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We study the creep behavior of a disordered brittle material (concrete) under successive loading steps, using
acoustic emission and ultrasonic sensing to track internal damage. The primary creep rate is observed to follow
a (Omori-type) power-law decay in the strain rate, the number of acoustic emission events, as well as the
amplitudes of the ultrasonic beams, supporting a brittle-creep mechanism. The distribution of acoustic emission
event energies is observed to have a scale-free power-law distribution instead of a truncated one expected for
a system approaching a critical point at failure. The main outcome is, however, the discovery of unexpected
history effects that make the material less prone to creep when it has been previously deformed and damaged
under primary creep. With the help of a progressive damage model implementing thermal activation, we interpret
this as an aging-under-stress phenomenon: During an initial creep step at relatively low applied stress, the
easy-to-damage sites are exhausted first, depleting the excitation spectrum at low stress gap values. Consequently
on reloading, although previously damaged, the primary creep restarts but the material creeps (and damages) less
than it would under the same stress but without precreeping. Besides shedding a new light on the fundamental
physics of creep of disordered brittle materials, this has important practical consequences in the interpretation of
some experimental procedures, such as stress-stepping experiments.

DOI: 10.1103/PhysRevMaterials.7.033602

I. INTRODUCTION

The failure of materials is naturally important for prac-
tical applications but also for the fundamental physics
involved. In everyday applications, such as in structural ma-
terials, the loads are often static, leading to time-dependent
deformation—creep—and possibly failure. Understanding
this type of deformation is crucial in determining the life
expectancy of an aging concrete infrastructure. Such circum-
stances can be mimicked by imposing a loading history on a
sample in laboratory conditions—with constant loading.

Creep behavior of materials is usually divided into dis-
tinct phases. The first phase, primary creep, is characterized
by a power-law decrease in the strain rate, ε̇ ∝ t−p, where
the exponent p is reported [1] to range between 0.4 and 1
(the large variation linked, e.g., to the role of elastic stress
redistribution [2]). Andrade historically reported an exponent
p = 2/3 for metal wires [3], defining the so-called Andrade’s
creep, while p = 1 defines logarithmic creep [ε ∝ log(t )] [4].
After primary creep one might enter secondary creep, where
the strain rate reaches its minimum value, ε̇m, and stays con-
stant. Finally, the material fails due to a rapid increase in the
strain rate, called tertiary creep [5–8]. A classical goal is to
determine a creep law of the form ε̇m = Aσ nexp(−E/kBT ),
where σ is the stress, the exponent n is assumed to be linked to
an underlying microscopic mechanism, T is the temperature,
kB is the Boltzmann’s constant, E is a stress-independent
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(material-dependent) activation energy, and A is a material
constant [9]. In this empirical law, the Arrhenius term ex-
presses the thermally activated nature of creep.

In practice, a stress-stepping procedure is often used for
creep testing [10–12] where the sample is first loaded to
a stress level for a period of time to study the creep rate
and then successively loaded to higher stress levels. This
is a cost-effective testing method, as multiple stresses can
be tested on the same specimen at a given temperature and
sample-to-sample variation in heterogeneous materials can be
eliminated. The goal is to determine the creep law of the ma-
terial, assuming that the minimum strain rate ε̇m is attained at
the end of each step. However, a question naturally arises: Are
there history effects in this process, i.e., are the previous creep
steps affecting the current one? In the context of dislocation-
driven creep in metals, such a possibility was already hinted
at by Cottrell [13], who argued that the creep rate in the latter
creep steps would be slower as some of the easy-to-deform
sites have already been “exhausted” in the initial creep steps.
Additionally, in the creep of nonbrittle materials such as met-
als [14–16] and plastics [17,18] the concepts of strain and time
hardening have been discussed in the context of these type of
history effects.

In this work we show, from experimental observations of
the global strain, acoustic emission and ultrasonic sensing
on an emblematic quasibrittle heterogeneous material—
concrete—that creep deformation and damage are indeed
characterized by history effects leading to unexpected re-
lations between the applied stress and the strain rate. By
simulating a simple progressive damage model, we show that
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this effect is due to an exhaustion mechanism—a form of
aging-under-stress—that can make a material, previously de-
formed and damaged during a primary creep stage, less prone
to further deform later under a larger stress. These results
shed new light on the fundamental physics of creep and might
challenge the interpretation of some experimental results, e.g.,
those based on stress stepping.

The phenomenological power-law decrease of ε̇ during
primary creep has been observed for a wide range of materials,
including metals [3], paper [7], colloidal glasses [19], gels
[6,20,21], ice [22], or rocks [10,23]. In various crystalline
materials, primary creep mechanisms have been discussed in
terms of dislocation interactions [24–27]. In rocks, it has been
proposed that primary creep results from the cumulative ef-
fect of microfracturing/damage events, defining brittle creep
[23,28]. We have chosen concrete for testing, a disordered ma-
terial of obvious interest in civil engineering. The microscopic
origins of concrete creep are still partly unknown [29]. They
are usually understood to relate to the nanoscale rearrange-
ments of calcium-silicate-hydrates (primary component of the
cement paste) [30–33] or to the migration of adsorbed water in
the micro- and nanoporosities [29,31–33] and modelled using
viscoelastic approaches [34–39].

