
HAL Id: hal-04247597
https://hal.science/hal-04247597

Submitted on 18 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coercive Hamilton-Jacobi equations in domains: the
twin blow-ups method

Nicolas Forcadel, Cyril Imbert, Regis Monneau

To cite this version:
Nicolas Forcadel, Cyril Imbert, Regis Monneau. Coercive Hamilton-Jacobi equations in domains: the
twin blow-ups method. Comptes Rendus. Mathématique, In press. �hal-04247597�

https://hal.science/hal-04247597
https://hal.archives-ouvertes.fr


Coercive Hamilton-Jacobi equations in domains:
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Nicolas Forcadel, Cyril Imbert et Régis Monneau

October 19, 2023

Abstract

In this note, we consider an evolution coercive Hamilton-Jacobi equation posed in a domain and
supplemented with a boundary condition. We are interested in proving a comparison principle in the
case where the time and the (normal) gradient variables are strongly coupled at the boundary. We
elaborate on a method introduced by P.-L. Lions and P. Souganidis (Atti Accad. Naz. Lincei, 2017) to
extend their comparison principle to more general boundary conditions and to Hamiltonians that are not
globally Lipschitz continuous in the time variable. Their argument relies on a single blow-up procedure
after rescaling the semi-solutions to be compared. We refer to our technique as the twin blow-ups method

since two blow-ups are performed simultaneously, one for each variable of the doubling variable method.
The Lipschitz regularity of the regularized subsolution provides a key Lipschitz inequality satisfied by the
two blow-up limits, that are a priori allowed to be infinite. For expository reasons, the result is presented
here in the framework of space dimension one and the general case is treated in a companion paper.

1 Introduction: a comparison principle

Given T > 0, we consider viscosity solutions of a standard evolutive Hamilton-Jacobi equation posed in the
geometric setting of a domain Ω := (0,+∞),

(1.1) ut +H(X,ux) = 0 in (0, T )× Ω

where X := (t, x), supplemented with the boundary condition,

ut + F (X,ux) = 0 in (0, T )× ∂Ω

and the initial condition,
u(0, ·) = u0 in {0} × Ω.

Since the boundary condition can be lost when characteristics reach ∂Ω, it has to be imposed in a weak
sense. When working with viscosity solutions, a classical way to handle this discrepancy is to impose that
either the boundary condition or the equation is satisfied (in the viscosity sense) at the boundary,

(1.2)

{

ut +min {F,H} (X,ux) ≤ 0 in (0, T )× ∂Ω (for subsolutions),
ut +max {F,H} (X,ux) ≥ 0 in (0, T )× ∂Ω (for supersolutions).

Comparison principles are strong uniqueness results for Hamilton-Jacobi equations. In the case of the
previous initial boundary value problem, it is known (see [7, 2, 1, 8, 3]) that it is difficult to treat the
case when tangential coordinates, such as the time variable t, and the normal derivative ux of the solution,
are strongly coupled reaching the boundary (0, T ) × ∂Ω. It is standard to make the (strong) assumption
of uniform continuity in time t, uniformly in the gradient ux. Such an assumption is not satisfied by the
following simple example,

(1.3)

{

ut + a(t, x)|ux| = 0 in (0, T )× Ω,

ut − b(t, x)ux = 0 in (0, T )× ∂Ω
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when a, b ≥ 1 are bounded Lipschitz continuous functions (here with b(t, x) = b(t, 0)).
In this note, we choose structural assumptions on H and F that encompass a large variety of examples

(including (1.3)) but we do not seek for generality to avoid technicalities in proofs as much as possible. We
assume that H and F are continuous in X , Lipschitz continuous and (semi-) coercive in p, with a time
dependance allowing strong coupling with the gradient variable. Precisely, we assume that there exists a
constant C > 0 such that,

(1.4)











H is continuous and |H(X, 0)| ≤ C and |H(X, p)−H(X, q)| ≤ C|p− q|
H(X, p) → +∞ as |p| → ∞ uniformly in X

|H(s, x, p)−H(t, x, p)| ≤ C|t− s| (1 + max(0, H)(t, x, p))

(1.5)











F is continuous and |F (X, 0)| ≤ C and |F (X, p)− F (X, q)| ≤ C|p− q|
F (X, p) → +∞ as p → −∞ uniformly in X

|F (s, x, p)− F (t, x, p)| ≤ C|t− s| (1 + max(0, F,H)(t, x, p)) .

