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Abstract

In this paper, we consider optimal experiment design with amplitude constraints for the case of a multisine excitation. The
output amplitude constraint is robustified using an uncertainty region for the unknown true system. The main contribution of
this paper is to treat the robust amplitude constraint without the classical gridding approximation. In particular, we provide
an LMI optimization problem to verify whether the output constraint is respected for all systems in the uncertainty region.
This LMI formulation can be combined with the accuracy constraint in the optimal experiment design problem. Like each
optimal experiment design problem with amplitude constraints, the resulting optimization problem is non-convex, but we
provide two approaches to efficiently initialize the algorithm used to solve this optimization problem. The efficiency of the
proposed methodology is tested using a numerical simulation.
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1 Introduction

In this paper, we consider optimal identification ex-
periment design when the constraints on the input and
the output signals are not expressed in term of power,
but in term of time-domain amplitude.
Optimal identification experiment design has been ex-

tensively studied for prediction error identification [18].
In most of the contributions (see, e.g., [18,16,8,14,1]),
the constraints on the input and the output signals are
expressed as power constraints. One of the main reasons
for this is that both the inverse of the covariance matrix
of the estimate θ̂N of the parameter vector θ0 of the true
system (which is generally the measure of the model ac-
curacy that is used in the accuracy constraint of the op-
timal experiment design problem) and the power of the
input and output signals (which is a measure of the cost
of the identification) are affine functions of the power
spectrum of the excitation signal. This property allows
one to formulate the optimal experiment design problem
as a convex optimization problem (see, e.g., [16,8,14]).
The main issue with this approach is that, in many

applications (see, e.g., [22] for an example), the con-
straints are not formulated as constraints on the power
of the input and output signals, but as constraints on
the amplitude of the time-domain sequence of these sig-
nals. Designing optimal identification experiments with

amplitude constraints is thus a very important prob-
lem in practice. Unlike in the power constraint case,
such optimal experiment design problem boils down
to a non-convex optimization problem. The paper [21]
indeed shows that it can be reformulated as an opti-
mization problem involving both LMI constraints and a
rank constraint which makes the optimization problem
non-convex. In the literature, different approaches have
been proposed to address this non-convex optimization
problem. An iterative approach involving different non-
convex optimization problems is proposed in [20] (see
also [24]) while the accuracy objective and the respect of
the amplitude constraints are treated separately in [10].
Other contributions use relaxations to approximate the
original non-convex optimization problem by a con-
vex one. A first order approximation is used in [27]. In
[21], the non-convex rank constraint is neglected and
a randomization procedure is subsequently devised to
improve the results. A similar approach is used in [9,17].
Other relaxations are proposed in [11,12].

Since the output obviously depends on the unknown
true parameter vector θ0 (i.e., on the true systemG(θ0)),
we here consider an optimal experiment design problem
with a robust output amplitude constraint i.e., the out-
put amplitude constraint must be satisfied for the out-
puts of all systems G(θ) with θ in an uncertainty re-
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gion Uinit containing the unknown θ0 [25]. Since θ0 ∈
Uinit, such a formulation ensures that the output of
the unknown true system G(θ0) will respect the am-
plitude constraint. Robust amplitude constraints (and
other types of robust constraints in optimal experiment
design) are classically handled via a gridding approxi-
mation (see [16,8,25,21]): the uncertainty set Uinit (con-
taining an infinite number of elements) is replaced by
a number n of grid points of this uncertainty set Uinit
and the robust output amplitude constraint is replaced
by n constraints (one for each grid point) in the optimal
experiment design problem. Since θ0 will most probably
not be among the grid points, this gridding approach en-
tails an approximation i.e., the output of the unknown
true systemG(θ0) is not guaranteed to satisfy the ampli-
tude constraint. Themain contribution of this paper is to
develop a methodology (inspired from robustness anal-
ysis) to handle the robust output amplitude constraint
without the approximation introduced by the gridding
of Uinit. This approach will be based on the philosophy
we introduced in previous contributions to handle ro-
bust output power constraints without approximation
(see [7] for multisine excitation and see [6] for filtered
white noise excitation).
As mentioned above, we will develop a methodology

inspired from robustness analysis to handle robust out-
put amplitude constraints. Since the (robust) output
amplitude constraint can easily be translated into a (ro-
bust) output power constraint for filtered white noise
excitation, we will only consider the case of multisine
excitation in this paper. More precisely, we will develop
an LMI optimization problem allowing, for a given mul-
tisine excitation, to verify whether the output ampli-
tude constraint is satisfied for the outputs of all systems
G(θ) with θ ∈ Uinit. Since amplitude constraints must
be respected at each time instant, we treat, in this LMI
formulation, the time similarly as the parameter vector
θ i.e., as an uncertain parameter varying in a set. This
prevents the use of a gridding of the time axis (which
would introduce a similar approximation as the gridding
of Uinit). Using the same philosophy, we also develop an
LMI optimization problem to verify whether the input
amplitude constraint is verified at each time instant.
These LMI formulations for the input and output am-
plitude constraints can be combined with the accuracy
constraint in the optimal experiment design problem.
The resulting optimization problem obviously remains
a non-convex optimization problem, but we provide two
approaches to efficiently initialize the numerical algo-
rithm used to solve this optimization problem.

Notations. Continuous-time signals will be denoted x(t)
where t ∈ R is the time index while discrete-time signals
will be denoted x[n] where n is the sample number. The
variable s is the Laplace variable while z will denote both
the Z-transform variable and the shift operator.We use j
to represent

√
−1. For a complex number a (i.e., a ∈ C),

|a|, ∠a and Re(a) will denote, respectively, its modulus,
its argument and its real part. For a real number a (i.e.,

a ∈ R), |a| is the abolute value of a. For a matrix A,
rank(A) is the rank of A, λmin(A) (resp. λmax(A)) is
the smallest (resp. largest) eigenvalue of A while AT

(resp. A∗) is its transpose (resp. conjugate transpose).
The matrix 

X1 0 0

0
. . . 0

0 0 Xn


will be denoted diag(X1, ..., Xn) if the elements Xi

(i = 1, ...n) are scalar quantities, while it will be denoted
bdiag(X1, ..., Xn) if the elements Xi (i = 1, ...n) are ma-
trices. In addition, In represents the identity matrix of
dimension n× n and ⊗, the Kronecker product.

2 Problem statement

2.1 Identification experiment and experiment design
problem

We consider the identification of a discrete-timemodel
of a stable single-input single-output true system which
can be described by a continuous-time transfer function
G0(s) with input u and output y. The discrete-time data
for the identification of the discrete-time model of G0(s)
will be gathered in open loop with a sampling rate Ts.
The continuous-time true system will be excited by the
following (continuous-time) multisine excitation signal:

u(t, A) =

L∑
i=1

(ai,s sin(ωit) + ai,c cos(ωit)) (1)

with A = (a1,s, a1,c, a2,s, a2,c, ..., aL,c)
T ∈ R2L. The fun-

damental frequency of this multisine will be denoted ω0.
Each of the L frequencies ωi (i = 1, ..., L) thus satisfies
the following relation:

ωi = αi ω0 (2)

for an integer αi ̸= 0 (i = 1, ..., L). Since the discrete-
time data will be gathered with a sampling rate Ts, we
will suppose that ωL < π

Ts
. In the optimal experiment

design problem that will be introduced in the sequel, the
L frequencies ωi (i = 1, ..., L) are fixed a-priori by the
user and the amplitudes ai,s and ai,c (i = 1, ..., L) will
therefore be the decision variables of the optimal exper-
iment design problem 1 . These amplitudes (which are
also the coefficients of the trigonometric Fourier series of
u(t, A)) are gathered in the amplitude vector A ∈ R2L

defined above.
In the sequel, we will address (robust) output ampli-

tude constraints based on a steady-state expression of

1 Note that optimizing ai,s and ai,c (i = 1, ..., L) in (1)
is the same as optimizing bi and ϕi (i = 1, ..., L) in∑L
i=1 bi sin(ωit+ ϕi).
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the output. To ensure as much as possible that the out-
put constraint is also satisfied during transient, the ex-
citation signal (1) will be slowly ramped up 2 . By do-
ing this, we prevent as much as possible that the out-
put exceeds its steady-state expression during transient.
For reference purpose, we will assume that this ramp up
process is performed when t < 0 and that the system
is at steady state at t = 0. At that moment, we start
collecting discrete-time input-output data at a sampling
rate Ts applying an anti-aliasing filter to both the input
and the output. This leads to a set of discrete-time data
ZN = {y[n], u[n] | n = 0, ..., N − 1} which are related
as follows

y[n] = G(z, θ0)u[n] + v[n] (3)

where G(z, θ0) is a stable discrete-time transfer func-
tion satisfying G(ejωTs , θ0) = G0(jω) for ω ∈ [0, π

Ts
]

(and therefore also for all ωi (i = 1, ..., L) in (1)) and
where v[n] is a discrete-time signal representing the dis-
turbance acting on the system. This disturbance is mod-
eled as a time series v[n] = H(z, θ0)e[n] with e[n] a white
noise of variance σ2

e and H(z, θ0) a stable, inversely sta-
ble and monic transfer function [18]. The transfer func-
tions G(z, θ0) and H(z, θ0) are parameterized with an
unknown parameter vector θ0 ∈ Rk in a given model
structure G(z, θ) and H(z, θ). The typical model struc-
tures (BJ, ARX, ARMAX, ...) are all rational in the
vector θ [18]. In particular, for these model structures,
G(z, θ) can be written as (ZN (z)θ)/(1 +ZD(z)θ) where
ZN (z) and ZD(z) are row vectors of transfer functions
[5,7].
Under the instrumentation described above, the

discrete-time signal u[n] in (3) is given by u[n] = u(t =
nTs, A) (n = 0, ..., N−1) while y[n]−v[n] = G(z, θ0)u[n]
(n = 0, ..., N − 1) is given by y̆(t = nTs, A, θ0) with

y̆(t, A, θ) =

L∑
i=1

g(ωi, θ)...

