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Abstract
pyannote.audio is an open-source toolkit written in Python for
speaker diarization. Version 2.1 introduces a major overhaul
of pyannote.audio default speaker diarization pipeline, made of
three main stages: speaker segmentation applied to a short slid-
ing window, neural speaker embedding of each (local) speak-
ers, and (global) agglomerative clustering. One of the main
objectives of the toolkit is to democratize speaker diarization.
Therefore, on top of a pretrained speaker diarization pipeline
that gives good results out of the box, we also provide a recipe
that practitioners can follow to improve its performance on their
own (manually annotated) dataset. It has been used for various
challenges and reached 1st place at Ego4D 2022, 1st place at
Albayzin 2022, and 6th place at VoxSRC 2022.
Index Terms: speaker diarization, open source, toolkit

1. Introduction
pyannote.audio is an open-source toolkit written in Python for
speaker diarization. Version 2.1 introduces a major overhaul
of pyannote.audio default speaker diarization pipeline (with re-
spect to branch 1.x) and is very similar in spirit to the line of
work developed by Kinoshita at NTT [1, 2] that “integrates
clustering-based and end-to-end neural network-based diariza-
tion approaches into one framework”. Hence, the proposed ap-
proach is composed of three main stages: speaker segmentation
applied to a (local) sliding window, neural speaker embedding
of each (local) speakers, and (global) agglomerative clustering.
Section 2 goes into details about the proposed approach but we
highlight here the main differences with [1, 2].

First, local neural speaker diarization is applied to much
shorter overlapping windows (5s with a 500ms step) than the
original one (30s with 30s step, i.e. no overlap), making the
whole task much easier to solve:
• the upper bound on the number of speakers is smaller and the

training sequences are shorter, hence reducing the computa-
tional and memory cost of training such networks;

• the use of strongly overlapping windows can be seen as test
time augmentation, leading to better speaker segmentation
and denser (hence easier to cluster) speaker embeddings.

Second, one of the main advantages of the joint (diariza-
tion + embedding) approach used in [1, 2] lies in embeddings
that are both overlap-aware and computed from longer audio
(hence more reliable). Despite relying on two separate net-
works applied in cascade (first segmentation, then embedding),
we claim in Section 2.2 that our speaker embeddings enjoy the
same properties. Training speaker embedding networks is no-
toriously data-hungry and it is not always possible for practi-
tioners to gather a training dataset that both contains a large set

of conversations as well as speaker labels which are consistent
across conversations. Therefore, we claim that using two dif-
ferent networks makes the whole approach easier to adapt to a
particular dataset. On top of a pretrained speaker diarization
pipeline that gives good results out of the box, we also provide
a set of recipes that practitioners can choose from, depending
on the size of their (manually annotated) dataset.

2. Principle
Figure 1 depicts the manual speaker diarization of a 30s con-
versation between two speakers that we will use throughout the
paper for illustration purposes.

Figure 1: Expected speaker diarization output of the sample
conversation used throughout this paper.

2.1. Local neural speaker segmentation

The first step consists in applying the end-to-end neural speaker
segmentation model introduced in [3] using a sliding window of
5s with a step of 500ms. Figure 2 illustrates the output of this
stage on the 30s sample whose manual annotation is depicted in
Figure 1.

Figure 2: Local neural speaker segmentation. For each step of
the 5s window and each one of Kmax = 3 speakers, the segmen-
tation model outputs the probability of the speaker being active
every 16ms. For readability, we use a sliding step of 2s and plot
(otherwise overlapping) windows on three rows, but the actual
practical step is 500ms.

At this point, there is no guarantee that the same (local)
speaker is consistently assigned to the same (global) speaker in-
dex. Since the speaker segmentation model has been trained
in a permutation-invariant manner and is limited to at most
Kmax = 3 active speakers, a particular speaker might be as-
signed two different indices in two different windows as can be
observed in Figure 2 around t = 16s.

