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Abstract. We give a combinatorial interpretation for the expansion of the cohomology
class of the permutahedral variety Permn in Schubert classes. This requires under-
standing Schubert polynomials modulo the ideal QSym+

n of positive degree quasisym-
metric polynomials. We introduce a new basis for the polynomial ring that we call
forest polynomials, together with a bijective correspondence. Both constructions are of
independent interest.

Résumé. Nous donnons une interprétation combinatoire au développement de la
classe de cohomologie de la variété permutaédrale Permn sur les classes de Schubert.
Pour cela, il faut comprendre la réduction des polynômes de Schubert modulo l’idéal
QSym+

n des polynômes quasi-symétriques de degré positif. Nous introduisons une
nouvelle base pour l’anneau de polynômes que nous appelons polynômes forestiers,
ainsi qu’une correspondance bijective, toutes deux ayant un intérêt pour elles-mêmes.

Keywords: permutahedral variety, quasisymmetric polynomials, binary trees, linear
extensions.

1 Introduction

Schubert calculus is the study of certain enumerative problems in algebraic geometry.
These can be often phrased as finding intersection numbers of subvarieties subject to
certain conditions. Littlewood–Richardson numbers arise for instance as generic triple
intersection numbers of Schubert classes in the Grassmannian, and are known to count
various families of objects. The same intersection problem in the flag variety has been
the study of intensive research for at least the past forty years.

Here we study a particular problem in the flag variety, namely the intersection of
the so-called permutahedral (sub)variety Permn with a generic Schubert variety Xw. If
w ∈ Sn has length n − 1, the cardinality aw = |Permn ∩ Xw| of intersection points is a
well-defined nonnegative integer. Several properties of these numbers were obtained by
the authors in [8], as well as their evaluation in special cases, all of which point to rich
combinatorics.
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In this work we complete these results with a combinatorial interpretation for aw.
Recall that i1i2 . . . ik is a reduced word for a permutation w if w = si1si2 . . . sik where si is
the transposition (i ↔ i + 1), and k is minimal, given by the length `(w). We denote the
set of reduced words for w by Red(w). We also need a particular parking procedure in
order to state our main result.

WF-parking procedure: Consider parking spots indexed by Z, initially all empty. Cars
1, 2, . . . arrive successively, with car i having preferred spot vi, and want to park at
(empty) spots. Assume inductively that i − 1 cars have already parked. If spot vi is
empty, then car i parks there. Otherwise, vi ∈ [a, b] an interval of occupied spots with
spots a− 1 and b+ 1 being free.1 Define vj to be the preferred spot of the car that parked
last in [a, b]; that is, j < i is maximal such that vj ∈ [a, b]. Then, car i parks in b + 1 if
vi ≥ vj, while it parks in a− 1 if vi < vj.

After k cars have parked they occupy a k-subset I(v1 · · · vk) ⊂ Z. A preference word
v1 · · · vk is called a WF-parking word if I(v1 · · · vk) = {1, . . . , k}.

Theorem 1. If w ∈ Sn has length n− 1, then aw is the number of reduced words of w−1 that
are also WF-parking words.

Example 2. Consider w = 21543 ∈ S5 with `(w) = 4. To compute aw, we need to compute
WF-parking words in Red(w−1) = Red(w). These are given explicitly in (5.1), and only the
first four of them are WF-parking words. It follows a21543 = 4.

We will explain the main steps of the proof leading to this result, and stress in par-
ticular the rôle played by the forest polynomials that we introduce in Section 3. Let us first
recall the geometrical context and previous results.

We will be brief on the geometry and refer to [8] for more information. The complete
flag variety Fln is the set of complete flags V• = (V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vn) where each Vi
is a linear subspace of Cn of dimension i. It is a smooth projective variety of dimension
(n

2) over C. Inside Fln we have first and foremost the Schubert varieties Xw indexed by
w ∈ Sn, whose cohomology classes σw := [Xw] form a linear basis of the cohomology ring
H∗(Fln, Q). In this work we consider the permutahedral variety Permn. It is an ubiquitous
toric variety, encoded by the normal fan of the standard permutahedron, and occurs in
Fln as a generic torus orbit or a regular semisimple Hessenberg variety.

