
HAL Id: hal-04247860
https://hal.science/hal-04247860

Submitted on 18 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Taming the Diversity of Computational Notebooks
Yann Brault, Yassine El Amraoui, Mireille Blay-Fornarino, Philippe Collet,

Florent Jaillet, Frédéric Precioso

To cite this version:
Yann Brault, Yassine El Amraoui, Mireille Blay-Fornarino, Philippe Collet, Florent Jaillet, et al..
Taming the Diversity of Computational Notebooks. SPLC 2023 - 27th ACM International Systems and
Software Product Line Conference, Aug 2023, Tokyo, Japan. pp.27-33, �10.1145/3579027.3608974�.
�hal-04247860�

https://hal.science/hal-04247860
https://hal.archives-ouvertes.fr


Taming the Diversity of Computational Notebooks
Yann Brault

yann.brault@etu.univ-cotedazur.fr
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France

Yassine El Amraoui
yassine.elamraoui@ezako.com

Université Côte d’Azur, CNRS, I3S,
Ezako

Sophia Antipolis, France

Mireille Blay-Fornarino
mireille.blay@univ-cotedazur.fr
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France

Philippe Collet
philippe.collet@univ-cotedazur.fr
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France

Florent Jaillet
florent.jaillet@univ-cotedazur.fr
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France

Frédéric Precioso
frederic.precioso@univ-cotedazur.fr
Université Côte d’Azur, Inria, CNRS,

I3S
Sophia Antipolis, France

ABSTRACT
In many applications of Computational Science and especially Data
Science, notebooks are the cornerstone of knowledge and experi-
ment sharing. Their diversity is multiple (problem addressed, input
data, algorithm used, overall quality) and is not made explicit at
all. As they are heavily reused through a clone-and-own approach,
the tailoring process from an existing notebook to a specific prob-
lem is cumbersome, error-prone, and particularly uncertain. In this
paper, we propose a tooled approach that captures the different
dimensions of variability in computational notebooks. It allows
one to seek an existing notebook that suits her requirements, or to
generate most parts of a new one.

CCS CONCEPTS
• Software and its engineering → Software product lines; •
Computing methodologies→ Machine learning.

KEYWORDS
computational science, software variability, clone-and-own

1 INTRODUCTION
The development of Machine Learning (ML) brings multiple new
challenges to the scientific community, including the discovery,
reuse, and production of ML models [26, 41]. Designing a new
ML model to solve an industrial ML task involves a series of it-
erations. These iterations consist in collecting data and business
requirements from the domain expert, analyzing the data, trans-
forming them accordingly to the domain expert’s insights, then
evaluating different workflow configurations [4, 40]. Besides code-
sharing platforms such as GitHub or GitLab, many supporting
environments aim to rationalize the ML life cycle, particularly by
promoting the sharing of ML models. Thus, widely used platforms
such as OpenML [37] or ModelDB [25] allow the specific sharing
and discovery of ML models by scientists. Notebook sharing, more
specifically, is widely supported by popular platforms such as Kag-
gle1 (over 400K notebooks today), Google Colab2, Jupyter Notebook,
JupyterLab3, or Baidu AI Studio4.

1https://kaggle.com/
2https://colab.research.google.com/
3https://jupyter.org/
4https://aistudio.baidu.com/aistudio/index

Building effective data science systems is a challenging sociotech-
nical endeavor that involves both technical and human work [28].
Designing a universal solution that canwork for anyMachine Learn-
ing (ML) problem specification is not possible due to the high com-
binatorial diversity of both data [7] and business requirements [15].
Additionally, the pool of available ML solutions is continuously
growing, making it increasingly difficult for data scientists to nav-
igate this "wilderness" of possibilities [12, 41]. Consequently, a
data scientist may, for the same problem, try several preprocessing
libraries, several types of models (e.g., decision trees and neural
networks), and even multiple frameworks for the same type of
model (e.g., TensorFlow and PyTorch) [41]. A recent study [22]
highlights the importance of code reuse in notebook production,
with 18% of participants’ time spent searching for code samples
online. Duplication and reuse of code rely on tutorials or APIs and
various sources because solutions are problem sensitive, and the
field is evolving rapidly.

To the best of our knowledge, search options to retrieve note-
books are mostly based on a textual search (on domain keywords,
benchmarks/competitions, machine learning artifacts, language,
author, or dataset), possibly using ontologies as in the case of Mod-
elDB [25]. Such search options could lead to various types of er-
rors. For example, in the case of searching notebooks by keywords,
this can result in an overwhelming number of notebooks, some of
which are not even related to the field, without the problem being
addressed. The key issue is then to reduce the solution space to
the suitable solutions only. In this context AutoML-like approaches
and recommender systems will learn from the past runs to find
one best solution only according to the datasets, while this solu-
tion may not fit the current requirements [15]. Instead, we believe
that a data science tool support could provide guidance in finding
an appropriate set of solutions taking into account both datasets
and requirements. It should provide a comprehensive view of the
data science landscape, including the solutions already developed
and their applicability to different problem specifications. Conse-
quently, it should help them identify the effective solution set for
their problems.

