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PDE of Keller-Segel type: Cross-diffusion and logistic reaction
We are interested in the system (cf. [3, 5]):

∂tu = ∆(γ (v )u) + σu (1 − u), x ∈ (0, 1), t > 0
∂tv = ∆v + u − v , x ∈ (0, 1), t > 0
∂xu (x , t ) = 0, ∂xv (x , t ) = 0, x ∈ {0, 1}, t > 0

(1)

Here u and v represent the density of cells and of a chemical, which is produced by the cells. We
assume σ ≥ 0 and that γ > 0 is decreasing, to model that the cells are attracted to the chemical.
As a first step to better understand the long-term behavior of solutions, we study the stationary
system associated with (1). We will study and look for non trivial stationary states. The approach
used is a computer assisted proof method applied to a fixed point problem. This guarantees the
existence of solutions to (1) and gives an explicit numerical approximation with a quantified error.

Use of Fourier Series
The Neumann boundary conditions lead us to consider solutions in the form:

u (x ) = u0 + 2
+∞∑
k=1

uk cos (k πx ) and v (x ) = v0 + 2
+∞∑
k=1

vk cos (k πx ) .

Let’s pose u = (u0, u1, . . . , uk , . . . ) = (F (u)n)n∈Î, idem v = (F (v )n)n∈Î and γ (v) = (F (γ ◦ v )n)n∈Î.

Let ν > 1 and ℓ1ν =

{
u
��� | |u| |ν := |u0 | + 2

+∞∑
k=1

|uk |νk < +∞
}

.

Provided with the discrete convolution ∗, ℓ1ν is a Banach algebra.
Through ℓ1ν , the stationary equation associated to (1) can be written as F (u, v) = (0, 0) .

We consider (ū, v̄) an approximate solution with a finite number of Fourier modes to the root-finding
problem above. Starting from it, we justify the existence of a true solution in ℓ1ν in a quantified
neighborhood of (ū, v̄).

The Newton-Kantorovitch Theorem
Considering a numerical approximation (ū, v̄), ν > 1, r ∗ > 0 and A an approximated inverse of DF (ū, v̄)
injective, combining approximated terms and estimated terms.
Assume there exist constantsY , Z1, and Z2 satisfying:

| |AF (ū, v̄) | |ν ≤ Y (2a)
| |I − ADF (ū, v̄) | |ν ≤ Z1 (2b)
| |AD 2F (u, v) | |ν ≤ Z2, [(u, v) ∈ Bν ((ū, v̄), r ∗) (2c)

and
Z1 < 1 (3a)
2Y Z2 < (1 − Z1)2. (3b)

Then for any r satisfying
1 − Z1 −

√
(1 − Z1)2 − 2Y Z2

Z2
≤ r < min(r ∗, 1 − Z1

Z2
) , (4)

there is a unique fixed-point (u∗, v∗) of I − AF in Bν ((ū, v̄), r ) the closed ball of radius r centered on
(ū, v̄) in ℓ1ν × ℓ1ν .
Moreover, (u∗, v∗) is a solution of F (u, v) = (0, 0). The functions (u∗,v ∗) described by Fourier’s se-
quences (u∗, v∗) are solutions of (1).

How to choose A
According to [1], we choose

A =

©«
A11

w11∆−1
A12

w12∆−1

A21

w21∆−1
A22

w22∆−1

ª®®®®¬
, (5)

with (
1 0
0 1

)
≈
(

w11 w12

w21 w22

)
∗
(
γ (v̄) γ′(v̄) ∗ ū

0 1

)
and Ai j are from the inverse of a finite dimensional projection of DF (ū, v̄).
Here, the choice of A is balanced between what can be known by approximation (the information
given by the computer) and what must be known by estimation (the information provided by the
mathematician).

How to manage γ

In the literature [1, 2, 4, 5] we are interested in several types of γ. We want to manage all these cases.
In order to obtain (2), we need to answer the following questions:
• Given an expression of γ, can we find a "good" approximation of γ (v̄), ā, in ℓ1ν for any v̄ finite?
• Given ā, can we estimate the error | |γ (v̄) − ā| |ν? Can we bound | |γ (v) | |ν for v ∈ Bν (v̄, r )?

Analytical γ ā ≈ γ (v̄) Error estimated Local bound

P (X ) =
K∑
k=0

pkX
k

K∑
k=0

pk v̄∗k 0 |P | ( | |v̄| |ν + r ) :=
K∑
k=0

|pk | ( | |v̄| |ν + r )k

exp(α ·)
K∑
k=0

αk

k ! v̄∗k |α |K
| |v̄| |Kν
K ! exp( |α | | |v̄| |ν) exp( |α | ( | |v̄| |ν + r ))

x ↦→ 1

g (x ) ā s.t. ā∗g (v̄) ≈ 1 | |ā| |ν
| |ā∗g (v̄) − 1| |ν

1 − ||ā∗g (v̄) − 1| |ν
| |ā| |ν

1 − ||ā| |ν |g ′| ( | |v̄| |ν + r )r − ||ā∗g (v̄) − 1| |ν

With such tools, we can manage any product and division of power series!

Method to get theorems of existence of solution
Methods to get numerical approximations

• Linearization around a trivial homogeneous
state, study of instability

• Numerical continuation based on Bifurca-
tion Theory

• Something you know it’s a good approxima-
tion

Algorithm to check numerical approximation

1. Given a point (ū, v̄) finite.
2. Build the object A
3. ComputeY , Z1, Z2 from (2a-c)
4. Are (3a-b), (4) satisfied? Conclude.

Some results and several theorems for γ (x ) = 1

1 + x 9

Conclusion

• We have theorems on the existence and uniqueness (in a
known neighborhood) of non trivial stationary states of (1).

• We have developed (and are developing) a technique to
manage non-polynomial terms.
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Fig. 1: Validated theorems and Bifurcation Diagram for γ (x ) = 1
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Fig. 2: Some Stationary solutions for σ = 0.053
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All the work is here !

Y = 4.9578e-13
Z1 = 0.0029834
Z2 = 4586.4566
verified theorem

Y = 5.0066e-13
Z1 = 0.0038618
Z2 = 3168.0913
verified theorem

Theorem : For any point colored in green, there exist a unique so-
lution of (1) for the associated σ , in Bν (•, r ) with r = 1e-8 and
ν = 1.0001. The approximate solutions have 150 non-zero Fourier
coefficients.

Y = 1.4519e-11
Z1 = 0.0083692
Z2 = 741.2435
verified theorem

Y = 2.0307e-15
Z1 = 0.00088644
Z2 = 176.0854
verified theorem

Y = 8.1901e-14
Z1 = 0.0015794
Z2 = 2688.0384
verified theorem

Y = 4.0227e-13
Z1 = 0.0058231
Z2 = 1923.6604
verified theorem


