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Confined directional drying of a colloidal dispersion:
kinetic modeling†

Hrishikesh Pingulkara and Jean-Baptiste Salmona

We derive a model to describe the dynamics of confined directional drying of a colloidal dis-
persion. In such experiments, a dispersion of rigid colloids is confined in a capillary tube or a
Hele-shaw cell. Solvent evaporation from the open end accumulates the particles at the tip up to
the formation of a porous packing that invades the cell at a rate dl

dt . Our model based on a clas-
sical description of fluid mechanics and capillary phenomena, predicts different regimes for the
growth of the consolidated packing, l versus t. At early times, the evaporation rate is constant and
the growth is linear, l ∝ t. At longer times, the evaporation rate decreases and the consolidated
packing grows as l ∝

√
t. This slowdown is either related to the recession of the drying interface

within the packing thus adding a resistance to evaporation (capillary-limited regime), or to the Kelvin
effect which decreases the partial pressure of water at the drying interface (flow-limited regime).
We illustrate these results with numerical relations describing hard spheres, showing that these
regimes are a priori experimentally observable. Beyond this description of the confined directional
drying of colloidal dispersions, our results also highlight the importance of relative humidity control
in such experiments.

1 Introduction
The drying of colloidal dispersions, allowing by simple evapora-
tion of a solvent to form a dense and consolidated material from
colloids dispersed in a liquid, is a key step of many industrial
processes, from coatings to electrode manufacturing.1,2 The de-
tailed understanding of the mechanisms at play remains a sci-
entific challenge and involves multiple aspects: transport phe-
nomena, physical chemistry of colloids, mechanical instabilities,
etc.3–6

In this context, different studies have used a simplified geomet-
rical configuration known as confined directional drying to pro-
vide a better understanding. Figure 1 shows these experiments
schematically: a horizontal capillary tube or a Hele-Shaw cell,
with a cross-sectional dimension h typically less than 100 µm, is
filled by an aqueous colloidal dispersion and open on one side to
the ambient atmosphere with relative humidity RH. As long as
capillary forces pin the air-water interface at the open end of the
cell, evaporation causes a flow at a volumetric rate J (m/s):

J =
1

Aρw

dM
dt

, (1)

to replenish the lost water mass dM
dt (kg/s), A (m2) being the

cross-sectional area of the cell and ρw (kg/m3) the mass density
of liquid water. This flow continuously accumulates the colloids
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at the tip until the formation of a consolidated close-packed net-
work. For rigid colloids, the porosity of this layer does not pre-
vent evaporation, and thus its growth at a rate dl

dt , see Fig. 1.
This configuration shares various similarities with the more gen-
eral directional drying often observed for liquid films deposited
on a substrate,7,8 but with the notable difference that evapora-
tion occurs here only through the end of the tube, and thus only
through the colloidal packing. In this sense, confined directional
drying is fundamentally closer to configurations such as drying
of quiescent films,9,10 i.e., without lateral flows induced by edge
effects, or drying of 2D and 3D drops, for which evaporation also
occurs only through the consolidated colloids.11–14 The same re-
mark also applies to the classical case of sessile drops, for which
several ingredients presented in Fig. 1 also apply, but with the
difference of the finite volume of dispersion and the complexity
associated with the possible deformation of the evaporation sur-
face during drying.15

Confined directional drying has been widely used to study the
fracture patterns induced by drying,16–21 the phenomenon of de-
lamination,22,23 or the appearance of shear bands.24,25 Beyond
these issues concerning mechanical instabilities, this technique
has also been used to study mass transport in colloid disper-
sions,26–29 the formation of an amorphous solid prior to consoli-
dation,30 or the mechanisms of colloidal ordering.31,32

In spite of all these works, one fundamental question remains
unanswered: that of the growth kinetics of the colloidal packing,
l as a function of t. Experiments have shown that the growth
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is linear, l ∝ t, for colloids with large radii (a > 100 nm33), as
expected from mass conservation34,35 for a constant evapora-
tion rate J. For smaller colloids, typically a < 20 nm, a transi-
tion towards a square root growth, l ∝

√
t, has often been re-

ported at longer times, suggesting a slowdown of the evapora-
tion rate.17,18,20,22 Dufresne et al. were the first to propose a law
able to fit all the l(t) observations, and explained the transition
from l ∝ t to l ∝

