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Creep is defined as time-dependent deformation and rupture processes taking place within a material sub-
jected to constant applied stress smaller than its athermal, time-independent strength. This time dependence
is classically attributed to the thermal activation of local deformation events. The phenomenology of creep is
characterized by several ubiquitous but empirical rheological and scaling laws. We focus here on primary creep
following the onset of loading, for which a power law decay of the strain rate is observed, ε̇ ∼ t−p, with the
exponent p varying between � 0.4 and 1, this upper bound defining the so-called logarithmic creep. Although
this phenomenology is known for more than a century, the physical origin of Andrade-like (p < 1) creep remains
unclear and debated. Here we show that p < 1 values arise from the interplay between thermal activation and
elastic stress redistribution. The latter stimulates creep dynamics from a shortening of waiting times between
successive events, is associated to material damage and, possibly, at high temperature and/or stresses, gives rise
to avalanches of deformation events.

DOI: 10.1103/PhysRevMaterials.7.033601

I. INTRODUCTION

Creep and associated time-dependent deformation and
rupture processes under an applied constant stress are of
tremendous importance in various fields, from metallurgical
engineering [1] to civil engineering [2], rocks mechanics [3],
and geophysics [4], or soft matter physics [5]. The phe-
nomenology of creep under constant load sums up, from the
onset of loading, to a decelerating primary or transient creep,
followed by a stage of constant strain rate ε̇min, and ending by
an accelerating tertiary creep leading to either a macroscopic
rupture for brittle material or fluidization in soft matter [6].
Note that, in many materials, the secondary creep actually
resumes to an inflexion point between primary and tertiary
creep. This phenomenology is characterized by several empir-
ical, but surprisingly universal, rheological and scaling laws,
which however still lack nowadays a sound understanding.
Examples are, e.g., the Monkman-Grant expression relating
the creep failure time t f to ε̇min [7], or a finite-time singularity
characterizing tertiary creep, ε̇ ∼ (t f − t )−β [8,9].

We will focus here on primary creep, characterized by a
power law decay of the strain rate, ε̇ ∼ (c + t )−p, where c is a
small delay timescale sometimes difficult to estimate experi-
mentally. This phenomenology is shared by various materials
and media, including metals [10], rocks [11,12], ice [13],
concrete [14], paper [8], colloidal glasses [6], gels [9,15], or
dry granular media [16,17]. This universality is surprising,
owing to the various microscopic mechanisms involved in
the creep deformation of these different materials: disloca-
tions motion and interactions in metals, microcracking events
in brittle rocks and concrete, shear transformation events in
amorphous materials, or other mechanisms in biological and
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soft matter. This suggest some underlying common physics
which remains partly obscure nowadays.

In rocks, the following empirical temperature and stress
dependence was proposed [18]:

ε̇ = Bσ nexp

(
− E

kBT

)
t−p, (1)

where B is a material constant, E a material-dependent but
stress-independent activation energy, and 1 � n � 2 a creep
exponent. In his historical paper, Andrade reported for metal
wires an exponent p = 2/3 [10], henceforth defining the so-
called Andrade’s creep. On the other hand, a p = 1 value is
often reported, signing the logarithmic transient creep [as ε

grows as ln(c + t )]. As a matter of fact, if p = 1 appears as
an upper bound, reported experimental values actually range
between ∼0.4 and 1 [18]. At least in metals and rocks, the p
value is observed to decrease with increasing imposed stress
and/or temperature [18,19], in contradiction with Eq. (1),
while in soft matter p seems to increase with increasing aging
[6]. So, the p value is not material-specific, while the physical
origin of Andrade-like (p < 1) creep remains unclear and
debated (e.g., Refs. [15,20–22]).

A logarithmic increase of strain under constant stress
(creep test), ε ∼ ln(c + t ), can be mirrored by a logarithmic
decrease of the stress under constant strain (relaxation test),
σ ∼ − ln(c + t ). This suggests interesting links with entirely
different systems exhibiting slow, logarithmic relaxations,
such as conductance relaxation in electron glasses [23] or
the magnetic relaxation in superconductors [24]. However,
as shown below, there is no equivalent of Andrade’s creep
(p < 1) under relaxation conditions.