Here we, however, take another viewpoint, and later
confirm it, of brittle creep [23] where creep results from
microcracking. These microcracking events can be indirectly
observed as crackling noise [40]. A popular method for
observing this crackling noise is acoustic emission (AE)
monitoring, which has been used in detecting avalanches in
compression of different materials, e.g., porous brittle ma-
terials [41], rocks [42,43], solid foams [44,45], and wood
[46]. Microcracking avalanches have been studied under
monotonic loading of concrete (constant stress-rate) using
AE [47,48] and the avalanche energy statistics have shown
a scale-free power-law distribution with an upper cutoff,
p(EAE) ∝ E−β

AE exp(−EAE/E0). When approaching the critical
failure stress, the cutoff E0 diverges, and this critical transi-
tion has been mapped to the universality class of depinning
[49–51]. We show here that the damage avalanche statistics
during primary brittle creep are instead characterized by ro-
bust power-law distributions without a cutoff, shining light on
fundamental differences between athermal (monotonic load-
ing) and creep (thermally activated) deformation of disordered
materials.

II. EXPERIMENTS

The material studied was laboratory-size samples of con-
crete with two different microstructures, one with medium
size aggregates (denoted by M) and one with coarse aggre-
gates (denoted by C). For details on sample preparation and
properties, see Appendix A.

To study the effect of increasing load on the same sam-
ple, the creep loading was done under uniaxial compression
in successive creep steps at room temperature. This means
doing a steep ramp of constant stress rate to a stress level
σ1, keeping the stress constant for time T1, and then doing a
second ramp to stress σ2, keeping the stress constant for time
T2, and so forth. This was done until sample failure which, for

the experiments presented here, happened during one of the
ramps, defining also the failure stress of the sample σc.

The initial loading ramp (as well as the stress increases
between stress steps) was performed at a constant force rate of
100 N/s, corresponding to a stress rate of roughly 0.1 MPa/s.
The load and axial displacements of the piston were monitored
at a 10-Hz frequency. The sample axial displacement was
determined by subtracting the known elastic deformation of
the loading frame from the measured axial displacement [52].

Additionally, the AE in the sample was monitored using
two piezoelectric sensors, yielding a catalog of acoustic event
energies EAE. The sample was simultaneously monitored with
ultrasonic sensing [53] (measurements at 6-min intervals,
which are removed from the AE data) using two arrays of ul-
trasonic transducers to follow the evolution of the attenuation
of direct (ballistic) elastic waves within the material, a way to
probe internal damage of the sample. See Appendix A for full
experimental details.

III. MODEL

To explore the behavior computationally, we used a
finite-element-based progressive damage model (the athermal
version has been extensively detailed elsewhere [54–56]).
Here the time-dependent, thermally activated creep process
is introduced using a kinetic Monte Carlo (KMC) algorithm
[57] to allow the damaging of element i with a rate νi(σ, T ) =
ν0 exp(−Ei/kBT ), where ν0 is an attempt frequency, and the
local activation energy is written Ei = Va�σi with Va a con-
stant activation volume and �σi the Coulomb stress gap
between the local stress state and the failure envelope, i.e.,
the how far the element is from being damaged. Each damage
event corresponds to a 10% loss of the elastic modulus of
the element. After the element is damaged, the time step for
the KMC algorithm is drawn from an exponential distribution
with a mean corresponding to the reciprocal of the sum of the
jump rates of all the elements in the sample.

The simulation protocol used here, under uniaxial com-
pression, corresponds to initially loading the sample to 80%
of the maximum stress (determined from monotonically and
athermally loading the same microstructure until failure) for
700 s and then increasing the stress to either 85% or 95% of
the maximum stress for additional 700 s. The simulations are
averaged over 100 realizations of the microstructure. For full
simulation details see Appendix B.

IV. RESULTS

Here for the sake of clarity, we have focused on a single
representative experiment and a reference experiment (see
Appendix F for additional experiments showing fully con-
sistent results). Looking at the accumulated strain from the
beginning of each step [Fig. 1(a)], we observe the strain rate
decreasing with time. By assuming an Andrade-like law [3]
to hold and avoiding the divergence at the start of the creep
step (t = tr) by introducing a time constant c, one arrives at
the equation

ε̇ = K

(t − tr + c)p
, (1)
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(a) (b)

(c) (d)

FIG. 1. (a) Strain ε accumulated after the start of each creep step
as a function of time t after the start of the step at tr . (b) Same
as (a) for the number of acoustic events n. (c) Same as (a) for the
damage parameter D, averaged over the sample. (d) Same as (a) for
the simulations. The black lines represent fits according to Eq. (1).

where ε̇ is the strain rate, t − tr the time from the start of the
creep at tr , p an exponent, and K a prefactor. The time constant
was found to be small compared to the step duration and not
to vary significantly between different steps and experiments,
so a constant c = 1 s was set. By integrating Eq. (1) and fitting
to the strain data [black lines in Fig. 1(a)] we see that it works
extremely well (see Appendix C for a detailed goodness-of-fit
analysis). We observe a slight decrease in the exponent p with
increasing applied stress (see Appendix D), consistently with
former observations [1,13] and recent simulations [2].