... (ai,s sin(ωit+ ϕ(ωi, θ)) + ai,c cos(ωit+ ϕ(ωi, θ)))

(4)

where g(ωi, θ) = |G(ejωiTs , θ)| and ϕ(ωi, θ) = ∠G(ejωiTs , θ).
Note also that the continuous-time signal y̆(t, A, θ0)
represents the noise-free output of the continuous-time
system for t ≥ 0.
Let us now specify precisely the amplitude constraints

that have to be respected when designing the multisine
excitation u(t, A).
Amplitude constraints. Consider the time interval
TP = [0, 2π

ω0
] corresponding to a period of the multisines

u(t, A) (see (1)) and y̆(t, A, θ0) (see (4)). The multisines
u(t, A) and y̆(t, A, θ0) must satisfy

− ūmax ≤ u(t, A) ≤ ūmax ∀t ∈ TP (5)

− ȳmax ≤ y̆(t, A, θ0) ≤ ȳmax ∀t ∈ TP (6)

2 This can, e.g., be achieved by multiplying (1) by a function
γ(t) which slowly grows from zero to one.

where ūmax > 0 and ȳmax > 0 are two user-chosen
constants. In (5) and (6), we can restrict attention to
t ∈ TP since u(t, A) and y̆(t, A, θ0) are both periodic
signals having a fundamental period equal to 2π

ω0
.

Using the data set ZN , the prediction error estimate

θ̂N of θ0 [18] is given by

θ̂N = argminθ
1
N

N−1∑
n=0

ϵ2[n, θ]

with ϵ[n, θ] = H−1(z, θ) (y[n]−G(z, θ)u[n]) .

(7)

Assuming that, for the chosen L in (1), the data ZN

are informative [18], the estimate θ̂N is (asymptotically)
normally distributed around θ0 with a covariance matrix
Pθ > 0 that can be estimated from the data [18]. We
can also determine an expression of the inverse of the
covariance matrix as a function of the true parameter
vector θ0 and of the square of the amplitudes ai,s and
ai,c (i = 1, ..., L) i.e.,

P−1
θ (A, θ0) =

(
L∑
i=1

M(ωi, θ0)
(
a2i,s + a2i,c

))
+Mv(θ0)

(8)
for matricesM(ωi, θ0) ≥ 0 (i = 1, ..., L) andMv(θ0) ≥ 0
of known expressions and which are both proportional
to the number of data N (see, e.g., [24]). The covari-
ance matrix Pθ > 0 is a measure of the modeling error

θ̂N − θ0 and its inverse therefore a measure of the model
accuracy.

In this paper, our objective will be to design the am-
plitude vector A defining the excitation signal (1) as
the one solving the following (non-convex) optimization
problem for a given matrix Radm ≥ 0:

argmaxξ,A ξ

s.t. P−1
θ (A, θ0) ≥ ξ Radm and (5)-(6).

(9)

Let us discuss this formulation more precisely. If you
choose Radm = Ik, (9) is an E-optimal experiment
design problem whose objective is to determine the am-
plitude vector A of the multisine excitation (1) which

leads to an estimate θ̂N of θ0 with the smallest 3 co-
variance matrix Pθ(A, θ0) while guaranteeing that the
amplitude constraints (5) and (6) are respected. Since
Pθ is inversely proportional to N , it is clear that higher

accuracy for θ̂N can be achieved under the amplitude
constraints (5) and (6) if N increases (i.e., if the exper-
iment duration increases). In this sense, the optimiza-
tion problem (9) also allows to determine the minimal

3 The smallest covariance matrix Pθ is here defined as the
one with the smallest value of λmax(Pθ) (or equivalently the
largest value of λmin(P

−1
θ )).
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experiment duration N for which it is possible to find
an amplitude vector A that respects (5) and (6) and
ensures P−1

θ (A, θ0) ≥ Radm for some matrix Radm rep-
resenting the desired accuracy (see, e.g., [24] for the
details on how this can be done based on (9)).

Remark. Instead of (1), the excitation applied to the
continuous-time system may also be the output of a
Zero Order Hold to which a discrete-time multisine
u[n] is applied. In (3), u[n] is thus here also given by∑L
i=1 (ai,s sin(ωinTs) + ai,c cos(ωinTs)). Due to the

property of the Zero Order Hold, we could thus keep (5)
for the constraint on the continuous-time input or re-
place it by |u[n]| ≤ ūmax for n = 0, ..., 2π

ω0Ts
. As far as

the output amplitude is concerned, we can still say that,
in steady state,G(z, θ0)u[n] is given by y̆(t = nTs, A, θ0)
with the expression (4). However, for t ̸= nTs, the noise-
free output of the continuous-time system will slightly
differ from y̆(t, A, θ0) (this difference will be small if
the gain of the continuous transfer function G0 is suf-
ficiently small for ω ≥ π

Ts
). Consequently, we can still

use the results of this paper (i.e., results aiming at sat-
isfying (6)) for this alternative instrumentation, but we
will then not have a formal guarantee that the output
constraint is satisfied for t ̸= nTs. Note that this was
also the case in the approaches of, e.g., [20,21].

Remark. Since ȳmax bounds the noise-free output, if
we wish to bound the noisy output of the system, ȳmax

must be chosen considering the (maximal) amplitude
of the disturbance acting on the system (that can be
determined using an experiment with u(t, A) = 0).

2.2 Robustification of the output amplitude con-
straint (6)

Since θ0 is unknown, we cannot use the output ampli-
tude constraint (6) as such. We will instead use a robus-
tified version of this output amplitude constraint. As in,
e.g., [7], this robustified version of the constraint will be
based on an initial uncertainty region Uinit for the un-
known true parameter vector θ0. This initial uncertainty
region Uinit can be obtained via an initial identification

experiment that has delivered an initial estimate θ̂init
of θ0 with covariance matrix Pθ,init. Consequently, the
following ellipsoid Uinit is a η%-confidence region for the
unknown true parameter vector θ0:

Uinit =
{
θ ∈ Rk | (θ − θ̂init)

TP−1
θ,init(θ − θ̂init) ≤ χ

}
(10)

with χ such that Pr(χ2(k) ≤ χ) = η (say 95 %). For the
sequel, it is important to note that Uinit can be equiva-
lently rewritten as

Uinit = {θ̄ ∈ Rk | θ̄T θ̄ ≤ 1} (11)

if we perform the change of variable

θ̄
∆
= R(θ − θ̂init) (12)

with
P−1

θ,init

χ = RTR. Let us also denote by G(z, θ̄) the

parametrization G(z, θ) where θ has been replaced by

θ̂init+R−1θ̄. Similarly, let us define y̆(t, A, θ̄) as in (4) but
with G(z, θ) replaced by G(z, θ̄). We can then robustify
the output amplitude constraint (6) as follows:

−ȳmax ≤ y̆(t, A, θ̄) ≤ ȳmax ∀t ∈ TP and ∀θ̄ ∈ Uinit
(13)

For future reference, let us introduce the following quan-
tities:

u(A)
∆
= max
t∈TP

|u(t, A)| (14)

y̆wc(A)
∆
= max
t∈TP

max
θ̄∈Uinit

|y̆(t, A, θ̄)|. (15)

Using these notions, (5) and (13) are respectively equiv-
alent to

u(A) ≤ ūmax, (16)

y̆wc(A) ≤ ȳmax. (17)

The robustified version of the optimal experiment design
problem (9) is thus

argmaxξ,A ξ

s.t. P−1
θ (A, θ̂init) ≥ ξ Radm and (16) and (17).

(18)

Note that the accuracy constraint P−1
θ ≥ ξ Radm could

also be robustified usingUinit and the results in [7]. How-
ever, since the focus of this paper is on the amplitude
constraints, we have decided to replace the unknown θ0
by its initial estimate θ̂init to make the accuracy con-
straint tractable.

Before proceeding, let us make the following assump-
tion on the initial uncertainty Uinit.
Assumption 1 The uncertainty Uinit defined in (10)
contains the unknown parameter vector θ0. Moreover,
Uinit is small enough to guarantee that, like G(z, θ0),
G(z, θ) is a stable transfer function for all θ ∈ Uinit.

