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We introduce a random recursive tree model with two communities, called balanced community modulated random recursive tree, or BCMRT in short. In this setting, pairs of nodes of different type appear sequentially. Each node of the pair decides independently to attach to their own type with probability 1 -q, or to the other type with probability q, and then chooses its parent uniformly within the set of existing nodes with the selected type. We find that the limiting degree distributions coincide for different q. Therefore, as far as inference is concerned, other statistics have to be studied. We first consider the setting where the time-labels of the nodes, i.e., their time of arrival, are observed but their type is not. In this setting, we design a consistent estimator for q and provide bounds for the feasibility of testing between two different values of q. Moreover, we show that if q is small enough, then it is possible to cluster the nodes in a way correlated with the true partition, even though the algorithm is exponential in time. In the unlabelled setting, i.e., when only the tree structure is observed, we show that it is possible to test between different values of q in a strictly better way than by random guessing. This follows from a delicate analysis of the sum-of-distances statistic.

1. Introduction 1.1. Setting. A rooted labelled tree is called recursive if, starting from the root, all paths have increasing labels. The most natural model for random recursive trees is the widely studied uniform recursive tree (URT) which is generated in this way: initially, the tree consists of one single node with label 1, and for i ∈ {2, . . . , n}, node i attaches to a uniformly chosen node among {1, . . . , i -1}. We are interested in a community modulated version of this model, where nodes are either of type A or B and attach preferentially to nodes of the same type. Such a model was recently introduced by S. Bhamidi, R. Fan, N. Fraiman, and A. Nobel in [START_REF] Bhamidi | Community modulated recursive trees and population dependent branching processes[END_REF], who defined the community modulated recursive tree (CMRT) as follows. Initially, the tree consists of one single edge connecting a node of type A and a node of type B. Then, at each subsequent time step, a new node is added to the tree and choses its type with probability p. It then attaches to an existing node of the same type with probability 1 -q; otherwise it attaches to a node with different type.

Using an embedding into a continuous time process and techniques from stochastic analysis, the authors in [START_REF] Bhamidi | Community modulated recursive trees and population dependent branching processes[END_REF] determined the limiting degree distribution of CMRT. In particular, when q = 0 and p = 1/2, one may use the number of nodes of degree one and two to design consistent estimators for p and q. However, when p = 1/2, i.e., when the two types are approximately equally represented, the preferential parameter q vanishes from the limiting degree distribution and it is not clear how to estimate it. Inspired by this, we introduce a different model, called balanced community modulated random recursive tree (BCMRT), which is accessible to discrete-time calculation but also interesting on its own right, as will be described later.

( ) LPSM, Sorbonne University, Paris ( ‡) Einstein Institute of Mathematics, Hebrew University of Jerusalem E-mail addresses: anna.ben hamou@sorbonne-universite.fr, vasiliki.velona@mail.huji.ac.il. Figure 1. A simulation of BCMRT(q) with 1000 nodes, for q ∈ 0, 1 8 , 1 4 , 3 8 , 1 2 .

In the BCMRT model, initially a single edge connects two nodes with time-label 1, one of type A, denoted (1, A), and one of type B, denoted (1, B). Then, given q ∈ [0, 1], at each step n ≥ 2, two new nodes with time-label n, one of type A denoted (n, A) and one of type B denoted (n, B), are added to the tree of size 2(n -1) in the following way:

(1) the two nodes independently determine if they will connect to a node of their own type with probability 1 -q, or to a node of the other type with probability q; (2) they independently choose an existing node of the type selected in step [START_REF] Addario-Berry | Broadcasting on random recursive trees[END_REF] and connect to it, forming a BCMRT of size 2n. Note that in this model, two nodes with the same time-label cannot be connected with edge. In this paper, we mainly focus on the assortative case, i.e., q ∈ [0, 1/2]. When q = 1/2 the community structure disappears: at each step, the two nodes independently attach to a uniformly chosen node in the existing tree, independently of the types. We find that the parameter q vanishes asymptotically in the degree distribution of the BCMRT, as it happens in the CMRT with p = 1/2.

While the BCMRT was initially inspired by the CMRT, it seems to be of independent interest. It is simple and directly generalises the well-studied URT with an embedded community structure. Moreover, while being tractable, it exhibits non-trivial behaviour in multiple questions of interest to us. Firstly, can the preferential parameter q be estimated and with what accuracy? Can two different values of q be tested with vanishing error? More ambitiously, is it possible to reconstruct communities better than by random guessing? Of course, the answers to those questions depend on the observational setting. Here we consider three different settings:

• Time-labelled BCMRT : the tree is observed together with time labels, i.e. nodes are labelled with the integer corresponding to their time of arrival. Each integer k ∈ {1, . . . n} thus appears exactly twice, and the path from each node to its closest root has decreasing labels; • Rooted unlabelled BCMRT : the tree is observed without time labels, except for the two first nodes. In other words, the tree comes with a distinguished edge, called the root edge; • Unrooted unlabelled BCMRT : only the tree structure is observed, without any additional information.

1.2. Main results. In Section 2, we put BCMRT into context with respect to other random tree models and compute the limiting degree distribution. This turns out to be the same as in the URT.

Theorem 1.1 (simplified). For k ≥ 1, let N k (n) be the number of nodes of degree k at time n.

N k (n) 2n P -→ n→+∞ 1 2 k . Moreover, Var (N 1 (n)) = Ω (n).
The latter can be perceived as a negative result, in the sense that we do not expect to infer q using the empirical degree distribution. Further evidence for that is given by the fact that the difference between the expectations of the number of degree-k nodes under different values of q is of constant order while we suspect the variance to be linear in n. This is only verified for the number of leaves (degree-1 nodes).

Section 3 is devoted to the time-labelled BCMRT with q ∈ [0, 1/2]. Our results in terms of inference and testing can be summarised as follows1 .

Theorem 1.2 (simplified). In the time-labelled setting, the following hold:

(1) There exists an estimator q n such that q n P -→q. The speed of convergence is (log n) -1/2 when 0 < q < 1/2 and (log n) -1/4 when q = 1/2.

(2) Allowing q 0 and q 1 to depend on n, if

(q 1 -q 0 ) 2 (1 -q 0 -q 1 ) 2 q 1 log n ,
then one can test with vanishing error between q 0 and q 1 . (3) In the case q 1 = 1/2 and q 0 ∈ [0, 1/2[, the latter condition simplifies to 1/2 -q 0 (log n) -1/4 . On the other hand, we show that if 1/2 -q 0 n -1/2 , then no test can distinguish q 0 and 1/2 better than random guessing.

We then consider the problem of clustering.

Theorem 1.3 (simplified). In the time-labelled setting, clustering is possible for small enough q.

Let us explain the latter result. We say that σ is a valid coloring of a time-labelled BCMRT of size 2n if σ assigns the color A or B to each node in such a way that for each pair of nodes with the same time label, one node has color A and the other has color B. It is not hard to see that the number of monochromatic edges for the true coloring is concentrated around 2(1 -q)n, with Gaussian fluctuations of order √ n. We show that, for q small enough (namely q ≤ 1/50), any valid coloring which is as "good" as the true one in terms of monochromatic edges, namely that has more than 2(1 -q)n -n 2/3 monochromatic edges, must be correlated with it. This gives a simple (though exponential-time) algorithm to produce a partition of nodes into two groups that performs strictly better than chance: simply go through all valid colorings and output the first one that has more than 2(1 -q)n -n 2/3 monochromatic edges. With high probability, the correlation between this coloring and the true one is bounded away from zero (clustering is possible).

In sections 4 and 5 we focus on the rooted unlabelled and the unrooted unlabelled settings. There, we show that testing is possible with non trivial probability of error, for fixed q. The latter depends on the total variation distance between BCMRT trees with different parameter q, denoted by d tv (q 0 , q 1 ).

Theorem 1.4 (simplified). In the rooted unlabelled and the unrooted unlabelled settings, for 0 ≤ q 0 < q 1 ≤ 1/2, the optimal risk of a test to distinguish between q 0 and q 1 is bounded away from 1/2, or equivalently, inf n d tv (q 0 , q 1 ) > 0 .

To prove this, in the rooted unlabelled setting we investigate the size of the two subtrees, 

| = 2n|T + n | -|T + n | 2
, depends on q. This is indeed the case; in particular the expectation is asymptotically of the form α(q)n 2 , where α(q) is a decreasing function of q, while the variance is of order at most n 4 .

