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Abstract

In this paper, we consider optimal experiment design with amplitude constraints for the case of a multisine excitation. The
output amplitude constraint is robustified using an uncertainty region for the unknown true system. The main contribution of
this paper is to treat the robust amplitude constraint without the classical gridding approximation. In particular, we provide
an LMI optimization problem to verify whether the output constraint is respected for all systems in the uncertainty region.
This LMI formulation can be combined with the accuracy constraint in the optimal experiment design problem. Like each
optimal experiment design problem with amplitude constraints, the resulting optimization problem is non-convex, but we
provide two approaches to efficiently initialize the algorithm used to solve this optimization problem. The efficiency of the

proposed methodology is tested using a numerical simulation.
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1 Introduction

In this paper, we consider optimal identification ex-
periment design when the constraints on the input and
the output signals are not expressed in term of power,
but in term of time-domain amplitude.

Optimal identification experiment design has been ex-
tensively studied for prediction error identification [18].
In most of the contributions (see, e.g., [18,16,8,14,1]),
the constraints on the input and the output signals are
expressed as power constraints. One of the main reasons
for this is that both the inverse of the covariance matrix
of the estimate 6 of the parameter vector 6y of the true
system (which is generally the measure of the model ac-
curacy that is used in the accuracy constraint of the op-
timal experiment design problem) and the power of the
input and output signals (which is a measure of the cost
of the identification) are affine functions of the power
spectrum of the excitation signal. This property allows
one to formulate the optimal experiment design problem
as a convex optimization problem (see, e.g., [16,8,14]).

The main issue with this approach is that, in many
applications (see, e.g., [22] for an example), the con-
straints are not formulated as constraints on the power
of the input and output signals, but as constraints on
the amplitude of the time-domain sequence of these sig-
nals. Designing optimal identification experiments with
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amplitude constraints is thus a very important prob-
lem in practice. Unlike in the power constraint case,
such optimal experiment design problem boils down
to a non-convex optimization problem. The paper [21]
indeed shows that it can be reformulated as an opti-
mization problem involving both LMI constraints and a
rank constraint which makes the optimization problem
non-convex. In the literature, different approaches have
been proposed to address this non-convex optimization
problem. An iterative approach involving different non-
convex optimization problems is proposed in [20] (see
also [24]) while the accuracy objective and the respect of
the amplitude constraints are treated separately in [10].
Other contributions use relaxations to approximate the
original non-convex optimization problem by a con-
vex one. A first order approximation is used in [27]. In
[21], the non-convex rank constraint is neglected and
a randomization procedure is subsequently devised to
improve the results. A similar approach is used in [9,17].
Other relaxations are proposed in [11,12].

Since the output obviously depends on the unknown
true parameter vector g (i.e., on the true system G(6p)),
we here consider an optimal experiment design problem
with a robust output amplitude constraint i.e., the out-
put amplitude constraint must be satisfied for the out-
puts of all systems G(0) with 6 in an uncertainty re-
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gion Uj,;¢ containing the unknown 6y [25]. Since 6y €
Uinit, such a formulation ensures that the output of
the unknown true system G(6y) will respect the am-
plitude constraint. Robust amplitude constraints (and
other types of robust constraints in optimal experiment
design) are classically handled via a gridding approxi-
mation (see [16,8,25,21]): the uncertainty set U;p;s (con-
taining an infinite number of elements) is replaced by
a number n of grid points of this uncertainty set U;p;:
and the robust output amplitude constraint is replaced
by n constraints (one for each grid point) in the optimal
experiment design problem. Since 6y will most probably
not be among the grid points, this gridding approach en-
tails an approximation i.e., the output of the unknown
true system G(6p) is not guaranteed to satisfy the ampli-
tude constraint. The main contribution of this paper is to
develop a methodology (inspired from robustness anal-
ysis) to handle the robust output amplitude constraint
without the approximation introduced by the gridding
of U;nit- This approach will be based on the philosophy
we introduced in previous contributions to handle ro-
bust output power constraints without approximation
(see [7] for multisine excitation and see [6] for filtered
white noise excitation).

As mentioned above, we will develop a methodology
inspired from robustness analysis to handle robust out-
put amplitude constraints. Since the (robust) output
amplitude constraint can easily be translated into a (ro-
bust) output power constraint for filtered white noise
excitation, we will only consider the case of multisine
excitation in this paper. More precisely, we will develop
an LMI optimization problem allowing, for a given mul-
tisine excitation, to verify whether the output ampli-
tude constraint is satisfied for the outputs of all systems
G(0) with 8 € Uy Since amplitude constraints must
be respected at each time instant, we treat, in this LMI
formulation, the time similarly as the parameter vector
0 i.e., as an uncertain parameter varying in a set. This
prevents the use of a gridding of the time axis (which
would introduce a similar approximation as the gridding
of Ujnst). Using the same philosophy, we also develop an
LMI optimization problem to verify whether the input
amplitude constraint is verified at each time instant.
These LMI formulations for the input and output am-
plitude constraints can be combined with the accuracy
constraint in the optimal experiment design problem.
The resulting optimization problem obviously remains
a non-convex optimization problem, but we provide two
approaches to efficiently initialize the numerical algo-
rithm used to solve this optimization problem.

Notations. Continuous-time signals will be denoted z(t)
where ¢t € R is the time index while discrete-time signals
will be denoted z[n] where n is the sample number. The
variable s is the Laplace variable while z will denote both
the Z-transform variable and the shift operator. We use j
to represent v/—1. For a complex number « (i.e., a € C),
la|, Za and Re(a) will denote, respectively, its modulus,
its argument and its real part. For a real number a (i.e.,

! Note that optimizing a;s and a;. (i = 1,...

a € R), |a| is the abolute value of a. For a matrix A,
rank(A) is the rank of A, Apin(A4) (resp. Amaz(A)) is
the smallest (resp. largest) eigenvalue of A while AT
(resp. A*) is its transpose (resp. conjugate transpose).
The matrix

X1 0 0
0 . 0
0 0 X,

will be denoted diag(Xy,..., X,) if the elements X;
(i = 1,...n) are scalar quantities, while it will be denoted
bdiag(Xy, ..., X,) if the elements X; (i = 1,...n) are ma-
trices. In addition, I,, represents the identity matrix of
dimension n x n and ®, the Kronecker product.

2 Problem statement

2.1 Identification experiment and experiment design
problem

We consider the identification of a discrete-time model
of a stable single-input single-output true system which
can be described by a continuous-time transfer function
Go(s) with input u and output y. The discrete-time data
for the identification of the discrete-time model of Gy(s)
will be gathered in open loop with a sampling rate T5.
The continuous-time true system will be excited by the
following (continuous-time) multisine excitation signal:

~

Z (ai,s sin(w;t) + a; ¢ cos(wit)) (1)
i=1

with A = (a1.5,01,¢,02,5,02 ¢, -y ar )T € R?L. The fun-
damental frequency of this multisine will be denoted wy.
Each of the L frequencies w; (i = 1, ..., L) thus satisfies
the following relation:

w; = &4 Wo (2)

for an integer o; # 0 (i = 1,..., L). Since the discrete-
time data will be gathered with a sampling rate T, we
will suppose that w; < =. In the optimal experiment
design problem that will be introduced in the sequel, the
L frequencies w; (¢ = 1,..., L) are fixed a-priori by the
user and the amplitudes am and a;. (i = 1,..., L) will
therefore be the decision variables of the optimal exper-
iment design problem!. These amplitudes (which are
also the coefficients of the trigonometric Fourier series of
u(t, A)) are gathered in the amplitude vector A € R
defined above.