The first part of Assumption 1 is there to ensure that (17)
effectively implies (6). Note that, in practice, this guar-
antee will only hold with a probability of η%. The sec-
ond part of the assumption guarantees that (4) can be
written for each θ ∈ Uinit. We can easily verify whether
a given Uinit satisfies this part of Assumption 1 using
the results in [5].

3 Computation of u(A) and y̆wc(A)

3.1 Introduction

In order to address the optimal experiment design
problem (18), we will need to be able to evaluate the
quantities u(A) and y̆wc(A) appearing in the constraints
of (18). Note that, besides their importance for opti-
mal experiment design, these quantities are also crucial

4



if we wish to perform an identification experiment us-
ing an excitation (1) with an user-chosen amplitude vec-
tor A. These quantities will indeed allow the user to ver-
ify whether the chosenA satisfies the (robust) amplitude
constraints (16) and (17).
The quantity u(A) is the solution of the following op-

timization problem:

u(A) = argminumax umax

s.t. − umax ≤ u(t, A) ≤ umax ∀t ∈ TP .
(19)

Similarly, the quantity y̆wc(A) is the solution of the fol-
lowing optimization problem:

y̆wc(A) = argminymax ymax

s.t. − ymax ≤ y̆(t, A, θ̄) ≤ ymax ∀t ∈ TP , ∀θ̄ ∈ Uinit.

(20)
In the sequel, we will show that, using robustness anal-
ysis tools, we can exactly compute, for any given A, the
solution u(A) of (19). We will also show that we can
derive a (tight) upper bound y̆ub

wc(A) for the solution
y̆wc(A) of (20). Note that, if y̆ub

wc(A) ≤ ȳmax, we have
also that y̆wc(A) ≤ ȳmax. Consequently, the quantity
y̆ub
wc(A) can be used together with u(A) to check whether

a given excitation u(t, A) can be applied without risk to
the considered system G0.

3.2 Phasors and LFT representations

Let us introduce phasor notations and transform the
amplitude vector A = (a1,s, a1,c, a2,s, a2,c, ..., aL,c)

T of
dimension 2L into the complex vectorA = (A1,A2, ...,AL)

T

of dimension L. The ith entry Ai of A is defined as

Ai = ai,c − j ai,s (i = 1, ..., L). (21)

Let us also define U(t) as U(t) = (ejω1t, ejω2t, ..., ejωLt)T .
We have then

u(t, A) = Re(ATU(t)). (22)

For the sequel, it is important to observe that u(t, A)
depends on t via the phasors ejωit (i = 1, ..., L). Let us
introduce the complex variable

τ
∆
= ejω0t (23)

with ω0 the fundamental frequency of u(t, A). Using (2),
it is clear that, for each ωi, e

jωit = ταi . Consequently, in-
stead of a function of t, we can write u(t, A) as a function
u(τ,A) of τ which has the property u(τ,A) = u(t, A)
when (23) holds. This function u(τ,A) is given by

u(τ,A) = Re(ATU(τ)) (24)

with U(τ) = (τα1 , τα2 , ..., ταL)T . When t takes all values
in TP , the complex variable τ defined in (23) takes all
values in the set

T = {τ ∈ C | τ∗τ = 1}. (25)

Consequently, the constraint in (19) is equivalent to

−umax ≤ Re(ATU(τ)) ≤ umax ∀τ ∈ T . (26)

It is also clear that the only quantity dependent on τ
in (26) i.e., U(τ) = (τα1 , τα2 , ..., ταL)T can be rewritten
as the following LFT in τIαL

:

pu = (τIαL
) qu(

qu

U(τ)

)
=

M11,U M12,U

M21,U M22,U


︸ ︷︷ ︸

MU

(
pu

1

)
(27)

withM22,U = (0, ..., 0)T ,M12,U = (1, 0, ...., 0)T ,M21,U a
matrix whose entries are equal to zero except the entries
(i, αi) for i = 1, ..., L which are equal to one, and with
M11,U a matrix of dimension αL × αL given by

M11,U =

(
0 0

IαL−1
0

)
.

Let us now define the quantity y̆(τ,A, θ̄) as follows:

y̆(τ,A, θ̄) = Re(ATY(τ, θ̄)) (28)

with

Y(τ, θ̄) = diag(G(ejω1Ts , θ̄), ...., G(ejωLTs , θ̄)) U(τ).
(29)

It is clear that y̆(τ,A, θ̄) = y̆(t, A, θ̄) when (23) holds.
Consequently, the constraint in (20) is equivalent to

−ymax ≤ Re(ATY(τ, θ̄)) ≤ ymax ∀τ ∈ T , ∀θ̄ ∈ Uinit.
(30)

Moreover, recall that the model structure G(z, θ) can be
written as ZN (z)θ/(1+ZD(z)θ) (see Section 2.1) and re-
call also the linear change of variable (12). Consequently,
diag(G(ejω1Ts , θ̄), ..., G(ejωLTs , θ̄)) is an LFT in IL ⊗ θ̄
(see, e.g., [7]). Using this fact and the fact that U(τ) is
an LFT in τIαL

(see (27)), it is possible to find vectors of
signals pτ , pθ̄, qτ , qθ̄ and a matrix MY such that Y(τ, θ̄)
can be expressed as

(
pτ

pθ̄

)
= bdiag

(
τIαL

, IL ⊗ θ̄
) ( qτ

qθ̄

)


qτ

qθ̄

Y(τ, θ̄)

 =


Mττ

11,Y Mτθ̄
11,Y Mτ

12,Y

M θ̄τ
11,Y M θ̄θ̄

11,Y M θ̄
12,Y

Mτ
21,Y M θ̄

21,Y M22,Y


︸ ︷︷ ︸

MY


pτ

pθ̄

1

 (31)
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In the sequel, we will use the symbol ⋆ to introduce
shorthand notations of LFTs i.e., the shorthand notation
of (27) is U(τ) = (τIαL

) ⋆ MU and the one of (31) is
Y(τ, θ̄) =

(
bdiag

(
τIαL

, IL ⊗ θ̄
))

⋆ MY .

3.3 Multipliers

In the previous subsection, we have seen that the con-
straints appearing in (19) and in (20) can be equiva-
lently rewritten as (26) and (30), respectively. These
constraints can be both considered as robust constraints
since they entail the verification of inequalities for all
τ ∈ T in the case of (26) and for all τ ∈ T and for all
θ̄ ∈ Uinit in the case of (30). Recall also that, in these in-
equalities, the quantities U(τ) and Y(τ, θ̄) (i.e., the only
quantities depending on τ and/or θ̄) are LFTs, respec-
tively, in τIαL

and in bdiag
(
τIαL

, IL ⊗ θ̄
)
. In order to

find tractable versions of (26) and (30), we will need
to find appropriate descriptions of the uncertainty τIαL

with τ ∈ T and of the uncertainty IL⊗ θ̄ with θ̄ ∈ Uinit.
These appropriate descriptions are the so-called sets

of multipliers for these two uncertainties (we remind the
expressions of these sets in Propositions 1 and 2). In
a nutshell, a set of multipliers for a given uncertainty
p(t) = ∆q(t) with ∆ ∈ ∆ is an explicit and affine
parametrization of the quadratic constraint satisfied by
the graphs of the signals p and q when ∆ ∈ ∆ [26,13,23].
Proposition 1 Consider the set T defined in (25) and
an arbitrary scalar α. Then,(

τIα

Iα

)∗

Πα

(
τIα

Iα

)
= 0 ∀τ ∈ T (32)

when Πα = bdiag(S,−S) with S any Hermitian matrix
of dimension α × α. The set of matrices Πα having this
structure will be denoted Πα in the sequel.

Proof. For any Πα = bdiag(S,−S), the quadratic ex-
pression in (32) is equal to (τ∗τ − 1)S and this quantity
is indeed equal to zero for all τ ∈ T .

Proposition 2 ([2]) Consider the set Uinit = {θ̄ ∈
Rk | θ̄T θ̄ ≤ 1} and an arbitrary scalar L. Then,

(
IL ⊗ θ̄

IL

)T
Σ

(
IL ⊗ θ̄

IL

)
≥ 0 ∀θ̄ ∈ Uinit (33)

when Σ has the following structure

Σ =

−Q⊗ Ik + B̃ + j D̃ PT − j ZT

P + j Z Q

 (34)

where Q is any positive semi-definite Hermitian matrix
of dimension L×L and B̃, D̃, P , Z real matrices having
the structure given in Appendix A. The set of matrices Σ
having the structure (34)will be denotedΣ in the sequel.

