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ABSTRACT

Most automatic speech processing systems register degraded
performance when applied to noisy or reverberant speech.
But how can one tell whether speech is noisy or reverber-
ant? We propose Brouhaha, a neural network jointly trained
to extract speech/non-speech segments, speech-to-noise ra-
tios, and C50 room acoustics from single-channel recordings.
Brouhaha is trained using a data-driven approach in which
noisy and reverberant audio segments are synthesized. We
first evaluate its performance and demonstrate that the pro-
posed multi-task regime is beneficial. We then present two
scenarios illustrating how Brouhaha can be used on naturally
noisy and reverberant data: 1) to investigate the errors made
by a speaker diarization model (pyannote.audio); and 2) to as-
sess the reliability of an automatic speech recognition model
(Whisper from OpenAI). Both our pipeline and a pretrained
model are open source and shared with the speech commu-
nity.

Index Terms— voice activity detection, speech-to-noise
ratio, speech clarity, acoustic environment, reverberation

1. INTRODUCTION

Robustness to degraded acoustic environments is a critical
factor limiting the impact and adoption of speech technolo-
gies. Numerous sources of variations in the audio can degrade
or hide the signal of interest and impact the performance of
automatic speech processing systems. Be it automatic speech
recognition (ASR) [1, 2, 3], speaker identification/diarization
[4, 5], or speaker localization [6], most systems exhibit a loss
of performance when applied in noisy or reverberant condi-
tions.

While speech processing systems are being improved to
handle degraded acoustic environments [7, 8, 9], little work
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has been devoted to automatically predict the properties of
the acoustic environment. A proposed approach involves us-
ing synthetic audio generated by applying an audio transfor-
mation of interest (e.g., reverberation). A neural network is
then trained to extract the ‘strength‘ of this audio transforma-
tion. This approach is most commonly used to develop sys-
tems that predict room acoustic measures like speech clarity
(C50), reverberation time (T60) or direct-to-reverberant ratio
(DRR) [10, 11, 12, 13, 14]. In practice, these values can be
estimated directly from the room impulse response (RIR, the
recording of a high-energy and bursty sound, such as a pis-
tol shot or a balloon popping). However, in most cases, RIRs
are not available, and we need to estimate the values of in-
terest from the observed single channel audio recording. A
similar approach has been adopted in [15] to automatically
estimate the frame-level speech-to-noise ratio (SNR). The au-
thors evaluate the performance of their system on synthetic
data, but not on real data. In practice, real SNRs are not avail-
able making it impossible to compare the estimated values to
the real ones. Thus, it remains unclear if such a system can
generalize to real data.

Given the high interplay between noise and reverberation
(the SNR may be influenced by how noise and speech sources
reverberate, and it is harder to obtain reliable estimates of re-
verberation parameters in low SNR conditions [16, 17]), can
we design a system that tackles both tasks simultaneously?
This is one of the questions we address in this work. Our
approach is closest to [18] who proposes to train a neural net-
work for jointly estimating room acoustic parameters and the
utterance-level SNR. However, the authors use a restrained
set of noise segments which cast doubts on the ability of their
model to generalize to unseen noises. More importantly, they
do not evaluate their system with respect to the SNR, and they
do not address the question of whether the proposed multi-
task regime is beneficial for the estimation performance.

We propose Brouhaha, a model jointly trained on the
speech/non-speech classification task and the SNR and C50