In the sequel, we will address (robust) output ampli-
tude constraints based on a steady-state expression of

,L) in (1)
is the same as optimizing b, and ¢; (¢ 1,..,L) in

ZiLzl bz sz’n(wit 4 ¢l)



the output. To ensure as much as possible that the out-
put constraint is also satisfied during transient, the ex-
citation signal (1) will be slowly ramped up?. By do-
ing this, we prevent as much as possible that the out-
put exceeds its steady-state expression during transient.
For reference purpose, we will assume that this ramp up
process is performed when ¢t < 0 and that the system
is at steady state at ¢ = 0. At that moment, we start
collecting discrete-time input-output data at a sampling
rate Ts applying an anti-aliasing filter to both the input
and the output. This leads to a set of discrete-time data
ZN = {y[n], u[n] | n = 0,..., N — 1} which are related

as follows
yln] = G(z,00)u[n] + v[n] (3)

where G(z,00) is a stable discrete-time transfer func-
tion satisfying G(e/“Ts,0y) = Go(jw) for w € [0, 7]
(and therefore also for all w; (¢ = 1,...,L) in (1)) and
where v[n] is a discrete-time signal representing the dis-
turbance acting on the system. This disturbance is mod-
eled as a time series v[n] = H(z, 8y)e[n] with e[n] a white
noise of variance o2 and H (z, ) a stable, inversely sta-
ble and monic transfer function [18]. The transfer func-
tions G(z,00) and H(z,0p) are parameterized with an
unknown parameter vector §; € R” in a given model
structure G(z,0) and H(z,#). The typical model struc-
tures (BJ, ARX, ARMAX, ...) are all rational in the
vector 6 [18]. In particular, for these model structures,
G(z,0) can be written as (Zy(2)0)/(1 4+ Zp(z)0) where
Zn(z) and Zp(z) are row vectors of transfer functions
[5,7].

Under the instrumentation described above, the
discrete-time signal u[n] in (3) is given by u[n] = u(t =
nTs, A) (n=0,..., N—1) while y[n]—v[n] = G(z, 6p)u[n]
(n=0,..,N —1) is given by y(¢t = nTs, A, 6y) with

(¢, A, 0) Zg wi, 0 )
(ais sm(wit + d(wi, 0)) + as,e cos(wit + (wi, 0)))
where g(ws, 6) = |G(e/ T, 6)] and p(w,6) = ZG(eHT- 6).

Note also that the continuous-time signal §(t, A, 6p)
represents the noise-free output of the continuous-time
system for ¢ > 0.

Let us now specify precisely the amplitude constraints

that have to be respected when designing the multisine
excitation u(t, A).
Amplitude constraints. Consider the time interval
Tp =0, i—:] corresponding to a period of the multisines
u(t, A) (see (1)) and §(t, A, 0o) (see (4)). The multisines
u(t, A) and y(t, A, 6p) must satisfy

< u(iﬁ7 A) < Umax Vt € Tp
S y(t7A7 90) S }_’max vVt € TP

()
(6)

— Umax
— Ymax

2 This can, e.g., be achieved by multiplying (1) by a function
~(t) which slowly grows from zero to one.

where Umax > 0 and ¥max > 0 are two user-chosen
constants. In (5) and (6), we can restrict attention to
t € Tp since u(t,A) and §(t, A,0y) are both periodic
signals having a fundamental period equal to f)—: |

Using the data set ZV, the prediction error estimate

On of By [18] is given by

N-1
0N = argming + L g 62
n=0

0) (yln] = G(=

(7)
with €[n, 0] = HY(z, ,0)uln]) .

Assuming that, for the chosen L in (1), the data ZV
are informative [18], the estimate 0y is (asymptotically)
normally distributed around 6y with a covariance matrix
Py > 0 that can be estimated from the data [18]. We
can also determine an expression of the inverse of the
covariance matrix as a function of the true parameter
vector By and of the square of the amplitudes a; s and
aic (i=1,..,L) ie,

A 00 <ZM WZ’QO 173 +a’L27c)> +Mv(90)

(8)
for matrices M (w;,60p) >0 (i =1, ..., L) and M,(6y) >0
of known expressions and which are both proportional
to the number of data N (see, e.g., [24]). The covari-
ance matrix Py > 0 is a measure of the modeling error
éN — 6y and its inverse therefore a measure of the model
accuracy.

In this paper, our objective will be to design the am-
plitude vector A defining the excitation signal (1) as
the one solving the following (non-convex) optimization
problem for a given matrix Ryg,, > O:

argmaxe 4 § )
s.t. Py (A, 00) > € Ragm and (5)-(6).

Let us discuss this formulation more precisely. If you
choose Rugm = I, (9) is an E-optimal experiment
design problem whose objective is to determine the am-
plitude vector A of the multisine excitation (1) which
leads to an estimate éN of 6, with the smallest?® co-
variance matrix Py(A4,6y) while guaranteeing that the
amplitude constraints (5) and (6) are respected. Since
Py is inversely proportional to N, it is clear that higher
accuracy for Oy can be achieved under the amplitude
constraints (5) and (6) if NV increases (i.e., if the exper-
iment duration increases). In this sense, the optimiza-
tion problem (9) also allows to determine the minimal

3 The smallest covariance matrix Py is here defined as the

one with the smallest value of A\pqq(Py) (or equivalently the
largest value of Amin (P, 1))



experiment duration N for which it is possible to find
an amplitude vector A that respects (5) and (6) and
ensures P, Y(A4,60) > Ragm for some matrix Rygym, rep-
resenting the desired accuracy (see, e.g., [24] for the
details on how this can be done based on (9)).

Remark. Instead of (1), the excitation applied to the
continuous-time system may also be the output of a
Zero Order Hold to which a discrete-time multisine
u[n] is applied. In (3), u[n] is thus here also given by
25:1 (a; s sin(winTs) + a;c cos(w;nTs)). Due to the
property of the Zero Order Hold, we could thus keep (5)
for the constraint on the continuous-time input or re-
place it by |u[n]| < Gmax for n = 0, ..., wﬁ} As far as
the output amplitude is concerned, we can still say that,
in steady state, G(z, 0p)u[n] is given by §(t = nTs, A, 0p)
with the expression (4). However, for t # nT, the noise-
free output of the continuous-time system will slightly
differ from (¢, A,0y) (this difference will be small if
the gain of the continuous transfer function Gy is suf-
ficiently small for w > Tl) Consequently, we can still
use the results of this paper (i.e., results aiming at sat-
isfying (6)) for this alternative instrumentation, but we
will then not have a formal guarantee that the output
constraint is satisfied for ¢ # nT,. Note that this was
also the case in the approaches of, e.g., [20,21].

Remark. Since yax bounds the noise-free output, if

we wish to bound the noisy output of the system, ¥max

must be chosen considering the (maximal) amplitude

of the disturbance acting on the system (that can be

determined using an experiment with u(t, 4) = 0).

2.2 Robustification of the output amplitude con-
straint (6)

Since 6 is unknown, we cannot use the output ampli-
tude constraint (6) as such. We will instead use a robus-
tified version of this output amplitude constraint. As in,
e.g., [7], this robustified version of the constraint will be
based on an initial uncertainty region Uj;,;; for the un-
known true parameter vector #y. This initial uncertainty
region Uy,;; can be obtained via an initial identification
experiment that has delivered an initial estimate 9imt
of 6y with covariance matrix Py ;ns¢. Consequently, the
following ellipsoid Uy, is a n%-confidence region for the
unknown true parameter vector fy:

Uinit = {9 ER*| (6 émit)TPajilmt(@ — Oiniz) < X}
(10)
with y such that Pr(x?(k) < x) = n (say 95 %). For the
sequel, it is important to note that U, can be equiva-
lently rewritten as

Uinit = {0 € R¥ | 670 < 1} (11)
if we perform the change of variable

0= R0 — Oinit) (12)

,1 -
with % = RTR. Let us also denote by G(z,0) the

parametrization G(z,60) where 6 has been replaced by
B;nis+R 6. Similarly, let us define §i(t, A, §) asin (4) but
with G(z, 6) replaced by G(z,0). We can then robustify
the output amplitude constraint (6) as follows:

—Vmax < ?(t, A7 é) < Ymax vt € Tp and Vo € Uinit
(13)
For future reference, let us introduce the following quan-
tities:

A
a(4) 2 maxut, 4) (14
Vwe(A) 2 max max |y(t, 4, 0)|. (15)

t€TP €U nit

Using these notions, (5) and (13) are respectively equiv-
alent to

The robustified version of the optimal experiment design
problem (9) is thus

argmaxe 4 §

R 18
s.t. Pyt (A, 0init) > € Ragm and (16) and (17). (18)

Note that the accuracy constraint P, L'> ¢ Ruam could
also be robustified using U;,;; and the results in [7]. How-
ever, since the focus of this paper is on the amplitude
constraints, we have decided to replace the unknown 6,
by its initial estimate éinit to make the accuracy con-
straint tractable.