In the sequel, we will also require the following re-
sult which is a particular case of the generalized KYP
lemma [15].
Lemma 1 ([15]) Consider a matrix F(τ) which de-
pends on a complex scalar variable τ that lies in the set
T defined in (25). Assume that F(τ) can be written as
an LFT in τIα and that this LFT is minimal (i.e., we
cannot write F(τ) as an LFT in τIα̃ with α̃ < α). We
thus have:

F(τ) = (τIα) ⋆

F11 F12

F21 F22


where F11 is a matrix of dimension α × α. Consider
finally an Hermitian matrix Ξ of appropriate dimension.
Then, F∗(τ)ΞF(τ) ≤ 0 for all τ ∈ T is equivalent to the
existence of Πα ∈ Πα (see Proposition 1) such that:

 I 0

F11 F12

∗

Πα

 I 0

F11 F12

+
(
F21 F22

)∗
Ξ
(
F21 F22

)
≤ 0

3.4 LMI optimization problems

Using the LFTs and the sets of multipliers introduced
in the previous subsections, we can now derive LMI
optimization problems allowing to compute u(A) (see
Proposition 3) and an upper bound y̆ub

wc(A) for y̆wc(A)
(see Proposition 4).

Proposition 3 Consider a given amplitude vector A
and its complex expression A (see (21)). Consider also
the LFT expression (27) for U(τ) and the set of multipli-
ers ΠαL

corresponding to τIαL
(see Proposition 1 with

α = αL). Then, u(A) (see (14)) is the solution uoptmax of
the following LMI optimization problem having as deci-
sion variables a real scalar umax ≥ 0 and two matrices
Π1
αL

and Π2
αL

in ΠαL
:

arg min umax s.t.

V∗
u,1Π

1
αL

Vu,1 + V∗
u,2

(
0 0.5

0.5 −umax

)
Vu,2 ≤ 0 (35)

0 ≤ −V∗
u,1Π

2
αL

Vu,1 + V∗
u,2

(
0 0.5

0.5 umax

)
Vu,2 (36)

with

Vu,1 =

 I 0

M11,U M12,U

 Vu,2 =

ATM21,U ATM22,U

0 1

 .

Proof. Let us first prove that the existence of Π1
αL

∈
ΠαL

such that (35) holds is equivalent toRe(ATU(τ)) ≤
umax ∀τ ∈ T . For this purpose, note thatRe(ATU(τ)) ≤
umax can be rewritten as
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Ū∗(τ)

 0 0.5

0.5 −umax

 Ū(τ) ≤ 0 with Ū(τ) =

ATU(τ)
1

 .

Note also that, using (27), we have that

Ū(τ) = (τIαL) ⋆


M11,U M12,U

ATM21,U ATM22,U

0 1

 .

That the existence of Π1
αL

∈ ΠαL
such that (35) holds is

equivalent to Re(ATU(τ)) ≤ umax ∀τ ∈ T then follows
from Lemma 1 (the LFT of Ū(τ) is minimal since (27)
is minimal). Using a similar reasoning and Lemma 1, we
can also prove that the existence of Π2

αL
∈ ΠαL

such

that (36) holds is equivalent to −umax ≤ Re(ATU(τ))
∀τ ∈ T . The proposition is then proven since it is shown,
in Section 3, that u(A) is the solution uoptmax of the opti-
mization problem consisting in minimizing umax under
the constraint (26).

Proposition 4 Consider a given amplitude vector A
and its complex expression A (see (21)). Consider the
LFT expression (31) for Y(τ, θ̄), the set of multipliers
ΠαL

corresponding to τIαL
(see Proposition 1 with α =

αL) and the set of multipliers Σ corresponding to IL ⊗ θ̄
(see Proposition 2). Then, an upper bound for y̆wc(A)
(see (15)) is the solution yoptmax of the following LMI op-
timization problem having as decision variables a real
scalar ymax ≥ 0, two matrices Π1

αL
, Π2

αL
inΠαL

and two

matrices Σ1, Σ2 in Σ:

arg min ymax s.t.

V∗
y,1Π

1
αL

Vy,1+V∗
y,2Σ

1Vy,2+ V∗
y,3

(
0 0.5

0.5 −ymax

)
Vy,3 ≤ 0

(37)

0 ≤ −V∗
y,1Π

2
αL

Vy,1−V∗
y,2Σ

2Vy,2+ V∗
y,3

(
0 0.5

0.5 ymax

)
Vy,3

(38)
with

Vy,1 =

 I 0 0

Mττ
11,Y Mτθ̄

11,Y Mτ
12,Y

 Vy,2 =

 0 I 0

M θ̄τ
11,Y M θ̄θ̄

11,Y M θ̄
12,Y



Vy,3 =

ATMτ
21,Y ATM θ̄

21,Y ATM22,Y

0 0 1

 .

Proof. Let us first prove that (37) and (38) imply (30).
For this purpose, let us consider the signals pτ , pθ̄, qτ
and qθ̄ in the LFT (31) for a fixed τ ∈ T and for
a fixed θ̄ ∈ Uinit. Let us then pre- and post-multiply

with (p∗τ , p
∗
θ̄
, 1) and (pTτ , p

T
θ̄
, 1)T the LMI constraints (37)

and (38). Using (31), this yields

g∗τ Π1
αL

gτ + g∗θ̄ Σ1 gθ̄ +Re(ATY(τ, θ̄)) ≤ ymax (39)

−ymax ≤ −g∗τ Π2
αL

gτ − g∗θ̄ Σ2 gθ̄ +Re(ATY(τ, θ̄)) (40)

with gτ = (pTτ , q
T
τ )
T and gθ̄ = (pT

θ̄
, qT
θ̄
)T . The above

reasoning can be done for any value of τ ∈ T and for
any value of θ̄ ∈ Uinit. In other words, for the multi-
pliers Π1

αL
, Π2

αL
, Σ1 and Σ2 found by the optimization

problem, (39) and (40) hold true for all τ ∈ T and for
all θ̄ ∈ Uinit. Observe also that, because of (31),

gτ =

(
τIαL

IαL

)
qτ and gθ̄ =

(
IL ⊗ θ̄

IL

)
qθ̄

Consequently, due to Propositions 1 and 2, we have that
g∗τΠ

1
αL

gτ + g∗
θ̄
Σ1gθ̄ in (39) is positive for all τ ∈ T and

for all θ̄ ∈ Uinit. Similarly,−g∗τΠ
2
αL

gτ−g∗
θ̄
Σ2gθ̄ in (40) is

negative for all τ ∈ T and for all θ̄ ∈ Uinit. We have thus
proven that (37) and (38) imply (30). The proposition is
then proven since it is shown, in Section 3, that y̆wc(A) is
the solution yoptmax of the optimization problem consisting
in minimizing ymax under the constraint (30).

Proposition 4 makes use of the LFT (31) for Y(τ, θ̄)
and the sets of multipliers for the two uncertainties ap-
pearing in this LFT. The sets of multipliers given in
Propositions 1 and 2 describe well the two uncertain-
ties when they are considered separately. However, since
these two uncertainties are here combined, we will gen-
erally have a tighter upper bound for y̆wc(A) (see, e.g.,
[3]) if the multiplier Σ linked to the second uncertainty θ̄
is made dependent on τ i.e., the first uncertainty. The
following proposition gives a τ -dependent version of Σ.
This proposition is an extension of our earlier results
in [6].
Proposition 5 Consider the set of multipliers Σ linked
to IL ⊗ θ̄ with θ̄ ∈ Uinit (see Proposition 2). Consider
also the variable τ defined in (23) and that varies in the
set T (see (25)). Using τ and some user-chosen inte-
ger b ≥ 1, define the vector B(τ) = (1, τ, τ2, ..., τ b)T and
the matrix Ψ(τ):

Ψ(τ) =


B(τ)⊗ IkL 0

0 B(τ)⊗ IL

IkL 0

0 IL

 .

Then, for each τ ∈ T , the τ -dependent matrices
Ψ∗(τ)PΨ(τ) with P having the structure described below
are all elements Σ of Σ. The matrix P has the following
structure:
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P =


−Λ⊗ Ik 0

0 Λ

 PT21

P21 P22

 with Λ =


Q0 · · · Qb

... 0 0

Q∗
b 0 0



P21 =


(
B̃0, ..., B̃b

)
+

(
0, D̃1, ..., D̃b

) 
P0

...

Pb


T

−


0

Z1

Zb


T

(
0, Z1, ..., Zb

)
+

(
P0, ..., Pb

)
0



P22 =

 jD̃0 −jZT0

jZ0 0

 .

The real matrices B̃i, D̃i, Pi and Zi (i = 0, ..., b) of the
parametrization of P can take any values provided that
they have, respectively, the same structure as the real
matrices B̃, D̃, P and Z in (34). Finally, provided that
(B∗(τ)⊗ IL)Λ(B(τ)⊗ IL) ≥ 0 for all τ ∈ T , the matrix
Q0 can be any Hermitian matrix of dimension L × L
and Qi (i = 1, ..., b) any complex matrices of dimension
L× L .

When Qi, B̃i, D̃i, Pi and Zi are all equal to zero for
i = 1, ..., b, Ψ∗(τ)PΨ(τ) becomes τ -independent and is

equal to (34) with Q, B̃, D̃, P and Z replaced, respec-

tively, by Q0, 2B̃0, D̃0, 2P0 and Z0.

Proof. See Appendix B.

