N
N

N

HAL

open science

An Action-based Model to Handle Cloning and
Adaptation in Tabular Data Applications

Nassim Bounouas, Mireille Blay-Fornarino, Philippe Collet

» To cite this version:

Nassim Bounouas, Mireille Blay-Fornarino, Philippe Collet. An Action-based Model to Handle Cloning
SPLC ’23: 27th ACM International Systems and
Software Product Line Conference, Aug 2023, Tokyo, Japan. pp.201-212, 10.1145/3579027.3608991 .

and Adaptation in Tabular Data Applications.

hal-04247084

HAL Id: hal-04247084
https://hal.science/hal-04247084
Submitted on 17 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04247084
https://hal.archives-ouvertes.fr

An Action-based Model to Handle Cloning and Adaptation in
Tabular Data Applications

Nassim Bounouas
nassim.bounouas@univ-cotedazur.fr
Doriane - Université Cote d’Azur,
CNRS, I3S
Sophia Antipolis, France

ABSTRACT

Many software systems require diverse data gathering and handling
through processes that manipulate tabular data, often with a spread-
sheet orientation. Variability in tabular data cannot be captured in
a complete up-front analysis as everything is done at the final user
level. She progressively adapts or clones some tabular data orga-
nized to conduct a process. Consequently these organized data are
constantly both a final usable product and a potential candidate for
cloning. This huge diversity, the high frequency of their evolution
over time, and the intrinsic need to use cloning lead naturally to
the usage of a clone-and-own approach with well-known negative
impacts on maintenance and quality. In this paper we advocate that
this can be replaced by controlling the clone-and-own process with
provenance information that completely captures, at the domain
level, the cloning actions and the adaptations applied on a product
defining its clones. Each action over the process, its observations,
and its data are captured in a complete model through traces of
atomic adaptations, complemented with specific derivation and
extraction actions. This model enables obtaining the whole history
of both data and processes over time, as well as the accountability
of variability-related actions. We report on a study showing the rel-
evance of tackled problem in a variability-rich agronomy software
of an industrial partner. We also show that a first prototype covers
the extracted usage scenarios, from simple and entire cloning to
more complex partial cloning.

CCS CONCEPTS

« Software and its engineering — Software product lines;
Software configuration management and version control systems.

KEYWORDS

Tabular data, clone-and-own, variability management, operation-
based modeling, model-driven engineering, agronomy

1 INTRODUCTION

Data-gathering processes are central to many software systems,
from scientific computation [30] to business intelligence for infor-
mation systems [44]. These processes are relying on spreadsheets or
software subsystems handling tabular data with an adaptable model
for different sorts of tasks and many kinds of users [11, 48]. Even
if the spreadsheet expressiveness is considered low [14] and that
supporting software usually exposes poor performance on large
data sets [15], their features are unavoidable in all data-intensive
applications [10].

Mireille Blay-Fornarino
mireille.blay@univ-cotedazur.fr
Université Cote d’Azur, CNRS, I3S
Sophia Antipolis, France

Philippe Collet
philippe.collet@univ-cotedazur.fr

Université Cote d’Azur, CNRS, I3S
Sophia Antipolis, France

Being implemented through spreadsheets [29] or dedicated appli-
cations, those data structures and data-centered processes are natu-
rally created and evolved through a clone-and-own approach [23, 33,
36, 46]. This process is inevitable as end-users are actually cloning
and owning a final product (a spreadsheet or another form of tabu-
lar data), but at any time, it can be reused as a new template while
adapting parts of the data organizations, keeping and removing
parts of the data and relations between them. This is for example
the case in all trial-based processes, where subjects are observed
according to different criteria, with related criteria and observations
being managed. At some point, end-users driving a trial can clone
or adapt it (e.g., by keeping some of the criteria, adding new ones)
to reuse the trial in a new product, as this is at the core of their
daily job.