Facing the issues of clone-and-own in computational notebook
usage (cf. section 2) this paper describes emerging ideas along with
a possible tooled approach for resolving them. It captures the dif-
ferent dimensions of variability in computational notebooks and
distinguishes two layers (cf. section 3). The upper layer focuses

https://orcid.org/0000-0003-3781-9514
https://kaggle.com/
https://colab.research.google.com/
https://jupyter.org/


Brault et al.

on the problem’s configuration (including data and business re-
quirements), and the lower layer handles the solution retrieval. The
adequacy of a notebook to a new problem is then more related to
the problem encountered than to the keywords that define it. Our
approach thus allows covering scenarios inspired by real cases (cf.
section 4), such as retrieving a notebook if it exists or generating a
new one depending on the configuration matching.

2 CONTEXT
The term Data analysis corresponds to an iterative and exploratory
process aiming to extract information from data. Small changes in
how data is collected, annotated, cleaned, or processed may lead to
different results. Data scientists must document their data analysis
and processing stages. This is even more crucial if someone else
has to understand, maintain, or trust the initial work [33]. In this
context, notebooks have clear benefits by providing storytelling
through cells of code intertwined with inline documentation. Data
scientists have widely adopted computational notebooks, even at
the heart of the internal data analysis infrastructures of companies
such as Netflix or IBM.

This success is due to a combination of code, result visualizations,
and textual documentation, all in a single document. The most
famous implementation is the Jupyter Notebook, an open-source
project, motivating share and reuse [30]. However, the freedom
offered by notebooks and the iterative and exploratory nature of
building ML workflows affect their reusability. Several reasons
have been devised, such as a need for more documentation on the
workflow [21, 38], the difficulty of replicating the experiment, [39]
and the diversity of problems. To tackle this, data scientists only
clone the relevant parts and use them in their own workflows [22],
thus following the clone-and-own practice [11, 20, 23, 32]. While
data scientists find the same advantages in this approach as in
previous empirical studies [11], the experimental nature of ML
makes the approach even more compelling.

Cloning saves time, especially by helping to prepare data and
fix parameters. Therefore, the ability to clone a notebook is crucial.
The autonomy provided by cloning becomes essential in ensur-
ing adaptability to new problem domains. Despite the advantages
of the autonomy offered by cloning, managing the integration of
cloned artifacts, such as cells or code segments, can be challeng-
ing, as it can result in an inappropriate combination of algorithms
and impede the reuse process. Creating appropriate workflows re-
mains challenging [3], as the interactions between current data,
algorithm composition, and business requirements are substantial
and not always well-understood. Passi and Sengers observed in [29]
that "building data science systems and making them work requires
enormous subjective judgment". Data scientists rely on their famil-
iarity with specific algorithms to choose the solution component
compositions, even though identifying the preconditions for using
these compositions can be challenging. Sculley et al. summarize
these interactions as "changing anything changes everything" [34].
Therefore, it is not about defining configuration workflows as in
[1, 2], as they do not align with the practices and needs. Instead, our
approach aims to address the solution search process as a whole.

Figure 1: Functional overview of our approach

In summary, the development of computational notebooks by
clone-and-own is a natural, necessary, and at the same time, a com-
plex approach [22] involving heavy, error-prone, and particularly
uncertain activities.

3 TAMING THE DIVERSITY
The field of ML is constantly evolving and highly diverse, which
makes comprehensive domain engineering practically impossible.
Therefore, we represent the variability of the domain and reason about
it while recognizing that our knowledge is inevitably incomplete, both
in analyzing the domain and in identifying the problem to be solved.

When facing a new problem, the suitability of a composition
should be determined based on the triplet of data, business require-
ments, and ML artifacts compositions; a single requirement can
render a composition unsuitable, while a composition can often
be adapted to solve problems in different domains. Therefore, it
is essential to maintain relations and constraints between the note-
books (products) and their initial experiment specifications (variability
configurations) while considering that the product space continually
evolves. An existing notebook (product) may only sometimes match
new specifications (configurations).

3.1 Process overview
The main steps of our approach are summarized in Figure 1. The
data scientist plays an active role in problem-solving by creating
a configuration and exploring the repository of past experiments
aligned with the problem’s specifications. During the configuration
process, the data scientist specifies the characteristics of her dataset
and her business requirements, and selects the relevant ML arti-
facts that match her problem. When the configuration is complete,
she can either clone an experiment (and notebook) with a similar
problem specification or generate a new notebook if such a product
does not exist. In the following, we detail our approach and refer
to Figure 2 to explain the relationships between the spaces. We use
italics to emphasize examples.

3.2 Domain variability model
The configuration of the domain variability model is done by the
user during the step of Configuration, in the Figure 1. However, it
is the user’s choice to define in which order she wants to configure
the domain. In any case, the retrieval of an experiment or a notebook
is performed simultaneously (cf. Figure 1 as each user selection is
propagated in the constraint system in order to reduce the space of
suitable solutions).



