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ABSTRACT A new vertical transistor structure based on GaN nanowire is designed and optimized using the 

TCAD-Santaurus tool with an electrothermal model. The studied structure with quasi-1D drift region is 

adapted to GaN nanowires synthesized with the bottom-up approach on a highly n-doped silicon substrate. 

The electrical performance is studied as a function of various epi-structure parameters, including region 

lengths and doping levels, nanowire diameter, and the impact of the surface states. The results reveal that the 

optimized structure has a Normally-OFF mode with a threshold voltage higher than 0.8 V and exhibits 

minimized leakage current, low on-state resistance, and maximized breakdown voltage. To the best of our 

knowledge, this is the first exhaustive study of GaN-based nanowire transistors, providing valuable insights 

for the scientific community and contributing to a deeper understanding of the impact of GaN nanowire 

parameters on device performance. 

INDEX TERMS Normally-OFF, Vertical transistor, GaN, Nanowire, Gate-All-Around, Sentaurus TCAD, 

Breakdown Voltage, On-state resistance, Surface states, Threshold voltage. 

I. INTRODUCTION 

The most widely used semiconductor for the fabrication of 

electronic devices is silicon due to its low cost. However, 

its physical properties do not allow it to meet the needs of 

today's and tomorrow's mass-market power electronics [1-

2].  

Gallium nitride (GaN) technology is one of the most 

promising alternatives to overcome Silicon limitations, 

thanks to their excellent physical parameters [3]. GaN on 

silicon-based technology is recognized as mature enough 

for fabricating power electronic devices able to withstand 

harsh temperatures and environments. Its price-

performance ratio in the 100 V – 650V [4] range makes it 

the best candidate to satisfy the demand for high-power 

applications requiring Normally-OFF transistors [5]. The 

electric vehicle market is the fastest-growing market for 

these devices [6]. 

Currently, the most mature technologies to fabricate GaN-

based power transistors on silicon substrate are MOS-

HEMT [7-8] and Junction-HEMT [9], which are based on 

the p-GaN layer. However, these lateral devices suffer from 

several limitations [10]: i) leakage currents through traps 

(surface, gate, and buffer layer) [11-12]; ii) High self-

heating at the channel leads to the degradation of the 

transport properties [13]; iii) The vertical breakdown [14]. 

In order to overcome these problems, a new GaN vertical 

device architecture has emerged as an alternative solution 

to this planar technology [9]. This new device architecture 

allows for better electric field distribution, keeping it 

confined to the volume of the GaN far from the device 

surface, thanks to the guard-ring approach [15]. 

Additionally, the vertical structure is more suitable for 

efficiently dissipating heat generated during device 

operation [16]. In this context, several works have been 

reported in the literature, such as VHFET [17], CAVET 
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[18], and FinFET [19], which use a GaN substrate to reduce 

dislocations in the GaN epi-layer, improve the device's 

breakdown voltage, and enhance thermal dissipation [20]. 

However, these technologies are costly due to the small size 

of available GaN wafers, making it challenging to introduce 

them into the semiconductor market in the near future. 

To reduce the cost of GaN vertical devices, another 

technology based on a nanowire approach is a promising 

alternative [21]. Indeed, nanowires without dislocations 

[22-23] can be obtained using a bottom-up approach on the 

silicon substrate, depending on their density and diameter. 

This new approach offers the same advantages as the 

standard GaN vertical device. In addition, the insulated 

Gate-All-Around (GAA) surrounding the channel region 

allows for more efficient electrostatic control of the drain 

current [24]. Several devices based on GaN nanowires have 

been published in the literature [24-26]. However, their 

performance needs to meet the potentialities of GaN for 

several reasons: the device architecture, the doping levels, 

and the dimensions of the epi-structure need to be 

optimized. 

This study aims to find a set of optimized parameters for 

the fabrication of vertical GaN nanowire transistors using 

the TCAD Sentaurus simulator. The objectives are to 

achieve a positive threshold voltage to ensure a Normally-

OFF operation mode with a trade-off between the on-state 

resistance RON and the breakdown voltage VBR of the 

device. 

