong answers given, we choose not to1411

exclude them from the analyses answering RQ2 and RQ3.1412

6.2.2. Answer to RQ4.21413

Figure 12 presents the distribution of the time spent1414

on each task for both groups. It results from this figure1415

and from the obtained p-values (Table 10) that no tool1416

performs better on all the tasks.1417

VariCity performs better on tasks 3 (p = 0.01191), 61418

(4.72027 × 10−8), 7 (p = 0.00334) and 8 (p = 0.00122)1419

as it directly exhibits on the visualization the presence1420

of hotspots and design patterns, while IDE users need to1421

identify them manually. The structure of the city based on1422

usage relationships also helped the subjects to identify the1423

distance and usage relationships between two classes while1424

20

Figure 12: Distribution of the completion time (in minutes) for each
task when using VariCity or the IDE

IDE users needed to explore the code. Regarding task 5,1425

while Figure 12 shows a more reduced range of durations1426

suggesting a positive impact of VariCity for this task, the1427

obtained p-value of 0.29706 does not allow us to conclude.1428

Concerning task 2 (p = 0.00484), subjects with the IDE1429

performed better. As the answers given by the two groups1430

on task 1 were of equivalent correctness, we suppose that1431

students with VariCity needed some more time to discover1432

the view and get familiar with it. Completing task 2 is1433

equivalent to finding the subclasses of a given class, an1434

action that the subjects are used to accomplish regularly1435

with their IDE. This is confirmed by the fact that 23/251436

subjects in the IDE group used the IDE only to complete1437

the task. Therefore, subjects in this group were on average1438

faster than subjects in the VariCity group that had to find1439

the information in a visualization they were less familiar1440

with. While Figure 12 shows a more reduced range of1441

durations suggesting a positive impact of the IDE for task1442

1, the obtained p-value of 0.16519 does not allow us to1443

conclude.1444

Finally, on tasks 4 (p = 0.61467), 9 (p = 0.71231), 101445

(p = 0.80312) and 11 (p = 0.90128), the performances of1446

both approaches appear as equivalent. To complete task 4,1447

finding the classes with an important number of variants1448

at method level consisted in looking at the corresponding1449

column in the CSV for the IDE group, and in looking at1450

high and/or wide buildings in the visualization, suggest-1451

ing that all subjects had a clear idea of where to find this1452

information. Regarding the number of variants at class1453

level, while subjects in the IDE group heavily relied on1454

class diagrams reverse-engineered with the IDE, subjects1455

in the VariCity group mainly hovered over random classes1456

until finding the information, suggesting that finding class1457

level variants in VariCity is not intuitive. We would ex-1458

pect task 9 to take less time using VariCity . In practice, it1459

results that the average time spent is equivalent as multi-1460

Figure 13: Distribution of the difficulty values for each task when
using VariCity (plain colors) or the IDE (striped pattern). The
students which did not finish are represented in the DNF category.

ple subjects from the IDE group did not give the hotspot1461

information. However, correlating this result with the fact1462

that 50% of subjects indicated the maximum perceived dif-1463

ficulty (cf. Figure 13) is a strong indication that this part1464

of the task was too difficult for the IDE group. Finally,1465

tasks 10 and 11 (finding classes needed to implement a new1466

type of chart, finding the main abstractions) require few1467

interactions with the tools apart from simple class search-1468

ing, explaining the similar average time spent.1469

1470

It results that the subjects in the IDE group performed1471

better on single tasks they are familiar with (e.g., finding1472

a class, navigating inheritance). On the opposite, identi-1473

fying complex zones concentrating variability implemen-1474

tations is more efficient in VariCity (e.g., design patterns,1475

hotspots). While determining the individual density of1476

variability appears to be equally time consuming thank to1477

the CSV file, determining the collective density of vari-1478

ability and hotspots is more efficient by the organization1479

of the VariCity view.1480

6.2.3. Answer to RQ4.31481

Figure 13 presents the distribution of the difficulty as1482

perceived by the subjects on each task for both groups.1483

We notice a difference in perceived difficulty in favor of1484

VariCity on tasks 6 to 9 which are focused on identifying1485

design patterns, hotspots and distance between classes.1486

This result is confirmed by the obtained p-values for these1487

tasks, listed in Table 10. This is also coherent with the re-1488

sults obtained regarding the time spent completing these1489

tasks. Tasks 6, 7 and 8 took considerably more time for1490

subjects using the IDE compared to subjects using VariC-1491

ity . This is not the case for task 9 as, as explained in the1492

previous section, an important number of subjects did not1493

give information about the presence of a hotspot and only1494

partially completed the task.1495

21

Regarding the other tasks, while subjects using VariC-1496

ity globally tended to give lesser difficulty values than sub-1497

jects using the IDE, they are not enough to exhibit a sig-1498

nificant difference and thus prevent us from concluding on1499

any impact VariCity could have on these tasks. Similarly,1500

although difficulties 1 and 2 are more represented in the1501

IDE + CSV group on task 2, this difference is not signif-1502

icant enough to demonstrate the impact of the use of the1503

IDE on this task (p = 0.18915).1504

1505

It results that subjects in the VariCity group find it1506

easier to complete 4/11 tasks compared to subjects in the1507

IDE group, representing tasks related to the identification1508

of zones concentrating variability implementations using1509

complex structures, such as design patterns or hotspots1510

that implement variability at both class and method levels.1511

While this represents a minority of tasks, it also appears1512

that no task seemed easier to subjects using the IDE.1513

6.2.4. Summary1514

By providing a visual representation of the system’s1515

classes and exhibiting metrics on their variability, subjects1516

using VariCity statistically gave more correct answers on1517

tasks focusing on the identification of complex variability1518

implementations, thus validating H10 (Table 6). Addi-1519

tionally, the completion time and the perceived difficulty1520

of these tasks is statistically reduced (thus validating H201521

and H30), demonstrating the visualization’s capacity to1522

help the identification of complex variability implemen-1523

tations. A deeper analysis of the actions performed by1524

subjects from both groups suggests some improvements1525

for VariCity , especially regarding tasks where the results1526

appear as equivalent between both groups. Some informa-1527

tion is more easily accessible with the visualization, such1528

as the distance in usage between classes or the density of1529

variability implementations. Other actions were facilitated1530

with the IDE, such as obtaining a reverse-engineered class1531

diagram to navigate the inheritance relationships.1532

Feedback from some subjects in the VariCity group1533

reveals that although the view allowed to quickly spot im-1534

portant zones of the system (”The visualization allows us1535

to easily notice the features present in the system. Classes1536

that are less important can be ignored to focus on the1537

ones that have more variability.”), their comprehension1538

was limited by not having the actual source code (”We1539

stay really abstract by visualizing the code with VariCity,1540

a Java IDE would allow us for example to have access to1541

comments that can help comprehension.”, ”It is hard to un-1542

derstand how the system works only with the buildings.”).1543

This feedback suggests that although VariCity helps in1544

guiding the exploration of a system, having access to the1545

source code remains of prime importance to have a deep1546

understanding of it.1547

As a first step towards addressing this feedback, we1548

proposed an extension of the VariMetrics approach pro-1549

viding a full integration of the visualization and its con-1550

figuration in the JetBrains IntelliJ IDEA IDE [120]. The1551

visualization is available as a panel in the IDE’s interface1552

and can be configured through the IDE’s menus as for any1553

other plugin. This integration also provides bidirectional1554

navigation between the code opened in the editor and the1555

visualization.1556

7. Threats to validity and limitations1557

Conclusion and construct validity threats are discussed1558

in Table 11. In the following we analyze internal and ex-1559

ternal threats, while discussing limitations at the end of1560

this section.1561

Internal threats. The main threat of our evaluation con-1562

cerns the fact that both authors and developers of VariC-1563

ity designed and conducted the evaluation of the approach1564

in Section 5. The inputs (entry points, usage levels, and1565

orientations) and quality metrics have been determined1566

empirically based on their knowledge of the systems and of1567

VariCity ’s capabilities. Still, even by having a coarse-grain1568

understanding compared to a real expert, the obtained1569

visualizations already exhibit satisfying results by reveal-1570

ing zones of interest in the systems. Although the iden-1571

tification of these revealed zones concentrating variabil-1572

ity implementations and/or being quality-critical has been1573

achieved by the authors that know how to read the visual-1574

ization, this enumeration has been done systematically re-1575

lying on determined criteria (e.g., important height/width,1576

intense color). Finally, the validation of their relevance is1577

based on documentations and comments in the concerned1578

classes, giving us confidence in its soundness.1579

External threats. As VariCity relies on the symfinder tool-1580

chain to detect variability implementations, it is subject to1581

the same threat on the considered implementation tech-1582

niques and the Java-only focus. As for the techniques, in1583

our work, six main object-oriented techniques are identi-1584

fied while other mechanisms, functional or at the state-1585

ment level, could be used to implement variability [53].1586

Moreover, no cross-cutting variability can be detected by1587

symfinder while the detection of the usage of the same pa-1588

rameters in different locations could be a first solution.1589

However, the identifications made with symfinder were1590

successful [36] and we reused the same systems for vali-1591

dation.1592

Due to organizational constraints, the controlled ex-1593

periment has been conducted with a population whose1594

subjects have similar experience and background. Conse-1595

quently, the size of the population constrained us to con-1596

duct the experiment on a single system to prevent having1597

too small groups for each treatment. While those biases1598

could not be mitigated, we believe the obtained conclu-1599

sions to be good enough to support the results obtained1600

in the evaluation in Section 5 as the profile of the sub-1601

jects match our target population (Section 6.1.2). In fu-1602

ture work, we will aim at extending this controlled exper-1603

iment by extending our panel of subjects and diversifying1604

22

Table 11: Actions taken to mitigate conclusion and construct validity threats [121]

Threat Action

Conclusion validity threats

Low statistical power
We mitigated by computing p-values to statistically measure the relevance of the difference in the
answers (Table 10)

Violated assumptions of
statistical tests

We used t-test as our samples are independent and randomly extracted from the same population.