On the same fits one would expect the prefactor K to have a
power-law dependency on the applied stress K ∝ σ m [1] or at
least a monotonically increasing one. This is complicated here
by the slight change in the p value; nevertheless, one would
expect the creep rate to increase with increasing stress. This
is clearly not the case in our experiments [Fig. 1(a)]: After
the initial creep step at 0.51 × σc, primary creep is compar-
atively slower during the following stress steps (0.61 × σc to
0.82 × σc)—until one reaches the stress 0.92 × σc at which
creep dynamics finally surpasses that of the initial stress step.

If creep results from the cumulative effect of microcracking
events [23], then one would expect the strain rate to be directly
proportional to the acoustic event rate ṅ, which would have
therefore an Omori-type relation,

ṅ = K ′

(t − tr + c)p
, (2)

where K ′ is a different prefactor. Indeed, we see this clear
decrease in the event rate in the experimental data [Fig. 1(b)].
To check the proportionality ε̇ ∝ ṅ, we take the fits from
Fig. 1(a) and apply a linear transformation to yield fits for

the number of acoustic events [black lines in Fig. 1(b)]. The
agreement observed strongly argues for the brittle creep hy-
pothesis for concrete. It also implicitly suggests that the shape
of the distribution of microcrack sizes, i.e., of AE energies,
does not evolve during primary creep or from one loading step
to another (see below).

We also measured the amplitudes A of the direct waves be-
tween transmitting and receiving ultrasonic transducers (from
each source to each receiver, see Appendix A for details),
normalized by their amplitude at the beginning of the first
creep step A0, and argue that a decrease in this amplitude
(attenuation) reflects a damaging process. The damage param-
eter, averaged over all the beams (over the whole sample), is
therefore defined as

〈D〉 =
〈

A0 − A

A0

〉
. (3)

The evolution of this damage parameter [Fig. 1(c)] is very
similar to the evolution of the strain or the number of events: It
grows with time with a decreasing rate, and in the stress steps
directly after the initial 0.51 × σc one, the damage accumula-
tion is slower. This confirms the brittle creep mechanism as
well as the associated history effects.

The simulation results agree remarkably well with these
experimental findings: The strains follow Eq. (1) [black lines
in Fig. 1(d)], and the history effect on the creep rate is evident
when the stress of the second creep step is small enough
(0.85 × σc) while with a high-enough stress (0.95 × σc) the
initial rate (at 0.80 × σc) is surpassed, as observed in Fig. 1(a).
Similarly to the experiments, the exponent p of Eq. (1) de-
creases with increasing stress (see Appendix D for details).

The model allows us to ascribe these history effects on
creep deformation to a aging-under-stress mechanism. We
do this by examining the excitation spectra [58–61], i.e., the
Coulomb stress gap distribution (element’s distance to being
damaged, see Appendix B for details). The simulations start
with a uniform cohesion distribution mimicking microstruc-
tural disorder, leading to a uniform stress gap distribution.
However, this distribution is rapidly depleted toward the small
stress gaps as primary creep proceeds (Fig. 2), as the easy-to-
damage sites are exhausted. This leads to a slowing down of
the creep rate in the second step at 0.85 × σc, for which the
lower cut-off of the stress gap distribution does not almost
evolve on reloading. Increasing further the applied stress to
0.95 × σc counterbalances this aging effect and the stress gap
distribution significantly narrows at both ends during creep.
Coupled with a general softening of the material as damage
accumulates, this makes the creep dynamics finally surpass
the one of the initial stress step.

In addition to the number of acoustic events, one can
take a look at the distribution of their energies. Plotting
their cumulative distribution P(� EAE) (Fig. 3) one can see
a power-law type distribution spanning several decades in
energy. For (athermal) monotonic loading of concrete, this
distribution was found to follow a truncated power law where
the cutoff scale E0 diverges as the sample approaches failure,
signing a divergence of the correlation length and a critical
transition [47]. Creep fundamentally differs in this respect, as
we do not observe such a cutoff, even under stresses far from
the monotonic failure stress σc of the material and/or during
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(a)

(b)

(c)

FIG. 2. The distribution of the Coulomb stress gaps �σ at (a) t −
tr = 0.35 s, (b) t − tr = 10 s, and (c) t − tr = 700 s in the simula-
tions. Blue dots correspond to the initial step at 0.80 × σc, red dots
to the step at 0.85 × σc, and yellow ones to 0.95 × σc.

primary creep, i.e., far from the creep failure time. Instead, the
distributions follow a pure power-law p(EAE) ∝ E−β

AE . Note
that a truncated power law cannot be statistically excluded
(see Appendix E for details on the statistical analysis) for the
onset of primary creep during the first loading steps of two
experiments, though associated to a large E0.