For the unrooted unlabelled setting, we consider a generalisation of the latter statistic. Since the root edge is not observable anymore, we consider the sum, over all edges, of the product of the sizes of the two subtrees separated by that edge,

S n = e∈En |T e + n ||T e - n | .
One may notice that S n is equal to the sum of all pairwise distances in the tree. This variable is also known as the Wiener index (see [START_REF] Neininger | The wiener index of random trees[END_REF] for a detailed analysis on the URT). We show that the expectation of this variable is asymptotically equivalent to 4n 2 log(n), for any q, and the dependence on q appears at the order n 2 . In contrast with the previous section, we now need a much more precise bound on the variance in order to apply the method of distinguishing statistics. This is done by a careful application of the Efron-Stein Inequality.

1.3. Related work. Popular models such as the stochastic block model (SBM), as well as the Erdős-Rényi model from which it is derived, are static models in the sense they do not describe the growth of the graph. For many networks, such as social networks or the Web, modelling the temporal dynamic of the graph is of large interest. Perhaps the most simple model for growing graphs is the URT, but many variants of this model have been studied: the new node may arrive with possibly more than one edge, or the attachment rule not may not be uniform (e.g., the new node may attach preferentially to a node of high degree), see [START_REF] Van Der | Random graphs and complex networks[END_REF] for an account on preferential attachment models. To our knowledge, the paper [START_REF] Bhamidi | Community modulated recursive trees and population dependent branching processes[END_REF] contains the first simple model for random recursive trees with multiple communities. Various statistical questions have been studied on random recursive trees and more general growing networks. A problem that has gained significant attention in the past few years is root finding, that is, constructing confidence sets for the initial node when only the graph structure is observed [START_REF] Banerjee | Root finding algorithms and persistence of Jordan centrality in growing random trees[END_REF][START_REF] Banerjee | Degree centrality and root finding in growing random networks[END_REF][START_REF] Briend | Archaeology of random recursive dags and Cooper-Frieze random networks[END_REF][START_REF] Bubeck | Finding Adam in random growing trees[END_REF][START_REF] Crane | Inference on the history of a randomly growing tree[END_REF][START_REF] Crane | Root and community inference on latent network growth processes using noisy attachment models[END_REF][START_REF] Khim | Confidence sets for the source of a diffusion in regular trees[END_REF]. The problem of testing between different initial configurations (also called seeds) and variants of it have been studied in [START_REF] Bubeck | On the influence of the seed graph in the preferential attachment model[END_REF][START_REF] Bubeck | From trees to seeds: on the inference of the seed from large trees in the uniform attachment model[END_REF][START_REF] Curien | Scaling limits and influence of the seed graph in preferential attachment trees[END_REF][START_REF] Rácz | Correlated randomly growing graphs[END_REF], as well as the problem of recovering the seed [START_REF] Lugosi | Finding the seed of uniform attachment trees[END_REF][START_REF] Reddad | On the discovery of the seed in uniform attachment trees[END_REF]. In [START_REF] Addario-Berry | Broadcasting on random recursive trees[END_REF], the authors study the broadcasting process on random recursive trees and the possibility of reconstruction of the root bit. The problem of parameter estimation has been considered in [START_REF] Gao | Consistent estimation in general sublinear preferential attachment trees[END_REF]. In [START_REF] Casse | Siblings in d-dimensional nearest neighbour trees[END_REF], the author studies the nearest neighbour tree in the d-dimensional sphere and manages to find a distinguishing statistic for d. Interestingly, few attempts have been made to make recursive tree models meet the problem of community detection. Noticeable exceptions are [START_REF] Hajek | Community recovery in a preferential attachment graph[END_REF] and [START_REF] Tang | The buckley-osthus model and the block preferential attachment model: statistical analysis and application[END_REF].

The problem of clustering, also called community detection, is, given a graph, to find a partition of nodes into strongly connected groups, with few cross-class connections. This problem has a long history, and numerous applications in various domains where network structures arise, from population genetics to image processing and social sciences. From an algorithmic point of view, the theory of clustering reveals some fundamental challenges. The min-bisection problem for instance, which asks for a partition of nodes into two groups of equal size with the smallest number of inter-group edges, is known to be NP-hard [START_REF] Garey | Some simplified NP-complete problems[END_REF]. It quickly became clear that the problem could be made easier on random graphs with a planted bisection. Probably the most studied model is the SBM, in which nodes are divided into two groups of equal size, and then each possible edge is included with probability p if the two endpoints are in the same group, q otherwise, with typically p > q. This model turns out to be incredibly rich and exhibits fascinating phase transitions corresponding to the feasibility of clustering with different levels of accuracy. For instance, if p = a/n and q = b/n where n is the number of nodes, it is now known that if (a -b) 2 > 2(a + b), then it is possible to efficiently cluster in a way correlated with the true partition, while if (a -b) 2 ≤ 2(a + b), then it is information theoretically impossible, see [START_REF] Massoulié | Community detection thresholds and the weak Ramanujan property[END_REF][START_REF] Mossel | Reconstruction and estimation in the planted partition model[END_REF][START_REF] Mossel | A proof of the block model threshold conjecture[END_REF]. The same threshold also determines the possibility of estimating the parameters a and b [START_REF] Mossel | Reconstruction and estimation in the planted partition model[END_REF]. We refer the reader to the surveys [START_REF] Moore | The computer science and physics of community detection: Landscapes, phase transitions, and hardness[END_REF] and [START_REF] Rácz | Basic models and questions in statistical network analysis[END_REF] for more on the subject. The purpose of the present work is to initiate such analyses on random growing trees. Let us note that the fact that the observed graph is a tree, while simplifying the analysis, tends to make inference more difficult, since many observables such as short cycles, which are typically used for testing and inference in the SBM, do not occur here. Moreover, having communities of equal size also makes inference more challenging, as was already observed in [START_REF] Hajek | Community recovery in a preferential attachment graph[END_REF]. In that paper, the authors consider preferential attachment graphs with communities, and design a message passing algorithm with precursors that are based on the children of each node. Those precursors are shown to perform well when the limiting degree distribution of a node depends on its type, but they fail to handle the case of communities of equal size.

1.4. Open questions. This work probably leaves much room for improvement and several questions are left open. Let us here mention some of them:

(1) in the time-labelled setting, we showed that, for 0 ≤ q ≤ 1/2, the total-variation distance between BCMRT(q) and BCMRT(1/2) tends to 1 when 1/2 -q (log n) -1/4 , and to 0 when 1/2 -q n -1/2 . Can we reduce the gap between those two rates? (2) still in the time-labelled setting, we showed that for q ≤ 1/50, clustering is feasible. Is there a threshold for the value of q that separates a regime where clustering is feasible and a regime where it is unfeasible, as it occurs for the Stochastic Block Model? If we had to take a guess on such a value, we would probably say q = 1/4. Some heuristic considerations sustaining this threshold are given in Remark 1.1 below. ( 3) is there a polynomial-time clustering algorithm for q small enough? It would be interesting to know whether message passing or spectral techniques could be used to obtain polynomial-time clustering procedures. (4) in the rooted unlabelled setting, we find that the second moment of |T + n |/n depends on q. In particular, the limiting distribution depends on q. Can we characterize this limiting distribution? For the URT and some of its extensions, the limiting distribution of the fraction of nodes that lie on one given side of the first edge can rather easily be determined using a mapping to Pólya urns. In the case of the BCMRT, we were not able to find such a mapping. [START_REF] Bhamidi | Community modulated recursive trees and population dependent branching processes[END_REF] in the unlabelled setting, rooted or even unrooted, is there a test to discriminate two distinct values of q with risk tending to zero? Also, can we estimate q consistently? Put differently, how much can we do without time-labels? (6) finally, to what extent our results on the BCMRT transfer to the CMRT with p = 1/2?

In the time-labelled setting, our approach heavily rely on the fact that, at each time, one node of each type arrives, which is critical information. However, we suspect that the results on the unlabelled setting transfer to the CMRT with p = 1/2.

Remark 1.1. Assume that all types are observed except on the root edge. A simple and natural way to estimate the types on the root edge is to take a majority vote within each of the two subtrees. When does this method performs better than guessing? Let ∆ n be the difference, at time n, between the number of nodes of type A and the number of nodes of type B in the subtree rooted at (1, A). Then, we have ∆ 1 = 1 and a quick investigation shows that the conditional expectation of ∆ n+1 given all the history up to time n is equal to

∆ n 1 + 1 -2q n .
In particular, the expected difference E q [∆ n ] is of order n 1-2q and we believe that, for the majority vote to be positively correlated with the the type of the root, this surplus has to be much larger that √ n, which corresponds to the typical fluctuations of a Binomial random variable with parameters n and 1/2. On the other hand, we expect that if n 1-2q √ n, i.e. if q > 1/4, then majority does not outperform random guessing. This draws a parallel with the Kesten-Stigum threshold (see [START_REF] Kesten | Additional limit theorems for indecomposable multidimensional galton-watson processes[END_REF][START_REF] Mossel | Information flow on trees[END_REF]), which turns out to be the threshold for clustering in the Stochastic Block Model. Incidentally, q = 1/4 is also the threshold for reconstruction of the root-bit with majority vote in the broadcasting process on the URT [START_REF] Addario-Berry | Broadcasting on random recursive trees[END_REF].