In dedicated applications that provide an adaptable model of data
handling, such as the one of our industrial partner, the clones and
adaptations appear on all customer deployments. While the soft-
ware itself focuses on providing adaptation and reuse capabilities
over the data models, it keeps no track of what is cloned and how.
Consequently, it is not possible to differentiate the data models be-
tween models at a customer site or between them and new template
models developed by the application vendor. Reasoning on them or
propagating changes is then a time-consuming or unfeasible task.
Moreover, the underlying model is, as in many contexts [10, 11, 16—
18, 48], completely spreadsheet-oriented with data only organized
in columns and rows. Even with differencing tools, it is thus very
hard to compare the models afterward to determine changes at the
domain level, e.g., a change in some criteria used to observe some
subjects. This leads to the well-known negative impacts of clone-
and-own on maintenance and quality [36], both on the developer
teams and on the end-users on customer sites [33, 53]. However,
migrating the software to a full Software Product Line (SPL) with a
supporting platform [4, 19, 41] is not desirable here as the cloning
capability on the tabular data model is essential to the customer’s
everyday business.

In this paper, we advocate that this problem can be tackled by
controlling the clone-and-own process with a complete trace that
captures, at the domain level, both the cloning actions and the
adaptations applied to a data model. We determine usage scenarios
from interviews with our industrial partner, which develops a con-
figurable agronomy software (cf. Section 2). As the actions on the
model are domain-specific and come from end users, we rely on
operation-based modeling [8] to first propose a model that tracks
each action within a product, being a data model, under usage (cf.
Section 3). The model is complemented with actions to describe
when a product is derived from another, and what information

from its model is extracted in the cloned result. This allows to keep
track of the cloning steps as well. Consequently, the model enables
obtaining the whole history and accountability, which covers many
usage scenarios with derivations and adaptations. We report on an
experiment to analyze several data-intensive trial processes from
customers of our partner for over 18 years, showing the relevance
of these tackled scenarios (cf. Section 4). Together with its formal
definition, we also provide a Prolog implementation of the model
that demonstrates these usage scenarios on a small scale. Threats
to the validity of our approach and its limitations are discussed
in Section 5, while Section 6 concludes the paper and discusses
future work.

2 MOTIVATIONS
2.1 Context

The context and validation of our work are conducted with an in-
dustrial partner, Doriane, which develops a highly configurable and
adaptable experiment management software with a strong focus
on agronomy. In the agronomy domain, breeding selection holds a
prominent place. This process aims to improve the productivity and
sustainability of a species’ population by intentionally selecting
and mating organisms to promote desired traits by producing new
varieties. The breeder in charge of the selection is using every da-
tum, phenotypic (the naked-eye observable characteristics), and/or
genomic (the genetic characteristics observable in a laboratory),
she considers as valuable to her work. These data cannot be stan-
dardized because of their multi-dimension variability. The collected
pieces of information are specific to the type of species involved
in the selection process, the targeted goal, but also to the breeder
work methods and the company she works for. The targeted goal
is dependent on the species and its market e.g., improve the yield
of a species or develop a resistance to a specific disease.

Very small agronomic companies start with spreadsheets to han-
dle their data and processes as it is flexible and directly accessible to
their breeders as end-users [48]. However, the lack of expressiveness
and scalability of spreadsheets [14, 15] calls for dedicated software.
Doriane currently meets this requirement through a configurable
application to gather and exploit data and experiments. Doriane’s
domain engineers developed a common platform with a generic
GUI and a core engine that handles an open model representing
notably tabular data in a spreadsheet-oriented way (cf. Figure 1).
The model, organized in lines and columns, is itself intended to
be extensible and adapted to suit customer needs. Templates and
examples of common trials are developed and inserted in the model
and the platform by developers. Many adaptations are also made by
the application engineering team when deploying at a customer site,
mainly to create customer-specific processes, from the examples
or from scratch. Finally, tailoring is also done by end-users along
their daily work, from the breeder adapting and cloning to the field
worker filling the tabular data, which could still adapt at the very
last moment. It must be noted that, in this paper, we do not focus
on formulas or expressions that can be used to relate dependent
data. We concentrate on observations and criteria that constitute
the backbone of manipulated tabular data in the targeted domains.
Handling variability and evolution of formulas is a complementary
important problem, which is part of our future work.

Bounouas et al.

2.2 Problem statement

In our breeding illustration, as in many data-intensive processes,
the breeder’s job is made of complex activities that involve a lot of
data and requires multiple associations to let her extract and infer
enough knowledge to make the right research and development
choices. Despite this complexity, the core of the job relies on veg-
etal species planted, observed, and evaluated on different criteria,
with many dependencies between criteria and observations, all
being managed through tabular data. In the following, we use a
grasses! trial as an illustration, as it can easily show a combination
of several observed subjects with multiple dimensions of study and
dependencies.