Here we show, first inspired by a seminal work of
Cottrell on dislocation-driven creep in metals [19], that log-
arithmic creep represents an upper bound for p, resulting
from a thermally activated exhaustion of weak spots, while
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ignoring elastic interactions and stress redistribution. Taking
into account the increase of the effective stress acting on the
remaining spots, the softening (damage) of the material, as
well as the triggering of avalanches of deformation events
from elastic interactions, leads to a decrease of the apparent
p value, but the p = 2/3 historical value does not emerge as
a special one. Instead, p decreases with increasing imposed
load, temperature, or disorder strength, in agreement with
observations.

II. A SIMPLE EXHAUSTION MODEL WITHOUT STRESS
REDISTRIBUTION

We consider first the simplest situation where only disorder
and thermally activated exhaustion combine. The following
reasoning is an adaptation of the original Cottrell’s model
[19], initially proposed to explain dislocation-driven loga-
rithmic creep in metals. It is presented here to show what
can be expected under this strong simplification, as well as
its shortcomings. A system is assumed to be composed of
N elementary volumes with uniformly distributed activation
energies Ei, i = {1, . . . , N}. A simple choice [15,19,25] is to
set Ei = Va�σi, where Va is a constant activation volume and
�σi = σi − σ the stress gap between the local stress threshold
σi and the applied stress σ . Nonlinear dependencies of E on
�σ have been considered as well, depending on the structural
process involved [26–28]. The probability per unit time for an
element with a stress gap �σ to be thermally activated is

P(σ, T ) = ν0exp

(
−Va�σ

kBT

)
, (2)

where ν0 is an attempt frequency, kB the Boltzmann’s constant,
and T the temperature. Each thermally activated element
contributes for a (fixed) strain increment δε (corresponding
to either an elementary dislocation motion, a microcracking
event, a shear transformation, etc.) and is then exhausted, i.e.,
cannot be activated again. The crudest assumption of this
model is that each deformation event occurs independently
from the previous ones. This means that neither a damage
of the material nor the triggering of athermal deformation
avalanches are considered. In such a simple model, upon
imposing the stress σ at t = 0, an athermal deformation can
immediately occur from the triggering of the elements with
σi � σ . Creep deformation ensues as a succession of inde-
pendent thermally activated events, each contributing a strain
increment δε, and the elements associated to a smaller stress
gap �σi having, from (2), a greater chance to occur first before
to be ruled out. Consequently, the interevent time �ti ∼ 1/νi

grows in average with time, so the creep strain-rate ε̇ de-
creases. In this framework, the strain-rate is given by

ε̇ = δε

∫ 1

0
n(�σ, t )P(σ ) d�σ, (3)

where n(�σ, t )d�σ is, at time t , the number of elements with
a stress gap within [�σ,�σ + d�σ ], normalized by N .

The exhaustion assumption can be written as

∂n(�σ, t )

∂t
= −n(�σ, t )P(�σ ), (4)

which, after integration, gives

n(�σ, t ) = n(�σ, t = 0)exp(−P(�σ )t ). (5)

As the stress gaps �σ are uniformly distributed between 0 and
1, n(�σ, t = 0) is a constant.

A differentiation of Eq. (2) gives

dP(�σ )

d�σ
= − Va

kBT
P(�σ )

⇔ P(�σ )d�σ = −kBT

Va
dP(�σ ). (6)

Combining Eqs. (3), (5), and (6) leads to

ε̇ = δε

∫ 1

0
n(�σ, t = 0)exp(−P(�σ )t )

(
−kBT

Va

)
dP(�σ )

= 1

t

kBT δε

Va
n(�σ, t = 0)

× [exp(−tP(�σ = 1)) − exp(−tP(�σ = 0))]. (7)

This can be reformulated as

ε̇ ∼ δε
kBT

Vat
(e−t/tm − e−t/t0 ), (8)

where t0 = 1/ν0 and tm = t0exp( Va
kBT ). This expression pre-

dicts a logarithmic creep (p = 1) between a small delay
timescale c = t0 and an upper timescale tm above which it van-
ishes, when all spots are exhausted. ε̇ naturally increases with
temperature, though not in an Arrhenius’s way as proposed
in Eq. (1), while the p value does not. In this oversimplified
model, the applied stress is not explicitly considered and ter-
tiary creep and failure cannot be modelled.

