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Imperfect maintenance in correlated bivariate Wiener model 
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Abstract  
 

A two-unit system subject to imperfect maintenance is analyzed in this chapter. The deterioration of the 
system follows a bivariate Wiener degradation process. This process is built from the trivariate reduc-
tion method by sharing a common noise that describes the dependence between both units. This depend-
ence is measured through the Pearson’s correlation coefficient between both degradation trajectories 
of the bivariate Wiener process at time t. A maintenance strategy consisting of periodic inspections in 
which the accumulated deterioration of the system is reduced by a certain quantity is implemented. Some 
results on the monotonicity of the Pearson’s correlation coefficient in different scenarios are obtained. 
 
1. Introduction  
 

Research on degradation modelling in industrial 
systems has been rising in recent years. It does not 
only focus on univariate models but also considers 
multivariate models (Palayangoda et al., 2021). 
These multivariate models are essential to assess 
the maintenance and safety of complex degrading 
systems in a more realistic way (Kolowrocki & 
Magryta, 2020). 
In most of multi-component systems it is assumed 
that their components degrade independently. Alt-
hough such as assumption allows tractable math-
ematical models, it remains unrealistic for system 
where stochastic dependence is indeed present. 

Examples of multi-component with dependent 
units can be found in lithium batteries, rubidium 
discharge lamps or LED lighting systems. It is 
necessary to study the dependencies to evaluate 
the overall behaviour and reliability of such sys-
tems, since, for example, availability or reliability 
measures are highly dependent on the number of 
components, even more on its dependencies.  
Several mathematical models have been proposed 
in the literature to analyze multiple dependent 
degradation processes (Liu et al., 2014; Assaf et 
al., 2018), such as those based on copulas, multi-
variate joint distributions, or degradation rate in-
teraction methods. However, these methods have 
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drawbacks. Copula functions link marginal distri-
bution of different performance characteristics 
(PCs) of a system, that is, the dependence struc-
ture of random variables can be characterized sep-
arately from their marginal distribution functions. 
They have more flexibility and have gained great 
attention in recent years. For example, Palayan-
goda and Ng (Palayangoda & Ng, 2021) provided 
a non-parametric modelling structure based on the 
Lévy process via Archimedean copula. Although 
copula functions address the multivariate prob-
lem, the choice of the copula function is difficult, 
and an inappropriate copula function will lead to 
incorrect assessment of reliability level (Fang et 
al., 2020; Mercier & Verdier, 2022). Degradation 
rate interaction models (DRI) assume that the deg-
radation process of one component can affect the 
deterioration of other components. The failure oc-
curs when one component, called the influencing 
component, transitions to a more severe degrada-
tion state, which increases the degradation rates of 
all the other components, which are the affected 
components. For example, in a wind turbine sys-
tem. Bian and Gebraeel (Bian & Gebraeel, 2014) 
developed a DRI model for the stochastic model-
ling of multi-components, separating it into the 
self-induced degradation of the component and 
the degradation inducted by other components. 
Other authors have analyzed a two-component 
system degradation based on gamma processes. 
Rasmekomen and Parlikad (Rasmekomen & Par-
likad, 2016) also applied DRI models to study the 
stochastic dependency between two PCs, which is 
characterized by a linear regression model.  
Multivariate base models are usually employed 
because multivariate distributions easily extend 
results and properties from univariate ones. In 
these models, components of the system are de-
pendent with a known joint distribution. The mul-
tivariate Gaussian distribution model is the most 
known multivariate model. With this, each degra-
dation path is described by a marginal Gaussian 
distribution from the joint multivariate Gaussian 
distribution.  
 
2. Related literature in bivariate models  
 

There are recent works dealing with bivariate deg-
radation processes, and they use the assumption of 
dependency (Zhang et al., 2017, 2018; Pan et al., 
2011). Lawless and Crowder (Lawless & 
Crowder, 2004) suggested that independent as- 