By obtaining a maximum likelihood estimate for the ex-
ponent β we see [Fig. 3(b)] that it does not change between
experiments or creep steps. The observed value of β = 1.47 ±
0.04 is very close to the mean-field value of β = 3/2.

These unexpected history effects are confirmed by other
experiments with steps of increasing load (see Appendix F),
as well as by a reference experiment with a large number
of successive creep steps under the same applied stress, sep-
arated by unloading-reloading (Fig. 4). We see [Fig. 4(a)],
as expected, a decrease in the creep rate as the number of
steps nsteps increases, but after a few steps the effect seems
to saturate and the difference in the creep rate between steps
is very small. We note that the creep rate in the beginning

FIG. 3. The cumulative distribution of AE event energies EAE

for each of the creep steps in one experiment. The inset shows the
values of the power-law exponent β obtained through a maximum
likelihood estimation for all experiments.

(a) (b)

(c)

(d) (e) (f)

FIG. 4. A reference experiment with C-concrete where all the
steps are performed at the same stress level (equal durations, un-
loading between steps). (a) The creep rates decrease quickly with
increasing number of steps, and after around four steps the difference
between steps becomes very hard to see. The black lines are fits
corresponding to Eq. (1). (b) The number of acoustic events follows
the behavior of strain in a linear fashion. The black lines are lin-
ear transformations of fits shown in panel (a). (c) The cumulative
distribution of AE event energies shows a power-law distribution
spanning several orders of magnitude for each creep step. The black
line corresponds to β = 3/2. (d) The exponent p of the strain fits
starts at a value p ∼ 1 for the first steps (corresponding to logarith-
mic creep) and quickly decreases to a lower roughly constant value
p < 1. (e) The energy distribution power-law exponent β is roughly
constant, around the mean field value β = 3/2. The increased vari-
ance in the latter steps is due to the reduced number of events in
these steps. (f) The difference of the BICs for the power-law and
truncated power-law models in the energy distribution fits shows that
the truncated power law is preferred only for the first and third steps.

of each creep step is significantly larger than in the end of
the previous steps, showing effectively a restarting of the
primary creep stage. Once again the number of acoustic events
[Fig. 4(b)] follows from the relation ṅ ∝ ε̇ and we see a robust
power-law spanning several decades in energy [Fig. 4(c)]. The
exponent p [Eq. (1)] of the strain curves [Fig. 4(d)] shows a
slightly different behavior than in the other experiments (see
Appendix B), the exponent is high in the first steps (p ∼ 1 or
even slightly larger) and decreases to a roughly constant value
(p < 1) for the latter steps. The power-law exponent β fitted
to the energy distributions [Fig. 4(e)] behaves as in the other
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experiments, it is around 3/2 and does not evolve with the
number of steps.

We also compute the difference in the Bayesian in-
formation criterions (BIC) [62,63] for the pure power-law
distribution and a truncated one for the AE event energies.
This quantity is negative if the observed data fit the truncated
distribution better (for details see Appendix E). The difference
in the BICs in the reference experiment [Fig. 4(f)] shows that
the truncated power law is preferred only in the first and third
steps and there is no clear cutoff in the acoustic emission
energy distributions of the other steps. Even in the two cases
where the truncated power law is preferred, it is associated to
a fairly high cutoff value, E0 ∼ 104 arbitrary units.

V. SUMMARY

We studied primary creep of an emblematic heteroge-
neous material—concrete—under uniaxial compression. We
observed a power-law (Omori-type) decrease in the strain
rate and a similar behavior in the number of acoustic events,
supporting the viewpoint of microcracking as the mechanism
of creep deformation. This brittle creep mechanism, differ-
ent from the microscopic mechanisms generally invoked to
explain concrete creep, is further confirmed by our results
of ultrasonic monitoring that show a similar evolution of the
attenuation of elastic waves within the material as creep pro-
ceeds. It results from the interplay between thermal activation
and elastic interactions leading to damage avalanches. Unlike
what is observed for damage under athermal monotonic load-
ing [47,48], the distribution of AE energies during primary
creep follows a pure power law with an exponent close to
the mean-field value even at low stress and quite far from
failure, reminiscent of self-organized or extended criticality.
The mechanism of this difference remains elusive, as the
scale-free nature of the phenomena makes the pinpointing of
a specific process difficult. Interestingly, this is reminiscent of
the postseismic slip phase following large earthquakes, which
is characterized by a power-law decrease of the slip velocity,
v ∼ 1/(t + c)p [64], as well as a similar decay of the after-
shock triggering rate, the celebrated Omori’s law [65], while
the seismic moments of these aftershocks are distributed ac-
cording to a nontruncated power law—the Gutenberg-Richter
law [66].