The degree distribution

In order to put the model into context with respect to the existing literature, we compute the limiting degree distribution. Moreover, we provide evidence (though not a proof) that this cannot be used to distinguish between different values of q.

For an integer k ≥ 1, let N k (n) be the number of nodes with degree k in a BCMRT at time n.

Theorem 2.1. For all integer k ≥ 1 and for all q ∈ [0, 1], we have

N k (n) 2n P -→ n→+∞ 1 2 k .
The limiting degree distribution of the BCMRT coincides with the one of the uniform random recursive tree (see [START_REF] Janson | Asymptotic degree distribution in random recursive trees[END_REF] for an account of the behaviour of N k (n) in that model, starting from [START_REF] Na | Distribution of nodes of a tree by degree[END_REF] where it was first shown that

E[N k (n)]/n → 2 -k ).
Moreover, by the proof of Theorem 2.1, we have that for any k ≥ 1 and q 1) while we suspect the variance of N k (n) to be of order n. Hence we don't expect that N k (n) can be used as distinguishing statistics. To provide more evidence on that, we show that the variance of N 1 (n) is of linear order.

= q , |E q [N k (n)] -E q [N k (n)]| = O(
Theorem 2.2. For all q ∈ [0, 1[, we have Var (N 1 (n)) = Ω (n).
The proofs of Theorems 2.1 and 2.2 can be found in Appendix A.

3. Inference, testing and clustering in time-labelled BCMRT 3.1. Inference. In the time-labelled setting, one may define an estimator for q as follows.

For k ≥ 2, let X k be the indicator that (k, A) and (k, B) attach to the same node, and define

Z n = n k=2 X k . (1) 
Since the sequence (X k ) n k=2 is independent with X k distributed as a Bernoulli random variable with parameter µ k = 2q (1-q) k-1 , we have

E q [Z n ] = n k=2 µ k ∼ n→∞ 2q(1 -q) log n and Var q (Z n ) = n k=2 µ k (1 -µ k ) ∼ n→∞ E q [Z n ] .
By Chebyshev's inequality, we see that

Z n 2 log n P -→ n→∞ q(1 -q) . (2) 
Inverting the function q → q(1 -q) on [0, 1/2] leads us to consider the estimator

q n = ϕ Z n 2 log n , (3) 
with ϕ(x) = 1 2 1 -(1 -4x) + for x ≥ 0.
Here, (u) + stands for the positive part of u. It makes q n well-defined, even when Zn 2 log n > 1 4 . In the next theorem, we show that q n is a consistent estimator of q and determine its speed of convergence. Interestingly, the approximation deteriorates as q approaches 1/2. Theorem 3.1. Let q n be defined as in [START_REF] Banerjee | Degree centrality and root finding in growing random networks[END_REF]. Then, for all 0 ≤ q ≤ 1/2, if the tree is a BCMRT(q),

q n P -→ n→∞ q .
Moreover,

• if q = 0, then q n is a Dirac mass at 0,

• if q ∈ (0, 1/2), then 2 log n q(1 -q) ( q n -q) → n→∞ 1 1 -2q N (0, 1) , • if q = 1/2, then log n 2 1/4 q n - 1 2 → n→∞ - 1 2 (N (0, 1)) + .
Proof of Theorem 3.1. The first statement follows simply from (2) and the continuity of ϕ. As for the fluctuations, we first note that when q = 0, the variable q n is simply a Dirac mass on 0. Now for q ∈ (0, 1/2), using that |X k -µ k | ≤ 1, and Chebyshev's inequality, we have, for all ε > 0,

1 Var q (Z n ) n k=2 E (X k -µ k ) 2 1 |X k -µ k |>ε √ Varq(Zn) ≤ 1 Var q (Z n ) n k=2 Var q (X k ) ε 2 Var q (Z n ) = 1 ε 2 Var q (Z n ) = o(1) .
Therefore, Lindeberg's condition is satisfied and we have

2 log n q(1 -q) Z n 2 log n -q(1 -q) → n→∞ N (0, 1) , (4) 
where → stands for convergence in distribution and N (0, 1) is a standard Gaussian random variable. Since the function ϕ is differentiable on (0, 1/4) with ϕ (x) = (1 -4x) -1/2 , we have ϕ (q(1 -q)) = (1 -2q) -1 for q ∈ (0, 1/2), and a simple Taylor expansion gives

2 log n q(1 -q) ( q n -q) → n→∞ 1 1 -2q
N (0, 1) .

For q = 1/2, we have

q n - 1 2 = - 1 2 1 - 2Z n log n + ,
but by (4), we know that log n 2 1 -2Zn log n converges in distribution to N (0, 1), hence log n 2

1/4 q n - 1 2 → n→∞ - 1 2 (N (0, 1)) + .

3.2.

Testing. We now move on to the following testing problem:

H 0 : q = q 0 H 1 : q = q 1 ,
with 0 ≤ q 0 < q 1 ≤ 1/2. A test ϕ of H 0 versus H 1 is a function from the set of time-labelled trees that can occur as realisations of BCMRT to {0, 1}. The risk of a test ϕ is defined by

R q 0 ,q 1 (ϕ) = 1 2 (P q 0 (ϕ = 1) + P q 1 (ϕ = 0)) ,
and the optimal risk is

R q 0 ,q 1 = inf ϕ R q 0 ,q 1 (ϕ) ,
where the infimum is taken over all tests ϕ.

In the following theorem, we allow the parameter q to depend on n, which is highlighted by the notation q (n) . Let us stress that this does not mean that the parameter varies with time as the tree grows, but just that it may depend on the total size of the tree. Theorem 3.2. Assume that one observes a time-labelled BCMRT. Then, the following holds:

(i) If 0 ≤ q (n) 0 < q (n) 1 ≤ 1/2 and q (n) 1 -q (n) 0 2 1 -q (n) 0 -q (n) 1 2 q (n) 1 log n , then R q (n) 0 ,q (n) 1 -→ n→∞ 0 .
In particular, if q

(n) 1 = 1/2 and 1 2 -q (n) 0 1 (log n) 1/4 , then R q (n) 0 ,1/2 -→ n→∞ 0. (ii) If 1 2 -q (n) 0 1 √ n , then R q (n) 0 ,1/2 -→ n→∞ 1 2 .
Proof of Theorem 3.2. To alleviate notation, we write q 0 and q 1 instead of q (n) 0 and q

(n)

1 . To prove the first statement (i), let 0 ≤ q 0 < q 1 ≤ 1/2, and consider the test ϕ n given by

ϕ n = 1 Zn H n-1 >x 0 +x 1 , with Z n defined in (1), x i = q i (1 -q i ), and H n-1 = n-1 k=1 1 k . By Chebyshev's Inequality, we have R q 0 ,q 1 (ϕ n ) = 1 2 P q 0 Z n H n-1 -2x 0 > x 1 -x 0 + 1 2 P q 1 Z n H n-1 -2x 1 ≤ x 0 -x 1 ≤ x 0 + x 1 (x 1 -x 0 ) 2 H n-1 •
Using that x 0 + x 1 ≤ 2q 1 and that x 1 -x 0 = (q 1 -q 0 )(1 -q 0 -q 1 ), we see that, if (q 1 -q 0 ) 2 (1q 0 -q 1 ) 2 q 1 log n , then R q 0 ,q 1 (ϕ n ) -→ n→∞ 0. Finally, note that when q 1 = 1/2, then the condition becomes 1/2 -q 0 (log n) -1/4 , whereas when q 0 = 0, it becomes q 1 (log n) -1 , and when q 0 and q 1 are bounded away from 0 and 1/2, it reads q 1 -q 0 (log n) -1/2 . Let us now move to the proof of statement (ii). Let T be a time-labelled balanced recursive tree of size 2n. Let C be the set of valid colorings of T , i.e., colorings with colors A and B such that each pair of nodes with the same time label is colored with both A and B. As is implied so far, we consider two time-labelled trees the same up to graph automorphisms that preserve the time-labels. Therefore, for the latter notion of coloring to be well-defined, we need to consider an ordering of the nodes with the same time-label, that is, the two different nodes labelled i get an arbitrary ordering. In this way, a coloring is an n-tuple of zeros and ones, where ones correspond to ordered pairs colored (A, B), and zeros to ordered pairs colored (B, A). For σ ∈ C, we denote by M σ T the number of monochromatic edges in the tree T colored with σ. The probability P q (T ) to generate T under BCMRT(q) is

P q (T ) = σ∈C 1 Aut(T ) (1 -q) M σ T q 2(n-1)-M σ T n k=2 1 (k -1) 2 ,
where Aut(T ) is the number of graph automorphisms of T that preserve the time labels.