We make artificially appear the dependence of F on x ∈ Ω in order to unify the presentation of assumptions
for H and F .

By regularizing the subsolution by tangential sup-convolution, and without regularizing the supersolution,
we are able to prove the following new comparison principle.

Theorem 1.1 (A comparison principle with strong time coupling). Let T > 0, assume that (1.4) and (1.5)
hold true and that u0 is bounded and Lipschitz continuous. Let u : [0, T )× Ω → R (resp. v) be a bounded
upper semi-continuous viscosity subsolution (resp. bounded lower semi-continuous viscosity supersolution) of
(1.1)-(1.2). If u(0, ·) ≤ u0 ≤ v(0, ·) in Ω, then u ≤ v in [0, T )× Ω.

Remark 1.2. Here, we assume for simplicity that the initial data u0 is Lipschitz continuous. With some
additional (classical) technicalities, it is possible to deal with uniformly continuous u0’s and to relax the
boundedness assumption on u, v, u0 by imposing that they grow at most linearly.

Remark 1.3. Lipschitz continuity of F with respect to p is only used to get barriers in the proof of The-
orem 1.1. Moreover, the monotonicity of F with respect to p is not used in the proof of the comparison
principle. However it is required in order to ensure that classical solutions are viscosity solutions. This
important and natural property is used when constructing viscosity solutions by Perron’s method.

Remark 1.4. Notice that, given (1.4), we can always define the state constraint boundary function

H−(t, x, p) := sup
q≤p

H(t, x, q) for (t, x) ∈ [0, T ]× ∂Ω and p ∈ R

and it satisfies (1.5). Up to our knowledge, the comparison principle was also an open problem for F = H−

in the generality of this note.

Remark 1.5. Notice that in Theorem 1.1, when F is nonincreasing in p, condition (1.5) iv) can be replaced
by the weak continuity of the subsolution u on the boundary (0, T )× ∂Ω, using [4, Proposition 3.12]) and
replacing F by F1 := max(F,H−).

Comparison with known results. J. Guerand [5] proved a comparison principle in our geometric setting
in the case where H and F are independent of (t, x). She also proved a comparison principle for non-coercive
Hamiltonians.

P.-L. Lions and P. Souganidis [8] introduced a new method to prove comparison principle for junctions
with N ≥ 1 branches (or half-spaces) between bounded uniformly continuous sub/supersolutions. They use
a blow-up argument that reduces the study to a 1D problem. The authors show the comparison principle in
the case of Kirchoff-type boundary conditions and non-convex Hamiltonians. As far as (t, x) dependence is
concerned, these authors can handle Hamiltonians that are Lipschitz in t, see [8, Assumption (4)].

This result is generalized by G. Barles and E. Chasseigne [3, Theorem 15.3.7, page 295] to the case
of bounded semi-continuous sub/supersolutions under three different junction conditions. Even if they are
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presented for N = 2 branches, we present their results in our geometric setting: a junction reduced to a
single branch N = 1 in 1D. The three cases are the following: F is constant in (1.2), the Neumann problem,
and general nonincreasing continuous F . In the third case, the normal derivative is not coupled with the
tangential coordinates in F (see also the very end of [3, §13.2.2 and condition (GA-G-FLT) p. 247]).

As explained above, we improve these results in the case where the functions H and F imply a strong
coupling of the time variable with the normal derivative of the solution.

Organization of the note. In Section 2 we recall the definition of (limiting) semi-differentials and we state
and prove a technical lemma relating some slopes (that we call critical) at the boundary with semi-differentials
(Lemma 2.3). We deduce from this technical lemma a corollary about critical slopes of stationary semi-
solutions of the boundary value problem (Corollary 2.5). In Section 3, we state a barrier result (Lemma 3.1)
that helps us dealing with the initial time condition; we also state a result (Lemma 3.2) about regularized
subsolutions. In Section 4, the comparison principle (Theorem 1.1) is proved.

Acknowledgements. The authors thank G. Barles and E. Chasseigne for enlighting discussions during
the preparation of this note. This research was funded, in whole or in part, by l’Agence Nationale de la
Recherche (ANR), project ANR-22-CE40-0010. For the purpose of open access, the author has applied
a CC-BY public copyright licence to any Author Accepted Manuscript (AAM) version arising from this
submission.