√
t, by invoking a transition from an evaporation-

limited to a flow-limited regime.17 Their model also showed that
the crossover between these two regimes occurred for a critical
length lc scaling linearly with the colloid size lc ∼ a, in conflict
with the experimental data.17 Furthermore, the derivation of this
law was empirical, and the same authors later proposed18 that
the square root slowdown was actually probably due to the reces-
sion of the air–water interface within the porous colloidal packing
over a small length ξ , as shown in Fig. 1(b). Wallenstein and Rus-
sel then suggested theoretically that Knudsen diffusion of water
vapor through the dry porous layer results in a very strong resis-
tance to mass transfer, leading to a slowing of the evaporation
rate J and a square root growth of the front, l ∝

√
t, but with a

tiny recession, ξ ≪ l.36
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Fig. 1 Confined directional drying of a colloidal dispersion. (a) Capillary
forces hold the air-water menisci (radius of curvature r) at the outlet of
the cell. (b) Recession of the evaporation interface within the colloidal
packing, leading to a dry layer of thickness ξ (radius of curvature rc).
The water potential profiles are shown below for both scenarios.

Later, Lidon et al. showed that the Kelvin effect, i.e., the de-
crease in the partial pressure of water due to highly curved
menisci at the drying interface, see Fig. 1, should probably also

be taken into account, especially for colloids with small radii a.37

Their model, including also the possible recession of the drying in-
terface, now predicted that the crossover length scales as lc ∼ a2,
possibly explaining the discrepancies between experiments and
models pointed out by Dufresne et al.17 Importantly, their model
incorrectly assumed that the ambient relative humidity RH was
strictly zero. As shown below, this model cannot describe with
this assumption the existence of the flow-limited regime suggested
in Ref.17 This error was recently revealed by Tatsumi et al. who
developed a model to describe the drying of quiescent colloidal
films.38 This model, of which some relations are resumed below,
does not take into account the possible recession of the interface
in the packing, and therefore cannot describe part of the regimes
detailed in the present work.

The primary motivation of our work is to clarify the descrip-
tion of the kinetics, l versus t, using a simple model of confined
directional drying of a colloidal dispersion. Our model takes
into account both the Kelvin effect and the possible recession
of the evaporation interface, and applies continuously to colloids
with radii ranging from a few nanometers to a few hundreds of
nanometers. As shown below, this model highlights the impor-
tance of RH on the growth kinetics of the dense packing, and
reveals the existence of two distinct regimes to explain the square
root growth l ∝

√
t. Beyond the very specific geometry of con-

fined directional drying described in Fig. 1, the ingredients of our
model also apply a priori to any drying configuration of colloidal
dispersions (including also those of finite volume such as the dry-
ing of sessile droplets and films), when the Kelvin effect, but also
capillary effects come into play by modifying the evaporation con-
ditions. To our knowledge, these ingredients are rarely taken into
account, and the evaporation rate is often described as not de-
pending on the presence of closely-packed colloids.

The present paper is organized as follows. In Sec. 2, we first
present the main assumptions of our model and the equations
governing the growth rate dl

dt . In Sec. 3, we then present the
main results of this model including the different growth regimes,
and discuss the role played by relative humidity. Finally, we illus-
trate the model on a relevant experimental case using standard
relations valid for monodisperse hard-spheres. In Sec. 4, we con-
clude our work by suggesting possible experiments and research
directions to improve the model.

2 Model

2.1 Geometry, assumptions, and water potential

We consider the configuration shown in Fig. 1(a). The cell is ini-
tially filled by a dispersion of colloids with radii a≪ h, at a volume
fraction ϕ0. We consider that colloids cannot adhere to the cell
walls in the dispersed state. We also assume that colloids are rigid
and cannot deform upon accumulation. The volume fraction ϕd

of the dense packing is thus considered uniform and constant. To
model the growth rate of the packing, we consider for simplic-
ity a one-dimensional description and isothermal conditions. We
also assume the local thermodynamic equilibrium and quasi-static
conditions for writing the different fluxes driven by evaporation.

In the following, we use the water potential Ψ (Pa) because
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it allows a convenient description of water independently of its
thermodynamic state: liquid in the dispersion and in the pores of
the colloidal packing, to vapor in the ambient air. The latter is
defined by:

Ψ =
µ −µ0(T )

Vm
, (2)

where µ = µ(P,T ) is the water chemical potential expressed in
units of J/mol at pressure P (Pa) and absolute temperature T (K),
µ0(T ) is its standard value at atmospheric pressure P0 and sea
level, and Vm(P,T ) is the liquid water molar volume (Vm ≃ 1.805×
10−5 m3/mol at P0 and room temperature, T = 22◦C).