III. FIBER BUNDLE MODEL WITH THERMAL
ACTIVATION

To release the crude assumption of the independence of
events, we consider next a mean-field (democratic) load re-
distribution within a fiber-bundle model (FBM) with thermal
activation. Several authors analyzed creep rupture within such
a FBM framework by considering viscoelastic fibers that
flow once they are broken [29,30], i.e., embedding thermally
activated processes within the fibers rheology. Others su-
perimposed a white thermal noise η on the applied load F
[31–33], but these authors did not focus on primary creep.
We used a different (and numerically efficient) methodology,
introducing a kinetic Monte Carlo dynamics [34] within a
democratic FBM. We consider an initial set of N0 paral-
lel fibers of constant elastic modulus Y = 1 and of variable
strength σi ∈ [0, 1], submitted to an applied load F giving an
initial fiber stress σ (t = 0) = σ0 = F/N0. The system is first
suddenly loaded (t remains fixed to 0) to F in an athermal
way. This implies that all fibers with a strength σi � σ0 fail
during this initial step, triggering a load redistribution, i.e.,
an increase of the fiber stress, so possibly additional fiber
failures. For a uniform distribution of strengths, the critical
stress σc beyond which the bundle fails during this athermal
loading is 1/4 [35].
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FIG. 1. Creep strain rate: comparison between Eq. (8) (black
dash-dotted line) and a “FBM” model without load sharing (red line).

At the end of this initial step, the number of remain-
ing fibers is N1, the fiber stress is σ1 = F/N1 and the
strain ε1 = σ1/Y . Thermal activation is switched on from
this point, maintaining F < Fc = N0σc constant. Deforma-
tion then occurs through a succession of thermally activated
fiber ruptures, which are randomly selected according to the
probabilities given by (2) with �σi(t ) = σi − σ (t ), meaning
that the weakest spot (smallest �σi) has a largest proba-
bility to fail, but is not necessarily selected systematically.
The kinetic Monte Carlo algorithm determines as well the
time �t required for this event to happen. Such thermally
activated ruptures redistribute the applied load, i.e., increase
the effective fiber stress σ (t ), so potentially trigger athermal
avalanches of ruptures, as long as the fiber stress locally
surpasses the strength of at least one element. We consider
that the corresponding (short) elastic timescale is negligible
compared to the (long) timescales of thermal activation and
creep, so the clock is just stopped during these avalanches.
Much like in the simple exhaustion model discussed above,
a given fiber can only break once, and is then eliminated.
Following [36], the fibers strengths are distributed according
to P(σi = x) = (1 − b)x−b, where b defines the strength of the
disorder: b = 0 corresponds to a uniform distribution, b < 0
to a weak disorder and 0 < b � 1 to a strong one. The results
shown were obtained for N0 = 105, averaging over 50 realiza-
tions of the disorder, but we checked that all our conclusions
were independent of the system size.

We first note that, if the load sharing is switched off, i.e.,
the fiber stress remains constant (σ (t ) = σ0) and avalanches
cannot occur, and setting b = 0, this FBM model is equivalent
to the crude exhaustion model presented above. We checked
in this case the agreement between Eq. (8) and our numerical
results, see Fig. 1.

Instead, in the presence of load sharing, the model repro-
duces the entire phenomenology of creep deformation with a
decelerating stage followed by an accelerating creep leading
to system failure [Fig. 2(a)]. Here we define the creep strain
as εc(t ) = ε(t ) − ε1 = (σ (t ) − σ1)/Y , and the avalanche size

FIG. 2. Creep deformation from a thermally activated FBM
showing (a) the classical phenomenology of creep (σ0 = 0.1, T =
300 K, and b = 0). Zooms on the very early (b) and late (c) stages of
creep experiencing some avalanche activity.

nav as the number of fibers that break in a cascading sequence
for each thermally activated event (nav � 1). This avalanche
activity qualitatively follows the evolution of creep defor-
mation, decreasing rapidly during primary creep until fading
away, i.e., nav ≈ 1 [Fig. 2(b)], before to accelerate before final
failure [Fig. 2(c)]. It also strongly depends on temperature or
applied load: for low T and/or F , athermal avalanches are
nearly absent during primary creep, which therefore mainly
results from thermally activated events (see below).

The introduction of load redistribution has several conse-
quences. (i) The increasing number of broken fibers increases
the effective stress σ (t ) = F/Nr (t ) felt by the Nr remaining
ones, so decreases the stress gaps. This stimulates the creep
dynamics from a shortening of the inter-events times �t be-
tween successive thermally activated events.

(ii) In this FBM framework, this increasing effective stress
also increases the strain increment δε produced by a single
fiber rupture. Indeed, a differentiation of the creep strain εc

gives dεc
dNr

= − F
Y N2

r
. Consequently, for a single fiber rupture,

i.e., Nr = −1, the strain increment grows during creep as δε ∼
1/N2

r . The conjunction of these two effects [(i) and (ii)] can
be interpreted as a damage of the medium, at play even at
very low T or σ0, when athermal avalanches are scarcely ever
triggered.