2 Boundary lemmas

Definition 2.1 ((Limiting) semi-differentials). For a set A ⊂ Ω = [0,+∞) and a point x0 ∈ A, we define
the (first order) super/subdifferential at x0 of a function u in A as

D±
Au(x0) = {p ∈ R, such that 0 ≤ ±{u(x0) + p(x− x0) + o(x − x0)− u(x)} in A}

and the limiting (first order) super/subdiffential at the boundary x0 = 0 of u in Ω as

D̄±
Ωu(0) =

{

p ∈ R, there exists a sequence pn ∈ D±
Ωu(xn) with xn ∈ Ω and (xn, pn) → (0, p)

}

.

Remark 2.2. Note that if p ∈ D̄+
Ωu(0) and u is a subsolution of H(ux) ≤ 0 in Ω, then H(p) ≤ 0.

Lemma 2.3 (Critical slopes and semi-differentials). Let Ω := (0,+∞) and u, v : Ω → R ∪ {−∞,+∞} with
u upper semi-continuous and v lower semicontinous such that u(0) = 0 = v(0) and u ≤ v in Ω. The critical
slopes defined by

(2.1) p := lim sup
Ω∋x→0

u(x)

x
, p := lim inf

Ω∋x→0

v(x)

x

satisfy the following (limiting) semi-differentials inclusions

(2.2) R ∩
[

p, p
]

⊂ D̄+
Ωu(0) ∩ D̄−

Ωv(0) if p ≥ p

(2.3) R ∩
[

p, p
]

⊂ D+

Ω
u(0) ∩D−

Ω
v(0) if p ≤ p

(2.4)

{

p ∈ D̄+
Ωu(0) if p ∈ R

p ∈ D̄−
Ωv(0) if p ∈ R

Proof. We first notice that (2.3) is a straightforward consequence of the definition of semi-differentials.
We now focus on the proof of

(2.5) R ∩
[

p, p
]

⊂ D̄+
Ωu(0) in case p > p
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and will even show the following better result

(2.6) R ∩
[

q, p
]

⊂ D̄+
Ωu(0) in case p > q := lim inf

Ω∋x→0

u(x)

x

where the last inequality is assumed because u ≤ v implies q ≤ p. This claim is a variant of [8, Eq. (18)],
and its proof is a variant of [3, Lemma 15.3.1]. We give the details for the sake of completness.

Notice that p ∈ (q, p) means

lim sup
Ω∋x→0

u(x)

x
= p > p > q = lim inf

Ω∋x→0

u(x)

x

We deduce that for any ε > 0, there exists yε ∈ (0, ε) and zε ∈ (0, yε) such that

u(zε)

xε

> p >
u(yε)

yε

Hence the function ζ(x) := u(x)− px satisfies ζ(0) = 0 > ζ(yε). Let M := sup[0,yε] ζ ≥ ζ(zε) > 0. Hence at

a point xε ∈ (0, yε) of maximum of ζ, we see that p ∈ D+
Ωu(xε). In the limit ε → 0, we recover p ∈ D̄+

Ωu(0).
Then (2.6) follows from the fact that D̄+

Ωu(0) is closed. Then (2.5) holds true for u. The similar inclusion
for v implies (2.2) in the special case where p > p. On the other hand, notice that (2.4) implies (2.2) in the
case p = p. Hence it remains to show (2.4).

We now explain why the following fact holds true,

(2.7) p ∈ D̄−
Ωv(0) if p ∈ R

This result is a property of the critical slope for any lower semi-continuous functions. Its proof follows exactly
the lines of the proof of [6, Lemma 2.9]. A similar result holds for u and this proves (2.4).

Definition 2.4 (Coercive and semi-coercive functions). Consider a function G : R → R. Then G is coercice
if lim|p|→+∞ G(p) = +∞, and semi-coercive if limp→−∞ G(p) = +∞.

As a consequence of Lemma 2.3, we have

Corollary 2.5 (Boundary viscosity inequalities). Let Ω and u, v be as in statement of Lemma 2.3. For
γ = α, β, consider continuous functions Hγ , Fγ : R → R with Hα coercive and Fα semi-coercive. Assume
that we have the following viscosity inequalities for some η > 0

(2.8)























Hα(ux) ≤ 0 on Ω ∩{|u| < +∞}
min {Fα, Hα} (ux) ≤ 0 on {0} ∩ {|u| < +∞}

Hβ(vx) ≥ η on Ω ∩{|v| < +∞}
max {Fβ , Hβ} (vx) ≥ η on {0} ∩ {|v| < +∞}

For p, p defined in (2.1), we set a := min(p, p) and b := max(p, p). Then p ∈ [a, b]∩R and there exists a real
number p ∈ [a, b] such that

either Hα(p) ≤ 0 < η ≤ (Hβ −Hα)(p) or max(Fα, Hα)(p) ≤ 0 < η ≤ (Fβ − Fα)(p)

Remark 2.6. Corollary 2.5 can very easily be extended to the case of junctions where the Hamiltonians Hα’s
are coercive on each branch and the junction function is semi-coercive in the sense of [6, Eq. (2.2)].