Before proceeding, let us make the following assump-
tion on the initial uncertainty U, ;.
Assumption 1 The uncertainty Ut defined in (10)
contains the unknown parameter vector 6y. Moreover,
Uinit is small enough to guarantee that, like G(z,00),
G(z,0) is a stable transfer function for all @ € U;pir. M

The first part of Assumption 1 is there to ensure that (17)
effectively implies (6). Note that, in practice, this guar-
antee will only hold with a probability of n%. The sec-
ond part of the assumption guarantees that (4) can be
written for each 6 € Uj;,;;. We can easily verify whether
a given U, satisfies this part of Assumption 1 using
the results in [5].

3 Computation of u(A) and Jwc(A)
3.1 Introduction

In order to address the optimal experiment design
problem (18), we will need to be able to evaluate the
quantities u(A) and ¥w(A) appearing in the constraints
of (18). Note that, besides their importance for opti-
mal experiment design, these quantities are also crucial



if we wish to perform an identification experiment us-
ing an excitation (1) with an user-chosen amplitude vec-
tor A. These quantities will indeed allow the user to ver-
ify whether the chosen A satisfies the (robust) amplitude
constraints (16) and (17).

The quantity u(A) is the solution of the following op-
timization problem:

u(4) = argming,,,, Umaz

(19)
st — Umaz < u(t, A) < Umae VE € Tp.

Similarly, the quantity ¥we(A) is the solution of the fol-
lowing optimization problem:

Ywe(A) = argminy,, .. Ymas
st = Ymaz < Y, A,0) < Ymax Yt € Tp, Y0 € Uipit.
(20)
In the sequel, we will show that, using robustness anal-
ysis tools, we can exactly compute, for any given A, the
solution u(A) of (19). We will also show that we can
derive a (tight) upper bound y1P(A) for the solution
Ywe(A) of (20). Note that, if F42(A) < ¥max, we have
also that ¥we(A4) < ¥max. Consequently, the quantity
Fub(A) can be used together with u(A) to check whether
a given excitation u(t, A) can be applied without risk to
the considered system Gj.
3.2  Phasors and LFT representations

Let us introduce phasor notations and transform the
amplitude vector A = (a1.5,01,¢,02,5,02,c, -y ar,c)] of

dimension 2L into the complex vector A = (A, As, ..., A)T

of dimension L. The i'" entry A; of A is defined as
.Ai = Qj,c —j Qi s (Z = 1, ,L) (21)

Let us also define U (t) as U (t) = (eI@1t edwzt | edwrt)T,
We have then

u(t, A) = Re(ATU(t)). (22)
For the sequel, it is important to observe that u(t, A)
depends on t via the phasors e/¥it (i = 1,..., L). Let us
introduce the complex variable

7 2 eiwot (23)

with wp the fundamental frequency of u(t, A). Using (2),
it is clear that, for each w;, e/“i* = 7. Consequently, in-
stead of a function of ¢, we can write u(t, A) as a function
u(r, A) of 7 which has the property u(r, A) = (¢, A)
when (23) holds. This function u(7, A) is given by

u(r, A) = Re(A"U(T)) (24)
withU (1) = (79,792, ..., 79L)T_ When ¢t takes all values
in Tp, the complex variable 7 defined in (23) takes all
values in the set

T={reC|t'r =1} (25)

Consequently, the constraint in (19) is equivalent to

~Umaz < Re(ATU(T)) < Upas VT € T (26)

It is also clear that the only quantity dependent on 7
n (26) i.e., U(T) = (191,792, ..., 7°L)T can be rewritten
as the following LFT in 71, :

Pu = (TIaL) qu

u My | M u
( q >: 11,u | M12,u (P ) (27)
U(T) M21,u M22,u 1

My

with Mgg’u = (0, ceey 0)T7 M12’z,{ = (170, ....,O)T, Mgl,u a
matrix whose entries are equal to zero except the entries
(i,;) for i = 1,..., L which are equal to one, and with
M1 4 a matrix of dimension oy, x oy, given by

0 O
My = .
I, . 0

Let us now define the quantity (7, A, §) as follows:

j(7, A,0) = Re(ATY(7,0)) (28)
with
V(7,0) = diag(G(e?1 ™= 0), ..., G(e7“E = 0)) U(T).
_ _ (29)
It is clear that y(7, A,0) = y(t, A,0) when (23) holds.
Consequently, the constraint in (20) is equivalent to

—Ymax S RE(ATy(Ta 9)) S Ymazx VT S T7 Vo € Ulnzt

(30)
Moreover, recall that the model structure G(z, #) can be
written as Zn (z)0/(1+Zp(z)0) (see Section 2.1) and re-
call also the linear change of variable (12). Consequently,
diag(G(e71 ™5, 0), ..., G(e’*tTs §)) is an LFT in I}, ® 6
(see, e.g., [7]). Using this fact and the fact that U(7) is
an LFT in 71,, (see (27)), it is possible to find vectors of
signals pr, pg, ¢r, gz and a matrix My such that Y (7,0)
can be expressed as

(pT > = bdiag (r1.,, I, ®0) (‘“)
Ps %

qr Mff,y Mﬁé,y M1T2,y Pr
dp = Mléf,y Mff,y M1§2,y Pg (31)
Y(r,0) M3, Miﬂ,y‘Mm,y 1
My



In the sequel, we will use the symbol x to introduce
shorthand notations of LFTsi.e., the shorthand notation
of (27) is U(7) = (71,,) » My and the one of (31) is
Y(r,0) = (bdiag (TIQL,IL ® 0_)) * My.

3.3 Multipliers

In the previous subsection, we have seen that the con-
straints appearing in (19) and in (20) can be equiva-
lently rewritten as (26) and (30), respectively. These
constraints can be both considered as robust constraints
since they entail the verification of inequalities for all
T € T in the case of (26) and for all 7 € T and for all
0 € Uipst in the case of (30). Recall also that, in these in-
equalities, the quantities U (7) and Y(7,0) (i.e., the only
quantities depending on 7 and/or ) are LFTs, respec-
tively, in 71,, and in bdiag (TIaL, Ir ® é), In order to
find tractable versions of (26) and (30), we will need
to find appropriate descriptions of the uncertainty 71,
with 7 € T and of the uncertainty I, ® 8 with 8 € Ui ;.

These appropriate descriptions are the so-called sets
of multipliers for these two uncertainties (we remind the
expressions of these sets in Propositions 1 and 2). In
a nutshell, a set of multipliers for a given uncertainty
p(t) = Aq(t) with A € A is an explicit and affine
parametrization of the quadratic constraint satisfied by
the graphs of the signals p and ¢ when A € A [26,13,23].
Proposition 1 Consider the set T defined in (25) and
an arbitrary scalar .. Then,

71, " 1,
11, =0 VreT (32)
I, I,
when I, = bdiag(S,—S) with S any Hermitian matrix

of dimension o X a.. The set of matrices I1,, having this
structure will be denoted I1,, in the sequel.

Proof. For any I, = bdiag(S, —S), the quadratic ex-
pression in (32) is equal to (7*7 — 1).S and this quantity
is indeed equal to zero for all 7 € T. [ |

Proposition 2 ([2]) Consider the set Ujny = {0 €
R* | 976 < 1} and an arbitrary scalar L. Then,

T _
I, ®0 1,®0 _
Le (%) 50 victn,  (33)
I IL

when 3 has the following structure

~Q® I+ B+jD|PT—j 27

3=
PviZz | Q

(34)

where Q) is any positive semi-definite Hermitian matriz
of dimension L X L and B, D, P, Z real matrices having
the structure given in Appendixz A. The set of matrices ¥
having the structure (34) will be denoted 3 in the sequel. R

In the sequel, we will also require the following re-
sult which is a particular case of the generalized KYP
lemma [15].