(iii) At higher temperatures and applied loads, such
avalanche triggering sustains further the creep dynamics. Al-
together, these mechanisms imply that the creep strain rate
decreases more slowly during primary creep than for the
oversimplified exhaustion model mentioned above, and even-
tually accelerates towards macrofailure. In other words, for
the primary creep stage analyzed here, the interplay between
thermal activation and load redistribution gives rise to a de-
parture from logarithmic creep, and an apparent Andrade-like
creep with p < 1. However, p = 2/3 does not appear as a
specific value. Instead, the apparent p value continuously de-
creases with increasing temperature [Fig. 3(a)] and/or applied
load [Fig. 4(a)], in agreement with experimental data [18,19].
However, a more detailed analysis actually questions the ex-
istence of a genuine power law decay, at least at high T or σ0,
while the dependence of p on these parameters could result
from a transition between an initial plateau of ε̇ for t < t0 and
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FIG. 3. (a) Effect of temperature T on creep strain rate ε̇c in a
thermally activated FBM. The slopes p = 1 and 2/3 are just given as
a guide. (b) The same creep curves as in (a) multiplied by time t to
show that true logarithmic creep (p = 1) is never observed, even at
low temperature. At larger T the apparent decrease of p results from a
transition between the initial plateau and the final acceleration during
tertiary creep.

the acceleration preceding failure, which occurs earlier when
T or σ0 increase [Fig. 3(b)]. The dependence of the apparent
p value on temperature and the applied stress implies a failure
of the empirical relation (1).

The respective contributions of the mechanisms (i) to (iii)
mentioned above can be analyzed from the evolution of the
fiber breaking rate Ṅ f , where Nf = N1 − Nr , and of the ather-
mal breaking rate Ṅa, where Na is the number of athermally
broken fibers (during avalanches). Tracking Nf remains to
consider that the strain increment δε remains constant dur-
ing creep, i.e., to suppress point (ii). For low σ0 and T , the
avalanche activity is extremely limited, and vanishes rapidly
for t > t0 [Figs. 2(b) and 5(a)], i.e., cannot explain the depar-
ture from logarithmic creep. Under these conditions, Ṅ f ∼ 1/t
over a significant range of timescales [Figs. 5(a) and 5(b)],
while p � 0.9 [Figs. 3(b) and 5(b)]. This indicates that the
impact of an increasing effective stress on thermal activa-
tion [point (i)] does not account alone for a departure from
logarithmic creep, whereas the softening effect [point (ii)]
induces a slight departure from the upper bound p = 1. At
larger loads and temperatures, both the damage of the sys-
tem [points (i) and (ii)] and avalanche triggering [point (iii)]

FIG. 4. Effect of (a) the applied stress σ0 and (b) disorder
strength b on creep strain-rate ε̇c in a thermally activated FBM. The
slopes p = 1 and 2/3 are just given as a guide.

contribute to sustain the deformation during primary creep
and therefore to decrease the apparent p value. The evolution
of the athermal breaking activity mimics a power law decay,
Ṅa ∼ (t + c)−pa , though this merely results from a transition
between an initial plateau for t < tc and a final acceleration
before failure. Under these conditions, the total breaking rate
Ṅ f decays more slowly than 1/t , meaning that the shortening
of interevents times as the result of a larger effective stress
impacts significantly the apparent p value [Fig. 5(c)].

Much like for increasing temperature or applied load,
an increasing disorder strength decreases creep lifetimes
[Fig. 4(b)]. This is expected, as this implies more fibers with
small stress gaps �σ , even at the onset of creep loading, after
the athermal preloading. For weak (b < 0) to uniform (b = 0)
disorder, this does not seem to have a large impact on the p
value. For stronger disorder (1 > b > 0), the reduction of the
duration of the primary creep stage is strong enough to lead
to a significant decrease of the apparent p value. These results
are consistent with the effect of aging observed in colloidal
glasses [6], which is expecting to eliminate the weakest spots.