Remark 2.7. Under the assumptions of Corollary 2.5, we can show that the subsolution u is globally Lipschitz
continuous in Ω.

Proof of Corollary 2.5. We sketch the proof that p ∈ R. Because Hα is coercive and Fα is semi-coercive, we
know from [4, Lemma 3.8] that u is weakly continuous at x = 0, i.e.

(2.9) 0 = u(0) = lim sup
Ω∋x→0+

u(x).
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Then the proof [6, Lemma 2.10] shows additionally that p > −∞. Now we claim that we also have p < +∞.
Indeed, it can be seen by contradiction, leaving fall down above the graph of u on [0, y], some straight lines

of slopes s = u(y)
y

for large positive s and using the equation satisfied by u. We conclude that p ∈ R ∩ [a, b].

Assume first that p ≤ p. Here (2.2) shows that Hα(p) ≤ 0 < η ≤ Hβ(p) and then

η ≤ (Hβ −Hα)(p) for all p ∈
[

p, p
]

∩ R

which implies in particular the desired conclusion.
If p > p, then we have [a, b] ⊂ (−∞,+∞] with a < b and

(2.10)







Hα(a) ≤ 0 because a ∈ R

0 < η ≤ Hβ(b) if b ∈ R

min {Hα, Fα} ≤ 0 < η ≤ max {Hβ , Fβ} on [a, b] ∩ R

where the last line follows from (2.3), and the first two lines follow from (2.4).
Intermediate claim. Now we assume by contradiction that there exists ε > 0 (small enough) such that

(2.11)







i) Hβ −Hα < η − ε or ε < Hα

and
ii) Fβ − Fα < η or ε < max(Fα, Hα)

∣

∣

∣

∣

∣

∣

for all p ∈ [a, b] ∩ R

Recall that the coercivity of Hα means Hα(±∞) := lim infp→±∞ Hα(p) = +∞.
Case 1: Hα(b) > ε
Here b can be finite or equal to +∞. We get

Hα(b) > ε > 0 ≥ Hα(a)

Therefore by continuity, there exists p ∈ (a, b) such that Hα(p) = ε. Hence in the last line of (2.10), the first
inequality implies that Fα(p) ≤ 0. Because (2.11) i) and ii) hold true for p, we get

Hβ(p) < η and Fβ(p) < η

which leads to a contradiction in the last line of (2.10), the second inequality.
Case 2: Hα(b) ≤ ε
Then b ∈ R and (2.11) i) implies for p = b that Hβ(b) < η, which is in contradiction with the second line of
(2.10).
Conclusion. We just proved that (2.11) does not hold true. This implies that for all ε > 0 small enough,
there exists some pε ∈ [a, b] ∩ R such that we have at pε

i) Hα ≤ ε < η − ε ≤ Hβ −Hα or ii) max(Fα, Hα) ≤ ε < η ≤ Fβ − Fα

Because Hα is coercive, we see in both cases i) or ii), that we can always extract a subsequence as ε → 0
such that pε → p ∈ [a, b]∩R. As a consequence, we get that p satisfies i) or ii) for ε = 0, which is the desired
conclusion.

3 Barriers and tangential regularization

In the proof of the comparison principle, two standard results about the construction of barriers and regu-
larization of subsolutions by sup-convolution are needed.

Lemma 3.1 (Barriers). Assume (1.4) and (1.5) and that the initial data u0 is bounded and Lipschitz
continuous. Assume that u (resp. v) is a bounded upper semi-continuous subsolution (resp. a bounded lower
semi-continuous supersolution) of (1.1)-(1.2). Then there exists some constant λ > 0 such that the functions

u±(t, x) = u0(x)± λt

satisfy the following barrier properties:
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• if u ≤ u0 in {0} × Ω, then u ≤ u+ in [0, T )× Ω,

• if v ≥ u0 in {0} × Ω, then v ≥ u− in [0, T )× Ω.