In what follows, we write for simplicity P instead of P 1/2 . The possibility of distinguishing P q from P is determined by the total-variation distance between the two probability distributions defined by

P q -P tv = 1 2 T |P q (T ) -P (T )| .
More precisely, it is a well-known fact (see for instance [START_REF] Lugosi | Lectures on combinatorial statistics. 47th Probability Summer School[END_REF], page 5) that R q,1/2 = 1 2 (1 -P q -P tv ) .

Thus our goal reduces to showing that, if 1 2 -q n -1/2 , then P q -P tv -→ n→∞ 0. By Cauchy-Schwarz Inequality, we have

P q -P tv ≤ 1 2 T P q (T ) 2 P (T ) -1 ,
and

T P q (T ) 2 P (T ) = (2q) 2(n-1) T P q (T ) σ∈C 1 2 n 1 -q q M σ T = (2q) 2(n-1) σ∈C 1 2 n E 1 -q q M σ T ,
where the expectation is over T ∼ P q . Next, note that for any coloring σ, the random variable M σ T is stochastically dominated by a sum of 2(n -1) independent Bernoulli random variables with parameter 1 -q. Indeed, the probability for each new node to attach to a node that has the same color in σ is always less than 1 -q (if σ corresponds to the true coloring, then there is equality). Hence, for all σ ∈ C, we have

E 1 -q q M σ T ≤ (1 -q) 2 q + q 2(n-1)
.

For q = 1-εn 2 with ε n ∈ (0, 1), we obtain 1) , which tends to 1 as soon as ε n n -1/2 , establishing Theorem 3.2, (ii).

T P q (T ) 2 P (T ) ≤ (1 + ε n ) 2 2 + (1 -ε n ) 2 2 2(n-1) = (1 + ε 2 n ) 2(n-

3.3.

Clustering. Let T be a time-labelled BCMRT of size 2n, and let π be the true coloring used to generate T . First note that the number of monochromatic edges in T with respect to π can be written

M π T = n i=2 (ξ i + ξ i ) ,
where ξ i , ξ i are i.i.d. Bernoulli random variables with parameter 1 -q. In particular, E [M π T ] = 2(1 -q)(n -1) and, by Hoeffding inequality, we have

P |M π T -2(1 -q)(n -1)| ≥ n 2/3 = e -Ω(n 1/3 ) .
We will show that for q small enough, with probability tending to 1 as n → +∞, any coloring of T which has a number of monochromatic edges larger than s n = 2(1 -q)(n -1) -n 2/3 must be correlated with π. This gives an exponential time clustering algorithm which performs better than chance: simply go through all colorings and output the first one for which M σ T ≥ s n . Let us mention that this approach was used by J. Banks, C. Moore, J. Neeman, and P. Netrapalli in [START_REF] Banks | Information-theoretic thresholds for community detection in sparse networks[END_REF], in the context of the Stochastic Block Model.

For a given coloring σ of T , let m(σ) be the number of node pairs (with the same time label) which are correctly colored:

m(σ) = n i=1 1 σ i =π i .
Theorem 3.3. There exists ε > 0 such that, for 0 ≤ q ≤ 1/50, the probability that there exists σ satisfying both

m(σ) - n 2 ≤ εn and M σ T ≥ 2(1 -q)(n -1) -n 2/3
tends to 0 as n → +∞.

Proof of Proposition 3.3. Let σ be a given coloring with 1 ≤ m ≤ n correctly colored pairs and assume that m -n 2 ≤ εn for some ε > 0 that will be specified later. Without loss of generality, we further assume that

n 2 ≤ m ≤ n 2 + εn ,
since the other situation can be treated similarly. Let (c 1 , . . . , c n ) ∈ {0, 1} n be the binary vector indicating the location of the correctly colored pairs and define

ω i = i j=1 c j i •
Here, we view σ and π as fixed assignment of colors for each node pair, defined before the tree is generated. We then generate T according to the coloring π and look at the number of monochromatic edges it induces for σ. For all λ ≥ 0, we have

ln E e λM σ T = 2 n i=2 c i ln(p i e λ + 1 -p i ) + (1 -c i ) ln((1 -p i )e λ + p i ) ,
where

p i = (1 -q)ω i-1 + q(1 -ω i-1
) . Indeed, the number of monochromatic edges added at step i is a sum of two independent Bernoulli random variables with parameter p i when c i = 1, and 1 -p i when c i = 0. By Jensen inequality, we have ln E e λM σ T ≤ 2(n -1) ln(pe λ + 1 -p) ,

where

p = 1 n -1 n i=2 {c i p i + (1 -c i )(1 -p i )} = 1 -q n -1 n i=2 {c i ω i-1 + (1 -c i )(1 -ω i-1 )} + q n -1 n i=2 {c i (1 -ω i-1 ) + (1 -c i )ω i-1 } .
We see that the value of p depends on the configuration of ones in the vector (c 1 , . . . , c n ). Since p is a weighted average between 1 -q and q, and since 1 -q ≥ q, the configuration that maximizes the value of p is the one that maximizes the weight put on 1 -q, i.e.,

1 n -1 n i=2 {c i ω i-1 + (1 -c i )(1 -ω i-1 )} ,
over all vectors c ∈ {0, 1} n with m ones and n -m zeros. We claim that this quantity is maximized at the vector c with all the m ones at the beginning, followed by n -m zeros. This is the content of Lemma 3.4, that can be found at the end of this section. Hence, p is always less than

1 -q n -1 m -1 + n i=m+1 1 - m i -1 + q n -1 n i=m+1 m i -1 .
Next, note that

n i=m+1 1 - m i -1 = n-m i=1 i -1 i + m -1 ≤ n-m i=1 i i + m •
Using that m ≥ n -m and that n -m tends to +∞ with n, we have

1 n -m n-m i=1 i i + m ≤ 1 n -m n-m i=1 i i + n -m -→ n→+∞ 1 0 x x + 1 dx = 1 -ln(2) .
Hence, using that m-1 n-1 ≤ 1 2 + ε and that lim sup n→∞ n-m n-1 ≤ 1 2 , we have for n large enough,

p ≤ (1 -q) 1 2 + 2ε + 1 2 (1 -ln(2)) + q ln(2) 2 ,
where the additional ε compensates for the asymptotics. Rearranging, we get

p ≤ p = 1 + 2ε - ln(2) 2 -q(1 -ln(2)) .
Coming back to (5) and using a Chernoff bound, we have

P M σ T ≥ 2(1 -q)(n -1) -n 2/3 ≤ e -2(n-1) sup λ≥0 (1-q)λ-ln(pe λ +1-p)-λn 2/3 2(n-1)
.

Taking

λ = ln (1 -p)(1 -q) pq ,
we find

P M σ T ≥ 2(1 -q)(n -1) -n 2/3 ≤ e -2(n-1) (1-q) ln (1-p)(1-q) pq -ln 1-p q +o(1)
Finally, taking a union bound and using that the number of colorings σ with m(σ) -n 2 ≤ εn is less than 2 n , we see that the proof can be concluded if we can find q and ε such that

(1 -q) ln (1 -p)(1 -q) pq -ln 1 -p q - ln(2) 2 > 0 .
This holds for ε = 10 -4 and q ≤ 1 50 . Lemma 3.4. For 1 ≤ m ≤ n, let X m be the subset of vectors x ∈ {0, 1} n with m ones. For x ∈ X m , let

F (x) = n i=2 x i ω i-1 + (1 -x i )(1 -ω i-1 ) ,
where ω i = 1 i i j=1 x j . Then, if m ≥ n/2, the maximum of F over X m is attained for the vector consisting of m ones at the beginning, followed by n -m zeros, while if m ≤ n/2, it is attained for the vector with zeros first.