sumption should only be used if we are sure that 
a failure has absolutely no direct or indirect link 
to the likelihood of other failure mechanism, 
which is not usual, due to the existence of the same 
environmental, operational or stresses and wear 
factors.  
It is very common to find a two-units system (se-
ries or parallel) with two very distinguishable 
parts whose deterioration can be described by us-
ing a bivariate degradation model. Since it is a 
special case of the multivariate distribution mod-
els, the degradation paths of each unit are nor-
mally correlated. For example, fatigue cracks of 
two terminals of electronic devices, or machines 
composed of positioning accuracy and output 
power. In multivariate distribution models, in par-
ticular, for the bivariate case, environmental con-
ditions are represented through a common factor 
influencing the degradation paths of the systems’ 
components (PCs). Both processes share a com-
mon diffusion parameter or a common noise, for 
example in lithium-ion battery systems sharing a 
common environmental stress.  
Wang et al. (Wang et al., 2021) construct a multi-
variate Wiener process as a baseline model, pro-
posing two types of degradation models to char-
acterize the time-variant covariates and imperfect 
maintenance effects. The difference between the 
two models lies in the way of capturing the influ-
ence of covariates and maintenance. Mercier et al. 
(Mercier et al., 2018) considered two components 
subject to common external shocks, which are in-
dependent of the intrinsic wear of the components, 
but one shock can induce the immediate failure of 
both components. A mathematical formulation 
was provided for the joint distribution of the biva-
riate lifetime, studying the influence of the shock 
parameter in it.  
Sari et al. (Sari et al., 2009) studied a bivariate 
constant stress degradation assuming dependency 
between the PCs. The degradation data is mod-
elled with a General Linear Model (GLM) and the 
dependency is described by copula functions. This 
model is applied to Light-emitting diode (LED) 
real data. 
In (Song & Cui, 2021) a bivariate degradation 
model based on gamma processes is proposed, 
which could capture the dependency between the 
two degradation processes naturally and model 
the linear and non-linear degradation paths flexi-
bly. The dependency between the two degradation 
processes is capture by a common random effect 
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naturally. 
Xu et al. (Xu et al., 2018) proposed a bivariate 
degradation model based on the Wiener process 
with time-scale transformation. The two PCs are 
dependent on each other, and this dependency is 
described by introducing a common random ef-
fect, unlike the copula method. 
Another interesting case could be a system with 
two PCs in which one of them works as a marker 
for the system. Sari et al. (Sari et al., 2009) defined 
a bivariate model with an underlying basic pro-
cess and a second associated process built by ap-
plying a functional to the basic process. The latter 
process could also be a covariate variable or an 
imperfect observation of the basic process with a 
relevant role in decision making. This model is 
known as marker-latent model and has important 
applications in a wide range of fields, such as ep-
idemiology or risk analysis. Marker processes 
have been usually employed in the study of HIV 
infected patients. Based on the works of 
Whitmore (Whitmore, 1998) the PhD dissertation 
of Conroy (Conroy, 2016) proposed a bivariate 
Wiener model, where marker processes are used 
in the study of the effect of treatments. The mon-
otone process can represent the level of a drug in 
blood, temperature, or blood pressure monitoring. 
Regarding to risk management, fatigue crack 
growth in pressure vessels and in aircraft struc-
tures can be also considered. Here, the associated 
process incorporates the process history of some 
other important aspects of the main process. Sim-
ilarly, Whitmore (Whitmore, 1998,) proposed a 
bivariate Wiener process for two components: one 
for represents the marker or covariate and the sec-
ond determines the failure time. Failure occurs 
when the latent component crosses a fixed thresh-
old level. They also consider that failure is not re-
lated deterministically to the observable marker. 
An extension of the model permits the construc-
tion of a composite marker from several candi-
dates.  
 
3. Framework of model 
 

This work focuses on the study of a system subject 
to a bivariate degradation model. Two dependent 
degradation processes are created from three inde-
pendent degradation processes using the so-called 
trivariate reduction method as follows: two de-
pendent degradation processes are created from 
three independent degradation processes. These 

correlated processes obtained represent a system 
consisting of two dependent components that 
share a common noise. Specifically, the Wiener 
process is used to model this bivariate degrada-
tion. 
Periodically imperfect preventive maintenance 
actions are performed, and the overall system de-
terioration is reduced by reducing the accumu-
lated degradation level of each component from 
its installation in a fixed percentage given by the 
repair efficiency parameter. This maintenance 
model is known as Arithmetic Reduction of Deg-
radation (ARD).  
Under these assumptions, the Pearson correlation 
coefficient at time t is obtained at each inspection 
for two random paths of the bivariate Wiener pro-
cess considering linear and non-linear drifts. The 
correlation as a function of the repair efficiency 
parameter is also studied.  
Furthermore, the analytical cost model is ob-
tained, and the expected cost rate is minimized 
considering the repair efficiency and the time be-
tween repairs as optimization parameters.  
 