The previous lemma is a direct consequence of the definition of viscosity solutions if u0 is C1. In the
general case, it follows by a standard approximation procedure.

We now turn to the regularization of subsolutions with respect to tangential variables. Even if the proof
is very standard, we will give below a short sketch of it.

Lemma 3.2 (Tangential regularization of subsolutions by sup-convolution). Assume that H satisfies (1.4).
Let u : [0, T )× Ω → R be an upper semi-continuous subsolution of (1.1) which satisfies

|u− u0| ≤ CT in [0, T )× Ω.

We extend u to t = T by u(T, x) := lim sup{u(s, y) : (s, y) → (T, x), (s, y) ∈ [0, T )× Ω} and to R× Ω by,
{

u(t, x) = u(T, x) for t ≥ T,

u(t, x) = u(0, x) for t ≤ 0.

Then for ν > 0, we consider the tangential sup-convolution

uν(s, x) := sup
t∈R

{

u(t, x)− |t− s|2
2ν

}

= u(t̄, x)− |t̄− s|2
2ν

and any such t̄ (depending on (s, x) ∈ R× Ω) satisfies t̄ ∈ [s− θν , s+ θν ] with θν := 2
√
νCT < T/2.

If Iν denotes the time interval (θν , T − θν), then the function uν is Lipschitz continuous with respect to
t in R× Ω̄ and with respect to x in Iν × Ω,

|∂suν |L∞(R×Ω) ≤
θν

ν
and |∂xuν |L∞(Iν×Ω) ≤ Lν

with Lν := sup
{

p ∈ R, minX∈[0,T ]×ΩH(X, p) ≤ θν

ν

}

.

Assume moreover that that u is a subsolution at the boundary (0, T ) × ∂Ω, i.e. satisfies the first line
of (1.2), for some F that satisfies (1.5). Then uν is Lipschitz continuous in space and time on Iν × Ω of
Lipschitz constant Lν := max( θ

ν

ν
, Lν).

Sketch of the proof. It is easy to check that u− uν ≤ 2CT which gives the bound on θν ≥ |t̄− s|. Moreover
the time derivative of uν is like t̄−s

ν
which gives the bound on ∂su

ν . The PDE inequality satisfied by uν

gives naturally the bound on ∂xu
ν . Finally, when F satisfies (1.5), we see using [4, Lemma 3.8]) that u (and

then uν) is weakly continuous on Iν × ∂Ω, which implies the Lipschitz continuity of uν in Iν ×Ω. This ends
the sketch of the proof.

4 Proof of the comparison principle

Before proving our comparison principle, we describe the main steps.
We first use the doubling variable technique with respect to time with a parameter ν > 0. This procedure

can be interpreted as a sup-convolution in time of the subsolution u only (Step 1).
We then focus on the case where the supremum of

u(t, x)− v(s, x)− correction/penalization

is reached at some (t̄, s̄, x̄) with x̄ on the boundary of Ω. (Step 2).
At this stage, the sup-convolution uν of the subsolution u is Lν- Lipschitz continuous in space and time

(thanks to the coercivity of the Hamiltonian), but the supersolution is only lower semi-continuous (Step 3).
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We then consider twin blow-ups (Step 4): one at (t̄, x̄) for u, and one at (s̄, x̄) for v (up to some correction
terms on v). After blow-up, we get half-relaxed limits U0, V 0 that are globally defined on Rt×Ω and satisfy
U0(0, 0) = 0 = V 0(0, 0). We show the following key Lipschitz inequality,

(4.1) U0(t, x)− V 0(s, y) ≤ Lν |x− y|+ b(t− s) with b :=
t̄− s̄

ν

where the Lipschitz constant Lν is inherited from uν .
Then, considering u, the supremum in time of the map t 7→ U0(t, x) − bt and v, the infimum in time

of the map s 7→ V 0(s, y) − bs (Step 5), we see that u∗ and v∗ are subsolution and supersolution of a 1D
problem with moreover the key Lipschitz inequality1

u∗(x) − v∗(y) ≤ Lν |x− y| with u∗(0) = 0 = v∗(0).

This procedure reduces the study to a 1D problem that is solved using the boundary viscosity inequalities
from Corollary 2.5 (Step 6).

Proof of Theorem 1.1. The proof is split into several steps. The first two steps are standard and new ideas
appear in the next steps.