Proof of Lemma 3.4. Suppose that m ≥ n/2 (the case m ≤ n/2 is completely symmetric). We will show that, starting from any configuration x ∈ X m , there is a sequence of moves that can only increase the value of F and that arrives at the configuration (1, . . . , 1, 0, . . . , 0). Assume that, for a ∈ {0, 1}, and for i ≥ 1, j ≥ 1 such that i + j + 1 ≤ n, the current configuration x starts with i bits equal to a, followed by j bits equal to b = 1 -a, followed by one bit equal to a. The remainder of the vector is arbitrary, provided the condition x ∈ X m is satisfied:

x = (a, . . . , a i , b, . . . , b j , a, x i+j+2 , . . . , x n ) .
We claim that if i + 1 ≥ j, then the value of F is increased by moving the bit a from position i + j + 1 to position 1, while if j ≥ i + 1, then the value of F is increased by moving the blocks of b at the beginning. Let us fist consider the case i + 1 ≥ j, and let x = (a, a, . . . , a i+1 , b, . . . , b j , x i+j+2 , . . . , x n ) . Then,

F (x ) -F (x) = i + j-1 k=1 k i + k + 1 -i -1 + j-1 k=1 k i + k + i i + j = j i + j - j-1 k=1 k (i + k)(i + k + 1)
•

Noting that the function x →

x (i+x)(i+x+1) is increasing for 0 ≤ x ≤ i and using that j -1 ≤ i, we have

F (x ) -F (x) ≥ j i + j - (j -1) 2 (i + j -1)(i + j) ≥ 0 •
Let us now turn to the case j ≥ i + 1, and let

x = (b, . . . , b j , a, . . . , a, a i+1 , x i+j+2 , . . . , x n ) .
We have

F (x ) -F (x) = j -1 + i k=1 k j + k -i -1 + j-1 k=1 k i + k + i i + j = j i + j - i k=1 j j + k + j-1 k=1 i i + k ≥ j i + j - i k=1 k(j -i) (i + k)(j + k) •
Noting that the function x →

x (i+x)(j+x) is increasing for 0 ≤ x ≤ √ ij and using that j ≥ i + 1, we have

F (x ) -F (x) ≥ j i + j - i(j -i) 2i(j + i) ≥ 0 •
To conclude, observe that when m > n/2, iterating those transitions (choosing x or x depending on the current situation) will end at (1, . . . , 1, 0, . . . , 0). If m = n/2, it might also end at (0, . . . , 0, 1, . . . , 1) but then for both vectors the value of F is the same.

Remark 3.1. The task that our clustering algorithm performs is close to finding a fair bisection of the vertices such that the number of cut edges is minimised (by fair it is meant that neither of the parts contains repeated labels). The problem was proved to be NP-hard in [START_REF] Casel | Fair Correlation Clustering in Forests[END_REF] for general trees with two vertices for each label.

Testing in rooted unlabelled BCMRT

We now remove the time labels, except for the root-edge, i.e., we observe an unlabelled tree on 2n nodes, with one distinguished edge connecting the two initial nodes. In this context, we establish the following result. Theorem 4.1. Assume that one observes a rooted unlabelled BCMRT. Then, for all 0 ≤ q 0 < q 1 ≤ 1/2, we have

sup n≥2 R q 0 ,q 1 < 1 2 .
The proof of Theorem 4.1 (as well as the one of Theorem 5.1 in the next section) is based on the method of distinguishing statistics. More precisely, we use the following fact, whose proof can be found for instance in [START_REF] Levin | Markov chains and mixing times[END_REF]Proposition 7.12]. Lemma 4.2. Let P and Q be two probability distributions over some finite space X and let f : X → R be some observable. We have

d tv (P, Q) ≥ (E Q f -E P f ) 2 (E Q f -E P f ) 2 + 2 Var P (f ) + 2 Var Q (f ) •
In the rooted case, our distinguishing observable is based on the size of the two subtrees separated by the root-edge ρ. Let (ρ + , ρ -) be an arbitrary orientation of ρ, and let T + n (resp. T - n ) the tree containing ρ + (resp. ρ -) when edge ρ is removed from T n . A natural question is to determine whether the sequence (|T + n |/n) n≥1 converges, and, if so, whether the limiting distribution depends on q. The fact that it converges can be seen by noticing that (|T

+ n |/n) n≥1 is a martingale. Indeed, for Λ ∈ {A, B}, let |T + n,Λ | (resp. |T - n,Λ |) be the number of nodes of type Λ in T + n (resp. in T - n )
, and let (F n ) n≥1 denotes the filtration keeping track of the whole history (including types and time-labels). Then, for Λ ∈ {A, B}, we have

E |T + n+1,Λ | -|T + n,Λ | | F n = (1 -q) |T + n,Λ | n + q |T + n,Λ | n ,
where Λ is such that {Λ, Λ} = {A, B}. Taking the sum over Λ ∈ {A, B} in this equality, we obtain

E |T + n+1 | -|T + n | | F n = |T + n | n .
Hence (|T + n |/n) n≥1 is a martingale, and since it is positive, it converges almost surely. While we were not able to determine the limiting distribution, Proposition 4.3 below entails that it depends on q in a non-trivial way. By symmetry, we have E q [|T +

n |] = n for all q ∈ [0, 1], but the dependence on q will appear in the second moment of |T + n |. In order to lay the groundwork for the next section, we will rather consider

E q [|T + n ||T - n |] instead of E q [|T + n | 2 ]
, which amounts to the same thing since

E q [|T + n ||T - n |] = E q [|T + n |(2n -|T + n |)] = 2n 2 -E q [|T + n | 2
] . Proposition 4.3. For all 0 ≤ q 0 < q 1 ≤ 1/2 and for all n ≥ 2, we have

E q 0 [|T + n ||T - n |] -E q 1 [|T + n ||T - n |] ≥ δ(q 0 , q 1 )n 2
, where δ(q 0 , q 1 ) = 1 3 (q 1 -q 0 )(1 -q 1 -q 0 ) > 0 .

Before proving Proposition 4. 

E q 0 [f ] -E q 1 [f ] ≥ δ(q 0 , q 1 )n 2 .
Moreover, since

|T + n ||T - n | = 4n 2 T + n 2n 1 - T + n 2n ≤ n 2 , we have, for all q ∈ [0, 1/2], Var q (f ) ≤ E q [f 2 ] ≤ n 4 .
Hence the total-variation distance is larger than δ(q 0 ,q 1 ) 2 δ(q 0 ,q 1 ) 2 +4 , and the optimal risk is bounded away from 1/2. 

Let us now investigate the dynamic of |T

T + n is w + n,Λ = (1 -q) T + n,Λ n + q T + n,Λ n , (6) 
and the probability that it attaches to T - n is w - n,Λ = 1 -w + n,Λ . Hence, conditionally on F n , we have

|T + n+1 ||T - n+1 | -|T + n ||T - n | =      2|T - n | with probability w + n,A w + n,B , 2|T + n | with probability w - n,A w - n,B , |T + n | + |T - n | + 1 with probability w + n,A w - n,B + w - n,A w + n,B ,
from which we get

E q |T + n+1 ||T - n+1 | | F n = 1 + 2 n |T + n ||T - n | + Λ∈{A,B} w + n,Λ w - n,Λ ,
where we used that w

+ n,A + w + n,B = |T + n | n and w - n,A + w - n,B = |T - n | n . Moreover, defining R n = Λ∈{A,B} |T + n,Λ ||T - n,Λ | , we have Λ∈{A,B} w + n,Λ w - n,Λ = (1 -q) 2 + q 2 n 2 R n + 2q(1 -q) n 2 (|T + n ||T - n | -R n ) = 2q(1 -q) n 2 |T + n ||T - n | + (1 -2q) 2 n 2 R n . (7) 
Hence, taking expectations, we obtain

E q |T + n+1 ||T - n+1 | = 1 + 2 n + 2q(1 -q) n 2 E q |T + n ||T - n | + (1 -2q) 2 n 2 E q [R n ] .
We now look for a recurrence relation for the sequence E q [R n ]. Conditionally on F n , we have

R n+1 -R n =          |T - n | with probability w + n,A w + n,B |T + n | with probability w - n,A w - n,B |T + n,A | + |T - n,B | + 1 with probability w + n,A w - n,B |T - n,A | + |T + n,B | + 1 with probability w - n,A w + n,B
Rearranging and invoking [START_REF] Bubeck | On the influence of the seed graph in the preferential attachment model[END_REF], we obtain

E q [R n+1 | F n ] = 1 + 2(1 -2q) n + (1 -2q) 2 n 2 R n + 2q n + 2q(1 -q) n 2 |T + n ||T - n | . Denoting f q (n) = E q [|T + n ||T - n |] and g q (n) = E q [R n ],
we obtain the following recurrence system:

     f q (n + 1) = a n (q)f q (n) + b n (q)g q (n) g q (n + 1) = c n (q)g q (n) + d n (q)f q (n) f q (1) = 1 , g q (1) = 1 . (8) 
where

a n (q) = 1 + 2 n + 2q(1 -q) n 2 b n (q) = (1 -2q) 2 n 2 c n (q) = 1 + 2(1 -2q) n + (1 -2q) 2 n 2 d n (q) = 2q n + 2q(1 -q) n 2 . (9) 
Let us state one useful fact that will be used in the proof of Proposition 4.3.