In ambient air, far from the outlet, the water potential is given
by:

Ψext =
RT
Vm

log(RH) , (3)

R being the universal gas constant. Because colloidal interactions
in the dilute dispersion lead to a negligible water potential com-
pared to the other potentials considered later,39 one has Ψ ≃ 0
upstream x =−l. Water evaporation results from the drop of the
water potential from Ψ ≃ 0 to Ψext, see Fig. 1.

Importantly, we will assume below a classical description of
fluid mechanics and capillary phenomena down to nanometer-
sized colloids. This assumption is based on the results of Vincent
et al. on evaporation-induced flows through nano-porous me-
dia,40 who showed that a classical description remains valid even
with pore radii rp ≃ 1.7 nm. Furthermore, the problem studied
by Vincent et al. shares many similarities with the case shown in
Fig. 1, but in a static configuration (the size of the porous medium
being fixed), and several equations described below have already
been discussed in Ref.40

2.2 Evaporation rate

Two configurations emerge depending on the strength of the cap-
illary forces: fully wetted colloidal packing, Fig. 1(a), or recession
of the air-water interface, Fig. 1(b).

2.2.1 No recession

In Fig. 1(a), capillary forces are strong enough to avoid the re-
cession of the air-water menisci in the porous network. In this
regime, the global mass balance imposes a flow in the cell and
through the whole porous packing. This flow depends on two
resistances in series for the drop in water potential: vapor re-
moval in ambient air and liquid water flow through the porous
layer. Evaporation rate in ambient air is described assuming
quasi-steady conditions by:41

J =
kcsat

ρw
(RH⋆−RH) , (4)

where RH⋆ is the relative humidity at the evaporation interface
(x = 0) and csat (kg/m3) the water concentration at saturation in
air. k (m/s) is a mass transfer coefficient that accounts for the
transport of the vapor by diffusion and convection in air.

The evaporation-induced flow leads to a drop of water potential
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Fig. 2 Evaporation rate given by Eqs. (4) and (8) versus 1 −RH, for
l/lk = 10−2, 10−1, 1, 10, 102, and 103. Inset: zoom for the high values of
l/lk. The dotted lines are the approximations Eq. (11) for l ≫ lk.

due to the viscous friction given by the Darcy’s law:

Ψ
⋆ =−ηwl

κ
J , (5)

where ηw (Pa s) is the water viscosity and κ (m2) the permeability
of the colloidal packing. We neglect in this description the drop
in water potential due to the hydraulic resistance of the cell itself,
an assumption fully justified since a ≪ h.

Kelvin’s relation, i.e., the continuity of the water potential at
the air-water interface, relates RH⋆ to Ψ⋆:

RH⋆ = exp
(

VmΨ⋆

RT

)
, (6)

and the radius of curvature r > 0 of the menisci, see Fig. 1(a), is
given by the Kelvin-Laplace equation:

Ψ
⋆ =−2γ

r
, (7)

where γ (N/m) is the air-water surface tension. Equations (6) and
(7) show that RH⋆ deviates from RH⋆ = 1 only for water potential
drops −Ψ⋆ that are not negligible compared to RT/Vm (≃ 136 MPa
at T = 22◦C), and thus radii of curvature typically less than r ≤
10 nm considering γ ≃ 70 mN/m.

Using Eqs. (4), (5), and (6), one can show that:

RH⋆ =
lk
l

W
[

l
lk

exp
(

RH
l
lk

)]
, (8)

with the length scale lk defined by :

lk =
(

κ(RT/Vm)

ηw

)/(
kcsat

ρw

)
, (9)

and W the Lambert W -function,42 the inverse function of f (w) =
wexp(w), i.e., z = wexp(w)⇔ w =W (z).

Figure 2 shows the evaporation rate given by Eq. (4) with RH⋆

calculated using Eq. (8) versus (1−RH) and for various values of
l/lk. For l ≪ lk, the Taylor series42 of W in Eq. (8) leads to RH⋆ ≃
1, so that evaporation is limited by the rate of vapor removal in
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the ambient air and thus:

J ≃ kcsat

ρw
(1−RH) . (10)

For l ≫ lk, the asymptotic expansion42 of W in Eq. (8) shows that
RH⋆ ≃ RH, and Eq. (5) leads to:

J ≃− κ

ηwl
Ψext =−kcsat

ρw

lk
l

log(RH) . (11)

In this case, evaporation is limited by the flow through the porous
layer and does not depend anymore on the mass transfer coeffi-
cient k in ambient air.40

2.2.2 Meniscus recession

When capillary forces are no longer able to maintain the pin-
ning of the menisci at x = 0, the air-water interface recedes in
the porous packing, see Fig. 1(b). This recession occurs when the
radii of curvature reach a critical value rc, or equivalently when
the drop in water potential Ψ⋆ reaches the maximal capillary pres-
sure Ψcap =−2γ/rc.