4. Trivariate reduction method 
 

It is a multivariate-based method commonly used 
to model the correlation between several compo-
nents (Lai, 1995). For the bivariate case, given 
three independent random variables   ,    and   , the dependent variables X and Y are formed 
as: 
 X =   +   , 
 Y =   +   , 
 
where    stands for the common noise between 
both components.  
The use of this method is not new in the stochastic 
processes’ literature, and it has extended to relia-
bility. For example, it has been employed by Mer-
cier et al. (Mercier et al., 2018) for modelling cor-
related gamma processes. 
 
5. Wiener degradation process 
 

The Wiener degradation process has gained atten-
tion due to its interesting mathematical properties 
for modelling non-monotonic degradation. This 
model is considered, for example, when there is a 
dependence between the drift parameter, which 
represents the degradation rate, and the diffusion 
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parameter. In general, a component with a higher 
degradation rate also presents a higher dispersion, 
so this correlation is positive. Xu et al. (Xu et al., 
2018) obtained the correlation coefficient be-
tween two Wiener processes depending on the 
variance and the mean degradation parameter at a 
certain time t, which is a non-decreasing function 
of t due to the fact that the remaining useful life 
(RUL) changes over time. 
The Wiener process with linear drift (or stationary 
Wiener process) is considered for describing the 
system degradation since it is a simple model for 
non-monotonic degradation.  
The stationary Wiener process can be generally 
described by: 
 X( ) = μ + σB( ), 
 
where B( ) is the standard Brownian motion with 
mean 0 and variance  , μ is called the drift param-
eter and σ is the diffusion parameter. 
By using the approach described in the trivariate 
reduction method, the bivariate Wiener degrada-
tion processes is given by: 
   ( ) =  μ   +  σ  B ( ) +  σ  B ( ), (1) 
   ( ) = μ  + σ   ( ) + σ   ( ), (2) 
 
with μ  being the drift parameters, σ  the diffusion 
parameters and   ( ) independent Brownian pro-
cesses, for  = 0,1,2. The common noise is given 
by the term σ   ( ).  
The expectation and the variance of processes (1) 
and (2) are given by: 
  [  ( )] = μ  , 
 Var[  ( )] = (σ  + σ  ) . 
 
Now, considering a transformation in the Wiener 
process formulation given by (1) and (2) by in-
cluding general time scales function that represent 
the nonlinearity of the degradation paths, we have: 
   ( ) = μ Λ( ) + σ    Λ( ) + σ    Λ ( ) , 
   ( ) = μ Λ( ) + σ    Λ( ) + σ    Λ ( ) . 
 
Wiener process from (1) and (2) is a particular 
case of this model, when Λ( ) = Λ ( ) =  . The 

expectation and variance are calculated in a simi-
lar way. 
A bivariate Wiener degradation model consider-
ing imperfect maintenance is described in this 
chapter. The dependence between the two pro-
cesses is characterized by a common noise.  
Since the system is subject to periodic inspections 
in which imperfect maintenance is performed, the 
Pearson correlation coefficient is computed for 
the bivariate process (Mercier & Pham, 2017). 
There are few works that combined imperfect 
maintenance with a bivariate degradation and they 
do not focus on the correlation coefficient be-
tween the Wiener processes. 
The Arithmetic reduction of degradation model 
for the imperfect maintenance is next presented.  
 
6. Arithmetic reduction of degradation 

maintenance model  
 

Gaudoin and Doyen (Gaudoin & Doyen, 2006) 
defined the Arithmetic Reduction of Degradation 
(ARD) and Arithmetic Reduction of Age (ARA) 
models.  
However, we think that the ARA models are more 
difficult to implement or, sometimes, unrealistic 
when dealing with maintenance, so that we will 
focus mainly on ARD models for imperfect 
maintenance (Nguyen et al., 2017). Their main 
difference with ARA models is that ARD models 
reduce the system deterioration without rejuvenat-
ing it, unlike the ARA model, which do rejuvenate 
the system age.  
ARD and ARA models can be of different order 
depending on the way of reducing degradation; in 
particular, the ARD of infinite order removes a 
certain percentage of the deterioration accumu-
lated by the system since the beginning. On the 
other hand, the ARD of order one also removes a 
percentage of the accumulated deterioration, but, 
in this case, since the last repair or maintenance 
instead of the beginning of the degradation pro-
cess (Moschopoulos, 1985). 
Each T time units, an imperfect preventive 
maintenance action consisting of Arithmetic Re-
duction of Degradation is performed. The degra-
dation of each component is reduced in a ρ%, with 0 ≤ ρ ≤ 1.  
Figures 1 and 2 show the Arithmetic Reduction of 
Degradation model of order infinite (ARD(∞)) 
with repair efficiency parameter ρ = 0.1 and  ρ = 0.9, respectively. 
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Figure 1. ARD(∞) with repair efficiency parameter ρ = 0.9. 
 