In the sequel, we will use the τ -dependent multiplier
Ψ∗(τ)PΨ(τ) instead of Σ in the constraints of the LMI
optimization problem. The property given at the end of
Proposition 5 illustrates that the τ -independent multi-
plier Σ is a special case of the τ -dependent multiplier
Ψ∗(τ)PΨ(τ). We therefore expect that, in the vast ma-
jority of the cases, the upper bound obtained with this
τ -dependent multiplier will be tighter than (or at least
equal to) the upper bound obtained with Proposition 4.
In order to formulate the LMI optimization problem in-
volving the τ -dependent multiplier, we note that the
(minimal) LFT expression of B(τ) can be deduced sim-
ilarly as the one of U(τ) (see Section 3.2) and that the
(minimal) LFT expressions of B(τ) ⊗ IL and of Ψ(τ)
(that will be required in the sequel) can be easily de-
duced from the one of B(τ):

B(τ)⊗ IL = (τIbL) ⋆

 B11 B12

B21 B22

 (41)

Ψ(τ) =
(
τIbL(k+1)

)
⋆

Ψ11 Ψ12

Ψ21 Ψ22

 . (42)

where B11 (resp. Ψ11) is a matrix of dimension bL ×
bL (resp. bL(k + 1) × bL(k + 1)). In order to address
the dependence on the uncertainty τ of the multiplier
Ψ∗(τ)PΨ(τ), we will need to combine the LFT (42) of
Ψ(τ) and the LFT (31) of Y(τ, θ̄) (i.e., the LFT that
is used in Proposition 4). In particular, we will need to
construct the LFT of (YTΨ(τ, θ̄), YT (τ, θ̄))T with

YΨ(τ, θ̄) = Ψ(τ)gθ̄

where gθ̄ = (pT
θ̄
, qT
θ̄
)T with pθ̄ and qθ̄ the internal signals

in the LFT (31). That we will need this particular LFT
is linked to the fact that, in (39), the multiplier Σ is used
in combination with gθ̄. In order to derive this LFT, let
us first observe that (31) gives

gθ̄ =

(
0 I 0

M θ̄τ
11,Y M θ̄θ̄

11,Y M θ̄
12,Y

)
︸ ︷︷ ︸

=G


pτ

pθ̄

1

 .

Then, denoting pψ and qψ the internal signals of the
LFT (42) (i.e., pψ =

(
τIbL(k+1)

)
qψ), we obtain


pψ

pτ

pθ̄

 = bdiag
(
τIbL(k+1), τIαL

, IL ⊗ θ̄
) 

qψ

qτ

qθ̄




qψ

qτ

qθ̄

YΨ(τ, θ̄)

Y(τ, θ̄)


=



M1(
0 Mττ

11,Y Mτθ̄
11,Y Mτ

12,Y

)(
0 M θ̄τ

11,Y M θ̄θ̄
11,Y M θ̄

12,Y

)
M2(

0 Mτ
21,Y M θ̄

21,Y M22,Y

)




pψ

pτ

pθ̄

1


(43)

with M1 =
(
Ψ11 Ψ12G

)
and M2 =

(
Ψ21 Ψ22G

)
.

We have now all the ingredients to improve the up-
per bound for y̆wc(A) using the τ -dependent multiplier
Ψ∗(τ)PΨ(τ).
Proposition 6 Consider a given amplitude vector A
and its complex expression A (see (21)). Consider also
the vector B(τ) for a given b ≥ 1 and the correspond-
ing matrix Ψ(τ) (see Proposition 5). Consider finally the
LFTs (41) and (43). Define αtot = αL + bL(k + 1).
Then, an upper bound for y̆wc(A) (see (15)) is the so-
lution yoptmax of the following LMI optimization problem
having as decision variables a real scalar ymax ≥ 0, two
matrices Π1

αtot
, Π2

αtot
in Παtot (see Proposition 1 with

α = αtot), two matrices P1 and P2 having the structure
of the matrix P in Proposition 5 and finally two matrices
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Π1
bL, Π

2
bL in ΠbL (see Proposition 1 with α = bL):

arg min ymax s.t.

V∗
1Π

1
αtot

V1 +M∗
2 P1M2 + V∗

2

(
0 0.5

0.5 −ymax

)
V2 ≤ 0

(44)

0 ≤ −V∗
1Π

2
αtot

V1 −M∗
2P2M2 + V∗

2

(
0 0.5

0.5 ymax

)
V2

(45)
0 ≤ −V∗

3Π
1
bLV3 + V∗

4Λ
1V4 (46)

0 ≤ −V∗
3Π

2
bLV3 + V∗

4Λ
2V4 (47)

where Λ1 (resp. Λ2) is the element Λ (see Proposition 5)
of the matrix P1 (resp. P2) and where

V1 =



(
I 0 0 0

)(
0 I 0 0

)
M1(

0 Mττ
11,Y Mτθ̄

11,Y Mτ
12,Y

)



V2 =

 0 ATMτ
21,Y ATM θ̄

21,Y ATM22,Y

0 0 0 1


V3 =

 I 0

B11 B12

 and V4 =
(
B21 B22

)
.

Proof. Let us first note that, due to Lemma 1, (46) is
equivalent to (B∗(τ)⊗IL)Λ

1(B(τ)⊗IL) ≥ 0 for all τ ∈ T
which is a requirement of the parametrization of Propo-
sition 5. The LMI (47) ensures the same property for Λ2.
Let us then prove that (44) and (45) imply (30). For this
purpose, let us consider (43) for a given τ ∈ T and for a
given θ̄ ∈ Uinit and let us consider the corresponding sig-
nals pψ, pτ , pθ̄, qψ, qτ and qθ̄. Let us then pre- and post-
multiply with (p∗ψ, p

∗
τ , p

∗
θ̄
, 1) and (pTψ , p

T
τ , p

T
θ̄
, 1)T the LMI

constraints (44) and (45). Using (43) and the fact that
YΨ(τ, θ̄) = Ψ(τ)gθ̄ (gθ̄ = (pT

θ̄
, qT
θ̄
)T ), this yields

g∗ψτ Π1
αtot

gψτ+g∗θ̄ Ψ
∗(τ)P1Ψ(τ) gθ̄+Re(ATY(τ, θ̄)) ≤ ymax

(48)

−ymax ≤ −g∗ψτ Π
2
αtot

gψτ−g∗θ̄ Ψ
∗(τ)P2Ψ(τ) gθ̄+Re(ATY(τ, θ̄))

(49)

with gψτ = (pTψ , p
T
τ , q

T
ψ , q

T
τ )
T . The above reasoning can

be done for any value of τ ∈ T and for any value of θ̄ ∈
Uinit. In other words, for the multipliers Π1

αtot
, Π2

αtot
, P1

andP2 found by the optimization problem, (48) and (49)
hold true for all τ ∈ T and for all θ̄ ∈ Uinit. Observe
also that, because of (43),

gψτ =

 τIαtot

Iαtot

 qψτ and gθ̄ =

 IL ⊗ θ̄

IL

 qθ̄

with qψτ = (qTψ , q
T
τ )
T . Consequently, due to Propo-

sitions 1, 2 and 5, we have that g∗ψτΠ
1
αtot

gψτ +

g∗
θ̄
Ψ∗(τ)P1Ψ(τ)gθ̄ in (48) is positive for all τ ∈ T

and for all θ̄ ∈ Uinit. Similarly, −g∗ψτΠ
2
αtot

gψτ −
g∗
θ̄
Ψ∗(τ)P2Ψ(τ)gθ̄ in (49) is negative for all τ ∈ T and

for all θ̄ ∈ Uinit. We have thus proven that (44) and (45)
imply (30). The proposition is then proven since it is
shown, in Section 3, that y̆wc(A) is the solution yoptmax
of the optimization problem consisting in minimizing
ymax under the constraint (30).

As already mentioned, Proposition 6 will in the vast
majority of the cases yield a tighter upper bound for
y̆wc(A) than Proposition 4 and, if necessary, the conser-
vatism can be further reduced by increasing the value
of b. However, it is also clear that the LMI problem of
Proposition 6 is more complex than the one of Proposi-
tion 4 and this complexity increases with the value of b.
Using Proposition 6 will thus take more computation
time than using Proposition 4.

Remark. The conservatism of a given upper bound
y̆ub
wc(A) for y̆wc(A) (computed either via Proposition 4

or via Proposition 6) can be evaluated by comparing
this upper bound with a lower bound for y̆wc(A). This
lower bound can be computed by choosing a number of
grid points in Uinit and by determining, among those
grid points θ̄i, the one (i.e., θ̄wc) leading to the largest
value of maxt∈Tgrid

|y̆(t, A, θ̄i)| (Tgrid is a fine grid of
TP ). The lower bound for y̆wc(A) is then given by
maxt∈Tgrid

|y̆(t, A, θ̄wc)|.