regression tasks. Our model is trained on 1, 250 hours of
synthetic audio generated from clean speech segments con-
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Fig. 1: Audio contamination pipeline. s1 → s2: With probability pRIR = 0.9, the clean speech segment (marked as S)
contaminated with silence (marked as NS) s1 is convolved with a randomly drawn impulse response RIRs. n1 → n2: With
probability pRIR, the randomly drawn noise segment n1 is convolved with a randomly drawn impulse response RIRn. s2+n2 →
s3: The reverberated speech segment s2 and the reverberated noise segment n2 are added together to obtain a Speech-to-Noise
Ratio (SNR) randomly drawn between 0 and 30 dB. C50 is computed as the ratio of early (0 to 50ms) and late (50ms to the end
of the response) energies of the room impulse response RIRs. As noises can have a wide dynamic range and the utterance-level
SNR captures only global information about the noise level, we recompute SNRs using a 2-second long sliding window shifted
every 10ms over s2 and n2. To simulate different locations for the speech and noise sources, we used two randomly RIRs
(as opposed to only one). This design choice aimed at forcing the model to rely solely on the reverberation characteristics of
speech, disregarding the reverberation of noise, in order to predict the C50 measure. Labels obtained via this pipeline include:
speech/non-speech (frame-level), C50 measure of RIRs (utterance-level), and SNR (frame-level).

taminated with silence, noise and reverberation. We first
demonstrate that the proposed multi-task regime is beneficial
and compare the performance of Brouhaha against state-of-
the-art systems. We then apply Brouhaha on real data (under
naturally noisy and reverberant conditions) to: 1) analyze the
error patterns of a speaker diarization system (pyannote.audio
[19]); and 2) assess the reliability of an ASR system (Whis-
per [20]). In addition to showing how Brouhaha can be
used, these experiments constitute evidence that our system
is applicable to real data.

Beyond the scientific interest of exploring the effective-
ness of the proposed multi-task training regime and assessing
the applicability of the method on real data after training on
synthetic ones, we believe our work has a strong practical in-
terest. Unlike previous work [15, 18], Brouhaha can be ap-
plied to any audio regardless of whether it contains speech,
non-speech or both. By using our system, there is no re-
quirement to implement a preliminary voice activity detec-
tion system prior to obtaining SNR and C50 values. We be-
lieve such advancement, in addition to a simple user interface
(one python command!), significantly aids empowering re-
searchers who may not possess expertise in speech processing
or machine learning to make the most out of speech technol-
ogy.

2. AUDIO CONTAMINATION PIPELINE

We start from: 1) a set of clean speech segments that will
be contaminated; 2) a set of noise segments used to simulate
noisy conditions; and 3) a set of RIRs to simulate reverbera-
tion. The clean speech segments are contaminated following
the steps presented in Figure 1, which we will not repeat here.

3. MULTI-TASK TRAINING

We tackled the voice activity detection problem as a classi-
fication problem where, for each 16-ms frame, the expected
output is 1 if there is speech, 0 otherwise. C50 and SNR esti-
mations were tackled as regression problems where, for each
16-ms frame, the expected output is the actual C50 or SNR in
dB. We tackled the C50 estimation at the frame level during
training – despite the label being at the utterance level – to
allow the model to return smoother transitions when a change
in C50 is detected at inference time.

At training time, short fixed length sub-sequences are
drawn randomly from the training set and gradient-descent is
used to minimize the multi-task loss function L = LVAD +
LC50

+LSNR, where LVAD is the binary cross-entropy loss, and
LC50

and LSNR are mean squared error (MSE) losses. Before



training, LC50 and LSNR are normalized by their maximum
value (computed over 10 batches) to ensure all three losses
lie between 0 and 1. We computed LSNR only over speech
frames as the SNR is not defined on non-speech frames.

4. EXPERIMENTS

4.1. Datasets

Our audio contamination pipeline requires three types of au-
dio data: 1) clean speech segments; 2) noise segments; and
3) RIRs. A pretrained VAD model [19] was applied to find
non-speech segments in 1000 hours of clean read-speech, re-
trieved from the LibriSpeech [21]. Predicted non-speech seg-
ments were extended with silence to obtain a ratio of approx-
imately 30% of non-speech. We used noise segments from
AudioSet [22] and discarded human vocalizations. We also
downsampled music segments from 38% to 5%, leading to a
total of 1500 hours of noise segments. Finally, 385 impulse
responses were obtained from EchoThief [23] and the MIT
Acoustical Reverberation Scene [24] datasets. We used the
same train/dev/test split originally proposed in LibriSpeech.
Noise segments and impulse responses were randomly split
into 80%, 10% and 10% for the training, development and
test set, respectively. All files used in this paper consist of
16-kHz single-channel recordings.