Taming the Diversity of Computational Notebooks

We rely on simplified examples of feature models in the domain of
anomaly detection in time series to illustrate our points (cf. Figure 4).
Some constraints connecting these spaces are illustrated in Figure 4e,
with the corresponding arrows in Figure 2 denoted by circled numbers.

3.2.1 Initial data. InitialData submodel characterizes the space
of initial datasets. The data scientist configures this submodel
through semi-automatic data analysis and manual selection of prop-
erties that depend on expert knowledge, such as the nature of miss-
ing values.

Figure 4a illustrates this submodel emphasizing the availability
of data labels or annotations, the data type (which could comprise
image data such as sound spectrograms) and the normalization status
of the data prior to analysis.

3.2.2 Business requirements. BusinessRequirements submodel
captures requirements, such as limited memory usage to comply
with hardware constraints. The data scientist configures this sub-
model through a manual selection of requirements. While the initial
data space does not impose restrictions on other feature models,
specificities regarding the initial data, such as sampling rates, can
be included as part of the business requirements. This dependency
is illustrated by arrow 1 in Figure 2.

Figure 4b illustrates this submodel highlighting three significant
considerations. Firstly, the deployment platform during production
should be taken into account, especially if it involves microcontrollers
for embedded models. Secondly, an understanding of potential devi-
ations between anomalies observed in the production environment
and those represented in the training data is crucial. Lastly, experts’
interest in the types of anomalies, such as outliers or single point
amongst others should not be overlooked.

3.2.3 ML artifacts & states. MLArtifacts submodel organizes the
algorithmic hierarchy and specifies the types of workflows used
during the learning and deployment phases (e.g., active learning
workflow). On its side, the States submodel represents the different
stages that the data passes through, with preconditions and the
impact of ML artifacts expressed through constraints relative to
each state. For example, an algorithm may require the data to be
in a scaled state without necessarily needing that state to be the
initial one. The MLArtifacts submodel is manually configured by
the data scientist based on their specific problem and preferences.
In contrast, the States submodel is only configured through the
propagation of information about the data and ML artifact choices.

The separation of concerns in the ML artifacts model and Busi-
ness Requirements model (arrow 4 in Figure 2) facilitates this man-
agement of evolution. Additionally, the state of the data depends
not only on its initial state (arrow 2) but also on its transformations
and processing throughout the ML pipeline (arrow 3). The interme-
diate Statesmodel plays a critical role in managing this variability
and ensuring the overall effectiveness of the ML solution.

Figure 4c illustrates the MLArtifacts submodel, while Figure 4d
illustrates the States submodel. MLArtifacts submodel comprises
three primary types of solution components. Preprocessing elements
such as mathematical transformations of time series, from time do-
main to frequency. Next, the algorithm components consist of features
such as neural networks, support vector machines, and tree-based
models. Finally, the postprocessing component exclusively includes

the Quantizing algorithm, which serves to reduce the model size and
facilitates embedding in microcontrollers.

3.3 Variability of realized products and assets
We use the vocabulary of Idowu et al. in [17] to present the assets
that enable us to find notebooks or generate a primitive version of
a new one5. We structure the application space into two main areas:
firstly, the code source and job assets, which represent possible
products (notebooks), and secondly, the already realized products
that we organize into variability subspaces ExperimentProducts
and NotebookProducts for easy retrieval and potential cloning.

3.3.1 Code source and job assets. Code Source and Job Assets are
the core of the generation (see Figure 1). They are mapped to the
MLArtifacts submodel, in order to maintain a mapping between
model and implementation. These assets do not contain the datasets
as they are not used in the generation process. Technical details on
generation are given in section 3.5.

Figure 2: Feature model spaces

5Some of the assets we use, such as the authors of the notebooks and the source
scientific articles, are not presented even if they help with the selection of notebooks
They are, however, not decisive to establish a matching between the specification of a
problem and the past ML artifacts, which is the focus of this paper.



Brault et al.

3.3.2 Experiments. An experiment artifact refers to a specific con-
figuration that defines the problem to be solved and the notebook
that implements the solution. Our platform automatically extracts
a representation of these artifacts and adds it to the variability sub-
model ExperimentProducts. Further details on this aspect will be
given in section 3.4. This model enables us to capture and orga-
nize the products produced by data scientists and facilitates the
search for past experiments. The ExperimentProducts variability
submodel is available from the configuration phase and allows for
quick identification of experiments addressing similar problems.

3.3.3 Notebooks. Data scientists can save updated notebooks along
with the experiments they are associated with. We capture a sim-
plified representation of each notebook in the NotebookProducts
variability submodel, which consists mainly of constraints (cf. sec-
tion 3.4). This submodel is accessible from the configuration phase
onwards. It enables rapid identification of notebooks that could
be cloned, or accelerates the configuration process by selecting
the most appropriate notebook for the problem at hand and by
automatically selecting ML artifacts. The constraints depicted by
arrows 5, 6, 7, and 8 support the identification of past products and
ML artifacts based on Domain variability model configuration.

All constraints that drive this interplay between the four FMs
capturing domain variability are provided by data scientists (indi-
cated by white arrows in Figure 2)6 All other constraints, from the
two FMs capturing previous products’ variability, are automatically
generated (indicated by arrows 5, 6, 7, and 8 in Figure 2).