4 Optimal experiment design with robust am-
plitude constraints

4.1 Integration of the LMI formulations for the ampli-
tude constraints

Let us now come back to the robust optimal experi-
ment design problem (18) whose objective is the design
of an optimal multisine excitation. This optimization
problem contains the constraint (17) where the quan-
tity y̆wc(A) cannot be exactly computed. We therefore
replace (17) by the constraint y̆ub

wc(A) ≤ ȳmax that im-
plies (17). This yields the following tractable optimal
experiment design problem:

argmaxξ,A ξ

s.t. P−1
θ (A, θ̂init) ≥ ξ Radm

and u(A) ≤ ūmax and y̆ub
wc(A) ≤ ȳmax

(50)

where u(A) can be computed via Proposition 3 and
y̆ub
wc(A) via Proposition 4 or via Proposition 6. The op-

timization problem (50) is a constrained 4 non-convex

4 The first constraint of (50) can be removed by considering

as objective function 1/λmax
(
Pθ(A, θ̂init) Radm

)
.
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optimization problem which can, e.g., be addressed with
a SQP algorithm (this algorithm is, e.g., implemented in
the Matlab function fmincon). Since (50) is non-convex,
the SQP algorithm is not guaranteed to yield the global
optimum and the performance of this algorithm will de-
pend on its initialization (thatmust be close to the global
optimum). In Section 5, we will propose two approaches
to initialize the SQP algorithm for (50). These two ap-
proaches will yield an amplitude vector Aapp that ap-
proaches the solution of the optimization problem (50)
(or the original optimization problem (18)).

4.2 Unconstrained optimization problem equivalent
to (50)

In this section, we will show that (50) can be trans-
formed into an unconstrained optimization problem. For
this purpose, let us first determine the solution of (50)
in the direction of a given vector Au.
Proposition 7 Let us consider the optimization prob-
lem (50) where we restrict attention to amplitude vec-
tors A that can be written as A = κAu with a positive
real scalar κ > 0 and with a given vector Au (e.g., a
normalized vector such that ATuAu = 1). Then, the solu-
tions Aopt(Au) and ξopt(Au) of this particular optimiza-
tion problem are given by

Aopt(Au) = κopt (Au) Au (51)

ξopt(Au) =
1

λmax

(
Pθ(κopt (Au) Au, θ̂init) Radm

)
(52)

with κopt(A) a function defined as follows for any ampli-
tude vector A:

κopt(A) = min

(
ūmax

u(A)
,

ȳmax

y̆ub
wc(A)

)
(53)

where min(x, y) is equal to x when x ≤ y and is equal to
y otherwise.
Proof. Let us consider two amplitude vectorsA1 = κ1Au
and A2 = κ2Au with κ1 and κ2 two scalars such that
κ1 > κ2 > 0. For these two amplitude vectors, we have

that P−1
θ (A1, θ̂init) > P−1

θ (A2, θ̂init). This means that
the optimal value of the amplitude vector A = κAu
will be characterized by the largest value of κ > 0 such
that u(κAu) ≤ ūmax and y̆ub

wc(κAu) ≤ ȳmax. Since
u(κAu) = κu(Au) and y̆ub

wc(κAu) = κy̆ub
wc(Au) (see Ap-

pendix C), this largest value of κ is clearly equal to
κopt(Au) (see (53)). The expressions (51) and (52) then
follow directly.

As indicated in the proof of Proposition 7, κopt(Au)
(see (53)) is the largest value of κ > 0 such that both
u(κAu) ≤ ūmax and y̆ub

wc(κAu) ≤ ȳmax. Consequently,
the scaled vector Aopt(Au) (see (51)) satisfies either
u(Aopt(Au)) = ūmax or y̆ub

wc(Aopt(Au)) = ȳmax.
Proposition 7 gives the solution of (50) in a given di-

rection Au. In Proposition 8, we will see that the de-

termination of the optimal direction can be formulated
as an unconstrained optimization problem. For this pur-
pose, we need to parametrize the set of all possible di-
rections. Let us for this purpose introduce the vector
φ = (φ1, φ2, ..., φ2L−1)

T containing 2L−1 angles and let
us define, based on φ, the following unit vector Au(φ) ∈
R2L:

Au(φ) =



cos(φ1)

sin(φ1)cos(φ2)

...

sin(φ1)...sin(φ2L−2)cos(φ2L−1)

sin(φ1)...sin(φ2L−2)sin(φ2L−1)


. (54)

The vector φ corresponds to the spherical coordinates of
the vector Au(φ) and we have that the set {Au(φ) | φ ∈
R2L−1} is equal 5 to {Au ∈ R2L | ATuAu = 1} [4].

Using this parametrization and Proposition 7, we
can now propose the following equivalent formulation
of (50).
Proposition 8 Consider the function κopt(A) defined
based on the computable quantities u(A) and y̆ub

wc(A)
(see (53)) and the parametrization Au(φ) of the normal-
ized amplitude vectors Au (see (54)). Then, the solutions
Aopt and ξopt of the optimization problem (50) are given
by

Aopt = κopt (Au(φopt)) Au(φopt) (55)

ξopt =
1

λmax

(
Pθ(Aopt, θ̂init) Radm

) (56)

where φopt is the solution of the following unconstrained
optimization problem:

arg min
φ∈R2L−1

λmax

(
Pθ(κopt(Au(φ)) Au(φ), θ̂init) Radm

)
.

(57)
Moreover, the optimumAopt given in (55) satisfies either
u(Aopt) = ūmax or y̆ub

wc(Aopt) = ȳmax.
Proof. Each amplitude vector A is entirely character-
ized by its direction Au(φ) (parametrized by the vec-
tor φ) and its norm κ i.e.,A(κ, φ) = κAu(φ). Recall that
Proposition 7 gives the optimal value of κ for each di-
rection Au(φ). It remains thus to determine the optimal
direction (or equivalently the optimal value of φ) i.e.,
the value of φ yielding the maximal value of ξopt(Au(φ))
(see (52)). This is exactly the objective of (57). The ex-
pressions (55) and (56) then follow from an application
of Proposition 7 for Au = Au(φopt) and the last state-
ment of the proposition is a consequence of the defini-
tion (53) of κopt(A)

5 It is in fact sufficient to restrict the angles φi (i =
1, ..., 2L − 2) to the interval [0, π] and the angle φ2L−1 to
the interval [0, 2π].
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The unconstrained non-linear optimization prob-
lem (57) can be addressed using a classical gradient-
descent algorithm (such algorithm is, e.g., implemented
in the Matlab function fminunc). Since (57) is also non-
convex, the gradient-based algorithm is not guaranteed
to yield the global optimum and the performance of
this algorithm will depend on its initialization (that
must be close to the global optimum). Like for (50), we
can here also use the procedures of Section 5 for this
initialization.
In the numerical simulations that we have performed

with Matlab (see Section 6), we have observed that
the gradient-based algorithm (Matlab function fmin-
unc) used to solve (57) and the SQP algorithm (Matlab
function fmincon) used to solve (50) yield the same
optimum when initialized at the same point, but the
gradient-based algorithm yields this optimum in less
computation time.

Remark. Let us denote by φlm the (local or global)
minimum to which the gradient-based algorithm
used to solve (57) converges and let denote by Alm
the corresponding amplitude vector i.e., Alm =
κopt (Au(φlm))Au(φlm) (see (55)). Due to (53), the
constraints (16) and (17) are satisfied at Alm and we
have that either u(Alm) = ūmax or y̆ub

wc(Alm) = ȳmax.
Note that, due to Assumption 1, the constraint (6) is
also satisfied for this amplitude vector Alm.

5 Two approaches to initialize the algorithm
used to solve the non-convex optimal experi-
ment design problem

5.1 Introduction

In order to initialize the algorithm used to solve the
non-convex optimal experiment design problem, we pro-
pose two approaches yielding amplitude vectors Aapp
close to the solution of the optimal experiment design
problem (50) (or equivalently close to the solution of (18)
from which (50) follows).
5.2 Semi-definite relaxation inspired from [21]

In [21], an experiment design problem with ampli-
tude constraints is considered for the case where the
excitation signal is parametrized via the N elements
u[n] (n = 0, ..., N − 1) of the excitation sequence. Let
us adapt the framework of [21] to the (more compact)
parametrization of the excitation signal u(t, A) based on
the amplitude vector A of dimension 2L (which is gen-
erally much smaller than N). The optimization prob-
lem (18) can be reformulated as follows:

argmax
ξ,A

ξ

s.t.

(
L∑
i=1

M(ωi, θ̂init)
(
a2
i,s + a2

i,c

))
+Mv(θ̂init) ≥ ξ Radm

(58)

and ZT
u (t) AAT Zu(t) ≤ ū2

max ∀t ∈ TP

and ZT
y (t, θ̄) AAT Zy(t, θ̄) ≤ ȳ2

max ∀t ∈ TP and ∀θ̄ ∈ Uinit

whereZu(t) = (sin(ω1t), cos(ω1t), sin(ω2t), ..., cos(ωLt))
T

and

Zy(t, θ̄) =



g(ω1, θ̄) sin(ω1t+ ϕ(ω1, θ̄))

g(ω1, θ̄) cos(ω1t+ ϕ(ω1, θ̄))

g(ω2, θ̄) sin(ω2t+ ϕ(ω2, θ̄))

...

g(ωL, θ̄) cos(ωLt+ ϕ(ωL, θ̄))


.