Lemma 1 ([15]) Consider a matriz F(T) which de-
pends on a complex scalar variable T that lies in the set
T defined in (25). Assume that F(7) can be written as
an LFT in 71, and that this LFT is minimal (i.e., we
cannot write F(1) as an LFT in 715 with & < a). We

thus have:
FulF
F(r) = (71y) * 12
For1 | Fao

where Fy11 18 a matriz of dimension a X «. Consider
finally an Hermitian matriz = of appropriate dimension.
Then, F*(T)EF (1) <0 for allT € T is equivalent to the

existence of I, € I1,, (see Proposition 1) such that:

oo\ I o .
(]—'11 .7-'12) e (fn ]-'12)4_(}—21 }—22) E(}—Ql }—22)S0

3.4 LMI optimization problems

Using the LFTs and the sets of multipliers introduced
in the previous subsections, we can now derive LMI
optimization problems allowing to compute u(A) (see
Proposition 3) and an upper bound y22(A) for ¥we(A)
(see Proposition 4).

Proposition 3 Consider a given amplitude vector A
and its complex expression A (see (21)). Consider also
the LFT expression (27) forU(7) and the set of multipli-
ers I1,, corresponding to 71, (see Proposition 1 with
a = ar,). Then, u(A) (see (14)) is the solution uPt . of
the following LMI optimization problem having as deci-
ston variables a real scalar Upgqz > 0 and two matrices

1 2 .
I, and 1L, in X1, :
arg min Upqq S-t.

0.5

* 1 * 0
Vuallo, Vui + Vi o 05 Vi <0 (35)

—Umazx

0.5

0
og—mﬂﬁg@r%ﬁg< )mm (36)

umaw

with

I 0 AT M. AT M.
Vu,l _ Vu,z _ 21,U 22,U .
Mty M2y 0 1

Proof. Let us first prove that the existence of Hlle €
IT,, such that (35) holds is equivalent to Re(ATU(T)) <
<

Umaz VT € T. For this purpose, note that Re(ATU(7))
Umaz CaNl be rewritten as



- 0 05 \_ o [ AU
U*(r) (O.5 —umm> U(T) <0 withU(r) = ( . ) .

Note also that, using (27), we have that

My ‘ Miou
AT Moy 14| AT Moo 14
0 1

U(r) = (t1ay,) *

That the existence of IT}, € I, such that (35) holds is

equivalent to Re(ATU(T)) < umaz V7 € T then follows
from Lemma 1 (the LFT of U(7) is minimal since (27)
is minimal). Using a similar reasoning and Lemma 1, we
can also prove that the existence of II2, € II, such

that (36) holds is equivalent to —umae < Re(ATU(T))
V7 € T. The proposition is then proven since it is shown,
in Section 3, that u(A) is the solution u%?%  of the opti-
mization problem consisting in minimizing t,,., under

the constraint (26). [

Proposition 4 Consider a given amplitude vector A
and its complex expression A (see (21)). Consider the
LFT expression (31) for Y(t,0), the set of multipliers
I1,, corresponding to T1,, (see Proposition 1 with o =
ar, ) and the set of multipliers 3 corresponding to I, ® 0
(see Proposition 2). Then, an upper bound for ¥wec(A)
(see (15)) is the solution ySPt. of the following LMI op-
timization problem having as decision variables a real
scalar Ymaz > 0, two matrices 1L TI2 in 11, andtwo

g’ g,
matrices 21, 22 inX:

arg min Ymazx s.t.

0 05
V* aLVu 1+v* 22 Vy,2+ V;S ( ) Vy3 <0
0. “Ymazx
(37)
* 2 * 2 * 0 0.5
0< =V 105, Vy 1=V, 25 Vy 0+ V) 5 - Vy.3
ymaz
(38)

with

1 0 0 0 1 0
Vy,l - MTT MTé M7 Vny - M@T Méé M@
11,y Mi1y Mooy 11,y M1ty Misy

Vig— AT M7, AT MQU,A Masy
- 0 0 1

Proof. Let us first prove that (37) and (38) imply (30).
For this purpose, let us consider the signals p-, pg, ¢-
and gz in the LFT (31) for a fixed 7 € 7 and for

a fixed 0 € Ujpge. Let us then pre- and post-multiply

)

with (pz, p5, 1) and (pf', pJ,1)" the LMI constraints (37)

and (38). Using (31), this yields
97 oy, gr +95 ' g5 + Re(A"V(7,0) < ymaz (39)
—Ymaz < gT HaL gr — g; »? 95 + Re(ATy(Tv é)) (40)
with g, = (pX,¢5)" and g; = (pf.q fe) The above

reasoning can be done for any value of 7 € T and for
any value of 8 € U;,¢. In other words, for the multi-
pliers IT}, , I, , ! and ¥? found by the optimization
problem, (39) “and (40) hold true for all 7 € T and for
all § € Ujp;t. Observe also that, because of (31),

TIOlL IL ®§
gr = qr and dg = q5
Io, 15,

Consequently, due to Propositions 1 and 2, we have that
g0, g + 953 gg in (39) is positive for all 7 € 7T and

for all @ € Ujp;s. Similarly, —g*II2 ¢ ;—‘22 gg in (40) is

T QL
negative for all 7 € 7 and for all § € Uimt. We have thus
proven that (37) and (38) imply (30). The proposition is
then proven since it is shown, in Section 3, that ¥wc(A) is
the solution y2P!  of the optimization problem consisting
in minimizing Yq. under the constraint (30). [

Proposition 4 makes use of the LFT (31) for Y(r,0)

and the sets of multipliers for the two uncertainties ap-
pearing in this LFT. The sets of multipliers given in
Propositions 1 and 2 describe well the two uncertain-
ties when they are considered separately. However, since
these two uncertainties are here combined, we will gen-
erally have a tighter upper bound for Jwe(A4) (see, e.g.,
[3]) if the multiplier ¥ linked to the second uncertainty 0
is made dependent on 7 i.e., the first uncertainty. The
following proposition gives a 7-dependent version of X.
This proposition is an extension of our earlier results
in [6].
Pr[()l)osijion 5 Consider the set of multipliers 3 linked
to I, ® 0 with 6 € Uspit (see Proposition 2). Consider
also the variable T defined in (23) and that varies in the
set T (see (25)). Using T and some user-chosen inte-
gerb > 1, define the vector B(t) = (1,7,7%,...,7%)T and
the matriz U(r):

B(T)@IkL 0

Then, for each T € T, the T-dependent matrices
U*(7)PY(7) with P having the structure described below
are all elements 3 of 3. The matriz P has the following
structure:



—A® I 0] - Qo -+ Qv
PZl . .
P = 0 A with A = S0 0
Poa1 P2 Q: 0 0
T T
Py 0
Por — (BO, ,Bb)+(o Dy, ,Db) - 2
P, Zy
(0.21,..2) + (Po, ) ‘ 0

iDy —jZ&
Py = Jo =740 '
iZo 0

The real matrices B;, D;, P; and Z; (i = 0,...,b) of the
parametrization of P can take any values provided that
they have, respectively, the same structure as the real
matrices B, D, P and Z in (34). Finally, provided that
(B*(1) @ IL)A(B(1) ® I,) > 0 for all T € T, the matriz
Qo can be any Hermitian matrix of dimension L X L
and Q; (i =1,...,b) any complex matrices of dimension
LxL.

When Q;, B;, D;, P, and Z; are all equal to zero for
i=1,...,b, U (7)PU(T) becomes T-independent and is
equal to (34) with Q, B B, D, P and Z replaced, respec-
tively, by Qo, 2By, Dy, 2P0 and Zy.