Now by standard cohomology theory, the intersection numbers aw defined above are
known to be given by the coefficients in the expansion of the class [Permn] in terms of
Schubert classes. Using a result of Anderson–Tymoczko [1], the authors were led in [8]
to an algebraic expression for aw that we now recall.

Hencefore, set Q[xn] = Q[x1, . . . , xn]. Let divided symmetrization (DS), introduced un-
der that name by Postnikov [10, Section 3], be the linear form that takes a homogeneous

1Recall that in the classical parking algorithm, car i simply parks in spot b + 1.
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polynomial f (x1, . . . , xn) ∈ Q[xn] of degree n− 1 as input and outputs 〈 f 〉n ∈ Q as:

〈 f 〉n := ∑
w∈Sn

w ·
(

f (x1, . . . , xn)

∏1≤i≤n−1(xi − xi+1)

)
. (1.1)

For w ∈ Sn with length n− 1, we have [8, Theorem 3.2.1]

aw = 〈Sw〉n. (1.2)

Here Sw is a Schubert polynomial, see (2.1) for a definition. Before we explain how to
go from the expression (1.2) to Theorem 1, note that the authors had previously obtained
results on aw using the algebra of Sn-invariants of the cohomology ring H∗(Permn, Q).
This was based on work of Klyachko [6] in a crucial way. The main result was an
explicit formula for aw as a positive rational linear combination of mixed Eulerian numbers
[8, Theorem 5.1.2]. The formula is reminiscent of Macdonald’s famous reduced word
identity and this aspect is explored in [7].

A rational expression, even if positive, is unsatisfying since we know aw ∈ N. The-
orem 1 thus provides a pleasant answer in that respect. Surprisingly the road to the
intepretation therein goes through the quotient Q[xn]/QSym+

n , first studied by Aval–
Bergeron–Bergeron [4]. We quickly introduce the relevant notions (see Section 2 for
QSym+

n ). Let Cn denote the set of weak compositions (c1, . . . , cn) such that for all
1 ≤ j ≤ n we have cj + · · · + cn ≤ n − j. We call its elements ABB compositions. We
refer to the monomials xc := xc1

1 · · · x
cn
n where c = (c1, . . . , cn) ∈ Cn as ABB monomials.

Aval–Bergeron–Bergeron showed the direct sum decomposition:

Q[xn] = Q{xc | c ∈ Cn} ⊕QSym+
n , (1.3)

from which they inferred that dim(Q[xn]/QSym+
n ) = Catn := 1

n+1(
2n
n ). The following

result connects the ABB decomposition with DS.

Theorem 3 ([9, Theorem 1.3]). Express a degree n− 1 homogeneous polynomial f as f = g+ h
where g ∈ Q{xc | c ∈ Cn} and h ∈ QSym+

n . Then 〈 f 〉n = g(1, 1, . . . , 1).

Given Formula (1.2), we are led to consider the decomposition of Sw as in Theorem 3.
The corresponding polynomial g will turn out to be a N-combination of ABB monomials,
thus showing aw ∈N.

We define an N-vector to be a sequence of nonnegative integers (ci)i∈Z≥1 where all
but finitely many ci are 0. The support of an N-vector c is the set of indices i ∈ Z>0 such
that ci > 0. We denote the set of N-vectors by Codes. Occasionally we truncate an N-
vector to a finite sequence (c1, . . . , cn) for some positive integer n. It is then understood
that ci = 0 for all i > n.

We propose a family of polynomials {pc}c∈Codes which we call forest polynomials; the
reason will become clear in the sequel. They turn out to enjoy several nice combinatorial
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properties, and form a Z-basis of the space of all polynomials. Our interest in them
stems from the following theorem; its first part relies on the Word-Forest Correspondence
that we introduce in Section 4.

Theorem 4. The following hold.
(i) Every Schubert polynomial is a nonnegative integral combination of forest polynomials.