A binarization step is further applied using a threshold
θ ∈ [0, 1], which constitutes the first hyper-parameter of the
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Figure 3: Binary local speaker segmentation. For each step
of the 5s window w, only Kw ∈ {0, 1, 2, 3} speakers whose
probability goes above θ are kept.

proposed speaker diarization pipeline. The effect of this bina-
rization step on the 30s audio sample is depicted in Figure 3.

2.2. Local speaker embedding

The second step consists in extracting Kw speaker embeddings
for each window w: exactly one embedding per speaker who is
active within the window w. Therefore, the number of speaker
embeddings may vary depending on the window w. For in-
stance, window wt = [t → t + 5] may contain Kw = 0
speaker like in w0 = [0 → 5] (because no speaker ever passes
the segmentation threshold θ), Kw = 1 speaker like in w22, or
Kw = 2 speakers like in w16 (surrounded in red in Figure 3).

Figure 4: Speaker embedding. Top row: 5s audio chunk. Middle
row: two speakers are active according to the neural speaker
segmentation model (the orange one and the blue one). Bottom
row: the speaker embedding of the blue speaker is computed
using only the blue audio signal, while the concatenation of or-
ange audio signals is used to compute the speaker embedding
of the orange speaker. No embedding is extracted for the green
speaker as their probability never goes above θ segmentation
threshold.

As depicted by the gray overlay in Figure 4, speakers may
overlap partially within the considered window. To account for
this possibility, the embedding of speaker k is computed from
the concatenation of audio samples during which (1.) speaker
k is active and (2.) other speakers k′ ̸= k are inactive. This is
similar in spirit to overlap-aware speaker embeddings in [4].

Compared to the standard approach that consists in extract-
ing exactly one speaker embedding using a short (typically 1 or
2 seconds) periodic window [5], the proposed speaker embed-
dings are expected to be more reliable for two main reasons:
• they are extracted from audio excerpts that only contain

speech samples from one single speaker while the standard
approach may extract speaker embeddings from a mixture of
speakers (and non-speech);

• they are extracted from potentially longer audio excerpts (up
to 5s in case a speaker speaks during the whole window w)
while the standard approach is limited to 1 or 2 seconds.

The main drawback of this approach is that it depends on the

upstream speaker segmentation model whose errors could lead
to degraded speaker embeddings.

2.3. Global agglomerative clustering

The third step consists in clustering the resulting set of speaker
embedding in order to assign each local speaker to a global clus-
ter, as depicted by colors in Figure 5.

Figure 5: Local speaker segmentation after global clustering.

Although spectral clustering [6] and variational Bayesian
hidden Markov models [5] have been the prefered clustering
techniques in recent speaker diarization literature [7], the pro-
posed pipeline relies on a classical agglomerative hierarchical
clustering with centroid linkage (also known as the UPGMC
algorithm) for two main reasons:
• the latter only introduces a second hyper-parameter (the dis-

tance threshold δ used as stopping criterion of the agglom-
erative clustering process) while both spectral clustering and
variational Bayesian hidden Markov models rely on at least a
couple of hyper-parameters;

• while variational Bayesian hidden Markov models (and, to
a lesser extent spectral clustering1) expects that speaker em-
beddings are ordered chronologically with a strict periodicity
(e.g. one embedding every second), the speaker embedding
process introduced in Sections 2.1 and 2.2 cannot guaran-
tee these properties because a variable number (zero, one, or
more) of speaker embeddings may be extracted every 500ms
(or whichever step is used by the 5s sliding window).

The choice of centroid linkage over variants (such as av-
erage, single, complete, or Ward linkage) derives from the fact
that the former consistently outperforms the latter on every sin-
gle validation sets later discussed in Section 3 (the runner-up
being the more common average linkage).

2.4. Final aggregation

Figure 6: Final aggregation.