4.2. Evaluation metrics

We evaluated Brouhaha performance on the VAD task us-
ing the F-score between precision and recall, such as imple-
mented in pyannote.metrics [25]. SNR and C50 predictions
were evaluated using the mean absolute error (MAE) at the
frame level. Since SNR is not defined on non-speech frames,
the SNR was only evaluated across speech frames.

4.3. Architecture, optimization and training procedure

The model consists of SincNet (using the configuration in
[26]), followed by a stack of bidirectional long short-term
memory (LSTM) and feed-forward layers. Finally, we have
three parallel layers: one classification layer (with softmax
activation) that returns the predicted probability of speech,
and two regression layers that return the predicted SNR and
C50 (with sigmoid activation parametrized between −15 and
80 dB for the SNR, and −10 and 60 dB for the C50).

We trained 144 different architectures across different
sets of hyperparameters, varying the duration of the input
sequences: 4, 6, 8, or 10 seconds; the batch size: 32, 64, or
128 sequences; the size of the hidden LSTM layers: 128 or
256; the number of LSTM layers: 2 or 3; and the dropout
proportion: 0, 30 or 50%. The best architecture was trained
with 6-s segments, a batch size of 64 sequences, 3 LSTM
layers of size 256, and a dropout proportion of 50%. The
best architecture was selected on the validation metric: an

average of the VAD F-score, SNR and C50 MAEs, with the
latter two normalized by the maximum error to balance the
contribution of each term.

5. RESULTS

5.1. The effect of multi-task training

Table 1: Performance on unseen synthetic data (our test set)
in terms of F-score (VAD) and mean absolute errors (SNR
and C50). A checkmark below a given training task indicates
that the associated loss is activated during training.

Training tasks: VAD SNR C50

VAD SNR C50 F-score (%)MAE (dB) MAE (dB)

✓ ✓ ✓ 93.7 4.1 3.5
✓ ✓ 93.7 4.2 ——
✓ ✓ 93.6 —— 3.8

✓ ✓ —— 4.3 3.7
✓ 93.5 —— ——

✓ —— 4.3 ——
✓ —— —— 4.2

Table 1 shows performance obtained by models trained to
solve either one, two or three of the proposed tasks (VAD,
SNR, C50). All models shared the same set of hyper-
parameters, only the dimension of the output layer differed.
Results indicate that the multi-task training regime is bene-
ficial: the model trained simultaneously on the three tasks
obtained better performance than models trained on two tasks
which themselves obtained better performance than models
trained on a single task. The largest performance gain is
observed for the C50 estimation, with a decrease of 0.7 dB
in terms of MAE between the single-task and the three-tasks
training regime. These results seem to show that sharing
weights during training helps better solve the proposed three
tasks. Not only does using a single model provide a perfor-
mance gain, but it is also more convenient and computation-
ally efficient.

5.2. Voice activity detection

Table 2 shows voice activity detection performance obtained
by Brouhaha and a state-of-the-art system (pyannote.audio
[19]). We consider two evaluation sets: 1) our test set made
of unseen synthetic audio data (referred as ‘synthetic‘ in
the table); and 2) BabyTrain [27], a corpus of highly nat-
uralistic child-centered recordings (referred as ‘real‘ in the
table). Specifically, BabyTrain recordings are acquired via
child-worn microphones as they go about their everyday ac-
tivities and are widely used in language acquisition research
[28]. Child-centered recordings are notoriously challenging
for speech processing systems as they contain spontaneous



Table 2: Voice activity detection F-score obtained by
Brouhaha and pyannote.audio pretrained system [19]. Num-
bers are reported on synthetic data (our test set) and on real
data (BabyTrain [27]).