(ii) Let us restrict our attention to forest polynomials that only use variables x1 through xn.
We then have pc modulo QSym+

n 6= 0 if and only if c ∈ Cn. In the latter case, pc is a
nonnegative integral combination of ABB monomials.

These two results, given in Sections 4 and 3 respectively, will help give a manifestly
nonnegative integral expression for aw that can eventually be interpreted as in Theo-
rem 1; see Section 5. We close by mentioning some other applications in a final section.

2 Combinatorial preliminaries

Quasisymmetric polynomials. A strong composition α := (α1, . . . , αk) is a sequence of
positive integers. We use `(α) := k to denote the number of parts in α. A polynomial
f ∈ Q[xn] is quasisymmetric if for every strong composition α the coefficient of xα1

1 · · · x
αk
k

equals that of xα1
i1
· · · xαk

ik
for every 1 ≤ i1 < · · · < ik ≤ n. Clearly every polynomial

symmetric in x1 through xn is also quasisymmetric. A linear basis for the ring of qua-
sisymmetric polynomials in x1 through xn is given by the fundamental quasisymmetric
polynomials Lα(x1, . . . , xn) with `(α) ≤ n. We are interested in the ideal QSym+

n gen-
erated by positive degree quasisymmetric polynomials in Q[xn]. Equivalently, it is the
ideal generated by all Lα(x1, . . . , xn) for `(α) > 0.
Schubert polynomials. Given i = i1 . . . ik ∈ Z∗, let Comp(i) denote the set of sequences
(a1 ≥ · · · ≥ ak) satisfying 1 ≤ aj ≤ ij for all j = 1, . . . , k and aj > aj+1 if ij > ij+1 for
j = 1, . . . , k− 1. Define F(i) by

F(i) = ∑
(a1,...,ak)∈Comp(i)

xa1 · · · xak .

If the sum on the right is empty, then F(i) = 0. Otherwise F(i) can always be written
as a slide polynomial Fc [3].2 As an example, F(423) = x2

2x4 + x2
2x3 + x1x2x4 + x1x2x3 +

x2
1x4 + x2

1x3 + x2
1x2, which by the convention in [3] is F(0,2,0,1).

Now given w ∈ Sn, let Red(w) denote the set of reduced words of w. We then have the
following celebrated description of Sw due to Billey–Jockusch–Stanley [5]:

Sw = ∑
i∈Red(w−1)

F(i). (2.1)

2Assaf–Searles index slides by N-vectors, and the latter can be read off from the exponent vector of the
revlex leading monomial.
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For example consider w = 14253 ∈ S5. Then Red(w−1) = {243, 423}. We just computed
F(423) above, and F(243) = x1x2

2 = F(1,2). Thus S14253 = F(243) + F(423) is given by

S14253 = x1x2
2 + x2

1x2 + x2
1x3 + x1x2x3 + x2

2x3 + x2
1x4 + x1x2x4 + x2

2x4. (2.2)

Indexed forests. An indexed forest F is a set of complete binary trees, each with leaves
labeled from left to right by an interval in Z>0. These intervals must moreover partition
Z>0, and all but a finite number of them are singletons, i.e. the corresponding tree is a
leaf. See Figure 1 (ignoring red labels for now), where we identify leaves with Z>0.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

2

2

4 7 11
11

ρF0

15 16

Figure 1: An indexed forest F0 with size 6

Let IN(F) be the set of internal nodes of F, and let |F| be its size. We call a node
v ∈ IN(F) terminal if both its children are leaves. Let Term(F) denote the set of terminal
nodes in F. The support Supp(F) of F is the set of labels of leaves attached to nontrivial
trees. The left support LSupp(F) of F is the set of labels of left leaves attached to nontrivial
trees. The indexed forest in Figure 1 has size 6, Supp(F) = {2, 3, 4, 5, 7, 8, 11, 12, 13}, and
LSupp(F) = {2, 4, 7, 11}. Furthermore, it has 4 terminal nodes.

Define ρF on IN(F) by ρF(v) := the leaf label reached by following left edges down
from v; see red labels in Figure 1. Define ci to be the number of nodes labeled i by ρF to
get a vector c(F) = (c1, c2, . . .) ∈ Codes.