An example of dependency is given in Figure 2. In the top part,
the yield is dependent on the harvested species, the plot it grew
in, and the harvest date. All those properties are aggregated in a
so-called product, which matches the species’ specificities and the
breeder’s requirements.

Model adaptation and cloning at the end-user level. The grass
example might seem rather simple but is a true challenge because
of its harvest cycle and the diverse targeted usages of grasses (herd
feeding, ground cover of stadiums, erosion control, ornamental uses,
biofuels...). Those different factors lead to a huge variability that is
creating unmanaged clones at all levels. Moreover, these clones are
spreadsheet models that encode the true domain variability (e.g.,
a new criterion appearing to measure erosion) into changes over
rows and columns. This cannot be easily managed in spreadsheets,
even for small companies. Even with specific software such as the
current Doriane solution, when the number of breeders, species
and experimental fields grow, it becomes increasingly difficult to
manage the different dimensions of variability.

While a very large part of the human-machine interfaces is com-
mon to many processes and many customers, most of the diversity
and variability issues are then concentrated in the underlying model.
A true domain model should convey some concepts of observations,
criteria, and dependencies to capture the business semantics that is
easily lost in spreadsheets [20]. But more importantly, a model in-
stance is constantly adapted, maybe from a previous model instance,
by both the developers in the software company and end-users on
each customer site.

This leads to a kind of model drift [53] as there are divergences
both between model versions of the Doriane software and the
customer-adapted models, but also on customer sites when end-
users may clone and adapt. This is currently managed by time-
consuming propagations, which are, most of the times, partial, or
not done at all as the differences between models and the origin of
the clones are not known at all.

Furthermore, all end-users, such as breeders, only work at the
product level, evolving their data management processes during a
trial, or starting a more experimental trial from a previous one as a
template. Agronomic companies are trying to standardize the pro-
cesses and the data collected, but this standardization is restrained
by the constant evolution of the trial methodologies, the data gath-
ering and its analysis. An up-front domain analysis would then be
too rigid here since the domain itself is evolving with new processes,

The term used here is simplified. Grasses refers to gramineae and poaceae within the
business lexicon.

An Action-based Model to Handle Cloning and Adaptation in Tabular Data Applications

transformation

(&

Development

Fill data
) while
adapting

Portable device

£

Customer site

N~
K

Spreadsheet models
(adapted at two levels)

Legend Current solution Expected solution
= E Developer E E
' & : f-‘ :
E i . Application engineer / @\ H
Visualization | . i : fI:SL
%;l E E E g u E Application engineer
: ! ! configuration :
Model ! <> H H adaptations & clones
8 ' Software company : Spreadsheet models :
Database E E an s]] E
(dataonly) : Breeder(end-user) . ' f-‘
=== ‘ ' g : psL
H ‘ H Spreadsheet models (cloned) H > Breeder
t : e . H N configuration :
Spreadsheet-like : : E : %18 adaptations & clones
models : - H H i
e . Customer site H Spreadsheet models (adapted) H i
Customer : : i
dedicated : [[: .' use model and propagate
transformation E Field worker (end-user)i E ! field worker adaptations
e : . A4
Automatic H Spreadsheet models (cloned) H

Figure 1: Adaptations and tailoring by different users

maintenance and quality [23, 33, 36, 46], but at a model level rather
than a code level.

Species

. Sc.1
[Plot [Vield Ja— ="~ -{}
LSC.Q

5 Usage scenarios. We conducted multiple end-user interviews
Species Plot | Yield

whose goals were to determine the main sources of model drift

Harvest date o . .)
Andropogon Gerardii'| 1= 6 [——01/04 within a product designed for a species and to characterize the
Andropogon Hallii 2= 8 [—01/04 adaptation and derivation support needed in this context. Our re-
Andropogon Gerardii] 1< 8 | —01/08 search team conducted face-to-face interviews with three customers

of our industrial partner. A total of 10 individuals were interviewed:
3 breeders, 4 field workers, and 3 IT professionals. These inter-
views lasted approximately 90 minutes per individual to understand
their work methods, needs, and issues encountered with the cur-
rent version of the application. These interviews revealed issues
v of traceability and maintainability of products over the years. As

: Sc.4 1Se.3

v
l Species [Plot [Yield |Harvest date [Temp ‘

Species Plot | Yield | Harvest date the evolution changes were made directly on the product itself, the

Andropogon Gerardii'| 1< 6 | —01/04 teams end up duplicating them to avoid completely overwriting

Andropogon Virginicus| 3« 8 | —15/07 the previous versions and to be able to search the differences over
SC. Scenario Derive / Extract time.