The fourth and final step aims at aggregating the clustered
local speaker segmentation into an actual speaker diarization

1when combined with the critical step of Gaussian blur refinement
of the Laplacian matrix used for auto-tuning [6]
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output. Depicted in Figure 6, it can be summarized as follows
(from top to bottom):

1. estimating the instantaneous (i.e. for each frame f ) number
of speakers Kf , by summing the binary local speaker seg-
mentation obtained in Section 2.1 and Figure 3 and averaging
over overlapping windows (rounding to closest integer);

2. estimating the instantaneous score of each cluster by sum-
ming the clustered local speaker segmentation obtained in
Section 2.3 and Figure 5 over overlapping windows;

3. selecting the Kf (given by step 1) clusters with highest in-
stantaneous score (step 2) and converting from discrete frame
indices to the temporal domain;

4. filling within-speaker gaps shorter than a (usually short) pre-
defined duration ∆.

The last step is optional as the value of ∆ usually depends more
on the instructions given to the pool of human annotators than
to the data itself. For instance, DIHARD evaluation plan says
that “small pauses [shorter than] 200 ms by a speaker are not
considered to be segmentation breaks and should be bridged
into a single continuous segment” [8]; VoxConverse guidelines
say that “[s]peech segments are split when pauses are greater
than [250 ms]” [9]; the Albayzin 2022 evaluation plan goes
even further by requesting that “[c]onsecutive segments of the
same speaker with a silent [sic] of less that [sic] 2 seconds [...]
are considered as a single segment” [10].

3. Reproducible benchmark
Despite the availability of several benchmarking initiatives
(such as DIHARD, VoxSRC, or Albayzin challenges, whose or-
ganizers are heartily thanked), it remains very difficult to gauge
the many speaker diarization approaches proposed by the re-
search community, for various reasons:
• Despite a growing number of freely available datasets such

as AISHELL-4 [11], Albayzin/RTVE [10], AliMeeting [12],
AMI [13], VoxConverse [9], Ego4D [14], or This Ameri-
can Life [15], some papers only report results on a lim-
ited set of datasets either behind paywalls (such as CALL-
HOME [16], DIHARD [17], or REPERE [18]), on purely
synthetic datasets, or even private in-house datasets – effec-
tively preventing others (and newcomers in particular) from
comparing their approach to the so-called state-of-the-art.

• Two papers reporting results on the same dataset often use
different experimental protocols without even noticing. For
instance, they might use a slightly different test set2, differ-
ent versions of the gold standard [5], different configuration
of the reported diarization error rate (e.g. with or without
forgiveness collars), or different assumption about the (unre-
alistic) availability of an oracle voice activity detector.

We apologize for the tone of the above rant. The objective was
to convince the reader that they should at the very least share
the actual output of their proposed approaches (ideally in de
facto standard RTTM format) to solve (part of) those problems.
We go one step further in Figure 7 by providing open source
code to produce those RTTMs and therefore allow evaluating
the approach on any other (possibly private) dataset.

The leftmost part of Table 1 summarizes the perfor-
mance of these few lines of code. There, the processing is
fully automatic (no oracle voice activity detection, no ora-
cle number of speakers, no fine-tuning of the internal mod-
els nor tuning of the pipeline hyper-parameters to each spe-

2github.com/BUTSpeechFIT/CALLHOME sublists/issues/1

# install pyannote.audio
pip install pyannote-audio==2.1.1

# load pretrained pipeline
from pyannote.audio import Pipeline
pipeline = Pipeline.from_pretrained(

"pyannote/speaker-diarization")

# apply pipeline and dump RTTM
diarization = pipeline("audio.wav")
with open("audio.rttm", "w") as f:

diarization.write_rttm(f)

Figure 7: From zero to RTTMs with pyannote.audio

cific dataset) with the least forgiving diarization error rate
(DER) setup (no forgiveness collar, evaluation of overlapped
speech). Unless stated otherwise in the first column, we re-
port results on the official test sets of 11 benchmarks. We
claim state-of-the-art performance on AISHELL-4 [11], AMI
headset mix and array1/ channel1 [13], REPERE phase2 [18],
Albayzin RTVE 2022 [10], Ego4D [14], and This American
Life [15]. Precomputed RTTMs are available for download at
hf.co/pyannote/speaker-diarization/tree/2.1.1.