3.4 Formal definition of the interactions
We provide here a formal explanation of how interactions with the
realized product variability model are defined.

Domain variability model. Configurations are our primary tool
for determining experiment context. Let J𝐹𝑀𝐷K be the set of valid
configurations of the domain variability model 𝐹𝑀𝐷 . In line with
the domain modeling, a configuration 𝑐 is composed of three sub-
sets : 𝑐 ∈ J𝐹𝑀K, 𝑐 = 𝑖𝑛𝑖𝑡𝐷𝑎𝑡𝑎(𝑐)∪𝑏𝑢𝑠𝑅𝑒𝑞(𝑐)∪𝑚𝑙𝐴𝑟𝑡 (𝑐)∪𝑠𝑡𝑎𝑡𝑒𝑠 (𝑐).

Partial configurations to specify ML problems. As we work on
experiments whose context is difficult to define and the SPL evolves,
some features about the initial data or business requirements can be
neither selected nor deselected, they are simply "unknown." A set
of features 𝑠 in a configuration can then be defined as three subsets
𝑠 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑠) ∪𝑑𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑠) ∪𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑 (𝑠). The intersection is
empty between these three subsets.

Experiments. An experiment 𝑒 is defined by a name 𝑛𝑒 , the ref-
erence to a notebook 𝑛𝑏𝑒 and a valid configuration 𝑐𝑒 , we note
𝑒 = (𝑛𝑒 , 𝑛𝑏𝑒 , 𝑐𝑒 ) where 𝑐𝑒 ∈ J𝐹𝑀𝐷K
The subsets 𝑖𝑛𝑖𝑡𝐷𝑎𝑡𝑎(𝑐𝑒 ) and 𝑏𝑢𝑠𝑅𝑒𝑞(𝑐𝑒 ) may have a non-empty
subset of undefined features. In contrast,𝑚𝑙𝐴𝑟𝑡 (𝑐) ∪ 𝑠𝑡𝑎𝑡𝑒𝑠 (𝑐) is
complete; all the features are selected or deselected.

Variability model of realized products. The domain of realized
products is defined by a set of experiments, 𝐸. The constraint system
uses the experiment’s name and the notebook’s name to select or

6Some of these constraints have been learned through the study of past experiments,
but always in interaction with the data scientist, while others related to states corre-
spond to the application of patterns upon the data scientist’s request.

Figure 3: Tool UI for Business Requirements configuration

deselect them, depending on the other features that characterize
the problem to be solved. The defined interactions are as follows.

∀𝑒𝑖 ∈ 𝐸, 𝑒𝑖 = (𝑛𝑒𝑖 , 𝑛𝑏𝑒𝑖 , 𝑐𝑒𝑖 ),
(arrow 6) 𝑛𝑒𝑖 ⇒ 𝑛𝑏𝑒𝑖 ,
(arrow 5) 𝑛𝑏𝑒𝑖 ⇒ Λ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑚𝑙𝐴𝑟𝑡 (𝑐𝑒𝑖 ) ),
(arrow 7) 𝑛𝑒𝑖 ⇒ Λ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑖𝑛𝑖𝑡𝐷𝑎𝑡𝑎 (𝑐𝑒𝑖 ) ) ∪ 𝑑𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑖𝑛𝑖𝑡𝐷𝑎𝑡𝑎 (𝑐𝑒𝑖 ) ),
(arrow 8) 𝑛𝑒𝑖 ⇒ Λ 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑏𝑢𝑠𝑅𝑒𝑞 (𝑐𝑒𝑖 ) ) ∪ 𝑑𝑒𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑏𝑢𝑠𝑅𝑒𝑞 (𝑐𝑒𝑖 ) ) .

The constraint corresponding to arrow 5 deselects a notebook
when an artifact used by the notebook can no longer be selected
and, therefore, the experimentation associated with it (arrow 6). By
restricting this constraint to the selected elements, it is possible to
keep a notebook as an aid to clone even though it lacks components.
The constraint (arrow 6) separates the deselection of the experimen-
tation relative to the notebook from the deselection of the notebook.
The two last constraints establish the correspondence between the
experiment, the specification of the business requirements, and the
initial data. Adding experimentation builds all the above constraints
automatically.

3.5 Tooling overview
Figure 3 depicts the tool interface developed based on Elias Kuiter’s
feature-configurator7. Data scientists use the Initial Data, Business
Requirements, and ML Artifacts tabs to configure their experiments.
Visualization, including questions, is achieved by associating fea-
tures with questions through a CSV file. The tool provides access to
past experiments and notebooks through the Past Experiments tab.
The generation step is accessible through the Tools Tab. Technically,
the generation of a totally new notebook is handled as such: Once
the user requests from the tool to generate the notebook, the genera-
tor is only given the MLArtifacts part of the configuration. It then
uses the mapping of the concerned submodel to Job Assets to find
the requested product implementations. Those implementations are
then copied into a data structure that represents the notebook cells.
This data structure is provided by Jupyter Python library designed
to programmatically generate Jupyter Notebook. It must be noted
that the choice of algorithms and ML workflows is considered part
of the configuration, allowing data scientists to select established
7https://github.com/ekuiter/feature-configurator

https://github.com/ekuiter/feature-configurator


Taming the Diversity of Computational Notebooks

algorithms [18]. This configuration at a level usually considered as
low [10] then automatically drives the configuration of business
requirements.