Step 1: approximate supremum.
Let η > 0. This parameter will be small enough but will not vary until we prove that the following quantity
is non-positive,

M = sup
t∈[0,T ),x∈Ω

{

u(t, x)− v(t, x)− η

T − t

}

.

It turns out that

(4.2) M = lim
ν→0

{

lim
α→0

Mν,α

}

.

with
Mν,α := sup

t,s∈[0,T ), x∈Ω

Ψν,α(t, s, x)= Ψν,α(t̄, s̄, x̄)

and (with a careful choice of the penalization term η
T−s

instead of η
T−t

)

Ψν,α(t, s, x) := u(t, x)− v(s, x) − η

T − s
− αg(x)− |t− s|2

2ν
with g(x) :=

x2

2
.

Moreover all maximisers (t̄, s̄, x̄) in the definition of Mν,α satisfy

(4.3) lim
ν→0

{

lim
α→0

|t̄− s̄|2
ν

}

= 0, lim
ν→0

{

lim
α→0

αg(x̄)
}

= 0, lim sup
ν→0

{

lim sup
α→0

η

T − s̄

}

≤ 2CT .

Step 2: Reduction to the case where the supremum is reached at the boundary.
Using the doubling variable technique with respect to x for u and v and considering u(t, x), v(s, y) with a

further penalization term of the form |x−y|2

2δ , we can rely on barrier estimates close to t = 0 to get estimates
on maximum points (t̄δ, x̄δ, s̄δ, ȳδ) → (t̄, x̄, s̄, x̄) as δ → 0 (for some subsequence δ and some suitable limit
(t̄, s̄, x̄)). We deduce that in the limit, the following fact holds true,

(4.4) t̄, s̄ ∈ [τη, T − τη], x̄ ∈ [0, ρα],

(

t̄− s̄

ν
, p̄

)

∈ D̄1,+
t,x u(t̄, x̄), |p̄| ≤ Lν

where Lν is the Lipschitz constant of uν in Lemma 3.2. Moreover, it is possible to choose τη depending on
η only and ρα depending on α only.2

1Notice that without the Lν -Lipschitz inequality (4.1), we would only get u ≤ v and u(0) = 0 = v(0), which is not sufficient
to conclude.

2Up to increase λ and CT in the barrier Lemma 3.1, and to decrease η in the time penalisation term, we can assume that

λT = CT and it is possible to show in this case that we can choose τη := η
4CT

and ρα =
√

6CT

α
.
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If x̄ > 0, then we are in the classical case where we can conclude by writing viscosity inequalities for the
sequence (t̄δ, x̄δ, s̄δ, ȳδ) and by combining them in the classical way. Classical details for this step are given
in the companion paper. We are thus reduced to deal with the case where x̄ = 0.

Step 3: the key Lipschitz estimate.
Following Lemma 3.2, we extend u and consider











Uν(s, x) = sup
t∈R

{

u(t, x)− |t− s|2
2ν

}

V (s, x) = v(s, x) +
η

T − s
+ αg(x)

and there exists some (possibly non unique) t̄s ∈ [s − θν , s + θν ] such that Uν(s, x) = u(t̄s, x) − |t̄s−s|2

2ν . If
s ∈ (θν , T − θν), then we see that t̄s ∈ (0, T ) and then we also have

Uν(s, x) := sup
t∈[0,T )

{

u(t, x)− |t− s|2
2ν

}

.

In particular for (s, x) = (s̄, x̄), we can choose t̄s̄ = t̄ where t̄s̄ is given by Lemma 3.2 and (t̄, s̄, x̄) appear in
Steps 1 and 2. Now we choose ν > 0 small enough such that θν < τη and we set Iν := (θν , T − θν). Moreover
we have

u(t, x)− |t− s|2
2ν

− V (s, x) = Ψν,α(t, s, x) ≤ Ψν,α(t̄, s̄, x̄) = Uν(s̄, x̄)− V (s̄, x̄)

and then taking the supremum in t ∈ R, we get for all s ∈ Iν , x, y ∈ Ω

(4.5)

{

Uν(s, y)− V (s, y) ≤ Uν(s̄, x̄)− V (s̄, x̄)

Uν(s, x) − Uν(s, y) ≤ Lν |x− y|

where the second line follows from the fact that Uν is Lν-Lipschitz continuous (see Lemma 3.2). Notice also
that we have























∂tu+H(t, x, ∂xu) ≤ 0 in (0, T )× Ω
∂tu+min(F,H)(t, x, ∂xu) ≤ 0 in (0, T )× ∂Ω

− η
(T−s)2 + ∂sV +H(s, x, ∂xV − α∂xg) ≥ 0 in (0, T )× Ω

− η
(T−s)2 + ∂sV +max(F,H)(s, x, ∂xV − α∂xg) ≥ 0 in (0, T )× ∂Ω.