The same democratic FBM can be considered under re-
laxation conditions. This means increasing athermally the
initial load up to F (t = 0) = F0, hence triggering some fiber
breaking, then maintaining the strain ε = ε0 constant. During
the relaxation stage, the effective stress σ = F

N felt by the
unbroken fibers remains strictly constant, σ = Y ε0. Conse-
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FIG. 5. (a) Evolution of the strain-rate ε̇c(black solid curve), the
fiber breaking rate Ṅf (blue dashed-dotted curve), and the athermal
breaking rate Ṅa(red solid curve) for a thermally activated FBM
with relatively low σ0 and T . (b) The strain-rate as well as the fiber
breaking rate multiplied by t in order to show the 1/t decay for Ṅf

and the slower decay in 1/t p with p � 0.9 for ε̇c. (c) Same as (a) for
larger σ0 and T . Uniform disorder (b = 0) in both cases.

quently, each individual fiber breaking leads to a load drop
dF
dN = −Y ε0. Under these conditions, athermal avalanches
are absent and the thermally activated exhaustion mecha-
nism leads to Ṅ f ∼ 1

t , much like what is observed under
creep conditions for low applied load and temperature [see
Fig. 5(b)]. This leads to a logarithmic relaxation of the ap-
plied load, F (t ) ∼ −ln(t + c), or of the “engineering” applied
stress F/N0, as dF

dt = dF
dNf

dNf

dt ∼ −Y ε0
t . Numerical simulations

FIG. 6. Relaxation of the applied stress under a constant imposed
strain ε0 for a thermally activated democratic FBM. A logarithmic
relaxation is observed whatever the initial engineering stress σ0 =
F0/N0 and/or temperature T .

are fully consistent with this scenario, whatever F0 and/or T
(Fig. 6). In other words, the relaxation exponent is always
equal to 1, and there is no equivalent of Andrade’s creep
for this loading mode. Such a behavior is reminiscent of
several other physical systems characterized by slow, loga-
rithmic relaxations, such as conductance relaxation in electron
glasses [23], magnetic relaxation in superconductors [24], or
vibration-induced compaction in granular media [37], raising
interesting potential connections.

IV. PROGRESSIVE DAMAGE MODEL

The mean-field (democratic) FBM framework considered
so far remains crude, especially in terms of the elastic redistri-
bution kernel which, in elastic solids, is nonconvex and decays
with distance as a power law [38]. The exhaustion hypoth-
esis, i.e., the fact that a local site cannot deform more than
once, represents another simplification. To evaluate the po-
tential impact of these shortcomings, we introduced a similar
Kinetic Monte-Carlo algorithm within a progressive damage
model (PDM). The athermal version of this PDM has been
extensively detailed elsewhere [39,40], and we recall its main
features here. We consider a continuous 2D isotropic elastic
domain (Hooke’s law) under plane stress, modelled using
a finite element scheme. Progressive local damage is repre-
sented by a decrease of the Young’s modulus Yi of element
i, Yi(n + 1) = Yi(n)d0 (with d0 = 0.9) each time the stress
state on that element exceeds a threshold, while the Poisson’s
ratio ν remains unchanged, and constant over all the elements.
This procedure mimics, at the meso/element-scale, the elastic
softening resulting from microcracking and damage [41]. The
simulations start with a homogeneously elastic, undamaged
material, Yi = Y0 ∀i. The damage threshold is defined from
the Coulomb’s criterion, τ = μσN + c where τ and σN are
respectively the shear and normal stress over the orientation
that maximizes the Coulomb’s stress τ − μσN on the element
(positive sign convention in compression; see Fig. 7), where μ

is an internal friction coefficient, constant in space and time.
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FIG. 7. Coulomb’s damage criterion used in the PDM within a
Mohr-Coulomb diagram, and the associated definition of the stress
gap �σ used for the thermal activation of damage events [Eq. (2)].
The red semicircle represents the state of stress allowing an athermal
damage for a cohesion c and an internal friction μ, while the green
semicircle represents a subcritical state of stress requiring thermal
activation to trigger damage.

We performed simulations for μ = 0.7 (Fig. 8), a common
value for geomaterials [42], as well as for μ = 0 (Fig. 9),
corresponding to a Tresca’s criterion with no more impact of
the normal stress on the threshold.