Fishing and the error rate We do not adapt the significance level and keep the standard threshold of 0.05 (Table 10).

Reliability of measures
Completion time is the only measure we rely on that is not an answer from the subjects. While
students were asked to fill the start and end time of each task themselves, the little numbers of outliers
visible on Figure 12 comforts us in the coherence of this data.

Reliability of treatment
implementation

The treatment is strictly identical between all subjects of a same group. VariCity was provided as a
Docker image, preventing possible side effects related to the installation of the tool (Section 6.1.5).

Random irrelevancies in
experimental setting

The experiment was held in an room of the Polytech Nice Sophia engineering school with doors closed
to prevent any distraction. The experiment has also not been interrupted.

Random heterogeneity of
subjects

Threats related to the homogeneity of our population are discussed in the External threats paragraph
in Section 7.

Construct validity threats

Design threats

Inadequate preoperational
explication of constructs

Variability concepts were explained during the lecture given on January 12, 2022. A question in the
pre-experimentation survey aimed at validating their understanding of these notions, which is confirmed
by the answers obtained (Figure 9).

Mono-operation bias
Due to the size of our population, we could run the experiment on a single system only. This threat is
detailed in the Independent variables paragraph in Section 6.

Mono-method bias We defined oracles to evaluate the correctness of the tasks, listed in Table A.12.

Confounding constructs and
levels of constructs

Subjects have similar knowledge levels of variability concepts and of the Java language. Their mastering
of the tools is also equivalent.

Interaction of different
treatments

Each subject does only one treatment.

Interaction of testing and
treatment

Subjects do not evaluate the actions they performed or the code they produced.

Restricted generalizability
across constructs

Although VariCity does not perform better than the IDE + CSV on all tasks, the IDE + CSV performs
statistically better on only one task (cf. Section 6.2.2) while evaluating the completion, thus we consider
that VariCity does not negatively impact either the correctness or the difficulty. Additionally, the only
aspect that subjects using VariCity reported to lack is access to the source code, a limitation we started
tackling with an integration of VariCity in an IDE [120] (cf. Section 6.2.4).

Social threats

Hypothesis guessing Questions have been designed so that they do not give insights on what the answer could be. This pattern
has been observed by our test subjects during the pilot experiment and corrected.Experimenter expectancies

Evaluation apprehension
In such cases, subject apprehending evaluation would try to avoid answering, for example by selecting
the midpoint in a Likert scale [117]. For this reason, we designed a 4-options scale (cf. Table 9). We also
comforted them by stating that there is no wrong answer and that they are not evaluated in any way.

23

their background. We also aim at validating whether real1605

experts are able to determine appropriate inputs in real1606

settings, including quality metrics.1607

Limitations. Concerning the structure of the visualiza-1608

tion, the placement of the buildings on a street only re-1609

lies on the width of the buildings to compact them in the1610

street. This implies that the variability represented by the1611

height of the buildings is not taken into account. Even if1612

this dimension is largely visible on the visualization, this1613

might call for an adaptation of the placement algorithm1614

to take into account both dimensions while placing the1615

buildings.1616

Similarly, although we chose to provide as many con-1617

figuration capabilities as possible so that a user can design1618

a view matching her needs, combining multiple metrics on1619

different axes can yet induce cognitive load and hamper1620

the view’s understanding. While measuring this load is of1621

prime importance when designing visualizations [122] in-1622

cluding city-based ones [123, 82] to ensure readability and1623

usability, it would require in our case to empirically vali-1624

date our approach with real experts to exchange on their1625

needs22. We leave this to future work.1626

By relying on the symfinder toolchain, VariCity inher-1627

its from its limitations. As mentioned in Section 2.2, the1628

dependencies between variability implementations are not1629

detected, and coupling this kind of information with the1630

symfinder output could be really interesting. On the vi-1631

sualization side, this would call for adaptations, especially1632

to not overload the city representation. Regarding hotspot1633

classes, their identification is based on two thresholds that1634

are to be determined manually, based on one’s knowledge1635

of the system [38]. As a result, inappropriate thresholds1636

result in too few or too many colored buildings. Still,1637

the dimensions of the buildings, the crowns for the design1638

patterns and the organization of the view allow to reveal1639

relevant zones, as it is the case for Cucumber (Figure 6).1640

8. Related work1641

In this section, we discuss work related to visual and1642

tooled approaches to assist for variability management and1643

program comprehension.1644

8.1. Visualization in the Software Product Line field1645

A recent mapping study has shown that visualizations1646

in the SPL domain mainly target feature models, using1647

tree or graph representations [32]. These visualizations1648

are mainly used to facilitate the configuration process over1649

features. To visualize variability at the code level, some1650

approaches use colors [124] or bar diagrams [125], while1651

some others focus on feature traces [33] or feature interac-1652

tions between features and code [126, 34]. None of them1653

22Such a validation would also exhibit potential accessibility issues
that can be tackled by extending the existing configuration capabil-
ities.