However, the main outcome of this work is the discovery
of loading history effects leading to an unexpected slowing
down of primary creep dynamics after the material has been
previously damaged during former creep steps. From a pro-
gressive damage model in which thermal activation of local
damage events is introduced using a KMC algorithm, we ar-
gue that this results from an aging-under-stress phenomenon.
In amorphous materials such as glasses, aging characterizes
the process by which a glass, below its transition temperature,
tries (very) slowly to reach thermal equilibrium by moving
toward more stable energy wells [67]. This aging therefore
modifies the excitation spectrum, increasing, on mechanically
loading the amorphous material, its strength and brittleness
[68]. In our case, the material ages during primary creep,
i.e., under stress, assisted by thermal activation (as illus-
trated by the expression of the Arrhenius term Va�σi/kBT in
the model). This depletes the easy-to-damage sites (smallest

stress gaps), making the material less prone to creep when
subsequently loaded under the same or even a larger stress.
On increasing further the applied stress, one reaches finally
a point at which this aging effect is counterbalanced by an
increasing softening of the material and by elastic interactions
leading to a sustained damage avalanche activity and larger
creep rates. For a given primary creep step, this aging is fast
at the onset of loading but slows down through time as creep
proceeds (Fig. 2), much like classical aging of glasses [67].

The previously suggested phenomenological concepts of
time or strain hardening [14–18] in creep suggest that the
creep strain rate is only a function of the stress, temperature,
and time (time hardening) or strain (strain hardening). Our re-
sults show a more complex behavior where the resultant strain
from multiple stress steps cannot be expressed using a simple
superposition principle as suggested by time hardening. As
strain hardening in a brittle material such as concrete is negli-
gible (compared to metals and plastics), it is not sufficient to
explain our results. Our aging under stress scenario, with the
modification of the excitation spectrum during primary creep
as the easy-to-damage sites are exhausted, gives a theoretical
explanation for these observed loading history effects.

Besides their importance for the fundamental understand-
ing of creep in disordered brittle materials, these history
effects have practical consequences in material testing that
cannot be underestimated, e.g., when using stress-stepping
experiments to empirically determine a creep law. Neglecting
the aging-under-stress can falsely make the material seem
more creep resistant than it actually is, which is a serious
problem for structural materials.

Further work should be done to explore the observed his-
tory effects with much better statistics and to determine the
influence of, e.g., creep step duration, stress step size, and
temperature. Additionally, the impact of the history effects on
the athermal failure strength or the creep failure time should
be studied. Theoretical development of models explaining
the scale-free power-law distributions of AE event energies
instead of truncated ones is needed. Beyond brittle creep,
one might expect similar aging-under-stress phenomena in
other contexts, as already hinted at by Cottrell for the creep
of metals [13]. In that case, creep results from dislocation
motion, and this aging would result from the exhaustion of
easy-to-deform sites during primary creep, resulting in a sort
of statistical strain hardening. As the behavior can be modeled
with a fairly general model of brittle materials, an extension
to other materials, such as amorphous media, would be worth
exploring as well.
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FIG. 5. A schematic picture of the loading protocol used. After
an initial ramp of constant stress rate (ending at time t1

r ) the stress is
kept constant at σ1 for a duration T1. The stress is then increased with
the same stress rate to σ2 for a duration of T2 and so forth. The test
ends when the sample fails either during a creep step (stress step) or
during one of the ramps (at the stress σc).

APPENDIX A: DETAILS OF THE EXPERIMENTAL SETUP

The testing protocol comprises an initial loading ramp,
static loading at constant stress σ1 for a duration T1, another
loading ramp to σ2, constant stress σ2 for a duration T2, and
so forth until sample failure. A schematic representation of
the loading protocol can be seen in Fig. 5, and the stresses
and durations used for each creep step of each experiment
are detailed in Table I. Experiment number 5 differs from the
others, as there is an unloading ramp (identical to the initial
loading ramp), a 15-min wait, and then a reloading ramp
(again identical to the initial one) between each creep step.
Due to the low stress used, this experiment was not performed
until sample failure.

The samples used were cylindrical pieces of dry concrete
with a radius of 40 mm and height of 80.5 ± 0.5 mm. Three
sides of the samples were cut flat for imaging purposes (see
Fig. 6(a) for a schematic representation) but the results of this
imaging are not included in this paper. The loading direction
during compression was perpendicular to the direction of cast-
ing. The two types of concrete used correspond to aggregate
sizes of roughly 2 mm (M-concrete) and 3.5 mm (C-concrete)
[52].

The cement used was CEM I 52.5N-type Portland cement,
satisfying the standard NF EN 197-1 [69] and the aggregates
were clean natural gravel, its specific properties conforming
to the standard NF EN 12620 [70]. Ordinary potable water
was used for mixing and curing, and the weight method (ac-
cording to standard NF EN 206-1 [71]) was applied to prepare
the concrete mixtures. The volume fraction of the aggregates
was a constant 70% of the concrete volume and the finesse
modulus of aggregates was 6.95 for M-concrete and 9.21 for
C-concrete. The water-to-cement ratio was also a constant
58%.