In this regime, there is an additional resistance to evaporation
due to the transport of the water vapor in the dry porous layer
of thickness ξ . To model this case, we first assume that the rate
of recession is small compared to the rate of water mass loss dM

dt .
Equation (1) thus remains valid for estimating the evaporation-
induced flow J, and we will discuss later this assumption in more
detail.

We also assume homogeneous recession over the cross-section
of the porous layer. This corresponds to neglecting the pore size
distribution (equivalently, the critical radii rc) of the colloidal
packing which would lead to the existence of a partially saturated
layer, due to the preferential emptying of the largest pores.43 For
simplicity, we do not consider this possibility often observed for
the drying of porous media,44,45 and our model actually applies
only to cases where the partially saturated layer has negligible
width.

In the ambient air, Eq. (4) still relates the vapor removal rate
to the evaporation-induced flow J. The transport of the water
vapor through the dry porous layer is limited by diffusion, and
the global mass balance imposes:

J =
Dp

wcsat

ρwξ
(RHcap −RH⋆) , (12)

where Dp
w is the effective diffusion coefficient of the water vapor

in the porous medium, RH⋆ the relative humidity at x = 0, and
RHcap the relative humidity at x =−ξ linked to Ψcap by the Kelvin
relation. Finally, the flow J leads to a drop in water potential
across the porous layer given by:

J =− κΨcap

ηw(l −ξ )
. (13)

Equations (4), (12), and (13) can be used to show that:

ξ

l
=

RHcap −RH− (Dp
wΓ)/(kl)

RHcap −RH+Γ
, (14)

with the dimensionless parameter:

Γ =−
(

κΨcap

ηw

)/(
Dp

wcsat

ρw

)
. (15)

Γ compares the flux of liquid water driven by the capillary
pressure Ψcap across a given thickness L of the porous layer
[κΨcap/(ηwL)] to the flux of liquid water driven by the diffusion
of water vapor over the same thickness [Dp

wcsat/(ρwL)]. As shown
in Sec. 3.3.2 with numerical applications, Γ ≫ 1 regardless of the
colloid size a. Because the numerator in Eq. (14) is smaller than
RHcap−RH ≤ 1, Γ ≫ 1 implies ξ ≪ l, and Eq. (13) shows that the
evaporation rate can be approximated by:

J ≃− κ

ηwl
Ψcap . (16)

2.3 Growth of the porous layer

The flow J driven by evaporation continuously accumulates col-
loids to the porous packing, which consequently invades the cell
at a given rate. The growth dynamics, l versus t, depends on
multiple phenomena such as the transport of the colloids by ad-
vection up to the packing, diffusion which opposes the formation
of concentration gradients upstream x = −l, but also on the con-
solidation dynamics of colloids in the packing.

Despite this complexity, the growth rate is often described in
the literature,17,20,36–38 by the simplified colloid mass balance:

(ϕd −ϕ0)
dl
dt

≃ ϕ0J . (17)

This relation neglects, however, any temporal evolution of the
colloid concentration profile in the dispersion upstream x = −l.
In Sec. 3.3.1, we show using a simple transport model for the
colloidal dispersion, that these variations are small, and that
Eq. (17) correctly describes the growth rate of the dense pack-
ing. Moreover, Eq. (17) combined with the weak recession of the
air-water menisci, ξ ≪ l (coming from the assumption Γ ≫ 1),
leads to dξ

dt ≪ J. This confirms that the rate of menisci recession
makes a negligible contribution to the mass loss dM

dt , and that the
evaporation-induced flow J remains correctly given by Eq. (1) in
this regime.

2.4 Dimensionless model

For clarity, we define the dimensionless quantities:

l̃ =
l
lk
, t̃ =

t
tk
, and j =

J
J0

, (18)

with:

J0 =
kcsat

ρw
, tk =

lk
J0

ϕd −ϕ0

ϕ0
, (19)

and lk defined in Eq. (9). With these dimensionless variables, our
model for the growth dynamics is simply written:

dl̃
dt̃

= j . (20)

In the regime of no recession, i.e., when Ψ⋆ > Ψcap, Eqs. (4)
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Fig. 3 Critical length l̃rec (in log scale) given by Eq. (25) in the plane
α-RH. The white line given by α =− log(RH) delimits the zone of menisci
recession, see Eq. (24).

and (8) lead to the normalized evaporation rate:

j =
1
l̃
W

[
l̃ exp

(
RH l̃

)]
−RH . (21)

When Ψ⋆ < Ψcap, the air/water interface recedes, and j given by
Eq. (16) is now simply written:

j =
α

l̃
, (22)

with

α =− Ψcap

RT/Vm
, (23)

a dimensionless parameter comparing the capillary pressure Ψcap

to RT/Vm, the characteristic pressure scale of the Kelvin effect.