Proof. See Appendix B. [ |

In the sequel, we will use the 7-dependent multiplier
U*(7)P¥(7) instead of ¥ in the constraints of the LMI
optimization problem. The property given at the end of
Proposition 5 illustrates that the T-independent multi-
plier ¥ is a special case of the 7-dependent multiplier
U*(7)P¥ (7). We therefore expect that, in the vast ma-
jority of the cases, the upper bound obtained with this
7-dependent multiplier will be tighter than (or at least
equal to) the upper bound obtained with Proposition 4.
In order to formulate the LMI optimization problem in-
volving the 7-dependent multiplier, we note that the
(minimal) LFT expression of B(7) can be deduced sim-
ilarly as the one of U(7) (see Section 3.2) and that the
(minimal) LFT expressions of B(7) ® I, and of ¥(r)
(that will be required in the sequel) can be easily de-
duced from the one of B(7):

Bi1|Bi2

B(T)@IL = (TIbL)* (41)
Ba1 | Baz
Uy | Py

W(7) = (TIpL(kt1)) * . (42)
Wor | Wy

where B (resp. Y1) is a matrix of dimension bL X
bL (resp. bL(k + 1) x bL(k + 1)). In order to address
the dependence on the uncertainty 7 of the multiplier
U*(7)P¥(7), we will need to combine the LFT (42) of
U(7) and the LFT (31) of Y(7,0) (i.e., the LFT that
is used in Proposition 4). In particular, we will need to
construct the LFT of (VT (r,0), YT (r,0))T with

Vo(r,0) = ¥(7)gg

where g5 = (p%, ¢2 )" with pj and g; the internal signals
in the LFT (31). That we will need this particular LFT
is linked to the fact that, in (39), the multiplier ¥ is used
in combination with gg. In order to derive this LFT, let
us first observe that (31) gives

( 0o I 0 ) br
99 = . 5 Pa
Mfl Y Mf1 Y Mfz,y 1
=G
Then, denoting p, and gy the internal signals of the
LFT (42) (i.e., py = (TIbL(k+1)) ¢y), We obtain

Py qy
Dr = bdla‘g (TIbL(k+l)a TIosz IL® 6) qr
Pg 4
qy M
p
qr (0 MllyMnyMlzy) v
Pr
49 = (OMffy Muy M192y) s
= 0
y\I/(T7 0) MQ 1
Y(r,0) (o M3,y M)y, Moy, y)
(43)

with M, = (\I:u\\plgg) and My = (\1121‘\1122g) .

We have now all the ingredients to improve the up-
per bound for ¥y (A) using the 7-dependent multiplier
U*(r)PE(7).

Proposition 6 Consider a given amplitude vector A
and its complex expression A (see (21)). Consider also
the vector B(T) for a given b > 1 and the correspond-
ing matriz ¥ () (see Proposition 5). Consider finally the
LFTs (41) and (43). Define azor = ar + bL(k + 1).
Then, an upper bound for Jwe(A) (see (15)) is the so-
lution yCPt . of the following LMI optimization problem
having as decision variables a real scalar Ymqr > 0, two

2 - e -
matrices Ha,,,,; 10z, , in I, (see Proposition 1 with

a = Qo ), two matrices P and P? having the structure
of the matriz P in Proposition 5 and finally two matrices



10}, , 02, in Iy, (see Proposition 1 with o = bL):

arg min Ymae S-t.

0 05
VI, Vi4+ M5 P Mo+ Vs (o > Vo <0

—Ymaxzx

(44)

0 0.5
0< —ViII2, Vi — MsP’My+ V3 ( ) Vo

* ymaaz

0 < —Vil;, Vs + ViAMY,

0 < V3T, Vs + ViA?Y, (47
where A (resp. A?) is the element A (see Proposition 5)
of the matriz P' (resp. P?) and where

(r000)

Vi — (0]00)
My

(0 M7y M7y Mfz,y)

. 0 AT M3, ATME) 5 AT Mooy
2 f—
0 0 0 1

Bll 12

V3_< I BO ) and V4:(821 822)~

Proof. Let us first note that, due to Lemma 1, (46) is
equivalent to (B*(1)®1)AY(B(r)®IL) > OforallT € T
which is a requirement of the parametrization of Propo-
sition 5. The LMI (47) ensures the same property for AZ.
Let us then prove that (44) and (45) imply (30). For this
purpose, let us consider (43) for a given 7 € T and for a
given 0 € Uy and let us consider the corresponding sig-
nals py, Pr, Dg, Gy, ¢ and gg. Let us then pre- and post-
multiply with (pj,, p7, p, 1) and (pg,pf,pg, 1) the LMI
constraints (44) and (45). Using (43) and the fact that
Vo (7,0) = ¥(1)g5 (95 = (g, a5 )" ), this yields

9ir Mo, Gur+95 U (T)P (1) gg+ Re(ATY(7,0)) < y(mm;
48

~Ymaz < —Gpr Moy, gur—95 V' (1)P?U(7) gg+Re(ATY(r,0))

(49)
with gyr = (pi,pf, q£7 qI)T. The above reasoning can
be done for any value of 7 € 7 and for any value of 6 €
Usinit- In other words, for the multipliers H}lm, Him7 Pl

and P? found by the optimization problem, (48) and (49)

hold true for all 7 € 7 and for all § € Uj,,;:. Observe
also that, because of (43),

Tlatot d I ® 0
Gyr = qypr ana gg = dp
Iatot I

with gy, = (qﬂqf)? Consequently, due to Propo-
sitions 1, 2 and 5, we have that g TI{, gyr +
g5 (T)P'U(7)gs in (48) is positive for all 7 € T

and for all 8 € U;p,;. Similarly, fgjLTHimgm —
95" (1)P*¥(7)gs in (49) is negative for all 7 € T and
for all § € Ujpi. We have thus proven that (44) and (45)
imply (30). The proposition is then proven since it is
shown, in Section 3, that Jwc(A) is the solution y2P!
of the optimization problem consisting in minimizing
Ymaz under the constraint (30). [ |

As already mentioned, Proposition 6 will in the vast
majority of the cases yield a tighter upper bound for
Ywe(A) than Proposition 4 and, if necessary, the conser-
vatism can be further reduced by increasing the value
of b. However, it is also clear that the LMI problem of
Proposition 6 is more complex than the one of Proposi-
tion 4 and this complexity increases with the value of b.
Using Proposition 6 will thus take more computation
time than using Proposition 4.

Remark. The conservatism of a given upper bound
FUb(A) for Fwe(A) (computed either via Proposition 4
or via Proposition 6) can be evaluated by comparing
this upper bound with a lower bound for ¥wc(A). This
lower bound can be computed by choosing a number of
grid points in Uy and by determining, among those
grid points 6;, the one (i.e., 8,.) leading to the largest
value of maxier, ., [U(t, A,0;)] (Tyriq is a fine grid of
Tp). The lower bound for Jwe(A) is then given by
maxer, ?j(ta A79w0)|-

grid
4 Optimal experiment design with robust am-
plitude constraints

4.1 Integration of the LMI formulations for the ampli-
tude constraints

Let us now come back to the robust optimal experi-
ment design problem (18) whose objective is the design
of an optimal multisine excitation. This optimization
problem contains the constraint (17) where the quan-
tity ¥we(A) cannot be exactly computed. We therefore
replace (17) by the constraint ¥2(A4) < Fmax that im-
plies (17). This yields the following tractable optimal
experiment design problem:

argmaxg 4 §
s.t. Pgl(Aa éinzt) 2 g Radm (50)
and u(A) < tmax and FUP(A) < Fmax

where u(A) can be computed via Proposition 3 and
¥ub(A) via Proposition 4 or via Proposition 6. The op-

timization problem (50) is a constrained* non-convex

* The first constraint of (50) can be removed by considering
as objective function 1/Amax (Pg(A7 Oinit) Radm).



optimization problem which can, e.g., be addressed with
a SQP algorithm (this algorithm is, e.g., implemented in
the Matlab function fmincon). Since (50) is non-convex,
the SQP algorithm is not guaranteed to yield the global
optimum and the performance of this algorithm will de-
pend on its initialization (that must be close to the global
optimum). In Section 5, we will propose two approaches
to initialize the SQP algorithm for (50). These two ap-
proaches will yield an amplitude vector A,p, that ap-
proaches the solution of the optimization problem (50)
(or the original optimization problem (18)).