II. SIMULATION SETUP 

A. DEVICE STRUCTURE 

The starting nanowire-based device structure used as a 

reference in this TCAD simulation work is shown in figure 1. 

The total epi-structure is 1.8 µm of GaN, starting with a 

300 nm highly doped n+GaN layer (1×1019 cm˗3) connecting 

the drain metal on the device's backside. The bottom region of 

the nanowire is the drift region n-doped to 1×1018 cm˗3 (NDrift) 

with a length of 500 nm (LDrift). These two parameters are 

modified in this work to maximize the transistor breakdown 

voltage. The conductive channel is made of a n-GaN 

(Nchannel = 1×1016 cm˗3). The top region of the nanowire is 

highly doped (1×1019 cm˗3) to reduce the source ohmic contact 

resistance. In addition, the nanowire sidewall surface and the 

top of the drain n+GaN layer are passivated with a 20 nm thick 

layer of Al2O3. The gate metal is deposited on a SiO2 isolation 

layer and surrounds the channel. Finally, another isolation 

layer of SiO2 is used to support the source contact and to 

ensure electrical insulation with the gate. 

 

FIGURE 1. Schematic cross-section of the initial nanowire transistor 
structure. 

 

The current densities were normalized with respect to the total 

device active area in all the simulations performed in this 

work. Indeed, the distance between the edges of two adjacent 

nanowires is 1 µm, so the active area is composed of the 

nanowire surface plus a doughnut-shaped surface of 0.5 µm 

radius of flat gate metallization surrounding the nanowire. 

Vertical gate metallization is a critical process that must be 

reproducible and robust. For that purpose, we choose to 

maintain a 1 µm gap between two nanowires regardless of 

their surface area. 

B. SIMULATION MODELS 

The design and simulation of the vertical GaN nanowire 

transistor are made using the Sentaurus TCAD tool based on 

the finite element method. The structure is first designed as a 

2D cross-section and then rotated using the cylindrical 

coordinates to simulate the Gate-All-Around nanowire device. 

The physical models are based on the Drift-Diffusion (D-D) 

transport model and Fermi-Dirac statistics. The 

thermodynamic model has also been considered to include the 

thermal effect on the device’s electrical transport. Moreover, 

the Auger, radiative, avalanche and Shockley-Read-Hall 

generation-recombination mechanisms are also activated. To 

consider the impact of the surface states at the Al2O3/GaN 

interface, the surface states are added as acceptor types 

uniformly distributed at 0.8 eV from the conduction band with 

an interface state density of 1×1013 eV˗1.cm˗2 [27-28]. The 

relative permittivity values of εr = 3.9 [29] and εr = 9.1 [30] are 

used for SiO2 and Al2O3 dielectrics materials, respectively. 

III. PERFORMANCE ANALYSIS AND SIMULATION 
RESULTS 
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In this section, the optimization and the performance analysis 

of the reference structure are presented. The first step of this 

work is the study of the impact of the channel parameters 

(diameter D and doping level) on the control of the drain 

current by the voltage applied to the gate. The optimal 

parameters extracted from this first investigation will further 

improve the device's on-state resistance RON and breakdown 

voltage VBR by optimizing the quasi-1D drift region 

parameters. 

A. CHANNEL REGION: EFFECT OF DIAMETER, DOPING 
LEVEL, AND SURFACE STATES 

The effect of channel diameter (D varying from 100 nm to 

600 nm) on the Ids˗Vgs electrical characteristics, with and 

without surface states, is shown in figure 2. The drift region 

length is set at 500 nm, and its doping level is set at 

1×1018 cm˗3. The drain voltage Vds is fixed at 20 V. 

 

FIGURE 2. Transfer characteristics Ids˗Vgs of the simulated transistor for 
different diameters. 