focus on object-oriented techniques as variability imple-1654

mentations.1655

In VariCity , we reused the symmetry-based detection1656

part of symfinder [36, 38], but this tool also provides a1657

graph-based visualization in which each class level vp and1658

variant is represented as a circle node that points out the1659

used implementation technique, with size and shades of1660

nodes indicating the presence of OO variability implemen-1661

tation mechanisms. These nodes are linked with both in-1662

heritance and usage relationships being different kinds of1663

edges, forming a set of disconnected graphs. While this1664

visualization allows showing some dense zones of variabil-1665

ity and has filtering capabilities, it has only been used for1666

the validation of the capabilities of symfinder in identi-1667

fying potential vp-s and variant. It is not adapted for1668

comprehending variability as in our considered scenarios,1669

especially in large-scale systems in which the resulting vi-1670

sualization is not usable (approx. 4k nodes for NetBeans).1671

8.2. Visualization for software comprehension1672

Most of the time spent in software maintenance is ded-1673

icated to understanding the software system itself. Rep-1674

resenting source code through adapted abstractions and1675

metaphors helps in understanding and software visualiza-1676

tion has been successfully experimented with and applied1677

to do so [127, 128]. While visualizations centered on code1678

lines or classes have been proposed, more attention has1679

been put on visualizing the architecture of software, with1680

treemaps [127, 128] or city metaphors, which we have dis-1681

cussed in Section 3.2. These visualizations usually comple-1682

ment more classical ones that aim at understanding rela-1683

tionships, with graphs or UML diagrams extracted through1684

static analysis. Node-link graph visualizations can eas-1685

ily represent dependencies but become confusing on very1686

large applications, while dependency structure matrices1687

has been shown to help in identifying software dependen-1688

cies [127, 128]. On its side, the usage of UML diagrams1689

have been shown to be only helpful to experienced engi-1690

neers when provided with a codebase [129]. Such diagrams1691

can also help when no comments are provided in code [130],1692

but need to be extracted from it (as opposed to diagrams1693

from the requirement phases) to be useful.1694

Our visualization problem being metric-based, we have1695

naturally turned to software metaphors that are adapted [127,1696

128]. Besides the city, other metaphors have also been pro-1697

posed. The Software Cartography visualization [131] ex-1698

plores the map metaphor, displaying code assets as islands1699

made of classes using common terminologies. CodeSur-1700

veyor [132] uses a cartographic metaphor representing high-1701

level architectural components containing directories and1702

source files as continents decomposed in countries and states.1703

Metrics on the source files are used to determine the size of1704

the nested regions. The island metaphor has also been pro-1705

posed to represent OSGi23 systems in virtual reality [133].1706

23https://www.osgi.org/

24

https://www.osgi.org/

A system is an archipel made of islands representing OSGi1707

bundles. An island is decomposed in regions containing1708

buildings, depicting packages and the classes they contain.1709

However, such approaches do not represent relationships1710

between classes. Code Park [134] displays classes as rooms1711

in a 3D environment, that can be explored in first-person1712

view as in a game. Rooms are organized by their position1713

in the directory structure, and their dimensions evolve ac-1714

cording to the size of the class they represent. The content1715

of the class is displayed as wallpapers on the internal walls1716

of the room. Although this metaphor allows displaying the1717

code and the high-level information about some metrics,1718

it does not allow to represent variability metrics.1719

8.3. Tools for program comprehension1720

Multiple tooled approaches to assist the user in soft-1721

ware comprehension activities have been proposed as plu-1722

gins for popular IDEs, such as VRLifeTime [135], an In-1723

telliJ plugin to ”visualize lifetime for Rust programs and1724

help programmers avoid lifetime-related mistakes”, or Ar-1725

Code [136], an IntelliJ plugin to suggest API misuse cor-1726

rections. These plugins are centered on comprehending1727

the structure of the codebase, where VariCity focuses on1728

comprehending the implemented variability of the system.1729

Full environments have also been proposed to help soft-1730

ware comprehension, such as SolidFX [137], which pro-1731

vides a set of visualizations and tools to help to under-1732

stand a C/C++ codebase, or Hunter [138], a complete en-1733

vironment providing a graph visualization of JavaScript1734

source code. Not only those two solutions are not appli-1735

cable to Java codebases, but they also focus on quality1736

metrics to support code comprehension. SolidFX com-1737

bines such metrics with reverse-engineered UML diagrams1738

of the project. Hunter’s graph uses nodes to represent JS1739

files, with their size varying with the number of LoCs, and1740

edges for usage relationships. On the opposite, VariCity1741

aims to facilitate the comprehension of the implemented1742

variability by guiding the user towards the parts of the1743

codebase that contain heavy use of variability implemen-1744

tations.1745

More specifically, IDE plugins to assist feature location1746

activities have also been designed. FeatureDashboard [139]1747

is an Eclipse plugin that allows visualizing known map-1748

pings between features and code assets as well feature an-1749

notations in a codebase. This approach has been extended1750

with a notation for embedded feature annotation and the1751

FAXE (Feature Annotation eXtraction Engine) [140] tool1752

to process such annotations. HAnS [141] is an IntelliJ1753

plugin to assist the management and edition of feature1754

annotations in code assets. Using these plugins, how-1755

ever, requires having the list of the implemented features1756

and their mapping with the code assets, and are therefore1757

not adapted to our context. FLAT3 [142] is an Eclipse1758

plug-in performing feature location in an opened project.1759

This location is performed statically based on names of1760

classes and methods, and dynamically using tests execu-1761

tion traces. The obtained results can be used to annotate1762

the corresponding artifacts. A visualization is provided,1763

representing classes as boxes with rows of pixels corre-1764

sponding to sections of code that are highlighted if they1765

implement a given feature. Although it performs feature1766

location, this plugin does not identify variability imple-1767

mented with OO mechanisms.1768

9. Conclusion1769

Object-oriented software systems often reuse OOmech-1770

anisms to implement their variability in a single codebase.1771

As these implementations are not explicit, their compre-1772

hension is very difficult, if not impossible. In this paper,1773

we proposed VariCity , a configurable and extensible 3D1774

visualization adapting the city metaphor to exhibit zones1775

of high density of variability implementations. The pro-1776

vided configuration options allow the user to design views1777

focusing on a subpart of the system, enabling comprehen-1778

sion of the variability at fine grain. The proposed solution1779

has been extended to support additional metrics on prop-1780

erties of the studied system such as its quality, creating1781

the VariMetrics visualization. The application of VariC-1782

ity and VariMetrics on several open source systems writ-1783

ten in Java showed the capacity of the visualization and its1784

configuration capabilities to reveal relevant zones concen-1785

trating variability implementations and/or being quality-1786

critical. The comprehensibility of the adapted metaphor1787

has been evaluated with a controlled experiment showing1788

the gain brought by VariCity to solve variability compre-1789

hension tasks on a medium-sized system compared to the1790

use of an IDE.1791

As a future work, we intend to design a controlled ex-1792

periment with real developers to comfort or complement1793

results of the experimentation conducted in Section 6. We1794

also plan to extend VariCity to take into account addi-1795

tional information on the implemented variability such as1796

annotations [143, 144, 145] which, when available, can fur-1797

ther assist variability comprehension. Finally, we aim to1798

extend both VariCity and the variability identification ap-1799

proach [36, 38] to support other languages and help the1800

comprehension of multi-language systems.1801

Reproduction package1802

A reproduction package [146] is publicly available con-1803

taining:1804

• the source code of VariCity and its VariMetrics ex-1805

tension;1806

• preconfigured views for all systems presented in Ta-1807

bles 2 and 4;1808

• annotated screenshots for each view displaying the1809

revealed and relevant zones detailed in Table 2;1810

• the Excel file used to obtain the numbers of notice-1811

able classes presented in Table 4;1812

25

• the source code of the symfinder-2 toolchain enabling1813

reproduction of these views;1814

• the subjects’ answers to the comprehension tasks as1815

well as a Jupyter notebook processing them to obtain1816

the diagrams showcased in Section 6.1817

Acknowledgments1818

We thank Patrick Anagonou, Paul-Marie Djekinnou,1819

Florian Focas, François Rigaut, Guillaume Savornin and1820

Anton van der Tuijn for their contribution in the develop-1821

ment of VariCity and VariMetrics.1822

Appendix A. Expected answers1823

Appendix B. Cheat sheet1824

This appendix presents the definitions contained in the1825

cheat sheet handed out to the students before the experi-1826

ment.1827

In the following definitions:1828

• class will indifferently refer to a class or an interface.1829

• subclass will indifferently refer to a subclass of a class1830

or a class implementing an interface (use of extends1831

or implements in Java). For this reason, although1832

the studied system is written in Java, the subclass1833

term may be used in the plural.1834

Appendix B.1. Varability concepts1835

Definition 1 (Usage relationship). There is a usage re-1836

lationship between two classes A and B if A uses B. A uses1837

B means that B is used as the type of an attribute of A or1838

of a parameter of a method of A.1839

Definition 2 (Variation point (vp) and variant). A vari-1840

ation point can represent:1841

• a class having at least 2 subclasses. The variants1842

then represent the subclasses, and are qualified as1843

class level variants.1844

• a class which has at least one method or an over-1845

loaded constructor. The variants then represent the1846

overloads, and are qualified as method level variants.1847

• a design pattern (cf. Appendix B.2).1848

Note: A class can have both class-level and method-level1849

variants.1850

Definition 3 (Individual density). A vp is individually1851

dense for a threshold v if it has at least v variants (at least1852

v subclasses or at least v method and constructor over-1853

loads).1854

Example: A class is individually dense for v = 20 if it1855

has at least 20 subclasses and/or at least 20 method and1856

constructor overloads.1857

Definition 4 (Collective density). A vp is collectively1858

dense for a threshold d if it is at most d usage relationships1859

away from another vp (cf. Definition 2).1860

Example: A class is collectively dense for d = 2 if it1861

is linked through a usage relationship with a class that is1862

itself linked through a usage relationship with another vp.1863

Definition 5 (Hotspot). A hotspot is a class being dense1864

both individually for a threshold v and collectively for a1865

threshold d.1866

Appendix B.2. Design patterns1867

Definition 6 (Strategy). We define as a Strategy a class1868

for which at least one of the following two statements is1869

correct:1870

• its name ends with Strategy;1871

• it has at least 2 subclasses and is used as an field in1872

another class.1873

Example:1874

1875
class Algorithm { }1876

1877

class Algorithm1 extends Algorithm { }1878

1879

class Algorithm2 extends Algorithm { }1880

1881

class App {1882

Algorithm algo;1883

}18841885

Algorithm has 2 subclasses (Algorithm1 and Algorithm2)1886

and is used as a field in another class (App), it is thus a1887

Strategy.1888

Definition 7 (Factory). We define as a Factory a class1889

for which at least one of the following two statements is1890

correct:1891

• its name ends with Factory;1892

• it has a method returning an object whose type is a1893

subclass of the method’s return type.1894

Example:1895

1896
class Animal { }1897

1898

class Dog extends Animal { }1899

1900

class Cat extends Animal { }1901

1902

public class AnimalCreator {1903

1904

Animal create(String animalType) throws1905

AnimalCreationException {1906

if(animalType.equals("cat")) {1907

return new Cat();1908

}1909

else if(animalType.equals("dog")) {1910

return new Dog();1911

}1912

throw new AnimalCreationException("Unable to1913

create a " + animalType);1914

}1915

}19161917

26

Table A.12: The expected answers for the 11 variability comprehension tasks given to the subjects.

ID Task Expected answers

1

When discovering the visualization / the code in the
IDE and the data in the spreadsheet, according to you,
what classes seem to be important to explore in
priority? For each one of them, explain why.

For this open question, we expected in the answer the presence of classes such as CategoryPlot
and XYPlot for which OO variability measures are higher than for other classes, as well as their
subclasses.