Step 4: the twin blow-ups.
We then consider the following twin blow-ups with small parameter ε > 0: one blow-up for u at the point
(t̄, x̄) and one blow-up for V at the point (s̄, x̄),

(4.6)

{

Uε(τ, ξ) := ε−1 {u(t̄+ ετ, x̄+ εξ)− u(t̄, x̄)} , Uε(0, 0) = 0,

V ε(σ, ξ) := ε−1 {V (s̄+ εσ, x̄ + εξ)− V (s̄, x̄)} , V ε(0, 0) = 0.

Before passing to the limit ε → 0, they satisfy

(4.7)























∂τU
ε +H(t̄+ ετ, x̄+ εξ, ∂ξU

ε) ≤ 0 in Iε
t̄
× Ω

∂τU
ε +min(F,H)(t̄+ ετ, x̄+ εξ, ∂ξU

ε) ≤ 0 in Iε
t̄
× ∂Ω

−η̄ε + ∂σV
ε +H(s̄+ εσ, x̄+ εξ, ∂ξV

ε − α∂xg(x̄+ εξ)) ≥ 0 in Iεs̄ × Ω
−η̄ε + ∂σV

ε +max(F,H)(s̄ + εσ, x̄+ εξ, ∂ξV
ε − α∂xg(x̄+ εξ)) ≥ 0 in Iεs̄ × ∂Ω

with

η̄ε(σ) :=
η

(T − (s̄+ εσ))2
and Iεr̄ :=

(

− r̄

ε
,
T − r̄

ε

)

for r̄ = t̄, s̄.
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Because Uν is globally Lν-Lipschitz in space and time, it is also interesting to consider the auxiliary
blow-up for Uν at a point (s̄, x̄),

Uν,ε(σ, ξ) := ε−1 {Uν(s̄+ εσ, x̄+ εξ)− Uν(s̄, x̄)} , Uν,ε(0, 0) = 0.

This auxiliary function is indeed intimately related to Uε since we have,

(4.8) Uν,ε(σ, ξ) = sup
τ∈R

{Uε(τ, ξ)−Aε(τ − σ)} , Aε(q) = bq + ε
|q|2
2ν

, b :=
t̄− s̄

ν
.

Moreover from (4.5), we have for all σ ∈ Iεs̄ and ξ, ζ ∈ Ω,

{

Uν,ε(σ, ζ) − V ε(σ, ζ) ≤ 0,

Uν,ε(σ, ξ) − Uν,ε(σ, ζ) ≤ Lν |ξ − ζ|

and then for all σ ∈ Iεs̄ , τ ∈ R and ξ, ζ ∈ Ω,

(4.9)

{

Uν,ε(σ, ξ)− V ε(σ, ζ) ≤ Lν |ξ − ζ|
Uν,ε(σ, ξ) ≥ Uε(τ, ξ)−Aε(τ − σ)

where the last line follows from (4.8).
Thanks to the uniform Lipschitz estimate for Uν and the fact that Uν,ε(0, 0) = 0, we can extract a

subsequence (still denoted by ε → 0) and get,

Uν,ε → Uν,0 locally uniformly on compact sets of R× Ω, Uν,0(0, 0) = 0.

We then define (along the already extracted subsequence) the following half-relaxed limits






U0 := lim sup
ε→0

∗Uε, U0(0, 0) ≥ 0,

V 0 := lim inf
ε→0

∗V
ε, V 0(0, 0) ≤ 0.

Passing to the limit in (4.9), we get with A0(q) = bq

{

Uν,0(σ, ξ)− V 0(σ, ζ) ≤ Lν |ξ − ζ|
Uν,0(σ, ξ) ≥ U0(τ, ξ)− b(τ − σ)

which shows in particular that

(4.10) U0(τ, ξ)− V 0(σ, ζ) ≤ Lν |ξ − ζ|+ b(τ − σ), U0(0, 0) = 0 = V 0(0, 0).