Using one Nvidia Tesla V100 SXM2 GPU (for neural infer-
ence described in Sections 2.1 and 2.2) and one Intel Cascade
Lake 6248 CPU (for the clustering and aggregation described in
Sections 2.3 and 2.4), the proposed pipeline is 40 times faster
than real time, with most of the time spent in the speaker em-
bedding extraction step. In particular, all experiments reported
in Table 1 relies on the implementation of ECAPA-TDNN [22]
available in SpeechBrain [23] because it was found to outper-
form three open-source alternatives. For instance, on VoxCon-
verse v0.3, the fine-tuned pipeline reaches DER = 14.9% with
the xvector implementation available in pyannote.audio [20],
12.0% with NeMo’s TitaNet [24], 10.8% with RawNet3 [25],
and 10.7% with SpeechBrain’s ECAPA-TDNN.

4. Recipe
While the leftmost part of Table 1 reports performance of
the pretrained speaker diarization pipeline (with default hyper-
parameters and default internal models), this section provides
a recipe to adapt it to a particular target domain and (hope-
fully) get better performance. Depending on the number and
duration of labeled conversations, the practitioner may either
focus on optimizing hyper-parameters (θ, δ and ∆, introduced
in Sections 2.1, 2.3, and 2.4 respectively), additionally fine-tune
the internal speaker segmentation model, or both. Fine-tuning
speaker embedding might also be an option in case even more
data is available for a particular domain but this is out of the
scope of both this paper and pyannote.audio (since we rely on
external libraries for this model).

4.1. Optimizing pipeline hyper-parameters

In case a small development set of labeled conversations is
available, optimizing pipeline hyper-parameters (with the few
lines of code in Figure 8) may lead to significant performance
improvement.

Datasets listed in Table 1 are split into two groups:
in domain datasets whose training subsets have been used
to train the underlying segmentation model (available at
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Table 1: Performance of the (default, optimized, and fine-tuned) pipelines on 11 different benchmarks. The grey background marks
the best results for each dataset as well as those less than 5% worse relatively. DER stands for diarization error rate, which is the
sum of two terms: CONF for speaker confusion rate, and FA+MISS for false alarm and missed detection rates. We also report the
scale of development (for optimizing hyper-parameters, in number of files) and training sets (for fine-tuning the segmentation model, in
number of hours) as well as the best baseline we could find in the literature as of February 2023. No comparable baseline was found
for VoxConverse (either because of slightly different test sets or different metric configuration) and Albayzin/RTVE2022 (because the
test set labels have only been released very recently).

Default pipeline Dev. + optimized hyper-parameters Train + finetuned segmentation model Baseline

DER% FA+MISS% CONF% DER% FA+MISS% CONF% DER% FA+MISS% CONF% DER% Source

AISHELL-4 [11] 14.1 8.4 5.7 20 files 14.0 7.9 6.1 96h 14.5 7.9 6.6 16.1 [19]
AMI headset mix [13] 18.9 14.0 4.9 18 files 18.9 14.0 4.9 80h 18.5 14.0 4.4 19.0 [5]
DIHARD 3 full [17] 26.9 18.9 8.0 62 files 22.2 15.1 7.1 25h 21.9 14.4 7.5 16.8 [17]
REPERE phase 2 [18] 8.2 4.7 3.5 27 files 8.3 4.9 3.4 33h 8.3 4.8 3.4 12.6 [20]
VoxConverse v0.3 [9] 11.2 7.3 3.9 72 files 10.8 7.2 3.7 15h 10.7 7.4 3.3 NA see caption

Average (in domain) 15.9 10.7 5.2 14.8 9.8 5.0 14.8 9.7 5.0

Albayzin/RTVE 2022 [10] 25.6 12.4 13.2 40 files 23.1 10.9 12.2 126h 21.8 10.0 11.8 NA see caption
AliMeeting channel 1 [12] 27.4 18.8 8.6 8 files 29.0 19.0 10.0 110h 23.8 15.6 8.2 23.5 [19]
AMI array 1, channel 1 [13] 27.1 21.9 5.2 18 files 25.9 20.7 5.2 80h 22.2 16.0 6.2 23.7 [19]
CALLHOME part 2 [16] 32.4 20.0 12.4 40 files 32.4 20.0 12.4 7h 29.3 17.6 11.7 21.8 [5]
Ego4d v1, validation [14] 64.0 48.3 15.7 50 files 60.3 44.5 15.8 32h 51.8 33.7 18.0 67.2 [14]
This American Life [15] 20.8 13.9 6.9 34 files 18.4 10.4 8.1 580h 15.2 2.6 12.6 25.0 [21, 20]