2

Identify 2 variants at class level for each of the
following variation points (cf. Definition 2):

• org.jfree.chart.plot.Plot

• org.jfree.chart.title.TextTitle

• For Plot: org.jfree.chart.plot.{PolarPlot, XYPlot, CompassPlot,

MultiplePiePlot, CategoryPlot, ThermometerPlot, PiePlot, WaferMapPlot,

SpiderWebPlot, FastScatterPlot, MeterPlot, dial.DialPlot}
• For TextTitle: org.jfree.chart.title.{ShortTextTitle, DateTitle}

3

How many classes are linked with a usage relationship
to each of the following classes? Give 3 examples.

• org.jfree.chart.plot.CategoryPlot

• org.jfree.chart.title.CompositeTitle

• For CategoryPlot (20 classes): org.jfree.data.category.CategoryDataset,
org.jfree.chart.annotations.CategoryAnnotation,
org.jfree.chart.util.ShadowGenerator,
org.jfree.chart.renderer.category.CategoryItemRenderer,
org.jfree.chart.plot.{CombinedDomainCategoryPlot, CombinedRangeCategoryPlot,

CategoryMarker, DatasetRenderingOrder, CategoryCrosshairState,

PlotRenderingInfo, Marker}, org.jfree.chart.annotations.CategoryAnnotation,
org.jfree.chart.renderer.category.CategoryItemRenderer,
org.jfree.chart.LegendItemCollection, org.jfree.chart.axis.{CategoryAnchor,
ValueAxis, AxisLocation, AxisSpace, CategoryAxis},
org.jfree.chart.ui.RectangleInsets

• For CompositeTitle (2 classes): org.jfree.chart.block.{BlockContainer,
RectangleConstraint}

4

Complete the following sentences:

• Classes (1) and (2) have an important number
(≥ 5) of subclasses (i.e., are variation points with
an important number of variants at class level).

• Classes (3) and (4) have an important number
(≥ 10) of overloaded methods and constructors
(i.e., are variation points with an important
number of variants at method level).

• (1) and (2): org.jfree.data.xy.XYDataset,
org.jfree.data.category.CategoryDataset,
org.jfree.chart.renderer.xy.XYItemRenderer,
org.jfree.chart.needle.MeterNeedle, org.jfree.chart.title.Title,
org.jfree.chart.block.Arrangement, org.jfree.chart.plot.{Plot,
dial.DialLayer}

• (3) and (4): org.jfree.chart.plot.{CategoryPlot, XYPlot, PolarPlot,

SpiderWebPlot, PiePlot, ThermometerPlot, dial.DialPlot},
org.jfree.chart.axis.ValueAxis, org.jfree.chart.JFreeChart,
org.jfree.chart.LegendItem

5
Identify the 3 classes with the highest individual
density higher to the threshold v = 20
(cf. Definition 3).

org.jfree.chart.plot.{CategoryPlot, XYPlot, PolarPlot}

6

Give 2 examples of each of the following design
patterns (cf. Appendix B.2):

• Strategy pattern;
• Factory pattern.

• Strategy: org.jfree.chart.plot.{CategoryPlot, XYPlot, Plot, Marker},
org.jfree.chart.title.{TextTitle, Title}, org.jfree.chart.block.Arrangement,
org.jfree.chart.axis.TickUnit

• Factory: org.jfree.chart.JFreeChart, org.jfree.chart.plot.Plot,
org.jfree.chart.item.LegendItem, org.jfree.chart.block.BlockContainer,
org.jfree.chart.ChartRenderingInfo

7
What is the distance between the
org.jfree.chart.JFreeChart and
org.jfree.chart.title.DateTitle classes?

2

8
Identify 3 hotspots for an individual density threshold
of v = 20 and a collective density threshold of d = 5
(cf. Definition 5).

org.jfree.chart.plot.{CategoryPlot, XYPlot, Plot, PolarPlot,

DefaultDrawingSupplier, dial.DialPointer}, org.jfree.chart.axis.{ValueAxis,
AxisSpace}, org.jfree.chart.title.{TextTitle, LegendTitle, PaintScaleLegend},
org.jfree.chart.JFreeChart, org.jfree.chart.block.BlockContainer,
org.jfree.data.xy.XYDataset, org.jfree.chart.annotations.XYAnnotation,
org.jfree.chart.renderer.xy.XYItemRenderer, org.jfree.chart.ui.Size2D

9

Identify the classes that according to you implement
each of the following features, and specify if they are
hotspots for v = 20 and d = 5 (cf. Definition 5):

• “draw a chart” feature;
• “title of the chart” feature.

• “draw a chart”: org.jfree.chart.plot.{PiePlot3D, PiePlot, RingPlot,

DialPlot, MeterPlot, ThermometerPlot, CompassPlot, WaferMapPlot, Plot,

SpiderWebPlot, CategoryPlot, MultiplePiePlot, FastScatterPlot, PolarPlot,

XYPlot, PlotRenderingInfo, CombinedDomainCategoryPlot, CombinedRangeXYPlot,

CombinedDomainXYPlot, CombinedRangeCategoryPlot, PiePlotState}
• “title of the chart”: org.jfree.chart.title.{ShortTextTitle, TextTitle,

LegendTitle, Title, CompositeTitle, ImageTitle, DateTitle}

10

What are according to you the classes to
add/reuse/modify to implement a new type of chart
(i.e., to implement a new variant of the
org.jfree.chart.plot.Plot vp) ?

For this open question, we expected as part of the answer:

• classes to add: a subclass of Plot, possibly a new class for a dataset such as XYDataset
or CategoryDataset

• classes to reuse: classes being already used by other variants of Plot (e.g., ValueAxis)
• classes to modify: classes already using other variants of Plot that might be extended to
support this new variant

11
Following this observation of JFreeChart, what are
according to you the main abstractions used in this
charting library?

For this open question, we expected to find in the answer terms related to the main implemented
features such as plot, title, axis or legend.27