Those scenarios are exemplified in Figure 2. The tables are a
simplified extract of a grass field book. A field book is used by a
field worker to gather all the required data. Those data are the
main variability point, whether it be in time or space. The data are
dependent on the species involved in the trial, but also dependent
on the breeder or field worker? habits. A common breeder use case
is to refine its observations. A criterion usually observed for a given

— — - Dependency

Figure 2: A flow of several cloning and adaptation scenarios

new data, and new products being developed, but even more prob-
lematic, everything is done at product-level with any product being
a possible template at any time. We face here a typical situation of
the clone-and-own paradigm with well-known negative impacts on

scope (e.g., The yield of a plot) can be refined to a more precise
scope (e.g., a subplot).

2The distinction between those roles varies according the company and its size.

The first variability-related functionality is to be able to create a
template representing a model. This leads to scenario Sc.1.

Sc.1 As a Breeder, I want to create a template named "grassesTem-
plate" that contains all the standard information required
for a grasses trial which are "Species, Plot, Yield" to begin
the trials promptly.

Then, when a template is derived to be used as a product, here
for a specific trial, adaptations can be conducted at the product
level, as represented by scenario Sc.2.

Sc.2 As a field worker, I want to fill my trial field book about
grasses following a template named "grassesTemplate" and
adding the harvest date at filling time to support multiple
harvest cycles.

In the two previous scenarios, the user uses a model definition
as a template, but this is always a product definition, partial or
not, that is actually done. The main problem lies in the capacity
to seamlessly support sequences of cloning (templating, deriving),
and adaptations on the model. As an extension of scenario Sc.1,
it is thus crucial that what is perceived as templating by the end
user can be done at any time from a final product, as every action
refining the domain analysis is conducted at the product level. This
leads to scenario Sc.3.

Sc.3 As a Breeder, I want to create a new template based on the last
grasses trial field book and add a piece of information about
temperature collected on the plot thanks to IoT sensors to
develop a species that can withstand high temperatures.

Additionally, it becomes naturally necessary to filter in and out
information from the product to the template, keeping some infor-
mation while removing some. This leads to scenario Sc.4.

Sc.4 As a field worker, I want to retrieve the trial field book used
during a previous campaign (without its "observations")
to conduct a new one and take advantage of the latest
improvements.

In the following, we will use these scenarios to illustrate and
validate our proposed model.

2.3 State of the art

The tackled problem involves capturing changes over the product
model by end-users, with any product at any step being a potential
starting point for a clone, keeping all or part of it during the clone
operation. In what follows, we will describe possible partial solu-
tions proposed in the literature, focusing on clone-and-own, but
also on operation-based modeling. We will also review research
work related to spreadsheets as modeling and templating issues
have been studied in this domain.

Clone-and-own. The clone-and-own approach [23, 33, 36, 46]
involves copying existing artifacts from one product to another
and modifying them as needed to fit the requirements of the new
product. However, this approach can lead to unintentional diver-
gence [33] between the products over time, resulting in model
drift [53]. Model drift occurs when the models used in different
products become increasingly different from each other, making
it difficult to maintain consistency and quality across the product

Bounouas et al.

line. This can result in increased efforts for tasks such as change
propagation, domain analysis, and quality assurance.

Clone-and-own is an ad-hoc approach that should be a priori
avoided, and many proposals have tackled different challenges re-
lated to migrating from this approach to the full SPL paradigm [4].
The main issue is to locate features [4, 19, 41] across the available
artifacts and cloned variants [54], with the necessity of knowing
the set of features in advance and a certain lack of precision in out-
put [26, 28, 31, 39, 42, 43, 55]. However, clone-and-own is known
to be mainly used in the industry [6], and several situations demon-
strate that migrating to a full SPL with a platform managing features
and mapping is risky and too costly [35] (e.g., when the number of
products is low [45], or when the number and evolution of products
is not known [23]), with possible loss of flexibility at the end [36].