4.2 Unconstrained optimization problem equivalent

to (50)

In this section, we will show that (50) can be trans-

formed into an unconstrained optimization problem. For
this purpose, let us first determine the solution of (50)
in the direction of a given vector A,,.
Proposition 7 Let us consider the optimization prob-
lem (50) where we restrict attention to amplitude vec-
tors A that can be written as A = kA, with a positive
real scalar k > 0 and with a given vector A, (e.g., a
normalized vector such that AL A, = 1). Then, the solu-
tions Aopt(Ay) and Eopt(Ay) of this particular optimiza-
tion problem are given by

Aopt (Au) = Kopt (Au) Au (51)
Eope(4s) = 1
opt u) — ~
: )\ma:v <P9 ("iopt (Au) Au7 eznzt) Radm)
(52)

with Kopt(A) a function defined as follows for any ampli-
tude vector A:

o . ﬁmax ymax
Fopr(4) = min <u<A> ! yalz(A))

where min(x,y) is equal to x when x <y and is equal to
y otherwise.

Proof. Let us consider two amplitude vectors A; = k1 A4,
and Ay = koA, with k; and ko two scalars such that
k1 > Ko > 0. For these two amplitude vectors, we have
that Pgl(Ahéim-t) > Pgl(Ag,éimt). This means that
the optimal value of the amplitude vector A = kA,
will be characterized by the largest value of K > 0 such
that u(kA,) < Tmax and Y2 (kA,) < Fmax. Since
u(kA,) = ru(A4,) and $b(rA,) = KFUE(A,) (see Ap-
pendix C), this largest value of k is clearly equal to
Kopt(Ay) (see (53)). The expressions (51) and (52) then
follow directly. [ ]

(53)

As indicated in the proof of Proposition 7, Kepi(Ay,)
(see (53)) is the largest value of x > 0 such that both
u(kAy,) < tmax and Y92 (kA,) < Fmax. Consequently,
the scaled vector A, (A,) (see (51)) satisfies either
u(Aopt(Ay)) = Gmax OF j’;lvg(AOPt(Au)) = Ymax-

Proposition 7 gives the solution of (50) in a given di-
rection A,. In Proposition 8, we will see that the de-
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termination of the optimal direction can be formulated
as an unconstrained optimization problem. For this pur-
pose, we need to parametrize the set of all possible di-
rections. Let us for this purpose introduce the vector
© = (01,92, ..., p21_1) " containing 2 — 1 angles and let
us (Lieﬁne7 based on ¢, the following unit vector A, () €
R=:

cos(¢1)
sin(p1)cos(p2)
(54)

sin(p1)...sin(p2r—2)cos(par—1)

sin(p1)...sin(p2r—2)sin(p2r—1)

The vector ¢ corresponds to the spherical coordinates of
the vector A, (¢) and we have that the set {A,(¢) | ¢ €
R?L=1} is equal ® to {A, € R?E | ATA, =1} [4].

Using this parametrization and Proposition 7, we
can now propose the following equivalent formulation
of (50).
Proposition 8 Consider the function kop(A) defined
based on the computable quantities u(A) and yUP(A)
(see (53)) and the parametrization A, (p) of the normal-
ized amplitude vectors A, (see (54)). Then, the solutions
Aopt and Eope of the optimization problem (50) are given
by

Aopt = Kopt (Au(@opt)) Au(@opt)

1
)\max (P9 (Aopt7 évﬁnit) Radm)

where Qopt 15 the solution of the following unconstrained
optimization problem:

(55)

gopt - (56)

arg min
pER2L-1

)\max (PO(Kopt(Au(SO)) Au(‘p)a eznzt) Radm) .
(57)
Moreover, the optimum Aoy given in (55) satisfies either
u(Aopt) = Umax OT 5":;1‘/2 (Aopt) = Ymax-
Proof. Each amplitude vector A is entirely character-
ized by its direction A, (¢) (parametrized by the vec-
tor ¢) and its norm & i.e., A(k, @) = kA, (¢). Recall that
Proposition 7 gives the optimal value of k for each di-
rection Ay (). It remains thus to determine the optimal
direction (or equivalently the optimal value of ¢) i.e.,
the value of ¢ yielding the maximal value of £, (Awu(¢))
(see (52)). This is exactly the objective of (57). The ex-
pressions (55) and (56) then follow from an application
of Proposition 7 for A, = A,(@op:) and the last state-
ment of the proposition is a consequence of the defini-
tion (53) of Kopt(A) [ |

° It is in fact sufficient to restrict the angles ¢; (i =
1,...,2L — 2) to the interval [0, 7] and the angle p2r,—1 to
the interval [0, 27].



The unconstrained non-linear optimization prob-
lem (57) can be addressed using a classical gradient-
descent algorithm (such algorithm is, e.g., implemented
in the Matlab function fminunc). Since (57) is also non-
convex, the gradient-based algorithm is not guaranteed
to yield the global optimum and the performance of
this algorithm will depend on its initialization (that
must be close to the global optimum). Like for (50), we
can here also use the procedures of Section 5 for this
initialization.

In the numerical simulations that we have performed
with Matlab (see Section 6), we have observed that
the gradient-based algorithm (Matlab function fmin-
unc) used to solve (57) and the SQP algorithm (Matlab
function fmincon) used to solve (50) yield the same
optimum when initialized at the same point, but the
gradient-based algorithm yields this optimum in less
computation time.

Remark. Let us denote by ¢, the (local or global)
minimum to which the gradient-based algorithm
used to solve (57) converges and let denote by Aj,
the corresponding amplitude vector ie., Ay, =
Kopt (Au(@im)) Au(pim) (see (55)). Due to (53), the
constraints (16) and (17) are satisfied at A;,, and we
have that either u(Az,) = Umax OF Y22 (A1m) = Vmax-
Note that, due to Assumption 1, the constraint (6) is
also satisfied for this amplitude vector A;,,.

5 Two approaches to initialize the algorithm
used to solve the non-convex optimal experi-
ment design problem

5.1 Introduction

In order to initialize the algorithm used to solve the
non-convex optimal experiment design problem, we pro-
pose two approaches yielding amplitude vectors Agp,
close to the solution of the optimal experiment design
problem (50) (or equivalently close to the solution of (18)
from which (50) follows).

5.2 Semi-definite relazation inspired from [21]

In [21], an experiment design problem with ampli-
tude constraints is considered for the case where the
excitation signal is parametrized via the N elements
u[n] (n = 0,...,N — 1) of the excitation sequence. Let
us adapt the framework of [21] to the (more compact)
parametrization of the excitation signal u(t, A) based on
the amplitude vector A of dimension 2L (which is gen-
erally much smaller than N). The optimization prob-
lem (18) can be reformulated as follows:

arg max
g A§

)

L
s.t. <Z M (w;, éznlt) (a?,s + a7,2',c)> + Mv(éinit) > & Radam
i=1
(58)

and ZL(t) AAT Z,(t) < Uoax VEE TP
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and Z, (t,0) AAT Z,(t,0) < Frax Vt € Tp and ¥0 € Upns

where Z,,(t) = (sin(w1t), cos(wit), sin(wat), ..., cos(wrt)) T
and

g(wr,, 0) cos(wrt + d(wr,, 0))

In order to deal with the amplitude constraints that
have to be satisfied for all t € T in (58), we will here for
simplicity use a gridding approximation i.e., we will only
impose the amplitude constraints at the time instants in
a fine grid T},;4 of Tp. A similar gridding approximation
will be used (as proposed in [21]) to address the fact
that the output amplitude constraint has to be satisfied
for all § € Ujp;:. For this purpose, we will consider a set
Ogriqa containing a number of grid points 8; € Uspiz.