3 Results and Discussion
3.1 Condition for recession of the interface

In the kinetic model described in the previous section, the reces-
sion of the menisci never occurs when the critical capillary pres-
sure is smaller than the water potential in the ambient air, i.e.,
when Ψcap < Ψext, see Fig. 1. With the notation of Eq. (23), this
condition reads:

α >− log(RH) . (24)

When Eq. (24) is not fulfilled, the menisci recede within the
porous layer when Ψ⋆ reaches Ψcap. Equations (5) and (21) then
show that it occurs for the critical length:

l̃rec =
α

exp(−α)−RH
. (25)

Figure 3 shows l̃rec in the plane α-RH. The regime for which
the menisci never recede is expected only at high relative humid-
ity and for large α values. For standard conditions, this regime
corresponds to high values of the capillary pressure Ψcap, since
RT/Vm ≃ 136 MPa at T = 22◦C. According to the Kelvin-Laplace

10-2 100 102 104

10-2

100

102

Fig. 4 Yellow: numerical solution of Eq. (20) for RH = 0.5. The dashed
lines show the approximation Eq. (27) at low l̃, and the flow-limited regime
Eq. (28) at larger l̃. The other curves are given by Eq. (30) for α =

2×10−1, 2×10−2, 2×10−3, and 2×10−4 (from orange to brown).

equation Eq. (7), this corresponds to very small critical radii, typ-
ically rc ≃ 1.5 nm for RH = 0.5 assuming the surface tension is
γ ≃ 70 mN/m. Such cases are therefore only expected for colloids
with radii a ≤ 10–20 nm, as in some experimental studies cited
above.17,18,37 As mentioned previously, Vincent et al. studied the
drying-induced flows through a porous silicon layer with pore ra-
dius rp ≃ 1.7 nm.40 These experiments share various similarities
with the problem studied here, but in a static configuration. The
experiments of Vincent et al., corresponding to α ≃ 0.6 with our
notations, clearly revealed drying-induced flows given by Eq. (11)
for high RH, and recession of the menisci at lower RH, leading to
capillarity-limited flows, Eq. (16).

In the case of larger colloids, typically a ≫ 20 nm, one has α ≪
1, and Eq. (25) turns into real units in:

lrec ≃− κ

ηw

Ψcap

J0(1−RH)
. (26)

As expected, this relation does not involve anymore the character-
istic pressure scale RT/Vm, and could have been derived without
invoking the Kelvin effect.

3.2 Growth dynamics
Figure 4 shows the numerical solutions of the ordinary differen-
tial equation Eq. (20) for RH = 0.5 and different α values, with
the initial condition l̃ = 0 at t̃ = 0. When the condition Eq. (24) is
fulfilled, j is given by Eq. (21), while for the other cases, Eq. (20)
is solved with j given by Eq. (21) for l̃ ≤ l̃rec, and with j given by
Eq. (22) for l̃ > l̃rec.

We first focus on the regime of no recession (yellow curve in
Fig. 4). For l̃ ≪ 1, the evaporation rate is constant and well-
approximated by Eq. (10) ( j ≃ 1 − RH with the dimensionless
variables), so that the length of the porous layer grows linearly
following:

l̃ ≃ (1−RH) t̃ . (27)

At longer times scales, the evaporation rate decays due to the
decrease in water potential at the evaporation interface. For l̃ ≫ 1,

Journal Name, [year], [vol.],1–10 | 5



10-4 10-2 100 102 104
10-3

10-2

10-1

100

0.5 0.6 0.7 0.8 0.9 1

Fig. 5 Case RH = 0.5. Colors code for the relative humidity at the evap-
oration interface (RH⋆ when no recession, RHcap in the other case). The
red line is Eq. (25) and delimits the regime of menisci recession from that
of no recession.

Eq. (11) shows that the evaporation rate follows approximately
j ≃−(1/l̃) log(RH), leading to the square root growth:

l̃2 ≃−2log(RH) t̃ . (28)

The transition from the evaporation-limited regime given by
Eq. (27) to the flow-limited regime given by (28) occurs at the
length:

l̃kel ≃
−2log(RH)

1−RH
, (29)

with the subscript kel to emphasize that the origin of the square
root growth at long times is due to the Kelvin effect.

