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Coupling 2D/3D fluid models with 0D Windkessel model via boundary condition

Introduction

In the following document, we detailed the coupling of 0D-2D/3D models for computational fluid dynamic using Windkessel boundary conditions. This kind of coupling is an efficient way to reduce computational cost by replacing part of the 2D/3D problem by a 0D one. Such 0D models are less detailed than full 2D/3D models but provide a cheap and accurate alternative to model simple configurations. We aim to use such coupling in a vascular modelling context, where we want a detailed model on a specific part of a vascular network and reduced models to account for the truncated part. In complex networks, multiple reduced models can be used in parallel to account for different truncated branches. In the following document, we focused on a unique inlet-outlet configuration for validation purpose, but the methods presented here can easily be extended to any networks.

Equations

In the Eulerian description a fluid is modelled by its vectorial velocity field, denoted u, and its scalar pressure field denoted p. A fluid is also characterized by its density ρ, which remains constant in the particular case of incompressible homogeneous fluid, and its dynamic viscosity η. Using the density and the dynamic viscosity, we can define the kinematic viscosity ν = η ρ often used in applications. Let Ω ⊂ R d be the domain of interest with d = 2, 3 the dimension. We denote Γ = ∂Ω its boundary and we assume that it exists a partition Γ = Γ Dir ∪ Γ Neu of it. This partition is such that Γ Dir ∩ Γ Neu = ∅ and Γ Neu ̸ = ∅. In this context we introduce the Navier-Stokes equations

                     ρ ∂u ∂t + ρ(u • ∇)u -η∆u + ∇p = f in [0, T ] × Ω ∇ • u = 0 in [0, T ] × Ω u = 0 on [0, T ] × Γ wall u = g on [0, T ] × Γ inlet η∇u • n -pn = -P ext n on [0, T ] × Γ outlet (u, p) = (u 0 , p 0 ) in {0} × Ω , ( 1 
)
where n is the external unitary normal to the boundary, f represents external forces, g is the prescribed inlet velocity, and P ext is the external pressure. This external pressure P ext is used to couple the 2D/3D problem with 0D Windkessel reduced model(s). Let V = {v ∈ (H 1 (Ω)) d , v |Γ Dir = 0} be the approximation space for the velocity and L 2 (Ω) the one for the pressure field. The variational formulation associated to the momentum conservation reads,

∀v ∈ V Ω ρ ∂u ∂t • v + ρ(u • ∇)u • v + η∇u : ∇v -p(∇ • v) dx = Γ outlet P ext n • v ds. ( 2 
)
We assume that Γ outlet is composed of one or more non-intersecting outlets, i.e. Γ outlet = Γ 1 ∪• • •∪Γ I . Then pressure and flow rate at Γ i , 1 ≤ i ≤ I are denoted respectively P i and Q i . For T > 0 and N ∈ N * , the time discretization reads δt = T N , such that t (k) = kδt, with 0 ≤ k ≤ N . Using this discretization, we denote u (k) = u(t (k) , .) the velocity field and p (k) = p(t (k) , .) the pressure field of the fluid inside the domain. Similar notations

P (k) i = P i (t (k) ), Q (k) i = Q i (t (k) )
are used to denote and respectively the pressure and the flow rate at Γ i , 1 ≤ i ≤ I. The flow rate Q i is naturally related to the velocity field by integration over Γ i , 1 ≤ i ≤ I, i.e.

Q (k) i = Γ i u (k) • n ds. ( 3 
)
The coupling with an external model is made via the external pressure at the corresponding boundary. This pressure can depend on the velocity field at previous time steps (explicit part) or at the current time step (implicit part). In a general fashion, the associated form at boundary

Γ i , 1 ≤ i ≤ I, reads f i (u (0) , . . . , u (k) ; v) = Γ i P (k) i (u (0) , . . . , u (k) ) v • n ds, ( 4 
)
where n is the unitary external normal and where

P (k) i
is the external model.