4 ILLUSTRATION
To evaluate our approach, we discuss two illustrative scenarios,
each one corresponding to a real-world case that has been sim-
plified to clarify the propagation principles. Still, they enable us
to demonstrate the capabilities of our approach. A reproduction
package of our tool covering the two scenarios is available as a
Zenodo artifact [9].

As explained in section 3.2 and illustrated in Figure 4c, the solu-
tion space comprises three primary types of solution components
(preprocessing elements, algorithm components, and postprocess-
ing components). As depicted in Figure 4d, the state space structure
is similar to the one of the initial data space. However, it captures
the current state of the data, which differs from the former in terms
of data properties that may change over time. For instance, con-
verting data from time series to a collection of spectrograms alters
the data type to images, thereby enabling the utilization of solution
components that may have been restricted before.

We then limit the space of realized products to two experiments
with their associated notebooks. XP1 is an experiment conducted
on non-labeled and non-normalized time series data of motor vi-
brations to detect acquisition errors in the data, specifically the
occurrence of single-point anomalies. The associated notebook
includes a normalization algorithm (e.g., MinMaxScaler) and an
LSTMAE-type neural network. However, due to the non-quantizable
nature of LSTMAE, this experiment cannot be embedded.

XP2, which refers to NB2, pertains to an experiment conducted
on partially labeled and non-normalized time series data of sounds
to detect identifiable malfunction anomalies in motor sounds with
abnormal patterns (e.g., patternAnomaly). The notebook associ-
ated with this experiment employs a spectrogram calculation to
transform data into the time-frequency domain, enabling better
detection of anomalies via (e.g., SFFT_createSpectrograms), nor-
malization via MinMaxScaler, and a CNNAE-type neural network.
This model was not embedded in a microcontroller.

4.1 Scenario 1: Retrieve and clone notebook
Objectives. With this scenario, we want to illustrate how our

approach differentiates itself from current practices. To determine
whether a solution to a similar problem already exists, the user
relies on her expert’s insight. Once the constraints are applied,
suitable solutions are proposed, enabling the user to choose an
experiment or ML components.

Unfolding the scenario: Lea, a data scientist, is taskedwith solving
an anomaly detection problem on a dataset of motor vibrations. She
must produce a solution that raises alarms when abnormal patterns
indicate a defect in the motor bearing:

Lea first configures the InitialData FM (cf. Figure 4a), speci-
fying the data type is TimeSeries, PartiallyLabelled, and not
NormalizedData. The given specification is sufficient to exclude Ex-
periment XP1, which dealt with motor vibration but was performed
on unlabeled data. However, this finding does not contradict the as-
sociated notebook, which employs an algorithm capable of handling

partially labeled data. The constraints represented by arrow 8 in Fig-
ure 2 were applied. Lea selects in the BusinessRequirements FM
(cf. Figure 4b) NovelAnomaliesEmergeInProd and identifies the
anomalies to be detected as patternAnomaly. Based on the current
state of the configuration, CNN and Resnet algorithms cannot be se-
lected anymore, as they are not suitable for handling new anomalies
in production (according to arrow 4 in Figure 2, i.e., constraints 6 and
7 in Figure 4e). At this stage, several experiments are compatible
with the current configuration. Lea then clones the experiment XP2
to work with it. As a result, she has been able to retrieve several past
experiments and notebooks by giving the system her configuration.
Thanks to the constraints model she has been able to clone one that
matches her problem.

4.2 Scenario 2: Generate a new notebook
Objectives. With this scenario, we want to illustrate the correct-

ness of the generative process, from the proposed code artifacts to
the generated notebook. In the case where none of the experiments
nor notebooks are reusable, we want to validate that our approach
leverages constraint system propagation to reduce the number of
unsuitable component compositions.

Unfolding the scenario. Lea is tasked with solving another anom-
aly detection problem. This time she has to use a collection of inline
process control measurements from various sensors during the pro-
cessing of silicon wafers for semiconductor fabrication. She must
build a solution that raises the alarm for faulty wafers.

Lea informs the data properties as being TimeSeries and
FullyLabelled. She also deselects NormalizedData as the data
are not normalized. No experiments are compatible with her data
configuration.As Lea knows that no new anomalies will arise during
the production use, she then deselects NovelAnomaliesEmergeIn-
Prod in the business requirements. Following a discussion with the
expert, she is able to determine that the series is irregular. Thus she
checks globalAnomaly. The two still available notebooks do not fully
meet the new requirements. The tool suggests available algorithms
that Lea can select. To compare the two models, Lea generates two
notebooks that share a MinMax scaling preprocessing, one notebook
featuring a CNN classifier and the other featuring a Resnet classifier.
She chose to conduct a generative process by picking machine learning
components. Only configuration-suitable features were provided to
her. In order to test several classifiers, Lea had to generate as many
notebooks.