The concrete samples were cast according to normal
weight concrete procedure (standard NF EN 206-1 [71]) and
during mixing the cement and aggregates were initially mixed
in dry conditions and water was then added in the mixer. The

TABLE I. Experimental details for all the experiments presented
in the paper. Samples number 1 and 5 refer to the ones in the main
text and the additional ones are presented in Appendix F.

Number Type σc (MPa) Step σ (MPa) σ/σc T (s) nAE

1 M 49.0 1 25.0 0.51 9199 8839
2 30.0 0.61 12161 3877
3 35.0 0.71 5976 1025
4 40.0 0.82 7436 3914
5 45.0 0.92 6225 5928

2 C 45.5 1 25.0 0.55 6982 787
2 30.0 0.66 56630 1215
3 35.0 0.77 10320 683

3 M 63.9 1 25.0 0.39 64040 3710
2 30.0 0.47 1605 334
3 35.0 0.55 1657 573
4 40.0 0.63 1776 555
5 45.0 0.70 940 496
6 50.0 0.78 900 681
7 55.0 0.86 838 1228
8 60.0 0.94 911 4133

4 M 69.0 1 25.0 0.36 782 968
2 30.0 0.44 782 667
3 35.0 0.51 784 1127
4 40.0 0.58 781 795
5 45.0 0.65 782 752
6 50.0 0.73 783 1272
7 55.0 0.80 783 899
8 60.0 0.87 782 1323

5 C 1 20.0 3595 4496
2 20.0 3597 1099
3 20.0 3596 736
4 20.0 3599 561
5 20.0 3599 569
6 20.0 3599 541
7 20.0 3599 494
8 20.0 3599 482
9 20.0 3599 601
10 20.0 3617 566
11 20.0 3598 539
12 20.0 3685 432
13 20.0 3607 310

mixtures were poured into cylindrical cardboard molds and
the consolidation of the samples was improved by compact-
ing them by an internal vibrator combined with an external
vibrating table.

After casting the samples were cured for 48 h by covering
the molds with a plastic sheet in a moisture room. After
demolding, the specimens were cured in a water basin at a
temperature of 20 ◦C for 2 months. The samples were then cut
by diamond grinding disks to avoid flexural stresses and to
ensure planar surfaces. After cutting the samples were stored
in the water basin for an additional month and then stored
in air-dried condition for 17 months. For experiment number
5 the sample had been stored in air-dried condition for 51
months.

The sample preparation and detailed microstructural anal-
ysis of the samples is detailed in Refs. [52,72].
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(a) (b)

(c)

FIG. 6. (a) The geometry of the sample cross section showing the
initially cylindrical samples (radius r) and the three flattened sides.
(b) Schematic illustration of the operating principle of the ultrasonic
array, showing the sample between the source and receiver arrays,
where the white dots represent individual transducers (for clarity an
array with 20 transducers is drawn). The black lines represent the
direct path from one source transducer to each receiver transducers.
(c) An image of the sample in the compression setup, showing the
attachment of the ultrasonic arrays, as well as the heterogeneity of
the sample microstructure. The height of the sample is denoted in the
image as h.

The acoustic emission was captured by coupling two piezo-
electric AE sensors (frequency bandwidth of 20–1200 kHz)
directly to the side of the sample using a silicon paste. The
resulting signals were preamplified by 40 dB and a standard
thresholding procedure for AE event detection was used with
a 30-dB amplitude threshold. The event catalog consists of
the occurrence times of the events and their energies EAE. The
number of acoustic events during each creep step is detailed
in Table I.

In addition, two source-receiver ultrasonic arrays face each
other on both sides of the sample [Figs. 6(b) and 6(c)]. In
ultrasonic monitoring, a pulse is sent from a source transducer
and received in each of the receiver transducers, and this

procedure is repeated for each transducer in the source array.
The arrays are composed of 64 transducers centered at 1 MHz
with a 75% bandwidth. The ultrasonic signal transmitted by
each piezotransducer source is a broadband pulse of 1 µs
at the central frequency of the transducer. On both arrays,
the transducer dimensions are 0.75 mm along the vertical
axis (that corresponds to half of the central wavelength) and
12 mm along the transverse axis. This feature naturally creates
a collimated beam, which avoids side echoes from the sample
boundaries. The received signals spread over 10 µs after the
direct arrival at �9 µs due to weak scattering associated to
the sample heterogeneity. To solely focus on the amplitude
variation of the ballistic arrival, a double beamforming algo-
rithm (DBF) is applied on subarrays of nine elements centered
on source-receiver pairs from both sides [53]. The DBF algo-
rithm presents two advantages. First, it allows us to clean out
the scattered wavefield with the selection of the acoustic beam
of maximum intensity for each source-receiver pair [73]. Sec-
ond, it significantly improves the signal-to-noise ratio of the
ballistic arrival when the elastic attenuation increases close to
failure [74]. The averaging of the amplitudes is done over all
of these beams, i.e., over the whole sample.