 

It is clearly observed that the diameter D significantly affects 

the threshold voltage (defined at Ids = 10 mA/cm2), and for 

small diameters (below 400 nm), the pinch-off voltage shifts 

towards positive values, leading to Normally-OFF operation 

mode devices. The presence of surface states accentuates this 

phenomenon for nanowire diameters less than 300 nm. 

Figure 3 shows the evolution of the threshold voltage versus 

the channel diameter, with and without surface states. These 

last lead, for small diameters, to a shift of around +0.4 V in the 

threshold voltage compared to the nanowire without surface 

states. This is due to the surface depletion depth that becomes 

comparable to the nanowire radius. 

 

FIGURE 3. Threshold voltage values versus channel diameter are 
obtained for a channel doping level of 1×1016 cm˗3. 

 

In figures 2 and 3, the pinch-off voltage is extracted at 

Vds = 20 V. The reason for that is because we observed on 

Ids˗Vds characteristics that when the diameter of the nanowire 

increases, the transistor that seems to be pinched-off at low 

drain voltage becomes non-pinched-off at 20 V. Figure 4(a) 

shows the evolution of the leakage current at Vgs = 0 V for 

different nanowire diameters at high drain voltage. For a 

nanowire diameter of 400 nm, the leakage current increases at 

high Vds, resulting in a device that is not in the Normally-OFF 

mode. To explain the origin of this behavior, the conduction 

band from source to drain along the center of the nanowire is 

plotted for two nanowire diameters (D = 200 nm, 

D = 400 nm) while considering the presence of surface states 

at Vgs = 0 V, and for two different drain-source voltages: 

Vds = 0 V and Vds = 20 V, as shown in figure 4(b). 
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FIGURE 4. (a) Leakage current versus Vds for different nanowire 
diameters. (b) Band diagrams from source to drain along the center of 
the nanowire, at Vgs = 0 V, for different diameters and drain voltages 
(Vds = 0 V and Vds = 20 V). 

 

Figure 4(b) shows that the electrons cannot flow from the 

source to the drain at low drain voltage due to the conduction 

band barrier at the channel region, regardless of the nanowire 

diameter. For a 200 nm diameter, this barrier is equal to 1 eV 

and remains constant even at Vds = 20 V. This means that the 

transistor is pinched-off even at high drain voltage. However, 

in the case of a 400 nm diameter, the conduction band barrier 

is equal to 0,72 eV at Vds = 0 V, which drops to 0,27 eV at 

Vds = 20 V. So, the device pinch-off is not sharp enough 

because of the phenomenon called Drain-induced barrier 

lowering (DIBL). As a result, the leakage current increased 

and passed through the center of the channel at high Vds. This 

effect becomes increasingly significant as the diameter of the 

nanowire increases. 

Figure 5 shows the conduction band diagrams of a horizontal 

cross-section of the Metal/Al2O3/GaN/Al2O3/Metal structure. 

These curves are plotted at the mid-channel for a nanowire 

diameter of 200 nm, considering the presence of the surface 

states for different gate bias voltages and with Vds = 0 V. 

 

FIGURE 5. Conduction band diagrams of a horizontal cross-section's 
diameter nanowire of 200 nm for different gate bias voltages. 

 

Figure 5 shows the three behaviors of the conduction band at 

Vds = 0 V: i) When Vgs < Vth, the conduction band is always 

above the Fermi level, resulting in a depleted channel region; 

ii) When Vgs = Vth, the conduction band is close to the Fermi 

level, meaning that the conductive channel starts to be formed; 

iii) At Vgs > Vth, the conduction band drops deeper below the 

Fermi level, resulting in an accumulation of electrons in the 

well at the Al2O3/GaN interface. In this latter case, a two-

dimensional conductive channel is formed, and electrons start 

flowing from the source to the drain by applying a small 

positive voltage at the drain. 

In the previous study, the n-type channel doping was set to 

1×1016 cm˗3, a reference value we used as a starting point. 

Here, the impact of channel doping on the threshold voltage is 

investigated for different nanowire diameters. These results 

are shown in figure 6(a). The curves show that the Normally-

OFF mode persists over a more extensive doping range when 

the nanowire diameter is reduced. 