5 CONCLUSION
In this work, we proposed a first tooled approach to tackle the
problem of diversity in computational notebooks. To help data sci-
entists tailor a notebook to their own problem, our approach uses
several variability models coupled with a constraint system. This
allows the user to get feedback according to the data and busi-
ness requirements of the new problem. The presented scenarios
demonstrated that the user can retrieve past experiments based
on problem configuration, or can totally tailor a new one. These
scenarios acknowledge the potential of the proposed solution. Fur-
thermore, an ongoing case study with an industrial partner will
assess the usefulness of the configuration process, and gives us



Brault et al.

(a) FM on Initial Data (b) FM on Business Requirements

(c) FM on ML Artifacts (d) FM on States

(1) CNNAE → ImagesState 3○
(2) CNN → (ImagesState ∧ FullyLabeledState) 3○
(3) ResNet → (ImagesState ∧ FullyLabeledState) 3○
(4) LSTMAE → TimeSeriesState 3○
(6) CNN → ¬NovelAnomaliesEmergeInProd 4○
(7) ResNet → ¬NovelAnomaliesEmergeInProd 4○
(10) QuantizeNN → microcontroller 4○
(11) FullyLabeledState → (FullyLabeled ∨ (PartiallyLabeled ∧ augmentation) ) 2○& 3○
(14) NormalizedDataState → (NormalizedData ∨ (¬NormalizedData ∧ NormalizeData) ) 2○& 3○

(e) Domain variability model set of constraints (f) Legend

Figure 4: Features and constraints

confidence that our findings will be soon applicable to various ma-
chine learning subdomains, considering a much broader domain
modeling.

We are pursuing two different complementary validation ap-
proaches to strengthen our results. First, we plan to enhance the
knowledge base through an empirical study by analyzing popular
notebook repositories to characterize similarities at various levels
and across different spaces, extracting the necessary information
for managing the SPL [19, 27]. To validate the approach’s effective-
ness in reducing the solution space, we are conducting comparisons
with autoML-like approaches and compared the results of novice
data scientists using the approach to solve given exercises in an
academic setting.

In the longer term, we aim to evolve the SPL by involving data
scientists in the enrichment process. This includes using automated
reasoning techniques based on past configurations [5, 14, 24, 35]
and exploring model evolution [2, 6, 13, 16, 36]. Additionally, we
plan to support multiple implementations within ML components
using the Multi-Level Feature Trees approach [10, 31]. Improving

feature visualization during configuration [8] is also a key aspect.
We expect these future results to advance SPL management and
enhance configuration processes in machine learning.

REFERENCES
[1] Ebrahim Khalil Abbasi, Arnaud Hubaux, and Patrick Heymans. 2011. A toolset

for feature-based configuration workflows. In 2011 15th International Software
Product Line Conference. IEEE, 65–69.

[2] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert France. 2010. Man-
aging Variability in Workflow with Feature Model Composition Operators. In 9th
International Conference on Software Composition(SC’10) (Software Composition,
Vol. LNCS). Springer, Malaga, Spain, 16.

[3] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece
Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019.
Software Engineering for Machine Learning: A Case Study. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in
Practice, ICSE-SEIP 2019. IEEE, Montreal Quebec Canada, 291–300. https://doi.
org/10.1109/ICSE-SEIP.2019.00042

[4] Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. 2014.
Power to the People: The Role of Humans in Interactive Machine Learning. AI
Magazine 35, 4 (Dec. 2014), 105–120. https://doi.org/10.1609/aimag.v35i4.2513

[5] Yassine El Amraoui, Mireille Blay-Fornarino, Philippe Collet, Frédéric Precioso,
and Julien Muller. 2022. Evolvable SPL Management with Partial Knowledge:
An Application to Anomaly Detection in Time Series. In Proc. of the 26th ACM

https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1609/aimag.v35i4.2513


Taming the Diversity of Computational Notebooks

International Systems and Software Product Line Conference - Volume A (Graz,
Austria) (SPLC ’22). ACM, New York, NY, USA, 222–233. https://doi.org/10.1145/
3546932.3547008

[6] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wąsowski. 2013. A survey of variability mod-
eling in industrial practice. In Proceedings of the seventh international workshop
on variability modelling of software-intensive systems. ACM, New York, USA, 1–8.

[7] Besim Bilalli, Alberto Abelló, and Tomàs Aluja-Banet. 2017. On the predictive
power of meta-features in OpenML. International Journal of Applied Mathematics
and Computer Science 27, 4 (2017), 697—-712.

[8] Goetz Botterweck, Steffen Thiel, Daren Nestor, Saad bin Abid, and Ciarán Cawley.
2008. Visual tool support for configuring and understanding software product
lines. In 2008 12th International Software Product Line Conference. IEEE, Limerick,
Ireland, 77–86.