 

 
Figure 2. ARD(∞) with repair efficiency parameter ρ = 0.1. 
 
For that, let   ( ) and   ( ) be the processes that 
describe the degradation of the system after a pre-
ventive maintenance action. Since the Wiener 
processes have independent increments, the 
piece-wise evolution of the maintained system  ( ) = {  ( ),   ≥ 0} is developed in the follow-
ing paragraphs.  
 
7. Evolution of maintained system 
 

At time t, with 0 ≤  <  , the degradation level 
of the i-th component is given by: 
   ( ) =   ( ). 
 
The first imperfect preventive maintenance action 
is performed at time T and the degradation of the 
two components is reduced in a 100ρ%. Let us de-
note by    the instant of time just after the first 
preventive maintenance action. With that, we get 
that 
   (  ) = (1 − ρ)  ( ). 
 
Then when  <  < 2 , the evolution of the deg-
radation of the i-th component is given by: 
   ( ) =   (  ) +   ( ) −   ( ). 

At time 2T^-, just before the second imperfect 
maintenance action and at time 2T^+, just after it, 
the degradation of the i-th component is given by: 
   (2  ) =   (  ) +   (2 ) −   ( )    (2  ) = (1 − ρ)   (  ) +   (2 ) −   ( ) . 
 
In general, we can say that just before the n-th pre-
ventive maintenance action, the degradation of the 
i-th component is represented by: 
   (   )  
 =    ( − 1)   +   (  ) −    ( − 1)  , 
   (   ) = (1 − ρ) ∙ 
 ∙     ( − 1)   +   (  ) −    ( − 1)   . 
 
After some calculations, we get that 
   (   ) 
 =  (1 − ρ)        (  ) −    ( − 1)    

   . 
 
Finally, for   ≤  < ( + 1) , the degradation 
of the i-th component at time t is 
   ( ) =   (   ) +    ( ) −   (  )   
 =  (1 − ρ)        (  ) −    ( − 1)    

    

 +   ( ) −   (  ) . 
 
Now, using the additivity property of the normal 
distribution, the degradation after the n-th preven-
tive maintenance action is normally distribution 
with expectation 
  [  (   )] = μ  (1 − ρ)(     ) 

   ΔΛ(  ) 

 
and variance 
 Var[  (   )]  
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= (σ  + σ  ) (1 − ρ) (     ) 
   ΔΛ(  ), 

 
where ΔΛ(  ) denotes the increments of the func-
tion Λ, that is, 
 ΔΛ(  ) − Λ ( − 1)  . 
 
Figures 3 and 4 represent the degradation pro-
cesses of components 1 and 2 (in blue and red col-
ours, respectively) and the baseline degradation 
ARD(∞) processes of each one without repairs 
(in black). The periodic time to perform ARD 
equals T = 30 time units and it is represented in 
the above line. The bivariate Wiener process is 
obtained with 10000 divisions over 100 time 
units, represented in the X-axis. The dashed lines 
show the times at which the ARD is performed. 
Figure 5 shows a realization of the bivariate deg-
radation process applying the ARD model. 
 

 
 

Figure 3. ARD(∞) of the first component with  ρ = 0.5. 
 

 
 

Figure 4. ARD(∞) of the second component with ρ = 0.5. 
 

 
 

Figure 5. ARD(∞) realization of both components 
with ρ = 0.5. 

Since it is often difficult to make a choice with the 
order and repair efficiency in ARD models, sto-
chastic comparisons (Muller, 2001) are useful to 
be made between the different models and were 
proposed by Mercier and Castro (Mercier & Cas-
tro, 2019) for this purpose. 
 
8. Correlation study 
 

The Pearson’s correlation coefficient is the most 
common method for measuring a linear correla-
tion between two sets of data or two processes 
(Chen & Zhao, 2020; Kong et al., 2022). It is a 
normalized measure of the covariance. In the case 
of stochastic processes depending on time, given 
a pair processes X(t) and Y(t), this coefficient has 
the following expression: 
 θ =      ( ), ( )       ( )      ( ) , 

 
where 
 Cov  ( ), ( )   
 = E  ( ) −  [ ( )]   −  [ ( )] .  
 