When the condition Eq. (24) is not fulfilled, the growth first
follows the same l̃ versus t̃ curve up to l̃ = l̃rec given by Eq. (25).
At later times, the length of the porous layer grows as:

l̃2 = l̃2
rec +2α(t̃ − t̃rec) , (30)

and thus:

l̃2 ≃ 2α t̃ , (31)

for l̃ ≫ l̃rec. Equation (30) has already been derived by Wallen-
stein and Russel,36 but without taking into account the Kelvin
effect, and thus the possible decrease of the evaporation-driving
force for small curvature radii. Later, Lidon et al. found again
Eq. (30) now taking into account the Kelvin effect,37 but assum-
ing RH = 0 and thus missing the description of the flow-limited
regime described above, as revealed recently by Tatsumi et al.38

Figure 5 summarizes on a single diagram in the plane l̃-α,
the different asymptotic regimes of growth of the packing for a
fixed RH, as well as the values of the relative humidity at the
air-water interface. This diagram helps to reveal that the model
always predicts a linear growth l̃ ∝ t̃ at early times followed by
a square root slowing down l̃2 ∝ t̃ but with two different origins.

For α <− log(RH), the slowing down occurs due to the minute re-
cession of the interface that adds a resistance to evaporation. In
this capillarity-limited regime, the kinetics follows with real units:

l2 ≃−2
ϕ0

ϕd −ϕ0

κΨcap

ηw
t , (32)

and does not depend neither on the ambient relative humidity
(RH) nor on the external mass transfer (J0). For α > − log(RH),
the square root slowing down is due to the decrease of the evap-
oration driving force (Ψ⋆ ≃ Ψext) leading to a flow-limited regime
which follows with real units:

l2 ≃−2
ϕ0

ϕd −ϕ0

κΨext

ηw
t . (33)

In this regime, the growth rate does not depend again on external
mass transfer conditions (J0), but still depends on the imposed
relative humidity through Ψext.

3.3 A model case: monodisperse hard-sphere colloids

To illustrate the results of our model by numerical applications
and to validate the assumptions made previously, we now use re-
lations for monodisperse hard-sphere colloids of radius a. For
such colloidal interactions, directional drying accumulates the
colloids at the tip of the cell up to the random close-packing at
volume fraction ϕd ≃ 0.64. We therefore implicitly assume, for
simplicity, that colloids do not crystallize into an ordered network,
either because of a slight polydispersity or because the crystalliza-
tion kinetics is slower than the colloid accumulation rate.

For such randomly-packed assembly of hard-spheres, the mean
pore radius rp is defined as twice the ratio of pore volume to
surface area:46,47

rp =
2
3

1−ϕd

ϕd
a, (34)

rp ≃ 0.375a for ϕd ≃ 0.64. Different expressions exist for esti-
mating the maximal capillary pressure Ψcap before recession of
menisci, and we will assume as in Ref.48 for the case of fully wet-
ted particles:

Ψcap =−2γ

rp
=− 3ϕd

1−ϕd

γ

a
, (35)

leading to Ψcap ≃−5.33γ/a for ϕd ≃ 0.64.
Finally, we chose to estimate the permeability of the randomly-

packed assembly of colloids by the Carman-Koseny relation:47

κ = a2 (1−ϕd)
3

45ϕ2
d

. (36)

3.3.1 Validity of Eq. (17)

Peppin et al. described the dynamics of the solidification of hard-
sphere colloidal suspensions in the experiment described in Fig. 1
taking into account the transport of the colloids by advection and
diffusion.34,35 In these models, Eq. (17) can be demonstrated
strictly from the colloid mass conservation but for a constant
evaporation rate J. This is due to the existence of a steady solu-
tion of the advection-diffusion model governing the colloid con-
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centration, in the reference frame of the growth of the packing.
For a non-constant J, there is no such steady solution a priori, and
Eq. (17) is only an approximation.

