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Abstract—Optical flow estimation is used in many embedded
computer vision applications, and it is known to be computation-
ally intensive. In the literature, many methods exist to estimate
optical flow. Thus, the challenge is to find a method that matches
the applicative constraints. In an embedded system, a trade-off
between power consumption and execution time has to be made
to meet both energy and framerate constraints. This work pro-
poses methods to implement an approximate HORN & SCHUNCK
optical flow estimation that meets embedded CPUs constraints.
This is achieved thanks to architectural optimizations, software
optimizations and algorithm tuning. For instance, on the NVIDIA
Jetson Nano, and for HD video sequences, the achieved frame
latency is 12 ms for 5 Watts. To the best of our knowledge, this
is the fastest optical flow implementation on embedded CPUs.

Index Terms—computer vision, optical flow, SIMD, approxi-
mate computing, low power, tradeofs, embedded systems.

I. INTRODUCTION

Real-time optical flow, which is the apparent motion esti-
mation between two consecutive frames in a video sequence,
has many applications in embedded systems but with different
constraints. Usually, applications require an accurate estimate
for quality or safety reasons, such as video denoising or control
of autonomous cars and UAV. Both constraints, real-time and
accuracy implies high power consumption.

However, sometimes a rough estimate may be sufficient.
For instance, it is not necessary to compute the most accurate
estimate to identify the moving regions or to detect the
fastest ones. In these cases, trades-off between accuracy and
speed may be useful to save computational time and power
consumption.

Meteor detection is an example of application where optical
flow can be approximated. This work is a part of the Meteorix
nano-satellite project [1]. In this project, the payload is a
camera and a low-power SoC. Thus, one of the challenge is
to design a real-time application to detect space debris and
extraterrestrial matter that enter the Earth’s atmosphere.

The application has to run in real-time, defined as the ability
to process at least 25 FPS (frames per second), for two reasons.
Firstly, bandwidth with the ground is very limited, it is not
possible to send all frames on Earth and process them on it.
Secondly, it is not possible to delay the processing due to a
low storage space and a small battery capacity. Moreover, only
7 Watts are available for the processing.

Work partially funded by DIM RFSI, DIM ACAV and ESEP.

The Meteorix project includes an implementation of the
HORN & SCHUNCK method to approximate the optical flow.
This processing takes most of the execution time (95%) and
the whole application does not match real-time constraints.

The contribution of this work is to reduce the computational
time as well as the power consumption of the optical flow
implementation. Three ways are explored and evaluated:

• a combination of architectural and algorithmic optimiza-
tions,

• a scheduling method to maximize data reuse within the
CPU caches to get a cache-aware implementation,

• a fine tuning of the optical flow algorithm for the targeted
application.

The paper is organized as follow. Sec. II discusses the
related works. Sec. III presents the HORN & SCHUNCK
method and the implementation choices. Sec. IV describes the
architectural optimizations and Sec. V explains the software
optimizations. Sec. VI evaluates the results of the proposed
optimization methods. Finally, Sec. VII concludes.

II. RELATED WORKS

Few space missions for meteor detection are developed at
the time of the writing. To the best of our knowledge, only
one has been completed. This mission consisted in a camera
pointing towards Earth and a PC aboard the International
Space Station. However, the processing chain did not work [2]
and the video sequences where therefore recorded and sent to
Earth to be analyzed manually to find meteors.

In the literature, a CubeSat project for meteor detection is
in development [3]. This project shares the same constraints as
us. The first results show that optical flow is also the critical
step of the processing chain, requiring 2000 ms on CPU or
380 ms on FPGA while the total execution time is 2450 ms
on CPU and 810 ms on FPGA. By accelerating some other
parts, the authors expect to reach 0.5 FPS which is still far
from real-time (≥ 25 FPS).

Recent works present real-time implementation of HORN &
SCHUNCK and other more recent optical flow algorithms on
GPU [4] and on FPGA [5], but not on CPU. Indeed, these are
more often used as a comparison reference for other architec-
tures and the optimizations details are not described [6].



III. HORN & SCHUNCK ALGORITHM

HORN & SCHUNCK [7] is one a the first methods to estimate
dense optical flow, giving a motion vector w⃗ = (u, v) per
pixel. It is a good candidate for low-power embedded system
and its quality is enough for the studied application which
requires a dense estimation.

The initial step is the computation of the first derivatives
Ix, Iy and It, between consecutive frames, followed by two
iterative steps:

1) Average speed estimation (ū, v̄) with a 3× 3 kernel:

A =
1

12

1 2 1
2 0 2
1 2 1

 , ūi = A∗ui−1, v̄i = A∗vi−1, (1)

2) Updating the flow of each pixel:

ui+1 = ūi − Ix × Ixū
i + Iy v̄

i + It

α2 + Ix
2 + Iy

2 ,

vi+1 = v̄i − Iy ×
Ixū

i + Iy v̄
i + It

α2 + Ix
2 + Iy

2 .

(2)

with i the i-th iteration, α a smoothing regularization param-
eter and ∗ the convolution operator.