P (k) i
as a function of u (0) , . . . , u (k) can be an output of various 0D models, or even 1D models.

Windkessel models and associated schemes

In the following section, we present the different commonly used Windkessel models and their corresponding schemes. We consider only one outlet, in case of multiple outlets, each of them can have its own 0D model attached. Expressions of exact solutions are extracted from [START_REF] Grandmont | Continuous and semi-discrete stability estimates for 3d/0d coupled systems modelling airflows and blood flows[END_REF]. The resistive model is depicted in Figure 1, the associated equation reads

Purely resistive case

P (t) = RQ(t). ( 5 
)
Using the time discretization, this leads to the scheme

P (k) = RQ (k) , ( 6 
)
by replacing this scheme in equation (4) and using equation (3), we obtain the following expression for the implicit resistive Windkessel model

f (u (k) , v) = R Γ u (k) • n ds Γ v • n ds, (7) 
which is a symmetric bilinear form and leads to an implicit scheme. Here, the exact solution of the compliant model, see Figure 2, is given by

Compliant case

P (t) = P (0)e -t R d C + R p Q(t) -Q(0)e -t R d C + 1 C t 0 Q(s)e s-t R d C ds. ( 8 
)
Using the time discretization, the integral part of equation ( 8) can be approximated by a trapezoidal rule

t (k) =t t (0) =0 Q(s)e s-t (k) R d C ds = k-1 j=0 t (j+1) t (j) Q(s)e s-t (k) R d C ds ≃ k-1 j=0 δt 2 Q (j) e t (j) -t (k) R d C + Q (j+1) e t (j+1) -t (k) R d C = δt 2 k-1 j=0 Q (j) e t (j) -t (k) R d C + δt 2 k-1 j=1 Q (j) e t (j) -t (k) R d C + δt 2 Q (k) = δt 2 Q (0) e -t (k) R d C + δt k-1 j=1 Q (j) e (j-k)δt R d C + δt 2 Q (k) .
This leads to the following scheme

P (k) = P (0) e -t (k) R d C + R p Q (k) -Q (0) e -t (k) R d C + δt 2C Q (0) e -t (k) R d C + 2 k-1 j=1 Q (j) e (j-k)δt R d C + Q (k) (9) 
considering P (0) = Q (0) R p +R d for the initial pressure and rearranging terms, the RCR scheme finally reads

P (k) = Q (0) e -t (k) R d C δt 2C + R d + δt C k-1 j=1 Q (j) e (j-k)δt R d C + Q (k) δt 2C + R p . ( 10 
)
Using this scheme in equation (4), with equation (3), leads to an implicit-explicit expression, with the implicit term

f (k) imp (u (k) , v) = δt 2C + R p Γ u (k) • n ds Γ v • n ds, (11) 
and the explicit term The inductive model depicted in Figure 3 has the following exact solution

f (k) exp (v) = Q (0) e -t (k) R d C δt 2C + R d + δt C k-1 j=1 Q (j) e (j-k)δt R d C Γ v • n ds. ( 12 
)

Inductive case

P (t) = P (0)e -t R d C + L Q ′ (t) -Q ′ (0)e -t R d C + R p Q(t) -Q(0)e -t R d C + 1 C t 0 Q(s)e s-t R d C ds. ( 13 
)
Invoking again the time discretization, a backward Euler's scheme allows to obtain an approximation of the flow rate derivative, it reads

Q ′(k) ≃ Q (k) -Q (k-1) δt . ( 14 
)
Given an estimation Q ′(0) of Q ′(0) , which will exponentially vanish, we obtain the scheme

P (k) = P (0) e -t (k) R d C + L Q (k) -Q (k-1) δt -Q ′(0) e -t (k) R d C + R p Q (k) -Q (0) e -t (k) R d C + δt 2C Q (0) e -t (k) R d C + 2 k-1 j=1 Q (j) e (j-k)δt R d C + Q (k) . ( 15 
)
Considering again P (0) = Q (0) R p + R d for the initial pressure, Q ′(0) = 0 as the initial flow rate derivative and rearranging terms, the RCRL scheme reads