The method create(String) in AnimalCreator re-1918

turns a Cat or a Dog, being subtypes of the method’s re-1919

turn type (i.e., Animal), it is thus a Factory.1920

Definition 8 (Decorator). We define as a Decorator a1921

class for which at least one of the following two statements1922

is correct:1923

• its name ends with Decorator;1924

• it has at least a subclass and has a field whose type1925

is one of its superclasses having at least 2 subclasses.1926

Example:1927

1928
interface Window { }1929

1930

class SimpleWindow implements Window { }1931

1932

abstract class AbstractDecorator implements1933

Window {1934

Window window;1935

}1936

1937

class ConcreteDecorator extends WindowDecorator {1938

}19391940

AbstractDecorator has a subclass (ConcreteDecorator),1941

uses the interface it implements as a field (Window), that it-1942

self has two subclasses (SimpleWindow and WindowDecorator),1943

AbstractDecorator is thus aDecorator. ConcreteDecorator1944

will also be identified as a Decorator as its name ends with1945

Decorator.1946

Definition 9 (Template). We define as a Template a1947

class for which at least one of the following two statements1948

is correct:1949

• its name ends with Template;1950

• it is abstract, has at least a subclass and has an1951

abstract method that is called in a concrete method1952

of the same class.1953

Example:1954

1955
abstract class Algorithm {1956

1957

abstract void abstractStep ();1958

1959

void run() {1960

...1961

abstractStep ();1962

...1963

}1964

}19651966

Algorithm has an abstract method abstractStep that1967

is called in the concrete method run, it is thus a Template.1968

References1969

[1] R. Hilliard, On representing variation, in: Proceedings of the1970

Fourth European Conference on Software Architecture: Com-1971

panion Volume, ECSA ’10, ACM, 2010, p. 312–315.1972

[2] M. Galster, D. Weyns, D. Tofan, B. Michalik, P. Avgeriou,1973

Variability in software systems — a systematic literature re-1974

view, IEEE Transactions on Software Engineering 40 (2013)1975

282–306.1976

[3] M. Galster, Variability-intensive software systems: Product1977

lines and beyond, in: Proceedings of the 13th International1978

Workshop on Variability Modelling of Software-Intensive Sys-1979

tems, VaMoS ’19, ACM, 2019, pp. 1–1.1980

[4] R. Capilla, J. Bosch, K.-C. Kang, et al., Systems and soft-1981

ware variability management, Concepts Tools and Experiences1982

(2013).1983

[5] P. Paskevicius, R. Damasevicius, V. Štuikys, Change impact1984

analysis of feature models, in: International Conference on1985

Information and Software Technologies, ICIST ’12, CCIS 319,1986

Springer, 2012, pp. 108–122.1987

[6] K. Pohl, G. Böckle, F. J. van Der Linden, Software Prod-1988

uct Line Engineering: Foundations, Principles and Techniques,1989

Springer Science & Business Media, 2005.1990

[7] S. Apel, D. Batory, C. Kästner, G. Saake, Feature-Oriented1991

Software Product Lines, Springer, 2013.1992

[8] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Pe-1993

terson, Feature-Oriented Domain Analysis (FODA) Feasibility1994

Study, Technical Report, Carnegie-Mellon Univ Pittsburgh Pa1995

Software Engineering Inst, 1990.1996

[9] J. Liebig, S. Apel, C. Lengauer, C. Kästner, M. Schulze, An1997

analysis of the variability in forty preprocessor-based software1998

product lines, in: Proceedings of the 32nd ACM/IEEE Inter-1999

national Conference on Software Engineering-Volume 1, ACM,2000

2010, pp. 105–114.2001

[10] K. Schmid, I. John, A customizable approach to full lifecycle2002

variability management, Science of Computer Programming2003

53 (2004) 259–284.2004

[11] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, G. Saval,2005

Disambiguating the documentation of variability in software2006

product lines: A separation of concerns, formalization and au-2007

tomated analysis, in: 15th IEEE International Requirements2008

Engineering Conference, RE ’07, IEEE, 2007, pp. 243–253.2009

[12] D. Benavides, P. Trinidad, A. Ruiz-Cortés, Automated rea-2010

soning on feature models, in: International Conference on2011

Advanced Information Systems Engineering, Springer, 2005,2012

pp. 491–503.2013

[13] C. Gacek, M. Anastasopoules, Implementing product line vari-2014

abilities, in: Proceedings of the 2001 Symposium on Soft-2015

ware Reusability: Putting Software Reuse in Context, SSR2016

’01, ACM, 2001, pp. 109–117.2017

[14] M. Svahnberg, J. Van Gurp, J. Bosch, A taxonomy of variabil-2018

ity realization techniques, Software: Practice and experience2019

35 (2005) 705–754.2020

[15] Xh. Tërnava, P. Collet, Tracing imperfectly modular variabil-2021

ity in software product line implementation, in: International2022

Conference on Software Reuse, ICSR ’17, Springer, 2017, pp.2023

112–120.2024

[16] X. Tërnava, J. Mortara, P. Collet, D. Le Berre, Identifica-2025

tion and visualization of variability implementations in object-2026

oriented variability-rich systems: a symmetry-based approach,2027

Journal of Automated Software Engineering 29 (2022) 1–51.2028

[17] A. Metzger, K. Pohl, Software product line engineering and2029

variability management: achievements and challenges, in:2030

Future of Software Engineering Proceedings, Association for2031

Computing Machinery, New York, NY, USA, 2014, pp. 70–84.2032

[18] M. Acher, L. Lesoil, G. A. Randrianaina, X. Tërnava, O. Zen-2033

dra, A call for removing variability, in: 17th International2034

Working Conference on Variability Modelling of Software-2035

Intensive Systems (VaMoS 2023), 2023.2036

[19] P. Kruchten, R. L. Nord, I. Ozkaya, Technical debt: From2037

metaphor to theory and practice, Ieee software 29 (2012) 18–2038

21.2039

[20] P. Avgeriou, P. Kruchten, I. Ozkaya, C. Seaman, Manag-2040

ing technical debt in software engineering (dagstuhl seminar2041

16162), in: Dagstuhl Reports, volume 6, Schloss Dagstuhl-2042

Leibniz-Zentrum fuer Informatik, 2016.2043

[21] D. Wolfart, W. K. G. Assunção, J. Martinez, Variability Debt:2044

Characterization, Causes and Consequences, in: XX Brazilian2045

Symposium on Software Quality, 2021, pp. 1–10.2046

[22] W. K. Assunção, R. E. Lopez-Herrejon, L. Linsbauer, S. R.2047

28

Vergilio, A. Egyed, Reengineering legacy applications into soft-2048

ware product lines: a systematic mapping, Empirical Software2049

Engineering 22 (2017) 2972–3016.2050

[23] M. A. Laguna, Y. Crespo, A systematic mapping study on soft-2051

ware product line evolution: From legacy system reengineering2052

to product line refactoring, Science of Computer Programming2053

78 (2013) 1010–1034.2054

[24] J. Mortara, X. Tërnava, P. Collet, Mapping Features to Auto-2055

matically Identified Object-Oriented Variability Implementa-2056

tions: The Case of ArgoUML-SPL, in: Proceedings of the 14th2057

International Working Conference on Variability Modelling of2058

Software-Intensive Systems, VaMoS ’20, Association for Com-2059

puting Machinery, New York, NY, USA, 2020, pp. 1–9.2060

[25] J. Mortara, Mastering variability in the wild: on object-2061

oriented variability implementations and variability-aware2062

build systems. (Mâıtriser la variabilité enfouie dans les2063

systèmes orientés objet et les systèmes de construction logi-2064

cielle), Ph.D. thesis, Côte d’Azur University, Nice, France,2065

2022.2066

[26] S. Bassil, R. K. Keller, Software visualization tools: Survey2067

and analysis, in: Proceedings 9th International Workshop on2068

Program Comprehension. IWPC 2001, IEEE, 2001, pp. 7–17.2069

[27] S. Diehl, Software visualization: visualizing the structure, be-2070

haviour, and evolution of software, Springer Science & Business2071

Media, 2007.2072

[28] A. R. Teyseyre, M. R. Campo, An overview of 3D software vi-2073

sualization, IEEE transactions on visualization and computer2074

graphics 15 (2008) 87–105.2075

[29] C. Knight, M. Munro, Comprehension with [in] virtual envi-2076

ronment visualisations, in: Proceedings Seventh International2077

Workshop on Program Comprehension, IEEE, 1999, pp. 4–11.2078

[30] C. Knight, M. Munro, Virtual but visible software, in: 20002079

IEEE Conference on Information Visualization. An Interna-2080

tional Conference on Computer Visualization and Graphics,2081

IEEE, 2000, pp. 198–205.2082

[31] H. A. Duru, M. P. Çakır, V. İşler, How does software visu-2083

alization contribute to software comprehension? a grounded2084

theory approach, International Journal of Human-Computer2085

Interaction 29 (2013) 743–763.2086

[32] R. E. Lopez-Herrejon, S. Illescas, A. Egyed, A systematic map-2087

ping study of information visualization for software product2088

line engineering, Journal of software: evolution and process 302089

(2018) e1912.2090

