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Abstract
1.	 Biology has an increasing need to reconsider the tools used to assess the variabil-

ity of measurements, in addition to their central tendency. More than 100 years 
after Pearson's publication, most biologists still use the “good old” Pearson's co-
efficient of variation, PCV, despite its documented flaws such as sensitivity to 
excess zero values and/or irrelevant low mean values, which may compromise its 
use in some biological applications.

2.	 A new statistic was developed in 2017 by Kvålseth, KCV, which is easy to imple-
ment. Unlike PCV, KCV is bounded (between 0 and 1), and it can be computed 
from PCV, ensuring backward compatibility with past studies. In addition to simu-
lated data, we used the recent MASTREE+ database comprising the time series of 
the fruiting dynamics of perennial plants worldwide to compare the properties of 
PCV and KCV.

3.	 Using as a benchmark the loose hump-shaped relationship between the interan-
nual variability of fruiting and latitude, KCV led to significant increase in statisti-
cal power as it required almost half as many time series as PCV to detect the 
relationship. Perhaps most importantly, simulated data showed that KCV allows 
huge reductions in the length of time series required to estimate the popula-
tion true variability, saving more than half the duration of long-term monitoring 
if fruiting fluctuations are very large, which is common in perennial plant species. 
Compared to the widely used PCV, KCV has great accuracy for estimating and 
analysing variability in biology, while strongly increasing statistical power.

4.	 Selecting appropriate tools to assess the variability of measurements is crucial, 
particularly where the variability is of primary biological interest. Using Kvålseth's 
KCV is a promising avenue to circumvent the well-known issues of the former 
Pearson’ PCV, its properties remain to be explored in other fields of biology, for 
purposes other than purely statistical ones (e.g. estimating heritability or evolv-
ability of traits).

K E Y W O R D S
Kvålseth's coefficient of variation, masting, MASTREE+, Pearson's coefficient of variation, 
scale invariant statistics of variability
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1  |  INTRODUC TION

Biology has an increasing need to reconsider the tools used to as-
sess the variability of measurements, in addition to their central 
tendency. This is particularly important in the fields of ecology and 
evolution, especially in the context of ongoing global change. For 
example, it is necessary to properly quantify the variability of pop-
ulation abundance in order to compare population dynamics and 
assess extinction risk. The dynamics and evolution of populations 
also depend strongly on the degree of variability of the environ-
ment or of individual phenotypes, which must be carefully assessed. 
There is general agreement that the appropriate statistic to estimate 
variability has to be scaled to the mean to facilitate comparisons 
(Gaston & McArdle,  1994; Inchausti & Halley,  2002; McArdle & 
Gaston,  1995; Pélabon et al.,  2020; Pimm,  1991). In this respect, 
Pearson's coefficient of variation, PCV (Pearson, 1896), is the sta-
tistic almost exclusively used in biological studies to date. PCV is 
computed from a series x of n non-negative elements as the sample 
standard deviation to the sample mean ratio. Note that PCV is unaf-
fected by the order of elements in x so that if you are interested in 
this aspect you should use order-dependent statistics (see for exam-
ple Bogdziewicz et al., 2023) and that there is a loss of information if 
your interest is the variance–mean relationship (see for instance fig. 
2 in Pélabon et al., 2020).

PCV is commonly used as a convenient dimensionless statistics 
of variability, for instance in repeatability experiments it facilitates 
between-laboratories comparisons as they may use different units. 
Another interest is when there are widely different means between 
groups, for example in finance to compare the variability of securi-
ties in a stock exchange. In biology, it is perhaps the scale invariance 
property of PCV,

where λ is a strictly positive constant, that may explain its success. 
Intuitively, this statistic fits well with our need to assess the same rela-
tive variability in x = (1, 2, 3) as in x = (100, 200, 300).

Non-negative series is a common situation since all extensive 
variables (e.g. mass, length, surface, volume, meristic variables such 
as seed counts) belong to this class. Calculating variability in the 

case of intensive variables (e.g. speed, pressure, density, tempera-
ture) could be more tricky, for example the same set of temperature 
data (Kimber, 1991) gives different PCV values when expressed in 
degree Celsius or in degree Fahrenheit (Eisenhauer, 1993) because 
PCV is not invariant by translation. Scale types that are meaningless 
for PCV are given in table 1 in Pélabon et al., 2020. Even if the scale 
type is appropriate, there are still other well-known issues with PCV 
(Gaston & McArdle, 1994; Kvålseth, 2017; Lewontin, 1966; McArdle 
et al., 1990; McArdle & Gaston, 1995; Pélabon & Hansen, 2008; Sil-
veira & Siqueira, 2022) such as its sensitivity to outliers and the fact 
that it is strongly affected by small variation in the mean, or errors in 
the estimation of the mean.