Moreover, passing to the limit in (4.7) thanks to the discontinuous stability of viscosity solutions, we get

(4.11)























∂τU
0 +H(t̄, x̄, ∂ξU

0) ≤ 0 in (R× Ω) ∩
{

|U0| < +∞
}

∂τU
0 +min(F,H)(t̄, x̄, ∂ξU

0) ≤ 0 in (R× ∂Ω) ∩
{

|U0| < +∞
}

−η̄ + ∂σV
0 +H(s̄, x̄, ∂ξV

0) ≥ 0 in (R× Ω) ∩
{

|V 0| < +∞
}

−η̄ + ∂σV
0 +max(F,H)(s̄, x̄, ∂ξV

0) ≥ 0 in (R× ∂Ω) ∩
{

|V 0| < +∞
}

with η̄ := η
(T−s̄)2 . We used the fact that α∂xg(x̄) = αx̄ = 0.

Step 5: the 1D problem.
We now define the following functions as supremum/infimum in time of the functions defined in R× Ω,

u(ξ) := sup
τ∈R

{

U0(τ, ξ)− bτ
}

, v(ξ) := inf
τ∈R

{

V 0(τ, ξ)− bτ
}

.

From (4.10), these functions satisfy

−∞ ≤ −Lν |ζ − ξ|+ u(ξ) ≤ v(ζ) ≤ +∞, 0 ≤ u(0) ≤ v(0) ≤ 0
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and then u(0) = 0 = v(0). Because of this Lipschitz inequality, this is also the case for their semi-continuous
envelopes, i.e. we have

(4.12) −∞ ≤ −Lν |ζ − ξ|+ u∗(ξ) ≤ v∗(ζ) ≤ +∞, u∗(0) = 0 = v∗(0).

From (4.11), we get (again from stability) that these functions satisfy in particular for X̄ := (t̄, x̄) and
Ȳ := (s̄, x̄)

(4.13)























b +H(X̄, ∂ξu
∗) ≤ 0 in (R× Ω) ∩{|u∗| < +∞}

b+min(F,H)(X̄, ∂ξu
∗) ≤ 0 in (R× ∂Ω) ∩{|u∗| < +∞}

−η̄ + b+H(Ȳ , ∂ξv∗) ≥ 0 in (R× Ω) ∩{|v∗| < +∞}
−η̄ + b+max(F,H)(Ȳ , ∂ξv∗) ≥ 0 in (R× ∂Ω) ∩{|v∗| < +∞} .

Step 6: getting a contradiction from structural assumptions.
We now apply Corollary 2.5. In order to do so, we consider

p := lim sup
Ω∋x→0

u∗(x)

x
, p := lim inf

Ω∋x→0

v∗(x)

x
, a := min(p, p), b := max(p, p)

and we get that there exists p ∈ [a, b] ∩R 6= ∅ such that either

b+H(X̄, p) ≤ 0 < η̄ ≤ H(Ȳ , p)−H(X̄, p)

or
b+max(F,H)(X̄, p) ≤ 0 < η̄ ≤ F (Ȳ , p)− F (X̄, p).

One of these facts are true along a subsequence ν → 0. In the first case, we get from the assumption on the
Hamiltonian H , see (1.4) ii), that,

η̄ ≤ H(Ȳ , p)−H(X̄, p) ≤ C|t̄− s̄|
{

1 + max(0, H(X̄, p))
}

≤ C|t̄− s̄| {1 + max(0,−b)}

≤ C

{ |t̄− s̄|2
ν

+ |t̄− s̄|
}

→ 0 as ν → 0

where we have used b =
t̄− s̄

ν
in the third line, and (4.3) in the last line. Contradiction because η̄ ≥ η/T 2 > 0.

From the assumption on the function F , see (1.5) ii), we get a similar contradiction in the second case,

η̄ ≤ F (Ȳ , p)− F (X̄, p) ≤ C|t̄− s̄|
{

1 + max(0,max(F,H)(X̄, p))
}

≤ C|t̄− s̄| {1 + max(0,−b)}

≤ C

{ |t̄− s̄|2
ν

+ |t̄− s̄|
}

→ 0 as ν → 0.

We conclude that M ≤ 0. Recalling that

M = sup
t∈[0,T ),x∈Ω

{

u(t, x)− v(t, x) − η

T − t

}

≤ 0,

it is enough to let η → 0 to get u ≤ v as desired.
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