With that, the Pearson correlation coefficient be-
tween   ( ) and   ( ) is calculated as: 
  =                      . (3)  

 
Notice that this coefficient   given by (3) does not 
depend on time. It is equal to 1 if σ  = σ  = 0, 
and the correlation is stronger when the common 
noise is dominant, that is, when σ  ≫ σ  . On the 
other hand, if the common noise is negligible, the 
two degradation paths of the bivariate Wiener pro-
cess evolve almost independently.  
In the case of non-linear drift function Λ( ) and Λ ( ), the Pearson correlation coefficient between   ( ) and   ( ) is given by: 
  ( ) = Cov   ( ),  ( )  Var   ( )    Var   ( )  

 =    Λ ( )    Λ ( ) +    Λ( )    Λ ( ) +    Λ( ) 
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= 1 1 +    /   ℎ( ) 1 +    /   ℎ( ), 
 
where ℎ( ) = Λ( )/Λ ( ) is the ratio of the two 
general time scales. We can deduce from this for-
mula that: 
• the Pearson correlation coefficient decreases in 

t when h(t) increases in t. This is due to the fact 
that if h(t) increases in t, then Λ( ) is dominant 
with respect to Λ ( ) and the Pearson correla-
tion decreases, 

• the Pearson correlation coefficient increases 
when σ   increases, since σ   is linked to the 
common part of both degrading components, 

• the Pearson correlation coefficient decreases 
when σ   increases. It is clear since σ  is linked 
to the independent part of the two degrading 
processes,  

• if Λ( ) = Λ , then the correlation coefficient θ( ) is constant and equal to the one obtained 
in (3). 

Some numerical examples related to the mean, 
variance and the Pearson correlation coefficient of 
the above processes are next presented. 
 
9. Numerical examples  
 

Figures 6 and 7 show the mean and variance of the 
maintained process subject to ARD for the power 
law case Λ( ) = Λ ( ) =    with different values 
of the parameter b. The mean is increasing when  > 1 and decreasing when  < 1. Notice that the 
variance is obviously always increasing. 
 
 

 
 

Figure 6. Mean of ARD(∞) with different values for 
b and ρ = 0.5. 
 

 
Figure 7. Variance of the ARD(∞) with different 
values for b and ρ = 0.5. 
 
The Pearson correlation coefficient is calculated 
in Figures 8 and 9 at each maintenance time with 
different values of the repair efficiency for the 
power law case Λ( ) =     and Λ ( ) =    . No-
tice that it is increasing when   >    and de-
creasing when   <   . 
 

 
Figure 8. Pearson correlation coefficient for power 
law case with   >   . 
 

 
Figure 9. Pearson correlation coefficient for power 
law case with   <   . 
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10. Maintenance and cost model 
 

Barlow and Proschan (Barlow & Proschan, 1975) 
proposed different classical maintenance models 
in the 1960s, first for single-component systems. 
These approaches were far from reflecting the real 
behaviour and complexity of industrial systems. 
In (Cho & Parlar, 1991), the existing models were 
improved and research on maintenance optimiza-
tion progressed by developing strategies for 
multi-component systems. Nowadays, research 
on maintenance optimization takes into account 
both the characteristics of the system and the na-
ture of the implemented maintenance operations.  
Simulations are generally used to assess the per-
formance of a maintenance policy in multi-com-
ponent systems. Maintenance policies no longer 
consist only of complete replacement strategies, 
but also take into account the condition of the sys-
tem and system repairs are carried out. 
The deterioration level of the system is usually not 
known, unless it is a monitored system, which in-
volves high costs. It may be that the system can 
only be observed by stopping it, or may not even 
be possible to observe the state of deterioration, 
but only whether or not the system is still func-
tioning. To overcome these drawbacks, the state 
of the system is evaluated periodically at pre-es-
tablished times, called inspection times or repair 
times. Imperfect maintenance actions consisting 
on ARD repairs are performed at those times. 
Each maintenance task implies a certain cost, so a 
good maintenance policy is the one that balances 
the cost of performing frequent preventive 
maintenance with that of performing infrequent, 
but more costly, corrective maintenance, which 
happens when the system deterioration reaches a 
certain threshold. After a preventive imperfect re-
pair, the system begins to operate again.  
A realization of the maintenance and repair pro-
cess is shown in Figure 10. The threshold value is 
represented by the red line and the deterioration 
processes are coloured in blue and black.  
 