A few attempts have been made to find alternatives to PCV: 
Lewontin  (1966) proposed to work with the standard deviation of 
log-transformed values, which can easily be mobilized in the con-
text of allometric studies, where sample values are strictly positive. 
While this does not work, however, for counts including zero values, 
correcting the problem by using an arbitrary constant � to enforce 
positivity in log(� + xi) is inappropriate because the scale invariance 
property is lost in the process. The proportional variability statistic, 
PV, was proposed (Heath,  2006; Heath & Borowski,  2013) to ad-
dress these challenges, but itself has major weaknesses (see Table 1).

Recently, a new coefficient of variation has been proposed 
(Kvålseth, 2017), called hereafter Kvålseth's coefficient of variation, 
KCV, which has gone largely unnoticed by biologists. KCV is as easy 
to compute as PCV, since it is the sample standard deviation divided 
by the square root of the mean of squared values. What is more, KCV 
can be seen as a variance stabilization transformation of PCV:

This relationship allows us to compute KCV from formerly reported 
PCV values, even if the original dataset is no longer available. This 
relationship also shows that when PCV tends to infinity, KCV is still 
bounded below 1. The other advantages of KCV over PCV are theoret-
ically demonstrated in Kvålseth's paper. For instance KCV can be used 
with a signed ratio type scale mixing positive and negative values since 
it is not undefined, unlike PCV, when the mean is 0, and, at least for 

P
CV(�x)=P

CV(x)

K
CV =

√

PCV
2

1+P CV
2

TA B L E  1  Comparison of PV (Heath, 2006), PCV (Pearson, 1896) and KCV (Kvålseth, 2017) values on the same time series. The first issue is 
that the same PV values are obtained for time series composed mainly of very low values and including seldom high values and those mirror 
series mostly composed of high values with seldom low values (sets 1 and 2). The second issue is that very different PV values are obtained 
for time series that are nearly identical from a biological perspective (sets 3 and 4). The differences between sets 3 and 4 are minute or 
even meaningless yet commonly encountered as they may arise due to sampling fluctuations. In these case studies, both PCV and KCV are 
sensitive to meaningful differences and are insensitive to artifactual differences.

Dataset number Ten-year dataset PV PCV KCV

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

1 5 5 5 5 5 5 5 5 5 1000 0.20 2.86 0.94

2 995 995 995 995 995 995 995 995 995 0 0.20 0.33 0.32

3 1 2 3 4 5 6 7 8 9 1000 0.60 2.86 0.94

4 0 0 0 0 0 0 0 0 0 1000 0.20 3.00 0.95
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someone familiar with multivariate analyses, there is a nice geometrical 
interpretation of KCV in terms of Euclidean distances in ℝn.

Here, we highlight the interest of KCV on the basis of a prac-
tical case study and of simulations used to compare the gain in 
statistical power or in the sampling effort associated with the use 
of KCV vs PCV. For that purpose, we used annual seed production 
in perennial plant populations as a case study. These populations 
show diverse fruiting dynamics, ranging from nearly constant an-
nual production, through extreme interannual variation (masting), to 
semelparity in some species such as the mainland Chinese bamboo 
Phyllostachys bambusoides with its seeding cycle of about 120 years 
(Janzen, 1976). This may represent the greatest known variation ever 
recorded among biological variables in terrestrial ecosystems, pro-
viding an ideal example of the challenges with measuring variability.

2  |  MATERIAL S AND METHODS

The demonstration of the statistical power gain associated with KCV 
rather than PCV in a biological context is carried out in two comple-
mentary steps, one based on quantified biological data in the field 
and the other on simulated data from true parameters known a priori.

In the first step, we used the numerous time series describing 
fruiting dynamics quantified at the scale of perennial plant popula-
tions and species, and in various localities around the world. Data re-
cently made available in MASTREE+ (Hacket-Pain et al., 2022) offer 
a great opportunity to compare the behaviour of PCV and KCV be-
cause the series cover a very wide range of variability. This is a libre 
database available under a CC-BY-4.0 licence. We used the initial 
(2022-03-03) version. Quantitative time series with at least 12 doc-
umented values were selected (n = 1433 time series). From this da-
tabase, we describe the relationship between PCV and KCV and then 
analyse the gain in statistical power associated with using KCV (com-
pared to PCV) using a test to detect a previously published relation-
ship between the degree of variability in fruiting and latitude (Pearse 
et al., 2020). To do this, we sub-sample the MASTREE database by 
randomly drawing time series. For each sub-sample size, we simulate 
10,000 independent tests (either with KCV or with PCV) and deter-
mine the proportion of tests that detected a significant (p < 0.05) 
quadratic relationship between CVs and latitude. The power gain of 
using KCV instead of PCV is quantified by the difference between 
the sub-sample size needed by each statistic to detect a significant 
relationship in 95% of the tests.