Lemma 4.4. For all n ≥ 1, we have

|T + n ||T - n | ≤ 2R n . In particular, f q (n) ≤ 2g q (n). Proof of Lemma 4.4. We have R n = |T + n,A |(n -|T + n,B |) + |T + n,B |(n -|T + n,A |) = n|T + n | -2|T + n,A ||T + n,B | . Using that u(1 -u) ≤ 1/4 for u ∈ [0, 1], we have |T + n,A ||T + n,B | ≤ |T + n | 2 /4. Hence, R n ≥ n|T + n | - |T + n | 2 2 = |T + n | 2 2n -|T + n | = |T + n ||T - n | 2 •
We are now ready to prove Proposition 4.3.

Proof of Proposition 4.3. Let (f q (n)) n≥1 and (g q (n)) n≥1 be defined by ( 8) and let 0 ≤ q 0 < q 1 ≤ 1/2. We will show by induction that for all n ≥ 2,

f q 0 (n) -f q 1 (n) ≥ (f q 0 (2) -f q 1 (2)) n-1 i=2 a i (q 0 ) g q 0 (n) -g q 1 (n) ≥ 0 , (10) 
The property is clearly true for n = 2, with the convention that the product from 2 to 1 is equal to 1. Assume the property holds for some n ≥ 2. We have

f q 0 (n + 1) -f q 1 (n + 1) = a n (q 0 ) (f q 0 (n) -f q 1 (n)) + f q 1 (n) (a n (q 0 ) -a n (q 1 )) + b n (q 0 ) (g q 0 (n) -g q 1 (n)) + g q 1 (n) (b n (q 0 ) -b n (q 1 )) .
Using the second part of the induction hypothesis and the fact that b n (q 0 ) ≥ 0, we have

b n (q 0 ) (g q 0 (n) -g q 1 (n)) ≥ 0 .
Next, observe that

a n (q 1 ) -a n (q 0 ) = 2 n 2 (q 1 (1 -q 1 ) -q 0 (1 -q 0 )) = b n (q 0 ) -b n (q 1 ) 2 ≥ 0 .
Hence,

f q 0 (n + 1) -f q 1 (n + 1) ≥ a n (q 0 ) (f q 0 (n) -f q 1 (n)) + (b n (q 0 ) -b n (q 1 )) g q 1 (n) - f q 1 (n) 2 .
By Lemma 4.4, we have 2g q 1 (n) ≥ f q 1 (n), which yields

f q 0 (n + 1) -f q 1 (n + 1) ≥ a n (q 0 ) (f q 0 (n) -f q 1 (n)) .
Let us now show that g q 0 (n + 1) -g q 1 (n + 1) ≥ 0. By the induction hypothesis, we have

g q 0 (n + 1) ≥ c n (q 0 )g q 1 (n) + d n (q 0 )f q 1 (n) = g q 1 (n + 1) + (c n (q 0 ) -c n (q 1 )) g q 1 (n) + (d n (q 0 ) -d n (q 1 )) f q 1 (n) .
Observing that

d n (q 1 ) -d n (q 0 ) = 2 n (q 1 -q 0 ) + 2 n 2 (q 1 (1 -q 1 ) -q 0 (1 -q 0 )) = c n (q 0 ) -c n (q 1 ) 2 ≥ 0 ,
we have

g q 0 (n + 1) ≥ g q 1 (n + 1) + (c n (q 0 ) -c n (q 1 )) g q 1 (n) - f q 1 (n) 2 .
Invoking Lemma 4.4 again, this concludes the proof of [START_REF] Casel | Fair Correlation Clustering in Forests[END_REF]. Now, we have

n-1 i=2 a i (q 0 ) = n-1 i=2 i 2 + 2i + 2q(1 -q) i 2 ≥ n-1 i=2 i + 2 i = n(n + 1) 6 ≥ n 2 6 •
The proof can now be concluded by noticing that f q 0 (2) -f q 1 (2) = 2(q 1 -q 0 )(1 -q 1 -q 0 ).

Testing in unrooted unlabelled BCMRT

We now observe a tree T n of size 2n without types, without time labels, and without the root edge. We show that it is still possible to distinguish between two distinct parameters q 0 and q 1 , with a risk strictly less than 1/2. Theorem 5.1. Assume that one observes an unrooted unlabelled BCMRT. Then, for all 0 ≤ q 0 < q 1 ≤ 1/2, we have

sup n≥2 R q 0 ,q 1 < 1 2 .
Recall that in the rooted setting, our distinguishing statistic was f (T n ) = |T + n ||T - n |, the product of sizes of the two subtrees around the root edge. Since we can not locate the root edge anymore, we will instead take the sum of such products over all the edges of the tree. Namely, for each edge e ∈ E n , we take an arbitrary orientation e = (e -, e + ) and denote by T e + n (resp. T e - n ) the tree that contains e + (resp. e -) after removing the edge e. We then define the variable

S n = e∈En |T e + n ||T e - n | .
Note that S n is equal to the sum of all pairwise distances in the tree, since each edge is counted as many times as the pairs of nodes it separates. We first establish the following asymptotic equivalence.

Proposition 5.2. For all q ∈ [0, 1/2], we have

E q [S n ] ∼ n→∞ 4n 2 log n .
As far as inference is concerned, Proposition 5.2 may be seen as a negative result: E q [S n ] does not depend on q at first order. This indicates that, in order to apply Lemma 4.2, we do need more subtle bounds on the variance than in the rooted case. Indeed, in that case, a crude bound on the second moment of |T + n ||T - n | was sufficient, while Proposition 5.2 implies that the second moment of S n is at least of order n 4 log 2 (n), which is much larger than the squared difference between expectations. Theorem 5.1 will be a consequence of the two following facts. Proposition 5.3. For all 0 ≤ q 0 < q 1 ≤ 1/2 and for all n ≥ 2, we have

E q 0 [S n ] -E q 1 [S n ] ≥ δ(q 0 , q 1 )n 2 ,
where δ(q 0 , q 1 ) > 0 is the same as in Proposition 4.3.

Proposition 5.4. For all q ∈ [0, 1/2], we have

Var q (S n ) = O(n 4 ) .
The proof of Propositions 5.2 and 5.3 can be found in Appendix B. Let us move to the proof of Proposition 5.4, which is based on the Efron-Stein Inequality [START_REF] Efron | The jackknife estimate of variance[END_REF][START_REF] Steele | An Efron-Stein inequality for nonsymmetric statistics[END_REF].

Proof of Proposition 5.4. Note that the tree T n can be written as a function of 2(n -1) independent random variables:

T n = f ((b 2,A , U 2,A ), (b 2,B , U 2,B ), . . . , (b n,A , U n,A ), (b n,B , U n,B )) , (11) 
where for i = 2, . . . , n and Λ = A, B,

(b i,Λ , U i,Λ ) ∼ Bernoulli(q) ⊗ Unif ({1, . . . , i -1}) .
If b i,Λ = 0, then node (i, Λ) chooses its parent in community Λ. If b i,Λ = 1, then it chooses its parent in the other community. The variable U i,Λ then gives the time label of the parent. Let T n (i, Λ) be defined as in [START_REF] Casse | Siblings in d-dimensional nearest neighbour trees[END_REF], except that (b i,Λ , U i,Λ ) is replaced by an independent copy (b i,Λ , U i,Λ ). Let p(i, Λ) be the parent of (i, Λ) in T n , and p (i, Λ) its new parent in T n (i, Λ) (note that all the other parents remain unchanged 

(S n ) ≤ 1 2 Λ∈{A,B} n i=2 E q S n -S n (i, Λ) 2 = 1 2 Λ∈{A,B} n i=2 E q     e∈P i,Λ |T + n (i, Λ)| |T e - n | -|T e + n | + |T + n (i, Λ)|   2   .
Using that

|T e - n | -|T e + n | + |T + n (i, Λ)| ≤ |T e - n | + |T e + n | -|T + n (i, Λ)| ≤ 2n , we get Var q (S n ) ≤ 2n 2 Λ∈{A,B} n i=2 E q |P i,Λ | 2 |T + n (i, Λ)| 2 ,
where |P i,Λ | is the length of P i,Λ , i.e., the distance between p(i, Λ) and p (i, Λ). Since, conditionally on T i-1 , the tree generated by the first i -1 pairs, the variables |P i,Λ | and |T + n (i, Λ)| are independent, and since |T + n (i, Λ)| is independent of T i-1 , we have