Average (out of domain) 32.9 22.6 10.3 31.5 20.9 10.7 27.4 15.9 11.5

Average (overall) 25.2 17.2 8.0 23.9 15.9 8.0 21.6 13.1 8.5

# load dataset with pyannote.database
from pyannote.database import get_protocol
dataset = get_protocol(...)
dev_files = list(dataset.development())

# optimize hyper-parameters with pyannote.pipeline
from pyannote.pipeline import Optimizer
optimizer = Optimizer(pipeline)
optimizer.tune(dev_files)

# apply optimized pipeline
diarization = optimizer.best_pipeline("audio.wav")

Figure 8: Optimizing hyper-parameters with pyannote.pipeline

hf.co/pyannote/segmentation) and the remaining datasets that
have not (hence considered out of domain). In domain datasets
benefit the most from hyper-parameter optimization (with a rel-
ative 7% DER decrease) while it might even degrade perfor-
mance when only a limited set of development files is available
(see AliMeeting results for instance). A closer look at the ac-
tual values of the hyper-parameters before and after optimiza-
tion shows that θ (used for binarizing speaker segmentation) is
the most important hyper-parameter to tune, followed by ∆ (for
filling short intra-speaker gaps) and then only δ (that serves as
stopping criterion for the clustering stage).

4.2. Fine-tuning segmentation model

When a larger training set of labeled conversations is available,
fine-tuning the internal speaker segmentation model (with the
few lines of code in Figure 9) leads to significant performance
boost. The best performance is almost always obtained with
this configuration (as highlighted by the gray background in the
rightmost part of Table 1). As expected, out of domain datasets
benefit the most from this fine-tuning step (witnessing a 17%
relative DER decrease vs. only 7% for in domain).

Furthermore, a nice side effect of this fine-tuning step is
that it completely removes the need for the final post-processing
step (numbered #4 in Section 2.4). Hence, the optimal value
for ∆ systematically converges towards zero second when the
segmentation model has first been fine-tuned to the target do-

# load pretrained model
from pyannote.audio import Model
model = Model.from_pretrained(

"pyannote/segmentation")

# prepare model for fine-tuning
from pyannote.audio.tasks import Segmentation
model.task = Segmentation(dataset)

# fine-tune model with pytorch-lightning
from pytorch_lightning import Trainer
trainer = Trainer()
trainer.fit(model)

Figure 9: Fine-tuning segmentation model with lightning.

main (which is equivalent to not filling any intra-speaker gaps).
This is to be compared with the following optimal values for ∆
when the pipeline relies on the pretrained speaker segmentation
model: 10ms for AISHELL-4, 400ms for REPERE and VoxCon-
verse, 500ms for AliMeeting, 1.5s for Albayzin, or even 2s for
The American Life. In other words, fine-tuning the segmen-
tation not only improves the performance but also reduces the
dimensionality of the hyper-parameter search space, from 3 (δ,
θ, and ∆) to only 2 hyper-parameters (δ and θ).

5. Conclusion
We introduced version 2.1 of pyannote.audio open source
speaker diarization pipeline, evaluated its performance on a
large collection of benchmarking datasets, and described a
recipe that practitioners can follow to make the most of their
own labeled data and adapt the pretrained pipeline to their
particular use case. This recipe has been used to reach 6th place
at VoxSRC 2022 challenge, 1st place at Ego4D 2022 challenge,
and 1st place at Albayzin 2022 challenge. The source code,
pretrained models and expected outputs are openly shared with
the community at github.com/pyannote/pyannote-audio.

This work was granted access to the HPC resources of IDRIS
under the allocations AD011012177R1 and AD011012177R2
made by GENCI.
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