Data type System VAD F-score (%)

synthetic Brouhaha (ours) 93.7
pyannote.audio [19] 89.0

real Brouhaha (ours) 77.2
pyannote.audio [19] 80.8

and overlapping speech, and a wide variety of noisy and
reverberant conditions.

Results show a strong advantage for Brouhaha over pyan-
note.audio on unseen synthetic data (4.7% absolute differ-
ence in terms of F-score) . This indicates that, on highly noisy
and reverberant synthetic audio, our system is competitive on
the VAD task. Admittedly, Brouhaha has an advantage over
pyannote.audio as the latter has not been trained on syntheti-
cally noisy and reverberant audio. Turning to a performance
comparison on real data, numbers reveal that pyannote.audio
outperforms Brouhaha by a 3.6% absolute difference in terms
of F-score. This result suggests that training a VAD system
on LibriSpeech [21] contaminated with reverberation and ad-
ditive noise might not be optimal, and this is despite the pre-
cautions taken in simulating challenging noisy and reverber-
ant conditions. Nonetheless, LibriSpeech is currently the only
source of clean speech available in sufficiently large quanti-
ties to run our audio contamination pipeline and obtain SNR
and C50 labels.

5.3. Speech-to-noise ratio estimation

Table 3: Mean absolute error on the SNR estimation task
computed on unseen synthetic data (our test set). All pre-
dicted and gold SNRs are brought back to the [−15, 30] dB
range as done in [15]. For a given speech utterance, the
heuristic estimates the noise (resp. speech) power as the
mean power of non-speech (resp. speech) frames within a 6-s
window centered around each annotated speech frame (de-
faulting to the average SNR when no non-speech frames were
found within the 6-s window).

System SNR MAE (dB)

Brouhaha (ours) 2.3
Heuristic 8.4
Li et al. [15] 12.5

Table 3 shows MAE performance on the SNR estimation task
computed on our test set made of unseen synthetic audio data
for: 1) Brouhaha; 2) a heuristic using the oracle VAD that es-

timates the noise (resp. speech) as the mean power of neigh-
boring non-speech (resp. speech) frames; and 3) the system
proposed in [15] (a 4-layer LSTM trained from mel frequency
cepstral coefficients).

Results indicate that Brouhaha is better at estimating the
frame-level SNR than our heuristic, with an absolute differ-
ence of 6.1 dB in terms of MAE (note that both systems use
a 6-s window as input, and that our heuristic requires oracle
VAD boundaries). Surprisingly, our heuristic performs better
than the system proposed in [15] with a 4.1 dB absolute dif-
ference in terms of MAE. This indicates that [15] struggles
generalizing to unseen noise or to reverberant environments.
Unfortunately, we could not compare systems on the test used
in [15] as the latter has not been publicly released.

5.4. C50 estimation

Fig. 2: C50 estimation. Real C50 against C50 predicted by
Brouhaha on 1000 utterances from the BUT Speech@FIT Re-
verb dataset [29].

We ran Brouhaha on the BUT Speech@FIT Reverb dataset [29].
This dataset consists of LibriSpeech test-clean utterances re-
transmitted by a loudspeaker in 5 different rooms. For each
room, the speaker was placed on 5 positions on average and
retransmitted utterances were recorded with 31 microphones.
RIRs were measured multiple times for each speaker posi-
tion. Here, we compare the real C50 (averaged over between
1 and 9 duplicated RIR measures) to the C50 predicted by
Brouhaha on 1000 randomly drawn utterances.

Figure 2 shows a strong correlation between the real and
the predicted C50, with a R2 of .85 and a mean average error
of 1.1 dB. We would have liked to compare the performance
of our system on the C50 estimation task with other systems,
but we could not find any open-source pre-trained C50 esti-
mators despite extensive research in this area [11, 12, 14].