APPENDIX B: DETAILS OF THE SIMULATION MODEL

The basic framework of the model is a well-studied
progressive damage model [54–56] that utilizes a two-
dimensional plane strain finite element method with a
triangular mesh and adds the damage through a decrease in
the elastic modulus,

E = (1 − d )E0, (B1)

where E0 is the initial elastic modulus and d the damage
parameter. Each time an element is damaged (the criterion for
this is explained below) the modulus is decreased by 10%,
which is merely an arbitrary choice for the damage parameter
and does not change the general behavior of the model.

The time-dependent part is implemented using the KMC
approach which works in two basic steps. First, a site is picked
randomly, with a probability proportional to the jump rate
which follows an activated scaling,

νi = ν0 exp

(
− Ei

kBT

)
, (B2)

where the index i corresponds to the site in the simulated
sample, ν0 is the constant attempt frequency, E the activation
energy, kB the Boltzmann constant, and T the absolute tem-
perature. The activation energy is determined as Ei = V �σi,
where V is a (constant) activation volume and �σ is the size
of the stress step in the Coulomb failure criterion at the current
time (Fig. 7).

After the site is picked, it is damaged according to the
original formulation of the model. The second step of the
KMC algorithm is then a random choice of the time step from
a distribution with the probability density function

p(�t ) = 1

�t0
exp

(
− �t

�t0

)
, (B3)

where �t0 is the reciprocal of the sum of the jump rates∑
i νi. The simulation time used is moved forward by this
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FIG. 7. An illustration of the Coulomb failure criterion used,
represented in the Mohr plane. The stress gap �σ is defined as the
distance from the current stress state (circle defined by the applied
normal stress σ1) to the failure envelope (defined by the line with a
slope tan ϕ and y intercept C).

randomly chosen �t and the cycle starts again from the first
step. We note that the simulation timescale is inversely pro-
portional to ν0, and the exact time values used in this work
rely on this fairly arbitrarily chosen parameter. The value is
an order-of-magnitude estimate based on the activation energy
for subcritical crack growth in rocks [75].

The stress step used in the model is determined from the
classical Coulomb failure criterion. The critical normal stress
σmax is determined by the envelope

τ = Ci + σn tan ϕ, (B4)

where τ is the shear strength, Ci the cohesion value of the
site, σn the normal stress, and ϕ the angle of internal friction.
The cohesion values for each site are picked from a quenched
uniform distribution spanning from 0 to Cmax.

The stress gap �σ is then the distance from the current
state to the athermal failure state (see Fig. 7 for a graphical
explanation). Here only normal stress is applied and therefore
σn = σ1 and the stress gap is

�σ = C cos ϕ + σ1 + σ3

2
sin ϕ − σ1 − σ3

2
. (B5)

The values of the model parameters chosen to mimic the
macroscopic behavior observed experimentally can be seen in
Table II.

TABLE II. Parameter values for the model

E0 (GPa) d ν0 (s−1) T (K)
21 0.1 1 × 1013 300

V (m3) ϕ (◦) Cmax (MPa)
11 × 10−27 35 31

FIG. 8. Figure 1(a) with double logarithmic axes.

APPENDIX C: GOODNESS-OF-FIT ANALYSIS FOR THE
STRAIN EVOLUTION

To illustrate the goodness-of-fit for the strain fits presented
in Fig. 1(a) of the main text [fits to Eq. (1) of the main text], we
plot them here in double logarithmic axes in Fig. 8. The fits are
extremely good on timescales over 10 s. Below this there is a
fair bit of disparity between the fits and the measured strain
values. We, however, note that the actual strain differences
even on timescales less than 10 s are extremely small.

Another way to illustrate the goodness-of-fit is to plot the
residuals of the fitting, which are just the absolute differences
between the fitted strain values εfit and the measured strains

|εfit − ε| =
∣∣∣∣∣ε0 +

∫ t

0

K

(t ′ − tr + c)p
dt ′ − ε

∣∣∣∣∣, (C1)

where ε0 is the initial strain value used while fitting the in-
tegral of the strain rate relation presented in Eq. (1). These
residuals are illustrated in Fig. 9, where we see that except
for the first 10 s of the first creep step the residuals are below
10−5.

FIG. 9. Residuals of the fits shown in Fig. 1(a), and an additional
one where Eq. (1) is fitted to the last creep step with fixed p = 1.
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FIG. 10. The evolution of the p exponent in Eq. (1) as a function
of the scaled applied stress. The triangle symbols correspond to the
simulations and the circles to the experiments.

Additionally, we compare our fits to a fit assuming loga-
rithmic creep [Eq. (1) with p = 1] for one of the creep steps.
We clearly see from Fig. 9 that the residual of the fit is much
greater than for our fits with p < 1. We can thus exclude
logarithmic creep when we clearly see an exponent p < 1.