[33] B. Andam, A. Burger, T. Berger, M. R. Chaudron, Florida:2091

Feature location dashboard for extracting and visualizing fea-2092

ture traces, in: Proceedings of the Eleventh International2093

Workshop on Variability Modelling of Software-intensive Sys-2094

tems, ACM, 2017, pp. 100–107.2095

[34] A. Bergel, R. Ghzouli, T. Berger, M. R. V. Chaudron, Fea-2096

tureVista: Interactive Feature Visualization, in: Proceedings2097

of the 25th ACM International Systems and Software Prod-2098

uct Line Conference - Volume A, Association for Computing2099

Machinery, New York, NY, USA, 2021, p. 196–201.2100

[35] J. Krüger, M. Mukelabai, W. Gu, H. Shen, R. Hebig, T. Berger,2101

Where is My Feature and What is it About? A Case Study on2102

Recovering Feature Facets, Journal of Systems and Software2103

152 (2019) 239–253.2104

[36] X. Tërnava, J. Mortara, P. Collet, Identifying and visualiz-2105

ing variability in object-oriented variability-rich systems, in:2106

Proceedings of the 23rd International Systems and Software2107

Product Line Conference - Volume A, SPLC ’19, Association2108

for Computing Machinery, New York, NY, USA, 2019, pp.2109

231–243.2110

[37] J. Mortara, X. Tërnava, P. Collet, symfinder: A Toolchain for2111

the Identification and Visualization of Object-Oriented Vari-2112

ability Implementations, in: Proceedings of the 23rd Interna-2113

tional Systems and Software Product Line Conference - Vol-2114

ume B, SPLC ’19, Association for Computing Machinery, New2115

York, NY, USA, 2019, pp. 5–8.2116

[38] J. Mortara, X. Tërnava, P. Collet, A.-M. Dery-Pinna, Ex-2117

tending the Identification of Object-Oriented Variability Im-2118

plementations using Usage Relationships, in: Proceedings of2119

the 25th ACM International Systems and Software Product2120

Line Conference - Volume B, SPLC ’21, Association for Com-2121

puting Machinery, New York, NY, USA, 2021, p. 91–98.2122

[39] R. Pienta, J. Abello, M. Kahng, D. H. Chau, Scalable graph2123

exploration and visualization: Sensemaking challenges and op-2124

portunities, in: 2015 International conference on Big Data and2125

smart computing (BIGCOMP), IEEE, 2015, pp. 271–278.2126

[40] R. Wettel, M. Lanza, Visualizing software systems as cities,2127

in: 2007 4th IEEE International Workshop on Visualizing Soft-2128

ware for Understanding and Analysis, IEEE, 2007, pp. 92–99.2129

[41] R. Wettel, M. Lanza, CodeCity: 3D visualization of large-scale2130

software, in: Companion of the 30th international conference2131

on Software engineering, 2008, pp. 921–922.2132

[42] F. Steinbrückner, C. Lewerentz, Understanding software evo-2133

lution with software cities, Information Visualization 12 (2013)2134

200–216.2135

[43] J. Mortara, P. Collet, A.-M. Dery-Pinna, Visualization of2136

Object-Oriented Variability Implementations as Cities, in:2137

2021 Working Conference on Software Visualization (VIS-2138

SOFT), Luxembourg (virtual), Luxembourg, 2021, pp. 76–87.2139

[44] J. Mortara, P. Collet, A.-M. Dery-Pinna, Customizable Vi-2140

sualization of Quality Metrics for Object-Oriented Variability2141

Implementations, in: Proceedings of the 26th ACM Interna-2142

tional Systems and Software Product Line Conference - Vol-2143

ume A, SPLC ’22, Association for Computing Machinery, New2144

York, NY, USA, 2022, p. 43–54.2145

[45] M. Azanza, A. Irastorza, R. Medeiros, O. Dı́az, Onboard-2146

ing in Software Product Lines: Concept Maps as Welcome2147

Guides, in: 2021 IEEE/ACM 43rd International Conference2148

on Software Engineering: Software Engineering Education and2149

Training (ICSE-SEET), IEEE, 2021, pp. 122–133.2150

[46] C. R. Turner, A. Fuggetta, L. Lavazza, A. L. Wolf, A con-2151

ceptual basis for feature engineering, Journal of Systems and2152

Software 49 (1999) 3–15.2153

[47] J. O. Coplien, Multi-Paradigm Design for C++, Addison-2154

Wesley Longman Publishing Co., Inc., 1999.2155

[48] F. Bachmann, P. Clements, Variability in Software Product2156

Lines, Technical Report CMU/SEI-2005-TR-012, Software En-2157

gineering Institute, Carnegie Mellon University, Pittsburgh,2158

PA, 2005.2159

[49] I. Jacobson, M. Griss, P. Jonsson, Software reuse: architecture2160

process and organization for business success, volume 285, acm2161

Press New York, 1997.2162

[50] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, A. Wa-2163

sowski, Cool features and tough decisions: a comparison of2164

variability modeling approaches, in: Proceedings of the sixth2165

international workshop on variability modeling of software-2166

intensive systems, VaMoS’12, 2012, pp. 173–182.2167

[51] R. Rabiser, Feature modeling vs. decision modeling: History,2168

comparison and perspectives, in: Proceedings of the 23rd In-2169

ternational Systems and Software Product Line Conference-2170

Volume B, SPLC ’19, ACM, 2019, pp. 134–136.2171

[52] I. John, J. Lee, D. Muthig, Separation of variability dimen-2172

sion and development dimension, in: Proocedings of the 1st2173

International Workshop on Variability Modelling of Software-2174

Intensive Systems, VaMoS ’07, 2007, pp. 45–49.2175

[53] Xh. Tërnava, P. Collet, On the diversity of capturing variabil-2176

ity at the implementation level, in: Proceedings of the 21st2177

International Systems and Software Product Line Conference2178

- Volume B, SPLC ’17, ACM, 2017, pp. 81–88.2179

[54] N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J.-C. Royer,2180

A. Rummler, A. Sousa, A model-driven traceability framework2181

for software product lines, Software & Systems Modeling 92182

(2010) 427–451.2183

[55] T. Patzke, D. Muthig, Product Line Implementation Technolo-2184

gies. Programming Language View, Technical Report, Fraun-2185

hofer IESE, 2002.2186

[56] C. Fritsch, A. Lehn, T. Strohm, R. Bosch, Evaluating vari-2187

ability implementation mechanisms, in: Proceedings of In-2188

ternational Workshop on Product Line Engineering (PLEES),2189

29

Citeseer, 2002, pp. 59–64.2190

[57] E. OliveiraJr (Ed.), UML-Based Software Product Line Engi-2191

neering with SMarty, Springer, 2023.2192

[58] B. Dit, M. Revelle, M. Gethers, D. Poshyvanyk, Feature lo-2193

cation in source code: A taxonomy and survey, Journal of2194

Software: Evolution and Process 25 (2013) 53–95.2195

[59] J. Rubin, M. Chechik, A survey of feature location techniques,2196

in: Domain Engineering, Springer, 2013, pp. 29–58.2197

[60] J. Martinez, Xh. Tërnava, T. Ziadi, Software Product Line Ex-2198

traction from Variability-Rich Systems: The Robocode Case2199

Study, in: Proceedings of the 22nd International Systems and2200

Software Product Line Conference-Volume 1, SPLC ’18, ACM,2201

2018, pp. 132–142.2202

[61] A. Lozano, An overview of techniques for detecting software2203

variability concepts in source code, in: International Con-2204

ference on Conceptual Modeling, ER ’11, Springer, 2011, pp.2205

141–150.2206

[62] M. Burch, C. Vehlow, F. Beck, S. Diehl, D. Weiskopf, Par-2207

allel edge splatting for scalable dynamic graph visualization,2208

IEEE Transactions on Visualization and Computer Graphics2209

17 (2011) 2344–2353.2210

[63] F. Beck, M. Burch, S. Diehl, D. Weiskopf, A taxonomy and2211

survey of dynamic graph visualization, in: Computer graphics2212

forum, volume 36, Wiley Online Library, 2017, pp. 133–159.2213

[64] J. Sillito, G. C. Murphy, K. De Volder, Asking and answering2214

questions during a programming change task, IEEE Transac-2215

tions on Software Engineering 34 (2008) 434–451.2216

[65] M. Acher, R. E. Lopez-Herrejon, R. Rabiser, Teaching soft-2217

ware product lines: A snapshot of current practices and chal-2218

lenges, ACM Transactions on Computing Education (TOCE)2219

18 (2017) 1–31.2220

[66] D. A. Boehm-Davis, J. E. Fox, B. H. Philips, Techniques for2221

exploring program comprehension, in: Empirical Studies of2222

Programmers, 1996, pp. 3–37.2223

[67] R. Koschke, Software visualization in software maintenance,2224

reverse engineering, and re-engineering: a research survey,2225

Journal of Software Maintenance and Evolution: Research and2226

Practice 15 (2003) 87–109.2227

[68] M.-A. D. Storey, D. Čubranić, D. M. German, On the use of2228

visualization to support awareness of human activities in soft-2229

ware development: a survey and a framework, in: Proceedings2230

of the 2005 ACM symposium on Software visualization, 2005,2231

pp. 193–202.2232

[69] J. Feigenspan, C. Kästner, S. Apel, J. Liebig, M. Schulze,2233

R. Dachselt, M. Papendieck, T. Leich, G. Saake, Do back-2234

ground colors improve program comprehension in the# ifdef2235

hell?, Empirical Software Engineering 18 (2013) 699–745.2236

[70] B. Shneiderman, The eyes have it: A task by data type taxon-2237

omy for information visualizations, in: Proceedings 1996 IEEE2238