In order to deal with the amplitude constraints that
have to be satisfied for all t ∈ TP in (58), we will here for
simplicity use a gridding approximation i.e., we will only
impose the amplitude constraints at the time instants in
a fine grid Tgrid of TP . A similar gridding approximation
will be used (as proposed in [21]) to address the fact
that the output amplitude constraint has to be satisfied
for all θ̄ ∈ Uinit. For this purpose, we will consider a set
Θgrid containing a number of grid points θ̄i ∈ Uinit.
Let us now notice as in [21] that, in the optimization

problem (58), the matrix X = AAT is a positive semi-
definite matrix with rank(X) = 1. Let us also notice
that a2i,s and a2i,c (variables appearing in the expression
of Pθ) are also entries of the matrix X. Using this fact
and the approximations introduced in the previous para-
graph, (58) can be reformulated as follows:

arg max
ξ,X=XT≥0

ξ (59)

s.t.

L∑
i=1

M(ωi, θ̂init) (X2i−1,2i−1+X2i,2i)+Mv(θ̂init) ≥ ξRadm

(60)

and ZT
u (t) X Zu(t) ≤ ū2

max ∀t ∈ Tgrid (61)

and ZT
y (t, θ̄) X Zy(t, θ̄) ≤ ȳ2

max ∀t ∈ Tgrid and ∀θ̄ ∈ Θgrid
(62)

and rank(X) = 1. (63)

In (60), we use the notation Xi,j for the entry (i, j)
of the matrix X. Similarly as was observed in [21],
the optimization problem (59)-(63) would be an LMI
optimization problem in the absence of the rank con-
straint (63). The relaxation proposed in [21,19] is to
solve the optimization problem by neglecting the rank
constraint (63) i.e., to solve the optimization prob-
lem (59)-(62). As shown in [19], the optimal solution
Xopt of this optimization problem allows to derive, via
a randomization procedure, an amplitude vector Aapp
that approaches the solution of the original optimiza-
tion problem (59)-(63). We will here slightly modify this
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randomization procedure to compensate for the approx-
imations introduced by the use of Tgrid and Θgrid. This
will be achieved by the use of the computable quantities
u(A) and y̆ub

wc(A) (see Section 3).
The randomization procedure is as follows: we gener-

ate a number ngrid of possible A according to a normal
distribution N (0, Xopt) as proposed in [19]. We then ap-
ply Proposition 7 to each of these A i.e., for each A, we
determine, in the direction of A, the solution of the opti-
mization problem (50) (i.e., the non-convex optimization
problem of whichAapp has to be close to the solution and
that is formulated without gridding approximations).
This procedure yields ngrid values Ascaled = κopt(A)A
and ngrid values of ξopt(A) (see (52)). The amplitude
vector Aapp approaching the solution of (50) is then cho-
sen as the value of Ascaled corresponding to the highest
value of ξopt(A).
Due to the use of Proposition 7 in the randomiza-

tion procedure, we have the guarantee that the con-
straints (16) and (17) are satisfied for this amplitude
vector Aapp and also that either u(Aapp) = ūmax or
y̆ub
wc(Aapp) = ȳmax.

5.3 Use of power constraints instead of amplitude con-
straints

The second approach consists in solving an optimal
experiment design problem with power constraints in-
stead of amplitude constraints. The considered power
constraints are P(u(t, A)) ≤ ū2

max and P(y̆(t, A, θ̄)) <
ȳ2
max ∀θ̄ ∈ Uinit where P(x(t)) denotes the power of the

signal x(t). We therefore consider the following optimal
experiment design problem:

argmaxξ,C ξ

s.t.

L∑
i=1

M(ωi, θ̂N ) ci + Mv(θ̂N ) ≥ ξ Radm and

1
2

L∑
i=1

ci ≤ ū2
max

1
2

L∑
i=1

ci |G(ejωiTs , θ̄)|2 ≤ ȳ2
max ∀θ̄ ∈ Uinit.

(64)

where ci = a2i,s + a2i,c (i = 1, ..., L) and C =

(c1, c2, ..., cL)
T . Using the results in [7], this opti-

mization problem can be transformed into an LMI
optimization problem yielding an optimal solution
Copt = (copt1 , copt2 , ..., coptL )T . We can here also use a

randomization procedure to determine, based on copti
(i = 1, ..., L), an amplitude vector Aapp approaching the
solution of the original optimal experiment design prob-
lem (50). Let us for this purpose generate a number ngrid
of possible A satisfying a2i,s + a2i,c = copti (i = 1, ..., L).
Then, as in the previous subsection, we apply Proposi-
tion 7 to each of these A. This procedure yields ngrid
values Ascaled = κopt(A)A and ngrid values of ξopt(A)
(see (52)). The amplitude vector Aapp approaching the

solution of (50) is then here also chosen as the value of
Ascaled corresponding to the highest value of ξopt(A).
Like in the previous subsection, the use of Proposi-

tion 7 in the randomization procedure gives the guaran-
tee that the constraints (16) and (17) are satisfied for this
amplitude vector Aapp and also that either u(Aapp) =
ūmax or y̆ub

wc(Aapp) = ȳmax.

6 Numerical illustration

We consider an OE true system (3) with:

G(z, θ0) =
θ0,1z

−1+θ0,2z
−2

1+θ0,3z−1+θ0,4z−2

H(z, θ0) = 1

where θ0 = (θ0,1, θ0,2, θ0,3, θ0,4)
T = (0.8988, 0.1034,

−0.9723, 0.8385)T and σ2
e = 1. The sampling rate

is Ts = 1 s. The amplitude constraint thresholds
are ūmax = ȳmax = 1. The initial uncertainty

region Uinit in (10) is characterized by θ̂init =
(0.8 0.01 − 0.9854 0.8187)T , χ = 9.49 and

P−1
θ,init = 103


0.3150 0.1885 −0.4652 0.2692

0.1885 0.3150 −0.9327 −0.4652

−0.4652 −0.9327 4.1346 2.4499

0.2692 −0.4652 2.4499 4.1346


We wish to design a multisine excitation u(t, A) (see (1))
of fundamental frequency ω0 = 0.1π rad/s (the period is
thus 20 s) and containingL = 3 frequencies i.e., ω1 = ω0,
ω2 = 3ω0 and ω3 = 5ω0. To design the optimal ampli-
tude vector A of u(t, A), we consider the optimal experi-
ment design problem (50) corresponding to an identifica-
tion experiment of duration N = 1000 and where Radm
is chosen equal to I4. Moreover, for the first part of this
numerical example, we will use Proposition 4 to compute
the upper bound y̆ub

wc(A) for y̆wc(A) (which appears in
the constraints of (50)). Since Radm = I4, the objective

function ξ of (50) is equal to λmin(P
−1
θ (A, θ̂init)) which

is clearly a measure of the accuracy of the identified pa-

rameter vector θ̂N .
Since, in this example, determining the optimal mul-

tisine with (57) takes twice less time than with (50),
we will from now on consider the equivalent formula-
tion (57) of (50). The gradient-based algorithm (imple-
mented in the Matlab function fminunc) has been here
used to solve (57). An amplitude vectorAlm can easily be
determined from the solution ϕlm of this algorithm (see
the remark at the end of Section 4). For all the initial-
izations discussed in the next paragraph, the gradient-
based algorithm yielded amplitude vectorsAlm for which
the objective function of the optimal experiment design

problem 6 i.e., λmin(P
−1
θ (Alm, θ̂init)) is equal to 187.87.

These amplitude vectors Alm are thus equivalent from

6 We here consider the objective function of (50). The ob-
jective function of (57) is its inverse.
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the point-of-view of the considered optimal experiment
design problem. This equivalence can be explained by
the fact that the corresponding multisines u(t, Alm) are
just time shifted versions of each other. In the sequel,
we will therefore only consider one of these Alm i.e.,
(−0.0688, 0.2212,−0.0662,−0.0120,−0.5075, 0.4621)T .

As mentioned in the previous paragraph, we have con-
sidered different initializations for the gradient-based al-
gorithm. For this purpose, we have considered the pro-
cedures of Sections 5.2 and 5.3 where, in the randomiza-
tion procedure, the upper bound y̆ub

wc(A) for y̆wc(A) is
also computed via Proposition 4. Note furthermore that,
in our implementation of the procedure of Section 5.2,
Tgrid contains 201 linearly-spaced points in TP and Θgrid
only contains θ̂init for simplicity. For both approaches,
we have run the randomization procedure twice i.e., once
with ngrid = 100 and once with ngrid = 2000. This has
led to four amplitude vectors Aapp. The values of the

objective function λmin(P
−1
θ (Aapp, θ̂init)) for these four

Aapp are given in Table 1.