 
Figure 10. Realization of the ARD maintenance 
model.  

In this case, the following assumptions regarding  
the maintenance strategy are assumed: 
• an imperfect preventive maintenance policy 

consisting on periodic repairs with ARD(∞) is 
performed while the system is not failed. With 
that, the accumulated degradation of each com-
ponent is reduced in a 100ρ%, with 0 < ρ < 1. 
This preventive maintenance cost is denoted by   (ρ) monetary units, which depends on the re-
pair efficiency parameter, 

• a corrective maintenance is performed when 
the system is failed in an inspection time. This 
corrective action implies the system replace-
ment by a new one (both components are re-
placed even ) with a cost of    monetary units, 

• the system is considered to be failed when one 
of the degrading components exceeds a certain 
failure threshold, which has the same value for 
both components and it is denoted by L, 

• failure are only detected at periodic inspection 
times, so a system downtime cost of    mone-
tary units per time unit is implemented, 

• the maintenance duration is assumed to be neg-
ligible. 

Let  
  ( , ρ) =  [ (    )]      
 
be the maintenance cost function in the finite time 
horizon, where      is the maximum time that the 
system is considered to operate. 
Then, the decisions variables considered for the 
optimization of the maintenance policy are the 
time between imperfect repairs T and the repair 
efficiency parameter \rho. The optimal mainte-
nance policy is given by 
       ,ρ    = inf{      ( , ρ),  
 0 <  <     , 0 ≤ ρ ≤ 1. 
 
The expected cost rate in asymptotic approaches, 
where the system is supposed to operate with an 
infinite life cycle, has been widely employed in 
the literature. However, this circumstance does 
not occur in practice, therefore some authors rec-
ommend studying maintenance policies based on 
finite life cycles. These policies are more realistic 
than the ones based on infinite life cycles, but they 
have some added handicaps since their analytical 
and computational treatment is more challenging. 
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The goal behind the modelling of the system state 
is to find the optimal maintenance policy for such 
a system. That is, identify the maintenance policy 
that minimizes the expected cost rate previously 
developed. The main difficulty lies in obtaining 
this long-run average cost per time unit with ana-
lytical methods based on the statistical properties 
of the system behaviour. Sometimes it is not pos-
sible to obtain it analytically, so it is necessary to 
resort to simulations.  
Let R be the replacement time of the system, being  = (⌊  / ⌋ + 1)  and where    is the time to 
the system failure. The expected cost in a replace-
ment cycle, that is, in the time between successive 
replacement of the system is given by 
   (ρ)E(⌊  / ⌋) +   E  −    +    
 
where ⌊ f/ ⌋ is the floor function of   / . 
Some numerical examples are next given to illus-
trate the proposed model. The expected cost rate 
is calculated using EQ. and Monte Carlo simula-
tion. The maintenance policy is optimized by ob-
taining the optimal values for T and ρ. 
For the bivariate Wiener degradation process, fol-
lowing Eqs. (1) and (2), the following parameters 
are considered: 
 σ = 0.5,     σ = 1, σ = 1.5,  μ = μ = 2, Λ( ) = Λ ( ) =  . 
 
The threshold value is L = 20. The following se-
quence of costs is also assumed: 
   = 120 .  . ,       = 20 .  .,    (ρ) = 50ρ     .  . 
 
For the optimization, a grid of size 11 is consid-
ered for ρ between (0,1) and a grid of 10 points is 
considered in (0,10) for T.  
The results obtained are shown in Figures 11 and 
12. The optimal values are     = 6 and  ρ   = 0.8, with an expected cost rate of 45.87 
m.u. per t.u. 
 
11. Conclusion 
 

A system with two dependent components subject 
to bivariate Wiener degradation is analyzed in this 
chapter. The bivariate process is obtained with the  

 
 

Figure 11. Cost model for bivariate ARD process. 
 

 
 

Figure 12. Contour plot for bivariate ARD process. 
 
trivariate reduction method and an imperfect 
maintenance policy is implemented, in particular, 
an Arithmetic Reduction of Degradation of order 
infinite model. The Pearson correlation coeffi-
cient is analyzed for the two degradation pro-
cesses with the implementation of the ARD im-
perfect maintenance. The cost model for the pro-
posed maintenance is also developed and opti-
mized considering the repair efficiency and the 
time between repairs as optimization parameters. 
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