E q |P i,Λ | 2 |T + n (i, Λ)| 2 = E q |P i,Λ | 2 E q |T + n (i, Λ)| 2 . Note that |P i,Λ | ≤ (L i,Λ -1) + (L i,Λ -1) + 1 ≤ L i,Λ + L i,Λ ,
where L i,Λ (resp. L i,Λ ) is the level of (i, Λ) in T n (resp. in T n (i, Λ)). The proof can now be concluded using the two lemmas below, whose proofs can be found in Appendix B. By Lemma 5.5,

E q |P i,Λ | 2 ≤ 4E q [L 2 i,Λ ] ≤ 8H 2 i-1 ≤ 8 (log(i) + 1) 2 .
Moreover, by Lemma 5.6, we have

E q |T + n (i, Λ)| 2 ≤ 2n 2 i 2 •
where

A(i) = n-1 k=i 1 - 1 k + q(1 -q) k 2 and B(i) = 2 n-1 j=i n-1 k=j+1 1 - 1 k + q(1 -q) k 2 .
We have

A(i + 1) -A(i) = n-1 k=i+1 1 - 1 k + q(1 -q) k 2 1 -1 - 1 i + q(1 -q) i 2 ≥ 1 i - 1 4i 2 n-1 k=i+1 k -1 k = 1 - 1 4i 1 n -1 ≥ 1 2n . (21) 
Moreover,

B(i + 1) -B(i) = -2A(i + 1) . (22) 
Therefore, on the event that N 1 (i + 1) = N 1 (i) + 2 we have

(E i+1 [N 1 (n)] -E i [N 1 (n)]) 2 ≥ (N 1 (i)(A(i + 1) -A(i))) 2 ≥ N 1 (i) 2 1 4n 2 , (23) 
where for the first inequality we use ( 20), [START_REF] Kesten | Additional limit theorems for indecomposable multidimensional galton-watson processes[END_REF], and for the second one we use [START_REF] Janson | Asymptotic degree distribution in random recursive trees[END_REF].

To compute the probability of this event given F i , write N Λ 1 (i) for the nodes of type Λ at time i that are not leaves. We have that P (N

1 (i + 1) = N 1 (i) + 2 | F i ) is equal to 1 i 2 (q 2 + (1 -q) 2 )N Λ 1 (i)N Λ 1 (i) + q(1 -q) N Λ 1 (i) 2 + N Λ 1 (i) 2 ≥ q(1 -q) i 2 N 2 (i) . (24) 
Hence,

E P (N 1 (i + 1) = N 1 (i) + 2 | F i ) N 1 (i) 2 ≥ q(1 -q) i 2 E N 1 (i) 2 N 1 (i) 2 ,
which is further bounded by q(1 -q)i -2 E N 1 (i)N 1 (i) 2 , using Jensen's inequality. But we have that E N 1 (i)N 1 (i) = Ω(i 2 ), since the following recurrence holds by conditioning on F i and then taking expectation on both sides:

E N 1 (i + 1)N 1 (i + 1) ≥ E N 1 (i)N 1 (i) + 1 i E N 1 (i) 2 ≥ E N 1 (i)N 1 (i) + i ,
where the last inequality follows by Jensen's inequality and [START_REF] Drmota | Random trees: an interplay between combinatorics and probability[END_REF]. Recalling [START_REF] Garey | Some simplified NP-complete problems[END_REF] and combining with the previous relations, we conclude that

Var (N 1 (n)) ≥ q(1 -q) 4n 2 n-1 i=1 i -2 E N 1 (i)N 1 (i) 2 = Ω(n)
when q = 0. If q = 0, the tree consists of two independent monochromatic subtrees that grow as uniformly random recursive trees. In that case, it is already known that the variance grows linearly; see for instance [START_REF] Janson | Asymptotic degree distribution in random recursive trees[END_REF] or [START_REF] Drmota | Random trees: an interplay between combinatorics and probability[END_REF].

Appendix B. Remaining proofs from Section 5

Let us look for a recurrence relation for E q [S n ]. We have

E q [S n+1 | F n ] = 2(2n + 1) + e∈En E q |T e + n+1 | • |T e - n+1 | | F n .
Then, letting w e + n,Λ be the conditional probability, given F n , that node (n + 1, Λ), for Λ = A, B, attaches in T e + n , and w e - n,Λ the probability that it attaches in T e - n , we find that

E q [S n+1 | F n ] = 2(2n + 1) + 1 + 2 n S n + e∈En Λ∈{A,B} w e + n,Λ w e - n,Λ , (25) 
Letting 

= 2q(1 -q) n 2 S n + (1 -2q) 2 n 2 K n , (26) 
with

K n = e∈En Λ∈{A,B} |T e + n,Λ ||T e - n,Λ | .
Coming back to (25), we get

E q [S n+1 | F n ] = 2(2n + 1) + 1 + 2 n + 2q(1 -q) n 2 S n + (1 -2q) 2 n 2 K n .
Next, we look for a recurrence relation for E q [K n ] and find that 

E q [K n+1 | F n ] = 2(
E q [K n+1 | F n ] = 2(n + 1) + 1 + 2(1 -2q) n + (1 -2q) 2 n 2 K n + 2q n + 2q(1 -q) n 2 S n .
Taking expectations, we obtain the following recurrence system:

     E q [S n+1 ] = a n (q)E q [S n ] + b n (q)E q [K n ] + 2(2n + 1) E q [K n+1 ] = c n (q)E q [K n ] + d n (q)E q [S n ] + 2(n + 1) f q (1) = 1 , g q (1) = 1 . (27) 
where a n (q), b n (q), c n (q), d n (q) are the same as in [START_REF] Kesten | Additional limit theorems for indecomposable multidimensional galton-watson processes[END_REF] in the main text. Before proving Propositions 5.2 and 5.3, we first state a useful fact, which will serve as an analogue of Lemma 4.4 in Section 4. .

Lemma B.1. For all n ≥ 1, we have S n ≤ 2K n . In particular, E q [S n ] ≤ 2E q [K n ].
First, we see that

(I) = n i=1 i 2 + 2i + 2q(1 -q) i 2 ≤ n i=1 (i + 1) 2 i 2 = (n + 1) 2 .
To bound (II), let us first show that for all q ∈ [0, 1/2] and for all n ≥ 1, we have E q [K n ] ≤ n 2 + 2n 2 log n . This holds for n = 1 and, by Lemma B.1, we have, for all n ≥ 1, with ϕ(i) = Γ(i+1) 2 (2i+1) Γ(i+2+γ)Γ(i+2-γ) . One way to obtain the asymptotics for n i=1 ϕ(i) is to first consider the first log n terms and use that log Γ is convex so that Proof of Proposition 5.3. Even though the recurrence systems [START_REF] Bubeck | Finding Adam in random growing trees[END_REF] in Section 4 and ( 27) here are different because of the additional linear terms, the coefficients a n (q), b n (q), c n (q), d n (q) are the same in both systems and the proof of Proposition 4.3 there can be emulated to prove Proposition 5.3, invoking Lemma B.1 instead of Lemma 4.4.

E q [K n+1 ] = 1 + 2(1 -2q) n + (1 -2q) 2 n 2 E q [K n ] + 2q n + 2q(1 -q) n 2 E q [S
We end this section by the proofs of Lemma 5.5 and 5.6, which were used in the proof of Proposition 5.4.