In a second step, we use a simulation experiment based on a log-
normal distribution to generate the fruiting dynamics over a longer 
or shorter time series. The use of lognormal distribution has two 
advantages: (i) it allows the generation of fruiting dynamics consis-
tent with observations, (ii) it requires the use of only one parame-
ter. Once this parameter is fixed, the true PCV and KCV are known 
(Kvålseth, 2017). From these simulation experiments, the gain in sta-
tistical power associated with the use of KCV can be estimated by 
the savings in sampling effort (number of years saved) to estimate 
the true CVs with a chosen degree of precision. To illustrate the 

approach, we initially used sdlog = 1.010768 in the rlnorm() func-
tion, which corresponds to variability at the boundary between the 
“large” and “very large” ranges for KCV, typical of masting studies, 
and the theoretical time series have true PCV and KCV of 1.33 and 
0.8 respectively. For each length of time series, 10,000 replicates 
were sampled and statistics were calculated on the same time series. 
Zero-inflated distributions were simulated by forcing a given frac-
tion of the smallest values to zero. Then we generalized the proce-
dure by using lognormal distributions to generate true KCV ranging 
from 0.4 to 0.95 (in steps of 0.25).

All computations were done under the R statistical software (R 
Core Team, 2013). Non-parametric confidence intervals for statistics 
were computed with the boot package (Canty & Ripley, 2021; Davi-
son & Hinkley, 1997) using the adjusted bootstrap percentile (BCa) 
method (Efron, 1987) and 9999 replicates. The R code to reproduce 
the analyses is available in the file CVisDead.zip at pbil.univ-lyon1.
fr/R/donne​es/ in the form of an RMarkdown document (Allaire 
et al., 2020; Xie et al., 2018, 2020) compiled with knitr (Xie, 2014, 
2015, 2020).

3  |  RESULTS AND DISCUSSION

3.1  |  Comparison of PCV and KCV general 
properties based on true datasets

Paired calculations of PCV and KCV over a large dataset of field 
time series of fruiting dynamics by perennial plant species show 
that they are essentially the same up to moderate variability range, 
but for greater variability, PCV tends to stretch values to infinity. 
This is a common situation in masting studies since 74% of time se-
ries in MASTREE+ are in the large -or very large- variability range  
(Figure 1). The KCV estimates are accurate enough (with confidence 

F I G U R E  1  Comparison of PCV and KCV statistics for 1433 
masting time-series with at least 12 observations from MASTREE+ 
(Hacket-Pain et al., 2022). The grey lines are the 95% bootstrap 
confidence interval (Efron, 1987). The vertical blue lines are 
the boundaries of Kvålseth's ranges for verbal interpretation of 
variability. The red curve is the theoretical relationship (y2 = x2/
(1 − x2)) between PCV and KCV.
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intervals for KCV typically ±0.1) to consider as relevant the 5-class 
categorization of the [0,1] range values proposed by Kvålseth for 
verbal interpretation. The consistency of results when switching 
from PCV to KCV is ensured by their monotonic relationship; for 
instance all non-parametric rank-based tests are equivalent since 
ranks are preserved. The “too many zeros issue”, common in mast-
ing studies, is solved neither by PCV nor by KCV, but it can be at 
least detected by the confidence intervals including zero, meaning 
that the corresponding data set does not allow us to reject the null 
hypothesis “H0: CV = 0”.

3.2  |  Comparison of PCV and KCV power with 
actual data

The level of variability in the population-scale fruit production has 
been recently examined over a large range of plant species and 

spatial scale in the Northern Hemisphere (Pearse et al., 2020) and 
the time-series variability exhibits a loose hump-shaped relation-
ship with latitude (Figure 2). This is a perfect benchmark because 
the small part of total variability accounted for by the model 
(r2 = 0.0481) requires a lot of data to get a significant relationship. 
With PCV, the relationship is questionable because there is an 
overrepresentation of data in the intermediate latitude range [35°–
55°] likely including by chance most of the outliers (anomalously 
high PCV values), which could be responsible for an artificial quad-
ratic relationship. In this case, using KCV, the hump-shaped rela-
tionship is much more convincing because its values are bounded 
between 0 and 1 so that no heavy-tailed distributions are possible. 
In this way, KCV is similar to using a log scale when dealing with 
highly skewed data but avoids the need for data transformations. 
In this case, the advantage of a bounded statistic is obvious, pre-
venting highly skewed distributions for PCV values (Figure 1) and 
helps, using Kelly's words (Kelly, 2023), in “fighting the urge to put 
things in bins”.