Symposium on Visual Languages, IEEE, 1996, pp. 336–343.2239

[71] F. N. Colakoglu, A. Yazici, A. Mishra, Software product qual-2240

ity metrics: A systematic mapping study, IEEE Access (2021).2241

[72] A. S. Nuñez-Varela, H. G. Pérez-Gonzalez, F. E. Mart́ınez-2242

Perez, C. Soubervielle-Montalvo, Source code metrics: A sys-2243

tematic mapping study, Journal of Systems and Software 1282244

(2017) 164–197.2245

[73] T. J. McCabe, A complexity measure, IEEE Transactions on2246

software Engineering (1976) 308–320.2247

[74] S. Stevanetic, U. Zdun, Software metrics for measuring the un-2248

derstandability of architectural structures: a systematic map-2249

ping study, in: Proceedings of the 19th International Confer-2250

ence on Evaluation and Assessment in Software Engineering,2251

2015, pp. 1–14.2252

[75] B. Kitchenham, S. L. Pfleeger, Software quality: the elusive2253

target [special issues section], IEEE software 13 (1996) 12–21.2254

[76] J. Waller, C. Wulf, F. Fittkau, P. Döhring, W. Hasselbring,2255

Synchrovis: 3d visualization of monitoring traces in the city2256

metaphor for analyzing concurrency, in: 2013 First IEEE2257

Working Conference on Software Visualization (VISSOFT),2258

IEEE, 2013, pp. 1–4.2259

[77] M. Weninger, L. Makor, H. Mössenböck, Memory Cities: Vi-2260

sualizing Heap Memory Evolution Using the Software City2261

Metaphor, in: 2020 Working Conference on Software Visu-2262

alization (VISSOFT), IEEE, 2020, pp. 110–121.2263

[78] F. Fittkau, A. Krause, W. Hasselbring, Software landscape2264

and application visualization for system comprehension with2265

ExplorViz, Information and software technology 87 (2017)2266

259–277.2267

[79] R. Wettel, M. Lanza, Visual exploration of large-scale sys-2268

tem evolution, in: 2008 15th Working Conference on Reverse2269

Engineering, IEEE, 2008, pp. 219–228.2270

[80] F. Pfahler, R. Minelli, C. Nagy, M. Lanza, Visualizing Evolv-2271

ing Software Cities, in: 2020 Working Conference on Software2272

Visualization (VISSOFT), IEEE, 2020, pp. 22–26.2273

[81] S. Ardigò, C. Nagy, R. Minelli, M. Lanza, M3tricity: visual-2274

izing evolving software & data cities, in: Proceedings of the2275

ACM/IEEE 44th International Conference on Software Engi-2276

neering: Companion Proceedings, 2022, pp. 130–133.2277

[82] V. Dashuber, M. Philippsen, J. Weigend, A layered soft-2278

ware city for dependency visualization., in: VISIGRAPP (3:2279

IVAPP), 2021, pp. 15–26.2280

[83] V. Dashuber, M. Philippsen, Static and dynamic dependency2281

visualization in a layered software city, SN Computer Science2282

3 (2022) 1–18.2283

[84] D. Moreno-Lumbreras, R. Minelli, A. Villaverde, J. M.2284

Gonzalez-Barahona, M. Lanza, Codecity: A comparison of2285

on-screen and virtual reality, Information and Software Tech-2286

nology 153 (2023) 107064.2287

[85] J. Vincur, P. Navrat, I. Polasek, VR City: Software Analysis2288

in Virtual Reality Environment, in: 2017 IEEE international2289

conference on software quality, reliability and security com-2290

panion (QRS-C), IEEE, 2017, pp. 509–516.2291

[86] G. Balogh, A. Beszedes, CodeMetropolis-code visualisation in2292

MineCraft, in: 2013 IEEE 13th International Working Con-2293

ference on Source Code Analysis and Manipulation (SCAM),2294

IEEE, 2013, pp. 136–141.2295

[87] R. Wettel, M. Lanza, R. Robbes, Empirical validation of2296

CodeCity: A controlled experiment, Technical Report, Uni-2297

versità della Svizzera italiana, 2010.2298

[88] R. Wettel, M. Lanza, R. Robbes, Software systems as cities:2299

A controlled experiment, in: Proceedings of the 33rd Interna-2300

tional Conference on Software Engineering, 2011, pp. 551–560.2301

[89] J. Kratt, H. Strobelt, O. Deussen, Improving Stability and2302

Compactness in Street Layout Visualizations, in: VMV, 2011,2303

pp. 285–292.2304

[90] D. Kafura, S. Henry, Software quality metrics based on inter-2305

connectivity, Journal of Systems and Software 2 (1981) 121–2306

131.2307

[91] L. H. Rosenberg, L. E. Hyatt, Software quality metrics for2308

object-oriented environments, Crosstalk journal 10 (1997) 1–2309

6.2310

[92] M. Fowler, Refactoring: improving the design of existing code,2311

Addison-Wesley Professional, 2018.2312

[93] G. A. Campbell, Cognitive complexity: An overview and eval-2313

uation, in: Proceedings of the 2018 international conference2314

on technical debt, 2018, pp. 57–58.2315

[94] S. Misra, A. Adewumi, L. Fernandez-Sanz, R. Damasevicius,2316

A suite of object oriented cognitive complexity metrics, IEEE2317

Access 6 (2018) 8782–8796.2318

[95] D. Sato, A. Goldman, F. Kon, Tracking the evolution of object-2319

oriented quality metrics on agile projects, in: International2320

Conference on Extreme Programming and Agile Processes in2321

Software Engineering, Springer, 2007, pp. 84–92.2322

[96] G. Hecht, O. Benomar, R. Rouvoy, N. Moha, L. Duchien,2323

Tracking the software quality of android applications along2324

their evolution (t), in: 2015 30th IEEE/ACM International2325

Conference on Automated Software Engineering (ASE), IEEE,2326

2015, pp. 236–247.2327

[97] R. A. Khan, K. Mustafa, S. I. Ahson, An empirical validation2328

of object oriented design quality metrics, Journal of King Saud2329

University-Computer and Information Sciences 19 (2007) 1–16.2330

[98] J. Pantiuchina, M. Lanza, G. Bavota, Improving code: The2331

30

(mis) perception of quality metrics, in: 2018 IEEE Interna-2332

tional Conference on Software Maintenance and Evolution (IC-2333

SME), IEEE, 2018, pp. 80–91.2334

[99] G. Rasool, Z. Arshad, A review of code smell mining tech-2335

niques, Journal of Software: Evolution and Process 27 (2015)2336

867–895.2337

[100] Z. Li, P. Avgeriou, P. Liang, A systematic mapping study on2338

technical debt and its management, Journal of Systems and2339

Software 101 (2015) 193–220.2340

[101] P. C. Avgeriou, D. Taibi, A. Ampatzoglou, F. A. Fontana,2341

T. Besker, A. Chatzigeorgiou, V. Lenarduzzi, A. Martini,2342

A. Moschou, I. Pigazzini, et al., An overview and compari-2343

son of technical debt measurement tools, IEEE Software 382344

(2020) 61–71.2345

[102] N. Chotisarn, L. Merino, X. Zheng, S. Lonapalawong,2346

T. Zhang, M. Xu, W. Chen, A systematic literature review2347

of modern software visualization, Journal of Visualization 232348

(2020) 539–558.2349

[103] R. Wettel, M. Lanza, Visually localizing design problems with2350

disharmony maps, in: Proceedings of the 4th ACM Sympo-2351

sium on Software Visualization, 2008, pp. 155–164.2352

[104] F. Steinbrückner, C. Lewerentz, Representing development2353

history in software cities, in: Proceedings of the 5th inter-2354

national symposium on Software visualization, 2010, pp. 193–2355

202.2356

[105] H. Wainer, C. M. Francolini, An empirical inquiry concerning2357

human understanding of two-variable color maps, The Amer-2358

ican Statistician 34 (1980) 81–93.2359

[106] D. Holten, R. Vliegen, J. J. Van Wijk, Visual realism for2360

the visualization of software metrics, in: 3rd IEEE Interna-2361

tional Workshop on Visualizing Software for Understanding2362

and Analysis, IEEE, 2005, pp. 1–6.2363

[107] AlDanial, cloc, htps://github.com/AlDanial/cloc, 2021.2364

Last access 02.12.2021.2365

[108] N. Peitek, S. Apel, C. Parnin, A. Brechmann, J. Siegmund,2366

Program Comprehension and Code Complexity Metrics: An2367

fMRI Study, in: 2021 IEEE/ACM 43rd International Confer-2368

ence on Software Engineering (ICSE), IEEE, 2021, pp. 524–2369

536.2370

[109] J. Mortara, P. Collet, A.-M. Pinna-Dery, P. Anagonou, G. Sa-2371

vornin, A. van der Tuijn, Customizable Visualization of Qual-2372

ity Metrics for Object-Oriented Variability Implementations -2373

Artifact, 2022.2374

[110] E. Irrazábal, J. A. Carruthers, J. A. Pinto Oppido, Modelo2375

para curaduŕıa de proyectos software de fuente abierta para2376

estudios emṕıricos en ingenieŕıa de software, in: XXIII Work-2377

shop de Investigadores en Ciencias de la Computación (WICC2378

2021, Chilecito, La Rioja), 2021.2379

[111] M. Chen, L. Floridi, R. Borgo, What is visualization really2380

for?, The Philosophy of Information Quality (2014) 75–93.2381

[112] D. G. Feitelson, Using students as experimental subjects in2382

software engineering research–a review and discussion of the2383

evidence, arXiv preprint arXiv:1512.08409 (2015).2384

[113] R. Minelli, A. Mocci, M. Lanza, I Know What You Did Last2385

Summer - An Investigation of How Developers Spend Their2386

Time, in: 2015 IEEE 23rd International Conference on Pro-2387

gram Comprehension, IEEE, 2015, pp. 25–35.2388

[114] M. Nachtigall, M. Schlichtig, E. Bodden, A large-scale study2389

of usability criteria addressed by static analysis tools, in: Pro-2390