Let us now notice as in [21] that, in the optimization
problem (58), the matrix X = AAT is a positive semi-
definite matrix with rank(X) = 1. Let us also notice
that ai s and ai . (variables appearing in the expression
of Py) are also entries of the matrix X. Using this fact
and the approximations introduced in the previous para-
graph, (58) can be reformulated as follows:

arg max (59)
£,X=XT>0
L
s.t. ZM(M, Oinit) (X2i—1,2i—1+X2i,2:)+ My (Oinit) > ERadm
i=1
(60)
and ZiL (t) X Z,(t) < Gax Yt € Tyria (61)

and Z] (t,0) X Z,(t,0) < Jrmax Vt € Tyria and V0 € Oyriq
(62)

and rank(X) = 1. (63)

In (60), we use the notation X;; for the entry (i,7)
of the matrix X. Similarly as was observed in [21],
the optimization problem (59)-(63) would be an LMI
optimization problem in the absence of the rank con-
straint (63). The relaxation proposed in [21,19] is to
solve the optimization problem by neglecting the rank
constraint (63) i.e., to solve the optimization prob-
lem (59)-(62). As shown in [19], the optimal solution
Xopt of this optimization problem allows to derive, via
a randomization procedure, an amplitude vector Agp,
that approaches the solution of the original optimiza-
tion problem (59)-(63). We will here slightly modify this



randomization procedure to compensate for the approx-
imations introduced by the use of Ty,;q and ©4;.;q. This
will be achieved by the use of the computable quantities
u(A) and yuP(A) (see Section 3).

The randomization procedure is as follows: we gener-
ate a number ng,iq of possible A according to a normal
distribution A (0, X,,¢) as proposed in [19]. We then ap-
ply Proposition 7 to each of these A i.e., for each A, we
determine, in the direction of A, the solution of the opti-
mization problem (50) (i.e., the non-convex optimization
problem of which A, has to be close to the solution and
that is formulated without gridding approximations).
This procedure yields ng;q values Ascarea = Kopt(A)A
and ngriq values of &, (A) (see (52)). The amplitude
vector Agpp approaching the solution of (50) is then cho-
sen as the value of Ag.qieq corresponding to the highest
value of &1 (A).

Due to the use of Proposition 7 in the randomiza-
tion procedure, we have the guarantee that the con-
straints (16) and (17) are satisfied for this amplitude
vector Agqpp and also that either u(Aqpp) = Umax OF
ygvlé(Aapp) = Ymax-

5.8 Use of power constraints instead of amplitude con-
straints

The second approach consists in solving an optimal
experiment design problem with power constraints in-
stead of amplitude constraints. The considered power
constraints are P(u(t, A)) < G2, and P(§(t, A,0)) <
¥2,ax V0 € Ujniy where P(x(t)) denotes the power of the
signal z(t). We therefore consider the following optimal

experiment design problem:

argmaxe ¢ €
L

s.t. ZM(wi,éN) ¢ + Mv(éN) > & Rogm and

=1
L
=2
E ¢ < Umax
=1

L
Zci ‘G(ejwiTsvé)‘Q < yfnax Vé € Uinit~
i=1

(64)

(SIS

N|—=

where ¢; = af, +af, (i = 1,.,L) and C =
(c1,¢,...,c)T. Using the results in [7], this opti-
mization problem can be transformed into an LMI
optimization problem yielding an optimal solution
Copt = (P, cP o, cP)T. We can here also use a
randomization procedure to determine, based on ¢
(¢ =1,...,,L), an amplitude vector A, approaching the
solution of the original optimal experiment design prob-
lem (50). Let us for this purpose generate a number 74,4
of possible A satisfying a7 , + a7 . = <Pt o(i=1,..,L).
Then, as in the previous subsection, we apply Proposi-
tion 7 to each of these A. This procedure yields ngiq
values Agcated = Kopt(A)A and ngriq values of &£, (A)
(see (52)). The amplitude vector A,p, approaching the
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solution of (50) is then here also chosen as the value of
Ascatea corresponding to the highest value of £, (A).
Like in the previous subsection, the use of Proposi-
tion 7 in the randomization procedure gives the guaran-
tee that the constraints (16) and (17) are satisfied for this
amplitude vector A,p, and also that either u(A,p,) =
Umax O y’;lvlé (Aapp) = ¥max-
6 Numerical illustration
We consider an OE true system (3) with:
00,12 400,222

G(2,600) = 156, =T+ 00.05-7
H(Z,e()) =1
where 90 = (00,1,00,2,90,3,00,4)T = (08988,01034,
—0.9723,0.8385)T and 02 = 1. The sampling rate

is Ts = 1 s. The amplitude constraint thresholds
are Umax = Ymax = 1. The initial uncertainty

region Ujpe in (10) is characterized by Oimit =
(0.8 0.01 — 0.9854 0.8187)7, y = 9.49 and

0.3150 0.1885 —0.4652 0.2692
0.1885 0.3150 —0.9327 —0.4652
—0.4652 —0.9327 4.1346 2.4499
0.2692 —0.4652 2.4499 4.1346

-1 3
P@,init =10

We wish to design a multisine excitation u(t, A) (see (1))
of fundamental frequency wy = 0.17 rad/s (the period is
thus 20 s) and containing L = 3 frequencies i.e., w; = wo,
wo = 3w and w3z = Hwg. To design the optimal ampli-
tude vector A of u(t, A), we consider the optimal experi-
ment design problem (50) corresponding to an identifica-
tion experiment of duration N = 1000 and where Ryqm
is chosen equal to Iy. Moreover, for the first part of this
numerical example, we will use Proposition 4 to compute
the upper bound ¥4P(A) for ¥we(A) (which appears in
the constraints of (50)). Since Ryam = I4, the objective
function € of (50) is equal to Apin (P;l(A, ézmt)) which
is clearly a measure of the accuracy of the identified pa-
rameter vector N-

Since, in this example, determining the optimal mul-
tisine with (57) takes twice less time than with (50),
we will from now on consider the equivalent formula-
tion (57) of (50). The gradient-based algorithm (imple-
mented in the Matlab function fminunc) has been here
used to solve (57). An amplitude vector A;,,, can easily be
determined from the solution ¢;,, of this algorithm (see
the remark at the end of Section 4). For all the initial-
izations discussed in the next paragraph, the gradient-
based algorithm yielded amplitude vectors Ay, for which
the objective function of the optimal experiment design
problem® i.e., Apnin (Pgl(Alm, ézmt)) is equal to 187.87.
These amplitude vectors A;,, are thus equivalent from

5 We here consider the objective function of (50). The ob-
jective function of (57) is its inverse.



the point-of-view of the considered optimal experiment
design problem. This equivalence can be explained by
the fact that the corresponding multisines u(t, A,,) are
just time shifted versions of each other. In the sequel,
we will therefore only consider one of these A;, i.e.,
(—0.0688,0.2212, —0.0662, —0.0120, —0.5075, 0.4621) T

As mentioned in the previous paragraph, we have con-
sidered different initializations for the gradient-based al-
gorithm. For this purpose, we have considered the pro-
cedures of Sections 5.2 and 5.3 where, in the randomiza-
tion procedure, the upper bound yu2(A) for Fwe(A) is
also computed via Proposition 4. Note furthermore that,
in our implementation of the procedure of Section 5.2,
Tyriq contains 201 linearly-spaced points in Tp and O 444
only contains O;nie for simplicity. For both approaches,
we have run the randomization procedure twice i.e., once
with ng,;¢ = 100 and once with ng.;q = 2000. This has
led to four amplitude vectors A,,,. The values of the
objective function A,in (P, 1(Aapp7 ézmt)) for these four
Aqpp are given in Table 1.