Nevertheless, Eq. (17) remains a good approximation as long
as the temporal variation of the colloid concentration field for
x < −l can be neglected. For quasi-static conditions and negli-
gible buoyancy,49 the colloid concentration upstream the grow-
ing front can be approximated by the exponential decay ϕ(x, t)≃
ϕ0 +(ϕd −ϕ0)exp[(x+ l)/lg], with lg = D/J and D the collective
diffusion coefficient of the dispersion, well approximated by the
Stokes-Einstein relation for hard-spheres.34 The colloid mass bal-
ance, now taking into account the temporal variation of this col-
loid concentration profile leads to:

(ϕd −ϕ0)

(
dl
dt

+
dlg
dt

)
= ϕ0J . (37)

The approximate colloid mass balance Eq. (17) comes from
Eq. (37) when dlg

dt ≪ dl
dt , equivalently when:

D ≪−κΨ⋆

ηw
, (38)

using lg = D/J, Eqs. (11) and (16), with either Ψ⋆ = Ψext or
Ψ⋆ = Ψcap depending on the regime considered. Relations (35)
and (36) then show that Eq. (38) is always fulfilled for hard-
spheres over a wide range of radii a, and that Eq. (17) can be
safely used to describe the growth rate. Moreover, these numeri-
cal applications show that the term κΨ⋆

ηw
in Eq. (38) is very large.

It is thus very likely that Eq. (17) remains valid even for colloids
with long-range repulsive interactions, such as those often stud-
ied in the works cited previously,17,18,20,22,37 and for which col-
loidal interactions are known to enhance the collective diffusion
coefficient D.27,50

3.3.2 Validity of Γ ≫ 1

The capillarity-limited growth described in particular by Eqs. (16)
and (32) follows from Γ ≫ 1 with Γ given by Eq. (15). The calcu-
lation of Γ requires nevertheless to estimate the effective diffusion
coefficient of the water vapor in the porous packing Dp

w.

The regime of vapor diffusion within the pores of the colloidal
packing depends on the value of the Knudsen number defined
as Kn = λ/rp, with λ the mean free path in air (λ ≃ 64–68 nm
at room conditions51 in the range RH = [0-1]). Using Eq. (34),
the transition Kn = 1 corresponds to radii a ≃ 170–180 nm. For
Kn ≪ 1, there are different theoretical estimates of the effective
gas diffusion coefficient in a porous medium depending on its 3D
morphology.52 We chose the following relation:

Dp,n
w ≃ 2(1−ϕd)

2+ϕd
Dair

w , (39)

derived by Neale and Nader,53 that gives good estimates for ho-
mogeneous and isotropic assemblies of spheres, Dair

w being the dif-
fusion coefficient in air. In the Knudsen regime, Kn≫ 1, Huizenga
and Smith46 showed using measurements on randomly close-
packings of monodisperse silica colloids, that the effective diffu-
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Fig. 6 Γ defined by Eq. (15) versus colloid radius a, estimated with the
relations for hard-spheres given in Sec. 3.3. Inset: effective diffusion
coefficient Dp

w of the vapor in the porous medium versus a, see Eq. (41).
The dotted line at low a corresponds to Knuden diffusion Eq. (40), and
the one at large a to effective diffusion given by Eq. (39).

sion coefficient follows:

Dp,k
w ≃ 1−ϕd

τ

4rp

3

√
2RT
πMw

, (40)

with the tortuosity τ ≃ 1.47±0.1 and Mw the molar mass of water.
To cover a wide range of colloid radius a, and thus of Knudsen
number, we finally estimate the effective diffusion coefficient Dp

w

by:

1
Dp

w
=

1
Dp,n

w
+

1

Dp,k
w

, (41)

as done for instance in Ref.54, see the inset of Fig. 6.
Figure 6 shows Γ estimated using Eqs. (35), (36), and (41)

versus the colloid radius a for T = 22◦C. These data show that
Γ ≫ 1 regardless of the size of the colloids. This numerical ap-
plication validates the assumption done in Sec. 2.2.2 of minute
recession of the menisci within the dense packing, and the ex-
istence of a capillarity-limited regime. Interestingly, Fig. 6 also
shows that this assumption is a priori not due to Knudsen diffu-
sion, at least for large colloids (a > 100 nm), a hypothesis often
mentioned to explain the slowdown observed in confined drying
experiments.18,36,37

3.3.3 Numerical application of the model

We now illustrate the results of our model on a relevant ex-
perimental configuration: a microfluidic capillary of diameter
h = 25 µm and centimetric length. For diffusion-limited transport
from a flat air-water interface flush just with the outlet of the cap-
illary, the mass transfer coefficient in Eq. (4) is:55 k ≃ 8Dair

w /(πh),
leading to J0 ≃ 50 µm/s at T = 22◦C. Similar values of evaporation
rates could be obtained with cells of larger cross-sectional dimen-
sions, but with convection enhancing evaporation in the ambient
air.