Table 1
Objective function λmin(P

−1
θ (Aapp, θ̂init))

Cases λmin(P
−1
θ (Aapp, θ̂init))

Section 5.2 with ngrid = 100 159.59

Section 5.2 with ngrid = 2000 171.38

Section 5.3 with ngrid = 100 164.69

Section 5.3 with ngrid = 2000 168.33

With respect to the four Aapp in Table 1, the am-
plitude vector Alm obtained by solving (57) using the
gradient-based algorithm improves the objective func-

tion with at least 10% since λmin(P
−1
θ (Alm, θ̂init)) =

187.87. In this example, we therefore observe that the ini-
tialization procedure gives amplitude vectors Aapp that
are relatively close toAlm, but also that it is useful to im-
prove the result of this initialization procedure with (57).
In this example, the robustness of the gradient-based
algorithm used to solve (57) is important. To show this,
we have also initialized this algorithm with a vector
in the direction Au = (1/

√
6)(1, 1, 1, 1, 1, 1)T . This di-

rection is far from optimal since κopt(Au)Au yields an

objective function λmin(P
−1
θ (κopt(Au)Au, θ̂init)) = 7.92

which is much smaller than the values in Table 1. How-
ever, initialized with this Au, the gradient-based algo-
rithm also yields an amplitude vector Alm for which

λmin(P
−1
θ (Alm, θ̂init)) = 187.87.

Let us now analyze a bit more the amplitude
vector Alm = (−0.0688, 0.2212,−0.0662,−0.0120,
−0.5075, 0.4621)T delivered by the gradient-based algo-
rithm used to solve (57). Using Proposition 3, we obtain
u(Alm) = 0.9385 which is indeed the maximal value of

|u(t, Alm)| for t ∈ TP . Using Proposition 4, we obtain 7

y̆ub
wc(Alm) = 1. As expected (see the remark at the end

of Section 4), for Alm, one of the amplitude constraints
is active (here the output amplitude constraint). Let us
now investigate the conservatism of the upper bound
for y̆wc(Alm) computed with Proposition 4. For this
purpose, we also compute a lower bound for y̆wc(Alm)
using the procedure given in the remark at the end of
Section 3. This leads here to 0.986477 ≤ y̆wc(Alm). The
conservatism linked to the LMI procedure of Propo-
sition 4 is thus less than 1.4 % (which is small). Let
us nevertheless see if a tighter upper bound can be
obtained via Proposition 6 with, e.g., b = 1. This is
indeed the case since Proposition 6 with b = 1 yields 8

y̆ub
wc(Alm) = 0.986550: the conservatism is now less than

0.007 % (and thus negligible).
We have tested Proposition 6 with b = 1 for a

number of other A and the observed conservatism
is always negligible. Consequently, one can now con-
sider a version of the optimal experiment design prob-
lem (50) (or its equivalent (57)) where the upper
bound for y̆wc(A) is obtained using Proposition 6
(b = 1). Due to the reduced conservatism, this new
version is closer to the original optimal experiment
design problem (18). The solution of this modified
optimal experiment design problem in the direction
of Alm (which was the best solution when Proposi-
tion 4 was used) can be determined via Proposition 7.
In our case, this solution is Alm,bis = κopt(Alm) Alm
with κopt(Alm) = min(1/0.9385, 1/0.986550) ≈ 1.014.

With Alm,bis, we obtain λmin(P
−1
θ (Alm,bis, θ̂init)) =

193.02, u(Alm,bis) = 0.9507 (via Proposition 3) and
y̆ub
wc(Alm,bis) = 1 (via Proposition 6 with b = 1). One

can wonder whether another direction than the one of
Alm could be more optimal. For this purpose, we run
the gradient-based algorithm to solve this new version
of (57) with an initialization in the direction of Alm.
This does not improve the result. Consequently, if we
restrict attention to the tools developed in this paper,
u(t, Alm,bis) seems the optimal multisine.

7 Conclusions

We have developed a methodology to tackle the prob-
lem of optimal experiment design with robust amplitude
constraints. The developed framework allows to handle
these robust amplitude constraints without approxima-
tion when the identification is performed in open loop
and when the considered true system has one input and
one output. In future work, we will extend the frame-
work to closed-loop identification and to multivariable
systems.

7 Note that the maximal value of |y̆(t, Alm, θ̂init)| for t ∈ TP
is 0.7425 (θ̂init is the center of Uinit).
8 Note that solving the LMI problem of Proposition 6 with
b = 1 takes 16 times more time than solving the one in
Proposition 4. This is the reason why Proposition 4 was used
in the earlier phase.
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A Structure of B̃, D̃, P , Z in Proposition 2

As shown in [2], the real matrices B̃ and D̃ in the
expression of Σ have the following structures:

B̃ =


0 K12 . . . K1L

−K12 0 . . .
...

...
. . . K(L−1)L

−K1L . . . −K(L−1)L 0



D̃ =


R11 R12 . . . R1L

R12 R22 . . . R2L

...
. . .

...

R1L R2L . . . RLL


with the constraints that all blocksKil (resp.Ril) satisfy
Kil = −KT

il ∈ Rk×k (resp. Ril = −RTil ∈ Rk×k). The
matrix P (resp.Z) has a similar structure as B̃ (resp. D̃),
but with the skew-symmetric blocks replaced by row
vectors of dimension k [2].

B Proof of Proposition 5
The proof is rather straightforward. When we per-

form the product Ψ∗(τ)PΨ(τ), we indeed obtain a ma-
trix having the structure (34) for any value of τ ∈ T .
More precisely, the matrixQ in (34) is given by (B∗(τ)⊗
IL)Λ(B(τ)⊗ IL) = Q0+Q1τ +Q∗

1τ
∗+ ...+Qbτ +Q∗

bτ
∗.

It is clear that this matrix is Hermitian for all τ ∈ T .
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The additional condition in the statement of the theo-
rem ensures that this Hermitian matrix is also positive
semi-definite for all τ ∈ T . When we perform the prod-
uct Ψ∗(τ)PΨ(τ), the matrix jD̃ in (34) is given by

jD̃ = jD̃0 + (0, D̃1, ..., D̃b) (B ⊗ ILk) + (B∗ ⊗ ILk)


0

D̃T
1

...

D̃T
b


The right hand side of this expression is equal to jD̃0 +
D̃1(τ − τ∗) + ... + D̃b(τ

b − (τ b)∗) since D̃i = −D̃T
i

(i = 1, ...b). It is clear that this expression has indeed
the desired structure since τ i − (τ i)∗ (i = 1, ...b) is an
imaginary number for all τ ∈ T . In Ψ∗(τ)PΨ(τ), the
matrix jZ in (34) is given by

jZ = jZ0 + (0, Z1, ..., Zb) (B ⊗ ILk)− (B∗ ⊗ IL)


0

Z1

...

Zb


The right hand side of this expression is equal
to jZ0 + Z1(τ − τ∗) + ... + Zb(τ

b − (τ b)∗) which
has thus also the desired structure. Following the
same procedure, the matrix B̃ in (34) is given by

2B̃0 + B̃1(τ + τ∗) + ...+ B̃b(τ
b + (τ b)∗) since B̃i = B̃T

i
(i = 1, ...b) while the matrix P in (34) is given by
2P0+P1(τ+τ∗)+ ...+Pb(τ

b+(τ b)∗). These expressions
have the desired structure since τ i + (τ i)∗ (i = 1, ...b) is
a real number for all τ ∈ T . From the above expressions,
the last statement of the proposition is straightforward.

Remark. In Proposition 1 of [6], we proposed a less
general parametrization for P where the matrices Qi

were restricted to be real matrices, the factorizations of
jD̃ was reduced to D̃1(τ − τ∗)+ ...+ D̃b(τ

b− (τ b)∗) and
the one of jZ to Z1(τ − τ∗) + ...+ Zb(τ

b − (τ b)∗).

C Last steps of the proof of Proposition 7
That u(κAu) = κu(Au) follows from the defini-

tion (14) of u(A). That y̆wc(κAu) = κy̆wc(Au) also
follows from (15). That y̆ub

wc(κAu) = κy̆ub
wc(Au) can be

derived by considering the proof of Proposition 4 and,
in particular, the inequalities (39) and (40). Note in-
deed that the existence of Π1

αL
, Π2

αL
, Σ1 and Σ2 such

that (39) and (40) hold for all τ ∈ T and for all θ̄ ∈ Uinit
is equivalent to the existence of Π3

αL
, Π4

αL
, Σ3 and Σ4

such that the following inequalities hold for all τ ∈ T
and for all θ̄ ∈ Uinit:

g∗τ Π3
αL

gτ + g∗θ̄ Σ3 gθ̄ +Re(κ ATY(τ, θ̄)) ≤ κ ymax

−κ ymax ≤ −g∗τ Π4
αL

gτ − g∗θ̄ Σ4 gθ̄ +Re(κ ATY(τ, θ̄)).

We can indeed choose Π3
αL

= κΠ1
αL

, Π4
αL

= κΠ2
αL

,

Σ3 = κΣ1 and Σ4 = κΣ2. An element of Πα (resp. Σ)
multiplied by a positive scalar constant is indeed another
element of Πα (resp. Σ). A similar reasoning can also
be applied to the inequalities (48) and (49) in the proof
of Proposition 6.
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