Table 1 A
Objective function )\mm(Pg_l(Aam77 Oinit))

Cases /\mm(Pg_l (Aapp, ézmt))
Section 5.2 with ngrq = 100 159.59
Section 5.2 with ngriq = 2000 171.38
Section 5.3 with ngrq = 100 164.69
Section 5.3 with ngriq = 2000 168.33

With respect to the four A,p, in Table 1, the am-
plitude vector Aj,,, obtained by solving (57) using the
gradient-based algorithm improves the objective func-
tion with at least 10% since )\,,Lm(Pe_l(Alm,é“,it)) =
187.87. In this example, we therefore observe that the ini-
tialization procedure gives amplitude vectors A,p, that
are relatively close to Ay, but also that it is useful to im-
prove the result of this initialization procedure with (57).
In this example, the robustness of the gradient-based
algorithm used to solve (57) is important. To show this,
we have also initialized this algorithm with a vector
in the direction A, = (1/v/6)(1,1,1,1,1,1)T. This di-
rection is far from optimal since Kop(Ay)A, yields an
objective function Amin(Py  (Kopt (Au) A, init)) = 7.92
which is much smaller than the values in Table 1. How-
ever, initialized with this A,, the gradient-based algo-
rithm also yields an amplitude vector A;,, for which

Amin(Py  (Apm, Oinit)) = 187.87.

Let us now analyze a bit more the amplitude
vector A;, = (—0.0688,0.2212, —0.0662, —0.0120,
—0.5075,0.4621)7 delivered by the gradient-based algo-
rithm used to solve (57). Using Proposition 3, we obtain
u(A;,) = 0.9385 which is indeed the maximal value of
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(b Aym)| for t € Tp. Using Proposition 4, we obtain 7
YuP(Aim) = 1. As expected (see the remark at the end
of Sectlon 4), for Ay, one of the amplitude constraints
is active (here the output amplitude constraint). Let us
now investigate the conservatism of the upper bound
for ¥we(Apm) computed with Proposition 4. For this
purpose, we also compute a lower bound for ¥we(Am)
using the procedure given in the remark at the end of
Section 3. This leads here to 0.986477 < ¥we(Aim). The
conservatism linked to the LMI procedure of Propo-
sition 4 is thus less than 1.4 % (which is small). Let
us nevertheless see if a tighter upper bound can be
obtained via Proposition 6 with, e.g., b = 1. This is
indeed the case since Proposition 6 with b = 1 yields®
FUb(A;m) = 0.986550: the conservatism is now less than
0.007 % (and thus negligible).

We have tested Proposition 6 with b = 1 for a
number of other A and the observed conservatism
is always negligible. Consequently, one can now con-
sider a version of the optimal experiment design prob-
lem (50) (or its equivalent (57)) where the upper
bound for ¥we(A) is obtained using Proposition 6
(b = 1). Due to the reduced conservatism, this new
version is closer to the original optimal experiment
design problem (18). The solution of this modified
optimal experiment design problem in the direction
of Ajy, (which was the best solution when Proposi-
tion 4 was used) can be determined via Proposition 7.
In our case, this solution is A pis = Kopt(Aim) Aim
with Kopt(Aim) = min(1/0.9385,1/0.986550) ~ 1.014.
With Alm,bis> we obtain Amin(Pgl(Alm,biS79init)) =
193.02, u(Am,pis) = 0.9507 (via Proposition 3) and
FUb(Apnpis) = 1 (via Proposition 6 with b = 1). One
can wonder whether another direction than the one of
Ay, could be more optimal. For this purpose, we run
the gradient-based algorithm to solve this new version
of (57) with an initialization in the direction of Ay,.
This does not improve the result. Consequently, if we
restrict attention to the tools developed in this paper,
u(t, Aim pis) seems the optimal multisine.

7 Conclusions

We have developed a methodology to tackle the prob-
lem of optimal experiment design with robust amplitude
constraints. The developed framework allows to handle
these robust amplitude constraints without approxima-
tion when the identification is performed in open loop
and when the considered true system has one input and
one output. In future work, we will extend the frame-
work to closed-loop identification and to multivariable
systems.

7 Note that the maximal value of |(t, Aim, éim't)| fort e Tp

is 0.7425 (Ginir is the center of Uinit).

8 Note that solving the LMI problem of Proposition 6 with
b = 1 takes 16 times more time than solving the one in
Proposition 4. This is the reason why Proposition 4 was used
in the earlier phase.
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A Structure of B, D, P, Z in Proposition 2

As shown in [2], the real matrices B and D in the
expression of ¥ have the following structures:

0 Ki» Kir
B _ —Ki2 O
Ki-1L
—KiL —Ki-nL 0
Ri1 Ri2 ... Rir
- Ri2 R22 ... Rap
D=
Rip Ror ... Rrr

with the constraints that all blocks KZ resp. Rzl satisfy
Ky = —KL € R*** (vesp. Ry = —R}, € RF*¥). The
matrix P (resp. Z) has a similar structure as B (rebp. D),
but with the skew-symmetric blocks replaced by row
vectors of dimension & [2].

B Proof of Proposition 5

The proof is rather straightforward. When we per-
form the product U*(7)P¥(7), we indeed obtain a ma-
trix having the structure (34) for any value of 7 € T.
More precisely, the matrix @ in (34) is given by (B*(7) ®
INAB(T)®IL) = Qo+ QT+ Q57" + ...+ Qur + Q7"
It is clear that this matrix is Hermitian for all 7 € T.



The additional condition in the statement of the theo-
rem ensures that this Hermitian matrix is also positive
semi-definite for all 7 € 7. When we perform the prod-
uct U*(7)PP(7), the matrix jD in (34) is given by

0

nT

- - - - D
4D = jDo + (0, Dy, ..., Dy) (B® Iry,) + (B* ® I'rk) !

Dy
The right hand side of this expression is equal to jDo +
Di(T — 7%) + ... + Dy(r — (7°)*) since D; = —DF
(i = 1,...b). It is clear that this expression has indeed
the desired structure since 7¢ — (7%)* (i = 1,...b) is an
imaginary number for all 7 € T. In ¥*(7)PU(7), the
matrix jZ in (34) is given by 0

A4
G2 =320+ (0,21, ... Z) BRIe)— (B @) | 7

Zy

The right hand side of this expression is equal
to jZo + Zi(t — ) + ... + Zp(r® — (7°)*) which
has thus also the desired structure. Following the
same procedure, the matrix B in (34) is given by
2By 4 Bi(1 +7%) + ... + By (7" + (7%)*) since B; = BY
(¢ = 1,..b) while the matrix P in (34) is given by
2P+ Py (T+7%)+...4+ Py (7% 4 (7%)*). These expressions
have the desired structure since 7¢ + (74)* (i = 1, ...b) is
a real number for all 7 € 7. From the above expressions,
the last statement of the proposition is straightforward.

Remark. In Proposition 1 of [6], we proposed a less
general parametrization for P where the matrices Q;
were restricted to be real matrices, the factorizations of
3§D was reduced to Dy (7 —7%) + ... + Dyp(7° — (7°)*) and
the one of jZ to Z1 (1T — 7*) + ... + Zy(t" — (79)%).

C Last steps of the proof of Proposition 7

That u(k4d,) = ru(4,) follows from the defini-
tion (14) of ugA). That Fwe(kAy) = K¥we(Ay) also
follows from (15). That ¥ub(kA,) = xkFuP(A,) can be
derived by considering the proof of Proposition 4 and,
in particular, the inequalities (39) and (40). Note in-
deed that the existence of Hép Hiw »! and X2 such
that (39) and (40) hold for all 7 € T and for all § € Uy,
is equivalent to the existence of IT3 , II% , ¥3 and ¥*

such that the following inequalities hold for all 7 € T
and for all 0 € Uj;p,:

9y Moy g+ 95 2° g5 + Re(k A"V(7,0)) < K Ymaz
—F Ymaz < —g5 s, g — g5 S* g5+ Re(s ATY(7,0)).

We can indeed choose II3 = &II}, , I} = kIIZ ,
¥3 = kX! and B% = k%2, An element of II,, (resp. X)
multiplied by a positive scalar constant is indeed another
element of IT, (resp. ¥). A similar reasoning can also
be applied to the inequalities (48) and (49) in the proof

of Proposition 6.
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