Lemma 5. F 7→ c(F) is a bijection between indexed forests and Codes.

For F in Figure 1 we get c(F) = (0, 2, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, . . .).
Words. Given any alphabet A, we denote the set of words in A by A∗. We denote the
length of any word w ∈ A∗ by `(w). We let ε denote the empty word. The set of injective
words in A∗ consists of words comprising solely distinct letters. We denote this set by
Inj(A). Our ordered alphabet of interest is obtained by “augmenting” Z: we define the
alphabet Z of letters i[j] where i ∈ Z and j ∈ Z>0. These letters extend the linear order
on Z by i < i[1] < i[2] < i[3] < · · · < i + 1 for all i.

3 Forest polynomials

We are ready to introduce forest polynomials. Given the bijection F 7→ c(F), we can
index them by either N-vectors or by indexed forests. We will do this without prior
warning, omitting parentheses, commas, and trailing zeros in writing c.
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Definition 6. The forest polynomial pF ∈ Z[x1, x2, . . .] is defined as

pF = ∑
κ

∏
v∈IN(F)

xκ(v)

where the sum is over all labelings κ : IN(F) → Z>0 that are bounded above by ρF, weakly
increasing down left edges and strictly increasing down right edges.

1 2 3 4 5 6

a

b

c

Figure 2: An indexed tree T0 with c(T0) = (0, 2, 0, 1, 0, . . . )

Example 7. Consider the indexed tree T0 in Figure 2. Then

pT0 = ∑
2≥a≥b
4≥c>b

xaxbxc = x2
2x4 + x1x2x4 + x2

1x4 + x2
2x3 + x1x2x3 + x2

1x3 + x2
1x2 + x1x2

2. (3.1)

which coincides with the Schubert polynomial S14253, cf. (2.2). Note that in general pF is the
product of pT over all indexed trees T composing F. Thus for F0 in Figure 1, we get pF0 =
pT0(∑

7
i=1 xi)(∑1≤i≤j≤11 xixj).

Example 8. (Fundamental quasisymmetric polynomials Lα are forest polynomials) Let F
be an indexed forest with LSupp = [a, b] for some a ≤ b. A moment’s thought should convince
the reader that such an F must in fact be a “linear tree”. In fact this condition is equivalent to
Supp(c(F)) being an interval in Z>0. Figure 3 shows two instances. The one on the left gives
pF = L121(x1, . . . , x4) and that on the right pF = L2(x1, x2). In general, let c(F) = (c1, c2, . . .).
Then pF = Lα(x1, . . . , xb) with α = (cb, . . . , ca).

1 2 3 4 5 6 1 2 3 4 5

Figure 3: Two indexed forests with left support an interval

The next proposition is a consequence of the observation that the revlex leading term
in pF is xc(F). It is interesting to compare it with the fact that Schubert polynomials
indexed by permutations with last descent in position at most n (respectively, in Sn)
form a basis of Z[xn] (respectively, of Q{xc | ci ≤ n− i}).
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Proposition 9. Given n ∈ Z>0, the set {pF | LSupp(F) ⊆ [n]} is a basis of Z[xn], while the
set {pF | Supp(F) ⊆ [n]} is a basis of Q{xc | c ∈ Cn}.

Definition 6 essentially describes forest polynomials as a generating function for cer-
tain flagged (P, ω, ρ)-partitions in the sense of Assaf–Bergeron [2]. Let Dec(F) denote
the set of decreasing forests with shape F, that is bijections IN(F) → {1, . . . , |F|} de-
creasing down branches. For a fixed F, one can identify L ∈ Dec(F) with a word
ρF(v1) · · · ρF(v|F|) where vi is the node with label L(vi) = i. The next expansion is a
special case of results in loc. cit.

pF = ∑
L∈Dec(F)

F(L). (3.2)

Thus any forest polynomial is a sum of slide polynomials. For T0 in Example 7 and
Figure 2, the expansion in (3.2) specializes to F(242) + F(422) = F(1,2) + F(0,2,0,1), which
as expected coincides with the one defining S14253(= pT0).