5.5. Investigating speaker diarization errors

We ran a pretrained pyannote.audio speaker diarization
pipeline [19] on the VoxConverse dataset [30] and evalu-
ated its performance at Brouhaha frame resolution (16ms).
Each frame can either be classified as: 1) missed detection



(when the speaker diarization pipeline incorrectly classifies a
speech frame as non-speech): 2) false alarm (the other way
around); 3) speaker confusion (when a speech frame is as-
signed to the wrong speaker); or 4) correct. Figure 3 focuses
on speaker confusion (but the same pattern holds for missed
detections) and shows the distribution of predicted SNR (left)
and C50 (right) depending on whether the speech frame was
assigned to the correct speaker. There is a clear trend as far
as SNR is concerned: pyannote.audio is much more likely to
confuse speakers in low (predicted) SNR regions. Similarly,
the accuracy degrades significantly as we get closer to the
lowest predicted C50 values.

Exploring the errors made by a pretrained system can pro-
vide valuable insights for developing effective strategies. In
our case, one might devise strategies to address the issue of
high speaker confusion in low SNR conditions: increasing
the weight of low-SNR sequences in the training loss, or run-
ning speech enhancement algorithms on low SNR areas for
instance.

Fig. 3: Investigating speaker diarization errors. Distribu-
tion of SNR (left) and C50 (right) predicted by Brouhaha as
a function of whether a pretrained speaker diarization system
[19] assigns a speech frame to a wrong (red) or to the right
speaker (blue).

5.6. Assessing the reliability of an ASR system

We ran Whisper large ASR system [20] on highly natural-
istic speech utterances from the American English Bergelson
corpus [31, 32] (child-centered recordings, similar to the ones
used in Section 5.2). We evaluate the performance of Whisper
using the percentage hits (i.e., percentage of words correctly
transcribed). We include a total of 804 utterances at least 5-
words long (as short sequences most often led to a score 0%
or 100%).

Figure 4 shows the average percentage of hits obtained
by Whisper for utterances binned according to their predicted
SNR (top panel) or C50 (bottom panel) decile. On average,
Whisper correctly transcribes 83% of the words on utterances
whose SNR belongs in the [12, 24] dB (last SNR decile, top
panel). This number decreases as the SNR decreases until
Whisper successfully transcribes only 38% of the words on

utterances whose SNR is in the [−9,−4] dB range (first SNR
decile). Although utterances whose predicted C50 is high tend
to be better transcribed by Whisper, the trend with respect
to the C50 is less clear (bottom panel). In conclusion, this
experiment shows that Brouhaha can be used to investigate
the robustness of ASR systems to noisy conditions.

Fig. 4: Assessing the reliability of an ASR system. Percent-
age of hits obtained by Whisper large as a function of pre-
dicted SNR decile (top panel) and predicted C50 decile (bot-
tom panel). Bars represent the percentage of hits averaged
across utterances. Thin black lines represent standard errors.

6. CONCLUSION AND FUTURE WORK

We proposed Brouhaha, a model jointly trained on the voice
activity detection, SNR, and C50 estimation tasks. After eval-
uating the performance of our system and demonstrating that
the multi-task training regime is beneficial, we illustrated two
use cases showing how our model can be used on real data.
Beyond investigating errors made by speech processing sys-
tems or assessing their reliability in noisy and reverberant
conditions, we foresee other potential downstream tasks, e.g.,
SNR- or C50-based microphone selection [33] or SNR-aware
speech enhancement [34]. Future work could explore these
downstream tasks, the use of spontaneous clean speech to
improve VAD performance, or the estimation of other room
acoustic parameters, such as T60 or DRR. Both a pre-trained
model and our audio contamination pipeline are shared with
the community1.

1https://github.com/marianne-m/brouhaha-vad
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