APPENDIX D: EVOLUTION OF
THE P-EXPONENT VALUES

In the main text we state that fitting the strain rate relation
[Eq. (1)] to the observed strain curves [Fig. 1(a)] shows that
the exponent p decreases with increasing stress. This effect
is shown in Fig. 10 where p is plotted as a function of the
scaled applied stress σ/σc. The decrease is clear in all the
experiments (plotted with circles) although the initial value of
the exponent varies from around 0.7 to almost unity. The same
behavior is seen in the simulations (plotted with triangles)
where the initial value of p is very close to unity and decreases
with increasing stress. The decrease is roughly linear in all
cases (slope of a linear fit −0.46 ± 0.11) and the duration of
the creep step does not seem to have a strong effect on the
decrease.

APPENDIX E: STATISTICAL ANALYSIS OF THE
ACOUSTIC EMISSION

From the dataset of N events with energies Ei
AE (where

i ∈ [1, N]) the parameters of the event energy distribution are
estimated using the maximum likelihood method [76] where
one computes the (logarithm of the) likelihood function L and
finds the parameters which maximize this function.

The natural choices for the distributions we see are a power
law (PL),

p(EAE) = E−β

AE

ζPL
, (E1)

where ζPL is the normalization factor and the truncated power
law (TPL) or power law with an exponential cutof,f

p(EAE) = E−β

AE exp(−EAE/E0)

ζTPL
, (E2)

which give the log-likelihoods

lnLPL = −β

N∑
i=1

ln Ei
AE − N ln ζPL (E3)

FIG. 11. The evolution of the difference of the BICs for the
power-law and truncated power-law models [Eq. (E6)] in the exper-
iments as a function of the scaled applied stress, showing that the
truncated power law is significantly favored in only one of the stress
steps.

and

lnLTPL = −β

N∑
i=1

ln Ei
AE +

N∑
i=1

Ei
AE

E0
− N ln ζTPL. (E4)

As the two models have a different number of parameters,
a direct comparison of the likelihoods is not the best way
to compare their goodness-of-fit. Instead, for comparison one
can compute the BIC [62,63],

BIC = −2 lnL + 2Np ln N, (E5)

where Np is the number of parameters. The more illustrative
quantity is the difference of the BICs for the power-law and
truncated power-law models,

�BIC = 2(lnLPL − lnLTPL − ln N ), (E6)

which is negative if the truncated power law is favored, pos-
itive if the pure power law is favored, and around zero if the
models give equally good results.

Plotting the �BIC as a function of the scaled applied stress
[Figs. 4(f) and 11] shows that it is generally positive or fairly
close to zero for almost every stress step in the experiments.

(a) (b)

FIG. 12. An additional experiment (number 2) with C-concrete
showing that the behavior with this microstructure is very similar to
the M-concrete. (a) After an initial stress step the creep is slower and
as the second step is fairly long, the creep is even slower in the third
step. (b) The number of acoustic events shows behavior which is very
similar to the time evolution of the strain.
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(a) (b)

FIG. 13. An additional experiment (number 3) with M-concrete,
showing the effect of an extremely long initial stress step (real dura-
tion 64 036 s, plot truncated for clarity) on subsequent, short stress
steps. (a) After the extremely long initial step the next (fairly short)
step shows very slow creep and in the third step the creep rate is only
roughly equal to the first one. (b) Except for one sudden burst of
events in the first stress step, the number of acoustic events roughly
follows the behavior of the strain.

This is expected, as with a high cutoff value the power law
and truncated power law should yield similarly good fits.
However, for a few stress steps (some initial steps in the
experiments presented in the main text) the truncated power
law is clearly preferred, but also here the cutoff value is fairly
high, around E0 ∼ 104 arbitrary units. Even in the cases where
the truncated power law is preferred, the behavior clearly
differs from the diverging cutoff scale observed previously for
monotonic loading of concrete [47].

APPENDIX F: ADDITIONAL EXPERIMENTS

For the sake of clarity, only one representative experiment,
as well as a reference one, are presented in the main text,
but several other experiments were performed, with varying

(a) (b)

FIG. 14. A reference experiment (number 4) with M-concrete
where all the stress steps are kept short (equal durations). (a) The
creep rates for the first three steps are roughly equal and after that
start to increase. This behavior is not consistent with the power-law
model ε̇ ∝ σ n. (b) Also here the behavior of the number of acoustic
events roughly matches the behavior of strain. There is again a
sudden burst of events close to the end of one stress step.

durations of stress steps as well as microstructures. We have
included the strain and event count behaviors of these experi-
ments in Figs. 12–14. History effects similar to those analyzed
for the representative experiment detailed in the main text are
observed in each case for both the strain and the number of
AE events.

In addition to exploring varying creep step durations and
microstructures we also performed an additional reference
experiment (number 4, Fig. 14) where the step durations were
kept equal and short to minimize the history effect. What we
observe is roughly equal creep rates for the first three steps,
which is not consistent with the power-law model ε̇ ∝ σ n.
After these steps—as the sample failure is approached—the
creep rate starts to increase, as expected based on our other
results.
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