Reduction modulo QSym+
n . Henceforth, given f ∈ Q[xn], we take f mod QSym+

n to
mean the unique g satisfying f = g + h with h ∈ QSym+

n and g ∈ Q{xc | c ∈ Cn}. Our
aim is to give a straightforward description for pF mod QSym+

n ; see Theorem 12. De-
spite the simplicity of the statement, the proof is technical (and omitted in this abstract).
It relies on the recurrence in Lemma 10.

We discuss two operations on indexed forests that will allow us to describe this
recurrence. The first is the shift map τ which, given an indexed forest F, simply shifts
Supp(F) one unit to the right. We abuse notation and define τi(pF) = pτi(F) for i ∈ Z,
making note that if Supp(τi(F)) * Z>0, then pτi(F) equals 0.

The second operation is trimming, which corresponds to removing a terminal node.
Explicitly, consider v ∈ Term(F). It lies in one of the indexed trees T composing F, say
with support [a, b]. We obtain trimv(F) from F by replacing T with T′ = T \ {v} with
new support [a, b− 1], and leaving the other trees unaltered. If a = b− 1, then T′ has no
internal nodes (i.e it is trivial), and we omit it.

1 2 3 4 5 6

b

c

1 2 3 4 5 6

a

b

Figure 4: The two indexed forests resulting from trimming T0 in Figure 2

Lemma 10. Given an indexed forest F we have

pF = pτ−1(F) + ∑
v∈Term(F)

xρF(v) ptrimv(F). (3.3)
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One can rewrite this recurrence by indexing forest polynomials by N-vectors. For
the tree T0 in Figure 2, using Lemma 10 we get: p0201 = p201 + x2 p011 + x4 p02. Now,
p201 = x2

1x2 + x2
1x3, p011 = e2(x1, x2, x3), and p02 = h2(x1, x2), and substituting these

gives the same expansion as in (3.1).
Lemma 10 has several consequences; we record two that concern us most. First, we

have a nice interpretation for the sum of coefficients of pF in a special case.

Proposition 11. If T is an indexed tree with support {1, . . . , |T|}, we have

pT(1, . . . , 1) = |Dec(T)|. (3.4)

One can extend this to a result for all pF but we will not need it here. The second
consequence of Lemma 10 is Theorem 4(ii) which we reformulate here.

Theorem 12. Let F be an indexed forest satisfying LSupp(F) ⊆ [n]. Then

pF mod QSym+
n =

{
0 if Supp(F) * [n] (equivalently, c(F) /∈ Cn)
pF if Supp(F) ⊆ [n] (equivalently, c(F) ∈ Cn).

As an example, note that Theorem 12 says that the forest polynomial p0201 in (3.1) is
in QSym+

4 as Supp(T0) * [4]. We invite the reader to check that

p0201 = L(2,1)(x1, . . . , x4) + L(1,2)(x1, . . . , x4)− (x3 + x4)L(1,1)(x1, . . . , x4)

and thus clearly belongs in QSym+
4 . On the other hand, τ−1(T0) has support exactly [4],

and p2010 = x2
1x2 + x2

1x3; each monomial here is an ABB monomial.

4 Word-Forest correspondence

We now proceed to describe the main insertion algorithm in this work, the Word-Forest
correspondence. We will need labeled versions of indexed forests. A labeling of F is a map
from IN(F) to some alphabet A. Furthermore, we allow our indexed forests to be supported
on Z and not just Z>0. When we consider forest polynomials subsequently, only those that are
supported on Z>0 shall matter.

The input is an injective word W ∈ Inj(Z), while the output is a pairWF (W) = (P,Q)
of labeled indexed forests where the underlying unlabeled forests are the same. Fol-
lowing conventions, we call P (respectively Q) the insertion forest (respectively recording
forest). We defineWF (W) inductively via an insertion procedure.