Figure 6(b) presents the nanowire diameter versus the critical 

doping level at which the transistor switches from the 

Normally-OFF mode to the Normally-ON mode. Using these 

curves, the maximum appropriate channel doping levels that 

result in the Normally-OFF operation mode for a wide range 

of nanowire diameters up to 350 nm can be determined. Based 

on these findings, we choose the nanowire with diameters less 

than 200 nm for the remaining part of this paper. 
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FIGURE 6. (a) Extracted threshold voltage at Ids = 10 mA/cm2 versus 
channel doping for different diameters, with and without surface states. 
(b) Evolution of the critical channel doping level (where the device 
switches from Normally-ON to Normally-OFF mode) versus the 
nanowire diameter with and without surface states. 

B. IMPACT OF THE QUASI-1D DRIFT REGION 

In order to identify the region where the electrical breakdown 

occurs at high Vds in the Normally-OFF transistor, the 

reference structure with a channel diameter of 200 nm and a 

drift region length (LDrift) of 0.5 µm doped at 1×1018 cm˗3 is 

simulated. The GaN breakdown electrical field is set to 

3.3 MV/cm [31]. Figure 7 shows the electric field map at 

Vgs = 0 V for Vds = 102 V (breakdown voltage). In this 

configuration, the conduction band barrier height along the 

channel remains at 1 eV, as seen in figure 4, regardless of the 

applied drain voltage. The electric field reaches its maximum 

at the channel/drift region interface near the gate metal corner. 

This local field's amplitude decreases as the drift region length 

increases. 

 

FIGURE 7. Electric field mapping at Vgs = 0 V and Vds = 102 V by setting 
the channel diameter to 200 nm and the length of the drift region to 
0.5 µm. 

 

Figure 8(a) shows that increasing the drift region length while 

maintaining its doping level constant results in a quasi-linear 

increase in breakdown voltage, and the slope decreases as the 

nanowire diameter increases. However, the doping level of the 

drift region can be adjusted to maximize the breakdown 

voltage for specific nanowire diameter devices.  

Figure 8(b) shows that the on-state resistance RON increases 

with the length of the drift region and decreases with 

increasing nanowire diameter, in agreement with the 

microscopic Ohm's law. Furthermore, this resistance is more 

significant in the presence of surface states, and this 

phenomenon is even more noticeable when the nanowire 

diameter is small. Indeed, these surface states along the 

nanowire surface deplete the drift region, thus reducing the 

conductive section of the nanowire. This explains why this 

phenomenon is more sensitive in the case of small nanowire 

diameters, where the surface depletion depth is comparable to 

the nanowire radius. To optimize the device performance and 

find a trade-off between the VBR and RON, the doping level of 

the drift region must be defined according to the diameter D 

of the chosen nanowire, the LDrift, and the density of surface 

states Dit (chosen constant in this study). However, 

considering the constraints of the fabrication process and the 

synthesis of the nanowires in our ongoing experimental work, 

we decided to set the maximum length of the drift region to 

2 µm. 
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FIGURE 8. Evolution of breakdown voltage VBR (a) and on-state 
resistance RON (b) as a function of drift region length for several 
nanowire diameters, with and without surface states. 

 

The Ids˗Vds characteristics of the transistor are plotted in 

figure 9 (with D = 100 nm, D = 200 nm, and LDrift = 1 μm), for 

different doping levels in the drift region, with and without 

surface states. As seen in figure 9(b), when surface states are 

present, the transistor does not exhibit linear behavior at low 

Vds, regardless of the nanowire diameter (D ≤ 200 nm), when 

the drift region doping level is below 1×1017 cm˗3. This can be 

easily explained by the depletion of the drift region by the 

surface states. For high drift region doping levels 

(NDrift ≥ 5×1017 cm˗3), the impact of surface states on the 

Ids˗Vds characteristics is negligible for a transistor with 

D = 200 nm. However, the surface states highly impact the 

transistor with D = 100 nm, as the surface depletion region 

becomes comparable to the nanowire radius. 