[9] Yann Brault, Yassine El Amraoui, Mireille Blay-Fornarino, Philippe Collet, Florent
Jaillet, and Frédéric Precioso. 2023. SPLC’23 Reproduction Package. https://doi.
org/10.5281/zenodo.8013518

[10] Deepak Dhungana, Dominik Seichter, Goetz Botterweck, Rick Rabiser, Paul
Grunbacher, David Benavides, and Jose A Galindo. 2011. Configuration of multi
product lines by bridging heterogeneous variability modeling approaches. In
2011 15th International Software Product Line Conference. IEEE, 120–129.

[11] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An exploratory study of cloning in industrial
software product lines. In Proceedings of the European Conference on Software
Maintenance and Reengineering, CSMR. IEEE, Genova, Italy, 25–34. https://doi.
org/10.1109/CSMR.2013.13

[12] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim.
2014. Do we need hundreds of classifiers to solve real world classification
problems? The Journal of Machine Learning Research 15, 1 (Jan. 2014), 3133–3181.
https://jmlr.org/papers/v15/delgado14a.html

[13] José A Galindo, Deepak Dhungana, Rick Rabiser, David Benavides, Goetz Botter-
weck, and Paul Grünbacher. 2015. Supporting distributed product configuration
by integrating heterogeneous variability modeling approaches. Information and
Software Technology 62 (2015), 78–100.

[14] Eddy Ghabach, Mireille Blay-Fornarino, Franjieh El Khoury, and Badih Baz. 2018.
Clone-and-Own software product derivation based on developer preferences and
cost estimation. In Proceedings - International Conference on Research Challenges
in Information Science, Vol. 2018-May. IEEE Computer Society, 1–6. https:
//doi.org/10.1109/RCIS.2018.8406682

[15] Khan Mohammad Habibullah and Jennifer Horkoff. 2021. Non-functional re-
quirements for machine learning: understanding current use and challenges in
industry. In 2021 IEEE 29th International Requirements Engineering Conference
(RE). IEEE, 13–23.

[16] Herman Hartmann and Tim Trew. 2008. Using Feature Diagrams with Context
Variability to Model Multiple Product Lines for Software Supply Chains. In
SPLC’08. IEEE, 12–21.

[17] Samuel Idowu, Daniel Struber, and Thorsten Berger. 2021. Asset Management in
Machine Learning: A Survey. In Proceedings - International Conference on Software
Engineering. IEEE, Virtual Event Spain, 51–60. https://doi.org/10.1109/ICSE-
SEIP52600.2021.00014

[18] Michael I Jordan and Tom M Mitchell. 2015. Machine learning: Trends, perspec-
tives, and prospects. Science 349, 6245 (2015), 255–260.

[19] Cory Kapser and Michael W Godfrey. 2003. Toward a taxonomy of clones in
source code: A case study. Evolution of large scale industrial software architectures
16 (2003), 107–113.

[20] Timo Kehrer, Thomas Thüm, Alexander Schultheiß, and Paul Maximilian Bittner.
2021. Bridging the gap between clone-and-own and software product lines. In
2021 IEEE/ACM 43rd International Conference on Software Engineering: New Ideas
and Emerging Results (ICSE-NIER). IEEE, 21–25.

[21] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E. John, and Brad A.
Myers. 2018. The Story in the Notebook: Exploratory Data Science using a
Literate Programming Tool. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI ’18). Association for Computing Machinery,
New York, NY, USA, 1–11. https://doi.org/10.1145/3173574.3173748

[22] Andreas P. Koenzen, Neil A. Ernst, and Margaret-Anne D. Storey. 2020. Code
Duplication and Reuse in Jupyter Notebooks. In 2020 IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (VL/HCC). IEEE, Dunedin, New
Zealand, 1–9. https://doi.org/10.1109/VL/HCC50065.2020.9127202

[23] Jacob Krüger and Thorsten Berger. 2020. An empirical analysis of the costs of
clone-and platform-oriented software reuse. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 432–444.

[24] WardahMahmood, Daniel Struber, Thorsten Berger, Ralf Lammel, and Mukelabai
Mukelabai. 2021. Seamless variability management with the virtual platform. In
Proceedings - International Conference on Software Engineering. ACM, 1658–1670.

[25] Robert A. McDougal, Thomas M. Morse, Ted Carnevale, Luis Marenco, Rixin
Wang, Michele Migliore, Perry L. Miller, Gordon M. Shepherd, and Michael L.
Hines. 2017. Twenty years of ModelDB and beyond: building essential modeling

tools for the future of neuroscience. Journal of Computational Neuroscience 42, 1
(feb 2017), 1–10. https://doi.org/10.1007/S10827-016-0623-7

[26] Nadia Nahar, Haoran Zhang, Grace Lewis, Shurui Zhou, and Christian Käst-
ner. 2023. A Meta-Summary of Challenges in Building Products with ML
Components–Collecting Experiences from 4758+ Practitioners. arXiv preprint
2304.00078 (2023), 1–15. https://doi.org/10.48550/arXiv.2304.00078

[27] Luca Negrini, Guruprerana Shabadi, and Caterina Urban. 2023. Static Analysis of
Data Transformations in Jupyter Notebooks. In Proc. of the 12th ACM SIGPLAN
International Workshop on the State Of the Art in Program Analysis. 8–13.