Quenched disorder is introduced from a uniform distri-
bution of the cohesion, 0.15 × 10−3Y0 � c � 1.5 × 10−3Y0.
Uniaxial compression is applied to the system, and the in-
ternal stress field is recalculated each time a damage event
occurs by solving the static equilibrium, using the finite-
element scheme. This way, a nonconvex elastic redistribution
kernel is naturally reproduced after a local damage event
[43]. Such stress redistribution implies that the local stress
field is not necessarily uniaxial anymore, i.e., the minimum
principal stress σII �= 0 at the element scale. Under mono-
tonic loading, this athermal model was shown to successfully
reproduce the main characteristics of Coulombic failure in
disordered materials, such as the progressive localization of
damage upon approaching a peak stress at which an incipient
fault nucleates, or the impact of confining pressure and of
the internal friction on strength and brittleness [39,44]. Here,
thermally activated damage is introduced at the element scale
from Eq.(2) using a kinetic Monte Carlo scheme, with �σ

the Coulomb’s stress gap (see Fig. 7), and the system is
loaded under a constant compressive external (“engineering”)
stress representing a fraction of the failure stress obtained
for athermal monotonic loading. Much like for the FBM,
the phenomenology of creep deformation and rupture is re-
covered, accompanied here by a progressive localization of
damage during tertiary creep, a consequence of the nonconvex
kernel, see Fig. 8 for an internal friction μ = 0.7. Here we
focus on primary creep, for which extended localization is
not observed. At low applied stresses, a robust power law
decay of ε̇c is observed over a large range of timescales with
p � 0.9, similarly to FBM. This behavior is observed inde-
pendently of the internal friction μ (see Fig. 9 for μ = 0).
At larger stresses, close to the athermal strength, the range
of timescales over which an apparent powerlaw decay of ε̇c

is observed shrinks significantly, with a smaller apparent p
value. Much like for the FBM, this is the consequence of an

FIG. 8. (a) Evolution of the strain-rate ε̇c for a thermally acti-
vated progressive damage model (T = 600 K) with μ = 0.7. The
different creep curves, averaged over 10 realizations of the disorder
for system sizes 16 × 32 elements, correspond to applied uniaxial
stresses varying between 64% and 90% of the athermal failure stress
for an identical initial microstructure. The insets show the damage
field for an individual simulation at 70% of the athermal strength,
during primary creep (left) and close to failure (right). (b) The same
creep curves as in (a) multiplied by t to show that true logarithmic
creep (p = 1) is never observed.

increasing role of elastic stress redistribution on primary creep
dynamics. Although the damage patterns depend, as expected,
on the Coulomb’s stress redistribution kernel and so on the
internal friction μ, the primary creep phenomenology does not
(compare Figs. 8 and 9).

Overall, the agreement between PDM and FBM indicates
that the value of the internal friction μ, the nature of the elastic
redistribution kernel, or a strict exhaustion of weak spots have
a little effect on the nature of primary creep. It is consistent
with limited damage localization during this stage. This ar-
gues for the universal character of the scenario proposed here.
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FIG. 9. Same as Fig. 8 for μ = 0.

V. SUMMARY AND CONCLUSIONS

We conclude that logarithmic primary creep appears as an
upper bound for the p value, associated to situations where

stress redistribution and elastic interactions do not play a
significant role, and deformation results from the accumula-
tion of thermally activated, independent small events. Instead,
stress redistribution implies that the occurrence of deforma-
tion events depends on the previous history. This shortens
the time between successive events, increases their average
amplitude, and potentially triggers deformation avalanches.
All of this sustains creep deformation, leading to lower ap-
parent p values. In cases where damage avalanches are nearly
nonexistent during primary creep (low T and/or F ), a p � 0.9
value seems to emerge, a value consistent with experimental
data on concrete [45]. We considered here a “brittle creep”
framework where deformation results from rupture or damage
events, while Andrade-like creep has been observed as well
in systems where the microscopic deformation mechanisms
are not supposed to damage the material, e.g., dislocation-
driven creep in metals. However, Cottrell [20] proposed in this
case that thermal activation and stress redistribution could in-
deed combine to trigger dislocation avalanches and Andrade’s
creep. We therefore suggest that our scenario is not restricted
to brittle creep, but relevant as well to any type of local de-
formation mechanism, as long as it is thermally activated and
leads to long-range stress redistribution. On the other hand,
in case of dislocation-driven creep, an alternative explanation
based only on collective dislocation interactions and topolog-
ical constrains, without invoking thermal activation, has been
proposed as well [22]. A possible extension to other systems
such as glasses [6] or soft matter [46] would be also worth
exploring in the future. Under relaxation conditions (strain,
not stress, maintained constant), the same scenario leads to a
logarithmic relaxation of the load, mirroring logarithmic creep
under constant stress, but there is no equivalent of Andrade-
like creep in that case. Such slow relaxation raises interesting
comparisons with entirely different physical systems such as
electron glasses, superconductors, or granular media.
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