 

FIGURE 9. Ids˗Vds characteristics as a function of drift region doping 
level, without (a) and with (b) surface states and for nanowire diameters 
of 100 nm and 200 nm. 

 

Additionally, we can observe (in figure 9) a negative 

differential resistance beyond the saturation voltage (Vds-sat), 

which can be attributed to the self-heating effect of the device. 

Indeed, the electron mobility is degraded when the channel 

temperature increases [32], decreasing the Ids current at high 

Vds. Figure 10(a) and figure 10(b) show the on-state resistance 

RON, extracted from the Ids-Vds curves, as a function of the drift 

region doping level, with and without surface states, for two 

drift region lengths: LDrift = 1 μm and LDrift = 2 μm 

respectively. It can be observed that the RON resistance is 

higher with a smaller nanowire diameter, lower doping, and a 

long drift region. This phenomenon is accentuated in the 

presence of surface states, especially at low doping levels in 

the drift region. 

For all nanowire diameters, regardless of surface states, the 

RON resistance decreases by increasing the doping level of the 

drift region, eventually reaching a constant value at high 

doping levels. At such high doping levels, the surface states 

have less effect on the transistor RON. 
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For each nanowire diameter, we have identified (by a star 

symbol) the minimum doping level corresponding to the point 

where the RON is less dependent on the doping level and quite 

similar with and without surface states. These minimum 

doping level values are plotted as a function of the nanowire 

diameter in figure 11 for two lengths of the drift region. These 

simulations allow us to estimate the best compromise to 

maximize the performance of the Normally-OFF transistor. 

 

FIGURE 10. Evolution of the on-state resistance RON as a 
function of the doping level of the drift region, for a length LDrift = 1 μm 
(a) and LDrift = 2 μm (b). 

 

FIGURE 11. Best doping level to achieve a good RON as a 
function of the nanowire diameter for two different lengths of the drift 
region. 

 

Figure 12 shows the evolution of the breakdown voltage as a 

function of the drift region doping level for different nanowire 

diameters (Figure 12(a) for LDrift = 1 μm and figure 12(b) for 

LDrift = 2 μm). It is found that the breakdown voltage decreases 

as the doping level of the drift region increases, with this 

behavior being more pronounced for larger nanowire 

diameters. The "star" symbols in figure 12 correspond to the 

VBR breakdown voltages associated with the optimal 

parameter couples (D and LDrift) previously identified in 

figures 10 and 11. It is important to note that the values of the 

doping level where RON is minimum do not correspond to 

those where VBR is maximum. Thus, a compromise must be 

made to optimize the device's overall performance. 

The results presented in this paper allow researchers to design 

epi-structure devices with specific nanowire diameters to meet 

pre-determined specifications, providing valuable insight for 

the scientific community. 



 

8 VOLUME XX, 2017 

 

FIGURE 12. Evolution of breakdown voltage VBR as a function 
of drift region doping for a length LDrift = 1 μm (a) and LDrift = 2 μm (b) 
with surface states. 

IV. CONCLUSION 

GaN nanowire-based Normally-OFF transistor is simulated 

using TCAD-Santaurus simulator. The device performances 

are extracted and analyzed as a function of geometrical 

parameters such as nanowire diameter, drift region length, 

doping levels in the channel and the drift region, and surface 

states. The simulation results indicate that a robust 

Normally-OFF mode with minimum leakage current, even at 

high drain voltage, is obtained when the nanowire diameter 

is less than 200 nm. The study also examines the impact of 

acceptor-type surface states on the device's performance and 

designs the device to minimize this impact. Indeed, the 

doping of the drift region is optimized as a function of the 

nanowire diameter to minimize the on-state resistance and 

maximize the breakdown voltage. To the best of our 

knowledge, this study provides new insights into the design 

of GaN nanowire-based Normally-OFF transistors and will 

be very helpful for the scientific community. 
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