[28] Samir Passi and Phoebe Sengers. 2020. Making data science systems work. Big
Data & Society 7, 2 (2020), 1–13. https://doi.org/10.1177/2053951720939605

[29] Samir Passi and Phoebe Sengers. 2020. Making data science systems work. Big
Data and Society 7 (7 2020). Issue 2. https://doi.org/10.1177/2053951720939605

[30] Jeffrey M. Perkel. 2018. Why Jupyter is data scientists’ computational notebook
of choice. Nature 563, 7729 (Oct. 2018), 145–146. https://doi.org/10.1038/d41586-
018-07196-1

[31] M-O Reiser andMatthiasWeber. 2006. Managing highly complex product families
with multi-level feature trees. In Requirements Engineering, 14th IEEE Interna-
tional Conference. IEEE, 149–158.

[32] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. 2013. Managing cloned
variants: a framework and experience. In Proceedings of the 17th International
Software Product Line Conference. 101–110.

[33] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and Ex-
planation in Computational Notebooks. In Proceedings of the 2018 CHI Con-
ference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI
’18). Association for Computing Machinery, New York, NY, USA, 1–12. https:
//doi.org/10.1145/3173574.3173606

[34] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Diet-
mar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan
Dennison. 2015. Hidden Technical Debt in Machine Learning Systems. In Pro-
ceedings of the 28th International Conference on Neural Information Processing
Systems - Volume 2 (Montreal, Canada) (NIPS’15). MIT Press, Cambridge, MA,
USA, 2503–2511.

[35] Leopoldo Teixeira, Rohit Gheyi, and Paulo Borba. 2020. Safe evolution of product
lines using configuration knowledge laws. In Formal Methods: Foundations and
Applications: 23rd Brazilian Symposium, SBMF 2020, Ouro Preto, Brazil, November
25–27, 2020, Proceedings 23. Springer, 210–227.

[36] Thomas Thum, Don Batory, and Christian Kastner. 2009. Reasoning about edits to
feature models. In 2009 IEEE 31st International Conference on Software Engineering.
IEEE, 254–264.

[37] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2013. OpenML:
Networked Science inMachine Learning. SIGKDD Explorations 15, 2 (2013), 49–60.
https://doi.org/10.1145/2641190.2641198 arXiv:1407.7722

[38] April Yi Wang, Dakuo Wang, Jaimie Drozdal, Xuye Liu, Soya Park, Steve Oney,
and Christopher Brooks. 2021. What Makes a Well-Documented Notebook? A
Case Study of Data Scientists’ Documentation Practices in Kaggle. In Extended
Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems
(CHI EA ’21). Association for Computing Machinery, New York, NY, USA, 1–7.
https://doi.org/10.1145/3411763.3451617

[39] Jiawei Wang, Tzu-yang Kuo, Li Li, and Andreas Zeller. 2020. Restoring Repro-
ducibility of Jupyter Notebooks. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Companion Proceedings (Seoul, South Korea)
(ICSE ’20). Association for Computing Machinery, New York, NY, USA, 288–289.
https://doi.org/10.1145/3377812.3390803

[40] Rüdiger Wirth and Jochen Hipp. 2000. CRISP-DM: Towards a standard process
model for data mining. In Proceedings of the 4th international conference on the
practical applications of knowledge discovery and data mining, Vol. 1. Manchester,
29–39.

[41] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy
Konwinski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe,
Fen Xie, and Corey Zumar. 2018. Accelerating the machine learning lifecycle
with MLflow. IEEE Data Engineering Bulletin 41, 4 (2018), 39–45.

https://doi.org/10.1145/3546932.3547008
https://doi.org/10.1145/3546932.3547008
https://doi.org/10.5281/zenodo.8013518
https://doi.org/10.5281/zenodo.8013518
https://doi.org/10.1109/CSMR.2013.13
https://doi.org/10.1109/CSMR.2013.13
https://jmlr.org/papers/v15/delgado14a.html
https://doi.org/10.1109/RCIS.2018.8406682
https://doi.org/10.1109/RCIS.2018.8406682
https://doi.org/10.1109/ICSE-SEIP52600.2021.00014
https://doi.org/10.1109/ICSE-SEIP52600.2021.00014
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.1109/VL/HCC50065.2020.9127202
https://doi.org/10.1007/S10827-016-0623-7
https://doi.org/10.48550/arXiv.2304.00078
https://doi.org/10.1177/2053951720939605
https://doi.org/10.1177/2053951720939605
https://doi.org/10.1038/d41586-018-07196-1
https://doi.org/10.1038/d41586-018-07196-1
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/2641190.2641198
https://arxiv.org/abs/1407.7722
https://doi.org/10.1145/3411763.3451617
https://doi.org/10.1145/3377812.3390803

	Abstract
	1 Introduction
	2 Context
	3 Taming the diversity
	3.1 Process overview
	3.2 Domain variability model
	3.3 Variability of realized products and assets
	3.4 Formal definition of the interactions
	3.5 Tooling overview

	4 Illustration
	4.1 Scenario 1: Retrieve and clone notebook
	4.2 Scenario 2: Generate a new notebook

	5 Conclusion
	References