This iterative nature allows some trade-offs between quality
of the estimation and the execution time. Moreover, its regular
computational scheme makes it well suited for optimizations
and parallelization.

A. Coarse-to-fine Estimation

  Upsampling + Warp

  Upsampling + Warp

 HS method

 HS method
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Fig. 1. Coarse-to-fine strategy of Optical Flow (OF) starts by downsampling
consecutive images, then OF is estimated from coarsest to finest scales.

In the previous section, only motions smaller than 1 pixel
can be well estimated (we call this method mono-scale). A
coarse-to-fine estimation has to be used to go further, where
an estimate is computed on each scale, propagated to the next
fine one and then refined (see Fig. 1). The number of scales
depends on the desired motion range. In this work, the number
of scales is fixed to 3 and each scale is half of the previous one.
This configuration allows to estimate motions up to ±7 pixels
in both direction. This is adapted to detect meteors entering
in Earth’s atmosphere (for 25 FPS cameras).

IV. ARCHITECTURAL OPTIMIZATIONS

A. Instructions and Threads Parallelism

Modern architectures have Single Instruction Multiple Data
(SIMD) Instruction Set Architecture (ISA) extensions allowing

the processing at the same time of several data packed within
a register. The number of elements depends on the data type
and the length of the register. In this work, we consider NEON
extension as it is well spread in embedded SoCs and 32-bit
floating-point numbers. NEON offers 128-bit registers that can
contain four 32-bit floating-point numbers (= 4×32-bit).

Today, compilers are able to vectorize some code patterns
but not all. For instance, on GCC v12.2.0, the stencil in Eq. (1)
is not vectorized. Writing vectorized code is a tedious task
requiring knowledge about the target architectures. However,
one of the limitation of writing SIMD code is the portability.
Indeed, generally, SIMD codes are written with intrinsic
functions that are specific to one ISA. In this work, a minimal
wrapper for intrinsic functions has been implemented (with
only the necessary instructions) to guarantee code portability.

Moreover, to take advantage of multi-core CPUs, the image
is divided in horizontal blocks that are distributed among the
cores with OpenMP. Threads are synchronized at each scale.

B. Avoiding Division and Reciprocal Estimation
On all CPU architectures, the division has a low throughput

and and a high latency. But it can be replaced by a reciprocal
estimation (in half precision). The two divisions in Eq. (2) are
replaced by one reciprocal used twice.

V. SOFTWARE ALGORITHMIC OPTIMIZATIONS

High Level Transforms [8] aka algorithmic optimizations
have a huge impact of stencil performance: A) to reduce stencil
complexity and amount of memory accesses – B) to enhance
cache performance by pipelining several stencil iterations.

A. Code Optimizations to Reduce Stencil Complexity
1) Scalarization and Register Rotation: As there is an

overlay of the stencil from one iteration to the other one, each
pixel is used for 3 successive computations. Memorising them
into registers reduces the number of loads from 25 to 9.

2) Loop Unrolling: An unrolling order equal to the stencil
size (here 3) along a line (the inner loop) leads to an optimal
loop without extra load and removes all register-to-register
copies due to register rotation.

3) Column-Wise Reduction: The 2D average stencil can
be rewritten into a separable form of two 1D stencils: A =
[1 2 1]T ∗[1 2 1]−4c where c is the centered value. Thus
the computation of the vertical stencil is reduced (later named
red) into one value (memorized in a register) and used three
times, reducing both stencil complexity and loads. Unrolling
and reduction can be combined like ilu3red (see Sec. VI).

B. Pipelining Stencil Iterations
Processing the image may be done in many ways (embar-

rassingly parallel problem) especially since it is an iterative
stencil. The “common” way (named direct) consists in apply-
ing the stencil to the whole image before applying a second
iteration of the stencil (Fig. 2, left). The pipelined way consists
in applying a second iteration of the stencil as soon as there is
enough processed data (Fig. 2, right). This results is a cache-
aware strategy that maximizes the persistence of data in caches
and minimizes cache misses.
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Fig. 2. Direct scheme vs pipelined scheme for a 7-line image and for 4
iterations.

VI. BENCHMARKS RESULTS AND ANALYSIS

A. Testbed and Experiment Conditions

Three boards (see Tab. I) are used to benchmark the
implementations. The Nvidia Jetson Nano (later named Jetson)
is a good candidate as this board has already been sent into
space on some nano-satellite projects [9]. The Raspberry Pi 4
(later named RPi4) has a big user community and also used
in meteor detection projects [10]. The Apple M1 SoC (later
named M1) is a heterogeneous CPU composed of 4 efficiency
cores (E-cores) and 4 performance cores (P-cores). In this
benchmark, only the E-cores are of interest, as the P-cores
are too energy consuming.

Jetson runs on Linux (v4.9 kernel), RPi4 runs on Linux
(v5.4 kernel) and M1 runs on macOS Monterey (v12.4 ker-
nel). For each board, the GCC v12.2.0 compiler has been
used with the following optimization flags: -march=native
-funroll-loops -fstrict-aliasing -O3.