Based on these data and from sub-sampling simulation, we found 
a massive gain in statistical power when using KCV instead of PCV 
(Figure 3): we may save about 40% of the sampling effort to reach a 
significant result. The advantage of using the KCV instead of PCV is 
worth considering, given the logistical difficulties in long-term field 
monitoring of seed production, which pose a major obstacle to prog-
ress in the field (Clark et al., 2021; Koenig, 2021). Even cutting-edge 
technologies (e.g. Jones & Allen, 2002) are unlikely to improve the 
situation in the near future.

3.3  |  In silico comparison of PCV and KCV power

Using simulated data allows us to study the impact of sampling ef-
fort (the length of time-series) on the sampling fluctuation of statis-
tics values, from both a central tendency and a dispersion point of 
view (Figure 4). The dispersion of sampling fluctuations decreases 
with sampling effort with KCV but is almost unchanged with PCV, an 
undesirable property. Examining the central tendencies, the conver-
gence to the true value is faster with KCV than with PCV (Figure 4). 
For example, reaching 80% of the true population value requires 

F I G U R E  2  Quantifying the relationship 
between variability and latitude using the 
two methods of calculating CV. Points 
show a subset of 1138 time-series from 
the Northern Hemisphere showing the 
relationship between PCV (left) or KCV 
(right) and latitude. The red line is the 
quadratic fit that minimizes the sum of 
squared residuals.

F I G U R E  3  Sub-sampling simulation showing how KCV 
dramatically reduces the number of samples required to detect 
a significant relationship between CV and latitude, as shown in 
Figure 2. Lines show the percentage of simulations for a given 
sub-sample size that produce a significant (p < 0.05) quadratic 
relationship between CVs and latitude, based on 10,000 replicates 
for each sub-sample size. Sub-samples were randomly selected 
from the 1138 MASTREE+ time-series. Detecting the relationship 
using KCV saved 43% of the sampling effort as compared with PCV.
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22 years with PCV while it takes only 9 years with KCV, correspond-
ing to a 13-year gain (i.e. more than 50% saved years). A similar gain 
was observed with zero-inflated time-series (not shown). At the ex-
pense of no extra cost, with the same dataset, we are always closer 
to the true population value with KCV. Crucially in the case of mast-
ing analyses, this enables substantial reduction in the number of 
years of monitoring needed prior to accurately measuring the inten-
sity of masting (Figure 4).

The amount of sampling effort saved when shifting from PCV to 
KCV was also found to increase along with the degree of variability in 

the data series (Figure 5). For instance, considering that 80% of the 
true population value was reached, 13 years could theoretically be 
saved when KCV = 0.8, 25 years when KCV = 0.85 and even 56 years 
when KCV = 0.9. To summarize, whatever the length of the time se-
ries, KCV always outcompetes PCV and the reduction in the length 
of the time series allowed by KCV increases along with the intrinsic 
variability level of the dataset.

4  |  CONCLUSION

Kvålseth concludes his article by stating that “except for a long tradi-
tion of the use of PCV, there appears to be no reason not to prefer 
the use of KCV over PCV”. The double negation in Kvålseth's deli-
cate wording appears to us as an understatement: at least in studies 
devoted to understanding the temporal or spatial variability of bio-
logical quantities, we do have good reasons to shift from PCV to KCV 
as a scale-invariant statistic to properly quantify variability. Other 
applications of the KCV deserve to be explored, such as in evolution-
ary biology where inferring the evolvability of a trait, its phenotypic 
plasticity, or its selective value relies on accurate, and still debated, 
measures of variability (Hansen et al.,  2011; Houle,  1992; Houle 
et al., 2011; Pélabon et al., 2020). Nonetheless, while KCV has a num-
ber of advantages for focal applications, as presented in our paper, 
the choice of statistics will depend on the questions being asked.
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F I G U R E  4  Simulation experiment using a lognormal distribution to demonstrate that while PCV and KCV both underestimate the true 
population value, KCV converges more rapidly than PCV, reducing the number of years of observation required to estimate its value. The 
dotted lines are the true population values for PCV and KCV. The x-axis scale is representative of the length of the masting series available 
in MASTREE+, whose median is 10 years, and 50% of the time-series are between 4 and 17 years (indicated by the grey shading). The black 
point is at the mean, and the bars represent plus or minus one standard deviation (not confidence interval for the mean) to illustrate the 
dispersion of the sample statistics. The red point indicates the time-series length where 80% of the true population value is reached.
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