P (k) = Q (0) e -t (k) R d C δt 2C + R d + δt C k-1 j=1 Q (j) e (j-k)δt R d C -Q (k-1) L δt + Q (k) δt 2C + R p + L δt . ( 16 
)
Using this scheme in equation (4), with equation (3), leads to an implicit-explicit expression, with the implicit term

f (k) imp (u (k) , v) = δt 2C + R p + L δt Γ u (k) • n ds Γ v • n ds, ( 17 
)
and the explicit term

f (k) exp (v) = Q (0) e -t (k) R d C δt 2C + R d + δt C k-1 j=1 Q (j) e (j-k)δt R d C -Q (k-1) L δt Γ v • n ds. ( 18 
)
3 Numerical applications

0D case

For the inlet flow rate, we use an artificial flow rate Q mimicking a standard flow rate found in a human superior sagittal sinus, it reads

Q(t) = 5700 -500 cos(2πωt) [mm 3 .s -1 ], (19) 
with ω = 1/0.8 [s -1 ] corresponding to the usual pulsation of human heart at rest. This flow rate is depicted in Figure 4. In addition, the following settings are used to compare the different schemes presented before:

• R p = 6.26 × 10 -6 [kg.mm -4 .s -1 ], R d = 2 × 10 -6 [kg.mm -4 .s -1 ] for resistances,
• R = 8.26 × 10 -6 [kg.mm -4 .s -1 ] in the purely resistive case, corresponding to a straight pipe of 75 mm length and 3 mm radius, which are physiological dimension for a superior sagittal sinus in humans,

• C = 3 × 10 4 [kg -1 .mm 4 .s 2 ] for the capacitor,

• L = 1 10 R [kg.mm -4 ] for the coil. Since we impose the flow rate, the outputs of these 0D models will be pressures as functions of the time, at the outlet level. These pressures are depicted in Figure 5. In the resistive case, the pressure at the interface only depends linearly on the imposed flow and corresponds to the behavior described by the scheme (6). Concerning compliant and inductive cases we observe two phases: transient and steady states, this is due to the time needed to fill up the capacitor. In the compliant case, we can clearly observe that the flow is dumped compare to the purely resistive case. Finally, in the inductive case, which also contains a compliant component, we observe that it amplifies the flow oscillation and creates backward phase-lag. Other behaviors can appears but are not observable for this specific set of components. The code used for this subsection is entirely open source for reproducibility purposes, it is stored in this gitlab repository. 

2D-0D coupling validation

In order to validate the simulation code developed, we aim to reproduce results obtained in the 0D case into a 0D-2D coupled example. We use Taylor-Hood (P2-P1) Finite Elements (FE) for the simulation, within a 75 mm length and 3 mm radius rigid straight pipe, see Figure 6. The FE library FreeFEM [START_REF] Hecht | New development in FreeFem++[END_REF] is used to solve the problem. We use the same setup (flow rate, resistances, capacitor and coil) as in the previous section and the implicit RCR/RCRL Windkessel schemes described in (10), ( 16). The main difficulty come from the implicit form (17), algebraically corresponding to a matrix, which is not standard in FreeFEM. To overcome this, we implement custom function to build this type of matrices, associated to the prescribed boundary label, see this gitlab repository for the 2D version. Looking at Figure 7, we obtain same results as in the 0D case, validating the coupling implementation. In this case, we can remark that the Windkessel models used here can not modify the velocity since we are simulating incompressible fluid flow in a rigid pipe with only one outlet. This means that at each time step, the flow rate at the inlet must be equal to the flow rate at the outlet, regardless of the pressure. All these results have been compiled in a gitlab repository for reproducibility purposes. 