B. Impact of Software Algorithmic Optimizations

The impact of algorithmic optimizations is showed in Fig. 3.
All versions are multi-threaded, SIMDized and the board
frequency was set to the maximum. The basic version is a
reference version without optimization.

The x-axis is selected to focus on the cache overflow.
The left side shows that unrolling and reduction decrease the
execution time, but do not shift the cache overflow. On the
contrary, the right side shows that pipeline iterations, applied
to the best version, shifts the cache overflow. A pyramid of 3
levels for image size equivalent to HD (in pixel count) gives
n = 960, n = 480 and n = 240. The speedup between the
basic version and the best pipelined version for the complete
pyramid is ×1.8 on Jetson (1.8, 1.7 and 1.5 for each level),
×3.1 on RPi4 (3.0, 3.9, 2.7) and ×1.8 on M1 (1.8, 2.0, 2.2).

C. Power Consumption Analysis

Fig. 4 shows the measured power consumption of each
board for various frequencies and number of threads for the
most accurate tested configuration. The reported power is the
average power over the whole run.

TABLE I
TESTED BOARDS CHARACTERISTICS.

Proc. Freq. Cache (KB) RAM

Name Year Cores (nm) (GHz) L1 L2 Size Bandwidth

Jetson 2019 4 × ARM Cortex A57 20 1.49 32 2048 4 GB 7.3 GB/s
RPi4 2019 4 × ARM Cortex A72 28 1.50 32 1024 8 GB 3.4 GB/s
M1 2020 4 × Icestorm (E-core) 5 2.10 64 4096 8 GB 32.4 GB/s
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Fig. 3. Impact of algorithmic optimizations (left) and pipeline (right). HORN
& SCHUNCK mono-scale implementation. The dashed vertical lines represent
the 3 pyramid scales for HD equivalent images.

For Jetson and RPi4, a device between the power supply and
the board measures at 5 KHz the voltage and current, giving
the power. Thus, the reported power is the power of the entire
board.

For M1, the reported power is the power of the CPU only
(the Apple powermetrics tool is used). As a result, all
boards are always under the project constraint of 7 Watts.

D. Algorithm and Hardware Tuning

Instead of having the same number of iterations for all
scales, a usual tuning for a better convergence (and flow
estimation) is to have more iterations on coarse levels and
few on grain levels. For instance, for a 3-level pyramid, we
can have (16, 8, 4) iterations. To go further, since the finest
level can only estimate small motions, we propose to have
no iteration on the finest level. Thus, the previous example
becomes (16, 8, 0). This tuning allows to save at least half of
the computation time in exchange for a coarser final estimate.
However, the meteors detection rate remains unchanged.
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Fig. 4. Impact of frequency and thread number on power consump-
tion. HORN & SCHUNCK coarse-to-fine implementation with HD images
(1280px × 720px) and (32, 16, 0) iteration scheme.
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Fig. 5. Computation time (in ms) and energy consumption (in mJ) for HD images (1280 × 720 pixels). HORN & SCHUNCK coarse-to-fine implementation.

In a previous work [11], all the proposed combinations
have been validated on the only available dataset [12]. All the
proposed configurations have a similar detection rate around
95% (± 2%).

In Sec. VI-B, the exploration helped us select the fastest
mono-scale combination of optimizations depending on the
architecture. In this section, only the fastest implementation is
considered. For each board the goal is to achieve a real-time
coarse-to-fine computation on them. Fig. 5 summarizes the
time and energy consumed to process a HD image depending
on several configurations in term of frequency, number of
threads and iteration scheme.

On Jetson and RPi4, most of the tested configurations are
real-time. The latter with its more recent cores is faster in
single-thread. However, the trend is reversed in multi-threads
and Jetson is always faster with at least 3 threads. This is
explained by a higher memory bandwidth on Jetson. Indeed,
as shown in Tab. I, the memory bandwidth of RPi4 is 3.4 GB/s
while it is 7.3 GB/s on Jetson, more than double. When
the number of threads increases, the pressure on the global
memory increases. Thus, the Jetson design is better suited to
optical flow estimation than the RPi4.

Fig. 5 shows that the higher the frequency or the number of
threads, the lower the energy consumption. The best hardware
tuning is the one using 4 threads running at the highest
frequency. For the biggest iteration scheme (32 16 0), the
optical flow latency is 23 ms on Jetson, 30 ms on RPi4 and
10 ms on M1.

On M1, real-time is reached in all cases. This demonstrates
the efficiency of this SoC. This makes the latest Apple
iPads interesting for real-time and low-power computer vision
applications. However, since it is not possible to put a tablet

on board a nano-satellite, the focus for our project is on Jetson
and RPi4.

VII. CONCLUSION

In this work, we evaluated the impact of algorithmic opti-
mizations on iterative stencils like those of optical flow and
showed that a fine tuning of these algorithms for the target
application leads to real-time implementation while enforcing
power constraint. As far as we know, this is the most efficient
optical flow implementation on embedded CPUs.
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