A convenient bookkeeping device while executing our algorithm is the root list rl(W)
for W. It is a totally ordered subset of Z tZ that records the list of root labels in P:
trivial trees are encoded by their index in Z, other root labels are certain letters in W.
The WF-correspondence. Let W ∈ Inj(Z). If W is empty, P and Q are trivial forests. We
thus set rl(ε) = Z. Now suppose W = W ′b and WF (W ′) = (P′,Q′) by induction. Then
WF (W) is determined as follows.
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1[1] 3[1]

4[1]

3[2]

1 2

3

4P(1[1]3[1]4[1]3[2]) Q(1[1]3[1]4[1]3[2])

1 2 3 4 5 1 2 3 4 5

Figure 5: The insertion and recording forest for W = 1[1]3[1]4[1]3[2]

1. Let a (respectively c) be the greatest (respectively least) elements in rl(W ′) such that
a < b < c.3

2. Merge the two trees in P′ with roots labeled by a and c into a single tree by adding
a new root with label b as their parent. This gives us P(W). The new root list is
then rl(W) = (rl(W ′) \ {a, c}) ∪ {b}.

3. Q(W) records this merging procedure by performing a corresponding merge in Q′

and having |W| as the new root label.
See Figure 5 for the P and Q that result when one applies the preceding procedure. Note
that internal nodes in P are labeled by letters in W whereas those in Q are labeled by
{1, . . . , |W|}. One can say more— P is a local binary search forest, i.e. the label of any node
is strictly greater (lesser) than the label of its left (respectively right) child, while Q is a
decreasing forest as already defined.

Fix a finite set B ⊆ Z. Denote by SB the set of all permutations of B (in one-line nota-
tion). Clearly |SB| = |B|! and SB ⊂ Inj(Z). Denote by PF (B) the set of all ordered pairs
(P,Q) where P,Q have the same underlying complete indexed forest and additionally

• internal nodes in P are bijectively labeled by letters in B so that the result is a local
binary search forest;

• internal nodes in Q are bijectively labeled by letters in {1, . . . , |B|} so that the result
is a decreasing forest.

We are ready for our main procedure that governs the combinatorics.

Theorem 13 (Word-Forest correspondence). The mapWF : SB → PF (B) is a bijection.

Proof (sketch). The forward direction produces an element in PF (B) as discussed earlier.
The inverse correspondence simply consists in reading the labels of P according to the
order determined by Q, and this is injective as well. The claim follows.

The WF-correspondence specializes to the “Sylvester correspondence” when B has
the form {1[1], 2[1], . . . , n[1]}, but does not reduce to it in general. Our main use for this
correspondence will be to group together all words that have the same labeled forest P.

The WF-equivalence. We say that words W1, W2 ∈ Inj(Z) are WF-equivalent if P(W1) =
P(W2). We denote this by W1 ≡

WF
W2. For instance the reader can check that 3[1]1[1]4[1]3[2]

3Recall that our inputs are injective words
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and 1[1]3[1]4[1]3[2] produce the same P (shown in Figure 5), and thus 3[1]1[1]4[1]3[2] ≡
WF

1[1]3[1]4[1]3[2]. It is helpful to compare the Q symbol for these two words as well. Observe
that two incomparable nodes swap their labels. We can actually give a ‘local’ description
to WF-equivalence which generates ≡

WF
as its transitive closure. We say that W1 ∼

WF
W2 if

we can write W1 = UabV, W2 = UbaV and there are at least two elements c, d of in the
rootlist rl(U) such that

min(a, b) < c, d < max(a, b). (4.1)

Note that this entails that W1 and W2 are in the same commutation class: if we denote
a = i[·], b = j[·], then necessarily |j− i| ≥ 2.

Lemma 14. ≡
WF

is the equivalence relation generated by ∼
WF

.

5 aw by expanding Schuberts into forests

We now discuss the decomposition of Schubert polynomials into forest polynomials. To
this end we will need to apply the WF-correspondence to reduced words. We thus need
to transform words in Z∗ as as elements in Inj(Z).