We use the relations given in Sec. 3.3 for hard-spheres to com-
pute the crossover length lc between the linear regime l ∝ t at
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Fig. 7 Critical length lc for the crossover between the linear growth l ∝ t
and the square root growth l ∝

√
t for the experimental conditions given

in Sec. 3.3.3, and various relative humidity, RH = 0.2 (blue, ■), 0.5 (red,
⋄), and 0.8 (dark, •). The symbols show the critical radii below which the
menisci do not recede, Eq. (24).

early times to the square root growth l ∝
√

t. In the flow-limited
regime, lc = lkel with lkel given by Eq. (29), while lc = lrec with
lrec given by Eq. (25) in the capillarity-limited regime. Figure 7
reports these data versus the colloid size a, for various RH (more
precisely the minimal length between lkel and lrec). Figure 7 also
shows for each RH, the critical radius a below which menisci are
never expected to recede, see the criterion given by Eq. (24). This
figure shows that most of the regimes predicted by the model are
a priori expected to occur for colloids with radii ranging from
≃ 5 to ≃ 100 nm in a cell of centimetric length for the conditions
of evaporation considered here. Interestingly, these data also re-
veal the important role played by RH on the transition between
flow-limited and the capillarity-limited regimes, but also on the lc
values particularly in the latter regime.

Some experiments17,18,20,22,37 have measured lc, in particular
for silica colloids of small size a ≤ 20 nm (Ludox dispersions).
Unfortunately, the relative humidity was not a control parameter
in these experiments, and was not often even reported. Dufresne
et al. have also reported non-linear variations of lc with a in the
range a = 6–26 nm.17 The scaling laws shown in Fig.7, lc ∼ a2 in
the flow-limited regime and l ∼ a in the capillarity-limited regime,
could maybe explain these results. As shown by our model, only
the control of the relative humidity in these experiments would
help to test this assumption.

4 Conclusions
In this work, we have developed a model to describe the dynam-
ics of the consolidated front in confined directional drying exper-
iments of colloidal dispersions. This model predicts at long times,
a square root slowdown, l ∝

√
t, with two different origins: a flow-

limited regime linked to the Kelvin effect and a capillarity-limited
regime due to the recession of the evaporation interface. Our
model also clarifies various assumptions commonly used in this
context, and shows that Knudsen diffusion is not strictly at the
origin of the capillarity-limited regime, as the latter can a priori

also be observed for large colloid sizes, see Fig. 6.
Beyond these results, our model highlights the importance of

controlling the evaporation conditions in these experiments, and
in particular the relative humidity RH. A control of the rela-
tive humidity would indeed allow to discriminate between the
regime limited by capillarity, whose growth rate does not strictly
depend on RH, and the regime limited by the flow showing
a dependence with RH through Ψext, see Eq. (33). Interest-
ingly, the evaporation rate through the colloidal packing in the
capillarity-limited regime is independent of RH, see Eq. (16).
This was also demonstrated by Vincent et al. with experiments on
drying-induced flows through a nano-porous silicon layer.40 This
humidity-insensitive water evaporation is reminiscent of recent
results for molecular mixtures,56,57 but originates here in subtle
couplings between evaporation, capillarity and vapor diffusion,
as for example also in Ref.58

Importantly, no experiment have reported, to our knowl-
edge, even the minimal recession of the drying interface within
the colloidal packing in the regime of square root growth
l ∝

√
t, observed particularly with colloids of small radii, a ≤

20 nm.17,18,20,22,37 This result could suggest that the flow-limited
regime is at the origin of these observations, but would deserve
more precise local experimental measurements to confirm it. Fur-
thermore, the capillarity-limited regime shares many similarities
with the drying of a porous medium, for which the Kelvin effect
can also play an important role.45,59 Local measurements of the
water content in the colloidal packing (saturation) as done for in-
stance in Ref.45 using magnetic resonance imaging would also be
a major asset for confined directional drying experiments.

Also, the high values of water potential Ψ⋆ due to the flow
induced by evaporation are associated with tensile stresses that
are often released in the experiments by the appearance of frac-
tures,16–20 or the delamination of the packing from the cell
walls.22,23 The model discussed in this article does not take these
different phenomena into account at all, and it seems crucial to
us to evaluate their role on the transport of water by evaporation
and on the different regimes predicted by the model.

Finally, the confined directional drying configuration described
in this work shares strong similarities with the important problem
of colloid accumulation and clogging during drying of a porous
medium60–63, for which Fig. 1 could locally describe the pore-
scale dynamics. Here again, the main ingredients of our model
and some of its results could a priori also apply to these cases, and
in part explain the global drying dynamics of colloidal dispersions
in porous media.
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