3D-0D coupling validation

As in the previous sub-section, we aim to validate the 0D-3D coupling implementation by reproducing results obtained in the 0D model. The same FE library [START_REF] Hecht | New development in FreeFem++[END_REF] is used to solve the 3D problem, still using Taylor-Hood FE in a rigid straight pipe of 75 mm length and 3 mm radius, see Figure 9. We again use the same setup (flow rate, resistances, capacitor and coil) as in the previous sub-section and the implicit RCR/RCRL Windkessel schemes. As in the 2D case we developed a custom function to build the matrix associated to the implicit form (17), this function is accessible in the following gitlab repository (3D version). We obtain same results as in the 0D case, see , which validates the coupling implementation. In Figure 10 we observe same results as in the 0D and 2D-0D coupled models, validating the implementation. This 3D model has the same rigid assumption as the 2D case, meaning the inlet flow rate is equal to the outlet one. Again all the associated codes have been compiled into a gitlab repository for reproducibility purposes. 

0D model on real-life flow rate signal

In this last part, we investigate the impact of such 0D R/RCR/RCRL Windkessel models on a flow rate signal coming from a real acquisition. The flow rate used here corresponds to a human superior sagittal sinus, it have been measured near the head apex with a transverse Phase-Contrast MRI slice. For more information see [START_REF] Mollo | Développement et analyse du modèle numérique du système crânio-spinal[END_REF], the flow is depicted in Figure 13. We use again the same Windkessel settings, i.e.

• R p = 6.26 × 10 -6 [kg.mm -4 .s -1 ], R d 2 × 10 -6 [kg.mm -4 .s -1 ] for resistances,

• R = 8.26 × 10 -6 [kg.mm -4 .s -1 ] in the purely resistive case,

• C = 3 4 [kg -1 .mm 4 .s 2 ] for the capacitor, • L = 1 10 R [kg.mm -4
] for the coil. Finally, we observe the pressure variation with respect to each model, results are presented in Figure 14. At this stage, we remark that the coil (L), corresponding to inertial effects, really affects the pressure profile by exacerbating small flow rate variations, see Figure 13 

Conclusion

In this document we introduce 0D Windkessel models and how to couple them with 2D/3D Navier-Stokes system of equations. Different 0D models are discussed and illustrated to understand correctly the role of each component. Then we use this implementation to validate the coupling with a 2D model of a rigid straight pipe. Finally, we also observe model behavior in a case of a non-perfectly sinusoidal flow rate signal, coming from real-life acquisition.

Links to gitlab repositories:

• Windkessel 0D model.

• Windkessel matrices for FreeFEM, 2D version.

• Windkessel matrices for FreeFEM, 3D version.

• Dropipe 2D (validation code).

• Dropipe 3D (validation code).
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 1 Figure 1: R type boundary condition.
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 2 Figure 2: RCR type boundary condition.
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 3 Figure 3: LRCR type boundary condition.
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 4 Figure 4: Artificial flow rate used at the inlet level.
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 5 Figure 5: Pressure evolution at the interface in the current setup.
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 6 Figure 6: Computational mesh: 23, 954 triangles, 109, 821 dof. and h ≃ 0.2.
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 7 Figure 7: Pressure at the pipe outlet in R/RCR/RCRL cases for the 2D-0D coupled model.
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 8 Figure 8: Simulation illustration of the 2D-0D coupled model: velocity and pressure fields in the RCR coupled case at t = 1.32[s].
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 910 Figure 9: Computational mesh: 46, 164 tetrahedra, 222, 452 dof. and ≃ 0.8.
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 11 Figure 11: Simulation illustration of the 3D-0D coupled model: velocity field in the RCR coupled case at t = 1.32[s].
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 12 Figure 12: Simulation illustration of the 3D-0D coupled model: pressure field in the RCR coupled case at t = 1.32[s].
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 13 Figure 13: Superior sagittal sinus flow rate, extracted from PC-MRI.
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 14 Figure 14: Pressure variation in the case of real-life flow rate.