ceedings of the 31st ACM SIGSOFT International Symposium2391

on Software Testing and Analysis, 2022, pp. 532–543.2392

[115] S. Y. Chyung, K. Roberts, I. Swanson, A. Hankinson,2393

Evidence-based survey design: The use of a midpoint on the2394

likert scale, Performance Improvement 56 (2017) 15–23.2395

[116] J. T. Nadler, R. Weston, E. C. Voyles, Stuck in the middle: the2396

use and interpretation of mid-points in items on questionnaires,2397

The Journal of general psychology 142 (2015) 71–89.2398

[117] R. Garland, The mid-point on a rating scale: Is it desirable,2399

Marketing bulletin 2 (1991) 66–70.2400

[118] M. S. Matell, J. Jacoby, Is there an optimal number of alter-2401

natives for likert scale items? study i: Reliability and validity,2402

Educational and psychological measurement 31 (1971) 657–2403

674.2404

[119] A. J. Ko, T. D. LaToza, M. M. Burnett, A practical guide2405

to controlled experiments of software engineering tools with2406

human participants, Empirical Software Engineering 20 (2015)2407

110–141.2408

[120] J. Mortara, P. Collet, A.-M. Dery-Pinna, IDE-assisted vi-2409

sualization of indebted OO variability implementations, in:2410

Proceedings of the 26th ACM International Systems and Soft-2411

ware Product Line Conference - Volume B, SPLC ’22, Asso-2412

ciation for Computing Machinery, New York, NY, USA, 2022,2413

p. 74–77.2414

[121] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,2415

A. Wesslén, Experimentation in software engineering, Springer2416

Science & Business Media, 2012.2417

[122] W. Huang, P. Eades, S.-H. Hong, Measuring effectiveness of2418

graph visualizations: A cognitive load perspective, Informa-2419

tion Visualization 8 (2009) 139–152.2420

[123] P. Caserta, O. Zendra, D. Bodénes, 3d hierarchical edge bun-2421

dles to visualize relations in a software city metaphor, in: 20112422

6th International Workshop on Visualizing Software for Under-2423

standing and Analysis (VISSOFT), IEEE, 2011, pp. 1–8.2424

[124] C. Kästner, S. Trujillo, S. Apel, Visualizing Software Product2425

Line Variabilities in Source Code, in: SPLC (2), 2008, pp.2426

303–312.2427

[125] S. Duszynski, M. Becker, Recovering variability information2428

from the source code of similar software products, in: 20122429

Third International Workshop on Product LinE Approaches2430

in Software Engineering (PLEASE), IEEE, 2012, pp. 37–40.2431

[126] O. Greevy, M. Lanza, C. Wysseier, Visualizing feature inter-2432

action in 3-d, in: 3rd IEEE International Workshop on Visu-2433

alizing Software for Understanding and Analysis, IEEE, 2005,2434

pp. 1–6.2435

[127] K. Zhang, Software Visualization: From Theory to Practice,2436

volume 734, Springer Science & Business Media, 2003.2437

[128] P. Caserta, O. Zendra, Visualization of the static aspects of2438

software: A survey, IEEE Trans. Vis. Comput. Graph. 172439

(2011) 913–933.2440

[129] C. Gravino, G. Scanniello, G. Tortora, Source-code compre-2441

hension tasks supported by UML design models: Results from2442

a controlled experiment and a differentiated replication, J. Vis.2443

Lang. Comput. 28 (2015) 23–38.2444

[130] G. Scanniello, C. Gravino, M. Genero, J. A. Cruz-Lemus,2445

G. Tortora, M. Risi, G. Dodero, Do software models based2446

on the UML aid in source-code comprehensibility? aggregat-2447

ing evidence from 12 controlled experiments, Empir. Softw.2448

Eng. 23 (2018) 2695–2733.2449

[131] A. Kuhn, D. Erni, P. Loretan, O. Nierstrasz, Software cartog-2450

raphy: Thematic software visualization with consistent layout,2451

Journal of Software Maintenance and Evolution: Research and2452

Practice 22 (2010) 191–210.2453

[132] N. Hawes, S. Marshall, C. Anslow, Codesurveyor: Mapping2454

large-scale software to aid in code comprehension, in: 20152455

IEEE 3rd Working Conference on Software Visualization (VIS-2456

SOFT), IEEE, 2015, pp. 96–105.2457

[133] A. Schreiber, M. Misiak, Visualizing software architectures2458

in virtual reality with an island metaphor, in: Virtual, Aug-2459

mented and Mixed Reality: Interaction, Navigation, Visualiza-2460

tion, Embodiment, and Simulation: 10th International Con-2461

ference, VAMR 2018, Held as Part of HCI International 2018,2462

Las Vegas, NV, USA, July 15-20, 2018, Proceedings, Part I 10,2463

Springer, 2018, pp. 168–182.2464

[134] P. Khaloo, M. Maghoumi, E. Taranta, D. Bettner, J. Laviola,2465

Code Park: A new 3D code visualization tool, in: 2017 IEEE2466

Working Conference on Software Visualization (VISSOFT),2467

IEEE, 2017, pp. 43–53.2468

[135] Z. Zhang, B. Qin, Y. Chen, L. Song, Y. Zhang, VRLifeTime–2469

An IDE Tool to Avoid Concurrency and Memory Bugs in Rust,2470

in: Proceedings of the 2020 ACM SIGSAC Conference on Com-2471

puter and Communications Security, 2020, pp. 2085–2087.2472

[136] A. Shokri, M. Mirakhorli, ArCode: A Tool for Support-2473

31

htps://github.com/AlDanial/cloc

ing Comprehension and Implementation of Architectural Con-2474

cerns, arXiv preprint arXiv:2103.06735 (2021).2475

[137] A. Telea, L. Voinea, An interactive reverse engineering envi-2476

ronment for large-scale c++ code, in: Proceedings of the 4th2477

ACM symposium on Software visualization, 2008, pp. 67–76.2478

[138] M. Dias, D. Orellana, S. Vidal, L. Merino, A. Bergel, Evalu-2479

ating a Visual Approach for Understanding JavaScript Source2480

Code, in: Proceedings of the 28th International Conference on2481

Program Comprehension, 2020, pp. 128–138.2482

[139] S. Entekhabi, A. Solback, J.-P. Steghöfer, T. Berger, Visual-2483

ization of Feature Locations with the Tool FeatureDashboard,2484

in: Proceedings of the 23rd International Systems and Soft-2485

ware Product Line Conference-Volume B, 2019, pp. 1–4.2486

[140] T. Schwarz, W. Mahmood, T. Berger, A common notation2487

and tool support for embedded feature annotations, in: Pro-2488

ceedings of the 24th ACM International Systems and Software2489

Product Line Conference-Volume B, 2020, pp. 5–8.2490

[141] J. Martinson, H. Jansson, M. Mukelabai, T. Berger, A. Bergel,2491

T. Ho-Quang, HAnS: IDE-based editing support for embedded2492

feature annotations, in: Proceedings of the 25th ACM Interna-2493

tional Systems and Software Product Line Conference-Volume2494

B, 2021, pp. 28–31.2495

[142] T. Savage, M. Revelle, D. Poshyvanyk, Flat3: Feature2496

location and textual tracing tool, in: Proceedings of2497

the 32nd ACM/IEEE International Conference on Software2498

Engineering-Volume 2, 2010, pp. 255–258.2499

[143] M. V. Couto, M. T. Valente, E. Figueiredo, Extracting soft-2500

ware product lines: A case study using conditional compila-2501

tion, in: 2011 15th European Conference on Software Mainte-2502

nance and Reengineering, IEEE, 2011, pp. 191–200.2503

[144] W. Ji, T. Berger, M. Antkiewicz, K. Czarnecki, Maintaining2504

feature traceability with embedded annotations, in: Proceed-2505

ings of the 19th International Conference on Software Product2506

Line, 2015, pp. 61–70.2507

[145] M. Seiler, B. Paech, Documenting and exploiting software2508

feature knowledge through tags., in: SEKE, 2019, pp. 754–2509

777.2510

[146] J. Mortara, P. Collet, A.-M. Dery-Pinna, P. Anagonou, P.-M.2511

Djekinnou, F. Focas, F. Rigaut, G. Savornin, A. van der Tuijn,2512

Visualisation of object-oriented software in a city metaphor:2513

comprehending the implemented variability and its technical2514

debt — Reproduction Package, 2023. URL: https://doi.org/2515

10.5281/zenodo.7687914.2516

32

https://doi.org/10.5281/zenodo.7687914
https://doi.org/10.5281/zenodo.7687914
https://doi.org/10.5281/zenodo.7687914

	Introduction
	Background
	Implemented variabilities in object-oriented systems
	Metrics to identify OO variability implementations

	Motivations
	Requirements
	On the city metaphor

	VariCity: a configurable and extensible visualization for variability comprehension
	Main principles for revealing zones of interest
	Configurable cities
	Extending VariCity to reveal indebted variability implementations

	Validating the VariCity visualization approach
	Answering RQ1
	Answering RQ2
	Answering RQ3
	Relevant quality metrics
	Subject systems
	Evaluation process
	Summary

	Evaluating the comprehensibility of the VariCity visualization
	Experimental design
	Research Questions
	Subjects
	Purpose and variables
	Controlled variables
	Treatments
	Tasks
	Operation protocol

	Results
	Answer to RQ4.1
	Answer to RQ4.2
	Answer to RQ4.3
	Summary

	Threats to validity and limitations
	Related work
	Visualization in the Software Product Line field
	Visualization for software comprehension
	Tools for program comprehension

	Conclusion
	Reproduction package
	Acknowledgments
	Expected answers
	Cheat sheet
	Varability concepts
	Design patterns