For w ∈ Z∗, define the word stan(w) in Z
∗ by labeling the occurrences of the letter

i in w from left to right by i[1], i[2], . . . , for any i ∈ Z. For instance stan(1221625) =
1[1]2[1]2[2]1[2]6[1]2[3]5[1]. It is clear w 7→ stan(w) embeds Z∗ ∈ Inj(Z). We will implicitly
apply constructions of the previous section to words via these standardized versions.

Definition 15. Given a WF-equivalence class C, we define its shape sh(C) to be the underlying
unlabeled indexed forest F of P(W) for any element in W ∈ C. We define Supp(C) to be equal
to Supp(F).

Recall that Red(w) is the set of reduced words for a permutation w. For instance, if
w = 21543 in one-line notation, then

Red(w) = {1343, 3143, 3413, 3431, 1434, 4134, 4314, 4341}. (5.1)

Those with the same color form an equivalence class under ≡
WF

. The corresponding

shapes from left to right are shown in Figure 6. In particular we note that Red(21543) is
closed under ≡

WF
. This is in fact true for any set Red(w): more generally, commutation

classes are always closed under ≡
WF

by Lemma 14 and the remark before it.

We are ready to make Theorem 4(i) explicit.

Theorem 16. Fix a permutation w. Let Red(w−1)/≡
WF

denote the set of WF-equivalence classes

decomposing Red(w−1), and let C1 through Ck be those satisfying Supp(Ci) ⊂ Z>0. Then

Sw = ∑
1≤i≤k

psh(Ci)
. (5.2)
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Figure 6: Shapes of equivalence classes for Red(21543)

Proof (sketch). By definition of Sw, it equals the sum over C ∈ Red(w−1)/≡
WF

of the poly-

nomials p(C) := ∑W∈C F(W). It is easy to show that all terms F(W) vanish in p(C) when
Supp(C) * Z>0. Then a key lemma is to show that one always has p(C) = psh(C), which
we omit in this abstract.

We now return to our motivating question— describing aw combinatorially via The-
orem 1. We call a WF-equivalence class C a tree class if sh(C) is an indexed tree T
supported on an initial interval [n] for some n. Going back to Figure 6, we see that
{1343, 3143, 3413} and {3431} are tree classes, whereas {1434, 4134, 4314, 4341} is not.

Proof of Theorem 1. Theorem 16 gives us the expansion for Sw into forest polynomials.
Here w is a permutation in Sn of length n− 1, which implies that any forest polynomial
pF that appears in (5.2) necessarily satisfies |F| = n− 1 and LSupp(F) ⊆ [n]. It follows
from Theorem 12 that only forest polynomials indexed by trees with support [n] survive
when reducing modulo QSym+

n . We thus obtain

Sw mod QSym+
n = ∑

C

psh(C),

where C runs through tree classes in Red(w−1)/≡
WF

. Now by Theorem 3 we know that

aw = ∑
C

psh(C)(1, . . . , 1).

Proposition 11 says that each summand psh(C)(1, . . . , 1) equals |C|, so we have that aw

is the number of words in Red(w−1) belonging to a tree class.
To conclude, one needs to compare the recursive descriptions of the WF-parking

procedure and the WF-correspondence. A careful analysis shows that the former is but
a “shadow” of the latter, and the set I(v1 · · · vk) at the end of the WF-parking procedure
is exactly the common support of P(v1 · · · vk) and Q(v1 · · · vk).

In particular a word in Z∗ belongs to a tree class if and only if it is a WF-parking
word, which completes the proof.

6 Other applications

We have defined several notions in this work in order to solve a particular problem, but
these notions are of independent interest. We close with a non-exhaustive list of some
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notable properties.
• The strategy developed to determine aw can be used to compute the DS of other

polynomials. It can for instance give automatically a combinatorial interpretation
for the remixed Eulerian numbers introduced in [7].

• Forest polynomials enjoy a positive multiplication rule which can be determined
combinatorially via the WF-correspondence.

• The WF-correspondence and WF-parking deserve further study. For instance,
while the combinatorial interpretation in Theorem 1 implies several of the results
from [8], it is not obvious to the authors why aw = aw−1 , though this is indeed
known to hold [loc. cit., Proposition 5.1.1].
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