Proof of Lemma 5.5. Whatever Λ, the parent of (n, Λ) can be written (u 1 , Λ 1 ), where u 1 is some uniformly chosen number between 1 and i -1. Then, whatever Λ 1 , if u 1 > 1, the parent of (u 1 , Λ 1 ) can be written (u 2 , Λ 2 ), where u 2 is some uniformly chosen number between 1 and u 1 -1. If we continue until we find u m = 1, then we found the closest root, and the level of (n, Λ) is equal to m. As observed by Devroye [START_REF] Devroye | Applications of the theory of records in the study of random trees[END_REF], this is exactly the distribution of the number of records in a uniform random permutation of {1, . . . , n -1}.] In particular, E q [L n,Λ ] = H n-1 and Var q (L n,Λ ) = H n-1 -

n-1 j=1 1 j 2 .
Proof of Lemma 5.6. For Λ ∈ A, B, let |T + n,Λ (i)| be the number of nodes of type Λ in T + n (i) and define

w i n,Λ = (1 -q) |T + n,Λ (i)| n + q |T + n,Λ (i)| n ,
the conditional probability, given F n , that node (n + 1, Λ) attaches in T + n (i). We have 

E
|T + n (i)| 2n 2 .
Hence,

E |T + n+1 (i)| 2 | F n ≤ (n + 1) 2 n 2 |T + n (i)| 2 + |T + n (i)| n .
Taking expectation and using that E [|T + n (i)|] = n i by symmetry, we see by induction that the sequence

u n = E[|T + n (i)| 2 ] n 2 satisfies u n+1 ≤ u n + 1 i ≤ u i + 1 i n+1 j=i+1 1 j 2 ≤ 2 i 2 •

Proof of Lemma B. 1 . 2 ,

 12 The proof of Lemma 4.4 can be extended to any edge e: and it suffices to sum over all edges e ∈ E n to get the desired bound.Proof of Proposition 5.2. Expanding the relation for E q [S n ] in[START_REF] Massoulié | Community detection thresholds and the weak Ramanujan property[END_REF], we haveE q [S n+1 ] =

1 ) 2 =

 12 O(n 2 ) .Moving to (III), we first observe that, for γ = 1 -2q(1 -q), 1 + γ)(i + 1 -γ) = Γ(n + 2 + γ)Γ(n + 2 -γ) Γ(2 + γ)Γ(2 -γ)Γ(n + 1) 2 ,where Γ is the Gamma function. Since Γ(n + 2 + γ)Γ(n + 2 -γ) ∼ n→∞ Γ(n + 2) 2 (which can be checked using Stirling's formula), we get(III) = 2 n i=1 Γ(n + 2 + γ)Γ(n + 2 -γ) Γ(n + 1) 2 • Γ(i + 1) 2 (2i + 1) Γ(i + 2 + γ)Γ(i + 2 -γ)

1 n- 1

 11 1) 2 = O(log log n) .For the remaining terms, we haven i= log n +1 ϕ(i) -2i + 1 (i + 1) 2 ≤ sup k> log n ϕ(k)(k + 1) 2 2k + 1 -i= log n +1 2i + 1 (i + 1) 2 = o(log n) , since sup k> log n ϕ(k)(k+1) 2 2k+1

  ) n≥1 denotes the filtration keeping track of the whole history. For {Λ, Λ} = {A, B}, conditionally on F n , the probability that node (n + 1, Λ) attaches to

+ n ||T - n | so as to prove Proposition 4.3. Recall that |T + n,Λ | (resp. |T - n,Λ |) is the number of nodes of type Λ ∈ {A, B} in T + n (resp. in T - n ) and that (F n

  ). Let us now investigate how this change affects the variable S n . Note that when edge e does not belong to the path P i,Λ connecting p(i, Λ) and p (i, Λ), then the value of |T | is unchanged. And when e belongs to P i,Λ , then, assuming without loss of generality that p(i, Λ) belongs to T ) is the subtree rooted at node (i, Λ) and containing its descendants up to generation n. Hence, by the Efron-Stein inequality, we have Var q

	e + n ||T	e -	e + n , we have that |T n ||T e + n | becomes e -
	|T e + n | -|T + n (i, Λ)| |T e -n | + |T + n (i, Λ)| ,
	where T + n (i, Λ		

n

  |T 

	e + n,Λ | (resp. |T n,Λ |) be the number of nodes of type Λ in T e -n (resp. in T e + n ), we have e -
	Λ∈{A,B}	w	e + n,Λ w	e -n,Λ =	(1 -q) 2 + q 2 n 2	Λ∈{A,B}	|T n,Λ ||T e + n,Λ | + e -	2q(1 -q) n 2	Λ∈{A,B}	|T n,Λ ||T e + n,Λ | . e -
	Similarly to (20) in the main text, we obtain		
					w	e + n,Λ w	e -n,Λ		
				e∈En Λ∈{A,B}					

  n+1)+K n +

			|T n,Λ |w e +	e -n,Λ +|T n,Λ |w e -	e + n,Λ +	w	e + n,Λ w	e -n,Λ .
		e∈En Λ∈{A,B}					e∈En Λ∈{A,B}
	Recalling (26) and noting that						
	e∈En Λ∈{A,B}	|T n,Λ |w e +	e -n,Λ + |T n,Λ |w e -	e + n,Λ =	2(1 -2q) n	K n +	2q n	S n ,
	we arrive at							

  n ] + 2(n + 1)

	≤ 1 +	2 n	+	1 n 2 E q [K n ] + 2(n + 1) .
	Iterating this inequality, we get							
	E q [K n+1 ] ≤	n i=1		1 +	2 i	+	1 i 2 + 2	n i=1	(i + 1)	n j=i+1	1 +	2 j	+	1 j 2
	=	n i=1	(i + 1) 2 i 2	+ 2	n i=1	(n + 1) 2 i + 1	≤ (n + 1) 2 + 2(n + 1) 2 log(n + 1) ,
	i=2 where for the last inequality, we used that n+1	1

i ≤ log(n + 1). Hence, since b i (q) ≤ 1/i 2 , we have (II) ≤

  |T + n+1 (i)| 2 | F n = |T +

		n (i)| 2 + (4|T + n (i)| + 4)w i n,A w i n,B
		+ (2|T + n (i)| + 1) w i n,A (1 -w i n,B ) + w i n,B (1 -w i n,A )
		= 1 +	2 n	|T + n (i)| 2 +	|T + n (i)| n	+ 2w i n,A w i n,B ,
	where we used that w i n,A + w i n,B = |T + n (i)| n . Taking logarithm on both sides and using concavity,
	one has	w i n,A w i n,B ≤	|T + n (i)| 2n	2	≤	1 2

In Theorem 1.2 and throughout the paper, the notation an bn stands for an/bn →
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Hence we obtain

Var q (S n ) ≤ 64n 4 n i=2 (log(i) + 1) 2 i 2 = O(n 4 ) .

Lemma 5.5. For Λ ∈ {A, B} and n ≥ 2, let L n,Λ be the level of (n, Λ) in T n , i.e., its distance to the closest root, (1, Λ) or (1, Λ). Then, for all q ∈ [0, 1/2], we have

where H n-1 = n-1 j=1 1 j . Lemma 5.6. For 1 ≤ i ≤ n and Λ ∈ {A, B}, let T + n (i) be the subtree rooted at (i, Λ) including all the descendants of (i, Λ) up to time n. Then, for all q ∈ [0, 1/2], we have Proof of Theorem 2.1. To alleviate notation, we will write N k (n) for both the set of vertices of degree k and the size of this set. For node sets S 1 , S 2 , let S 1 ← S 2 denote the event that all nodes in S 2 attach with edge to a node in

with N 0 (n) = ∅. Letting (F n ) n≥1 denote the filtration keeping track of the whole history (including types and labels), we have, for {Λ, Λ} = {A, B},

therefore the sum of these two probabilities equals N k (n) n . Moreover,

Combining [START_REF] Crane | Inference on the history of a randomly growing tree[END_REF] with the latter expressions,

with initial condition N k ( k 2 ) = 0. Following the same type of reasoning, E[N 1 (n + 1)] is equal to

with initial condition N 1 (1) = 2. Using that q(1 -q) ≤ 1 4 , and solving the induced recurrence, we obtain that

where Γ is the Gamma function. By log-convexity of Γ, we have

Therefore, ( 15) can be further bounded by

We can lower-bound E[N 1 (n + 1)] by omitting entirely the term q(1-q) n 2 in ( 14), and find that

Returning to [START_REF] Crane | Root and community inference on latent network growth processes using noisy attachment models[END_REF], using that for all k, N k (n) ≤ 2n and q(1 -q) ≤ 1 4 , we have that

and

Now, one can show by induction in k that there exist constants α 1 (k), α 2 (k), such that for all n ≥ k 2 we have

We already showed this for N 1 (n). Assuming that the claim holds for k, we have

The lower bound can be shown in a similar way, using [START_REF] Gao | Consistent estimation in general sublinear preferential attachment trees[END_REF]. Convergence in probability follows by applying McDiarmid's inequality [START_REF] Mcdiarmid | On the method of bounded differences[END_REF] (also referred to as bounded differences inequality).

Proof of Theorem 2.2. Let (F n ) n≥1 denote the filtration keeping track of the whole history of the tree, including types and time-labels and write E i to denote the expectation conditional on F i . We use the martingale decomposition

Using the tower property for expectation and ( 14), we obtain that E i [N 1 (n)] is equal to