Antkiewicz et al. have proposed a classification over a virtual
platform to organize different progressive levels in the adoption
process toward a full SPL [3]. In our context, cloning and adapting is
a mechanism directly available to end-users, and a core part of their
profession in building and evolving data-oriented processes, as in
the agronomy domain. We thus believe that the exposed problem
should be tackled by adding management support to the clone-and-
own process, leading to a solution of type "L1: Clone-and-Own with
Provenance" in Antkiewicz et al.’s classification [3], but with more
control and automation in what can be done with the provenance
information between clones.

Managing clone-and-own product lines. Several approaches sup-
porting a form of variability management in clone-and-own product
lines have been proposed [27, 33]. The basic idea is to utilize fea-
ture traces in a bottom-up manner for change propagation and
the composition of new products [27]. Some approaches rely on
the organization of a version control system to identify features
and variants and detect inconsistencies between them, switching
from code-based to feature-based reasoning [46, 47]. While the
need for variant identification is important in our context, features
are not actually present and cannot drive the representation of
differences between clones. A recent experience report in the rail-
way domain [53] shows that the model divergence is important in
a model-driven SPL, and that differencing large models between
a product and the platform, or between products is key. The au-
thors then reuse semantic lifting of model differences [32] fed with
high-level change patterns derived from model repositories [51, 52],
so that a set of relevant differences can be used, and for example,
filtered for change propagation. There are several similarities in
our context. We are both model-driven and we also aim at taming
the complexity of the model differences and the model drifts that
occur between cloned or evolving products. However, as the end-
users> are directly changing the model through high-level relevant
changes, our problem is more to represent and trace completely the
model differences than to mine them from other artifacts. For that
purpose, we specifically study relevant work on modeling in the
next paragraph.

Several authors also define variation control systems to unify
variability management (features, variants, and variation points)
and version control [38]. These systems aim at supporting the evo-
lution and maintenance of software systems with many variants

3and developers editing starting examples in the main application.

An Action-based Model to Handle Cloning and Adaptation in Tabular Data Applications

Most of the time they provide support for commits of all variability
information, but are completely feature-centric even when tackling
a clone-and-own context [27]. Some recent advances [33] push fur-
ther the integration of version control systems with SPL concepts,
with the aim to automatically synchronize variants with change
propagation based on a transparent collection of feature mappings.

Besides, a joint effort was also recently made to propose a unified
model to represent variability in both space and time [2]. The con-
ceptual model allows for representing features, feature revisions,
as well as mapping to fragments for composition, but it is focused
on a full SPL architecture with a platform, not on a clone-and-own
context to be managed.

Operation-based modeling. Handling model differences [34, 37]
is key in Model-Driven Engineering for comparing [50], version-
ing [1], or transforming models [7]. The work of Blanc et al. [8]
defines operation-based modeling in which representing models
involves breaking them down into sequences of elementary con-
struction operations (create, add, setProperty, setReference...) [40].
This allows for a more uniform way of detecting and resolving
structural inconsistencies between related models, regardless of
their meta-model. This approach has been exploited in the SPL field
to identify features in the source code of product variants [42, 55] or
in UML models [5], but always with the aim of migration towards
a common platform in a fully-fledged SPL. In our case, we aim at
representing the differences between the data processing model
and operation-based modeling seems to fit well. However, strictly
applying this approach would lead to representing the differences
at the finest grain with low-level operations on the model. This
would create very large traces with no salient changes from a user
perspective, and the need to retrieve them, as in proposals using se-
mantic lifting [32] or detecting model drift [53] or domain-specific
edits [52], as discussed in the previous paragraph. However, the
approach could be adopted by representing the user-level opera-
tions on a data processing model so that all adaptation traces would
be captured while being relevant to users. It must be noted that
this would only partially solve the problem as variability-related
operations creating or using a template are not directly supported
by this kind of approach.

Besides, delta modeling [13, 49] is a modular way to capture
variability by explicitly specifying the changes between system
variants. A change is defined by so-called delta modules that spec-
ify modifications (e.g., add/remove a superclass, add/remove an
interface) to be operated on a core part. Delta modules can then be
composed to build products. Although the aim of difference capture
is similar, in our case, our main focus is capturing successive model
changes in order to trace all adaptations and clones.

Spreadsheet technology. Using spreadsheets is one of the easiest
and the most flexible ways for many end-users to manipulate tab-
ular data [10, 11, 48] with direct live coding and deployment [29].
While their expressiveness is seen as low [14] and large data sets do
not scale well [15], research advances in the field of spreadsheets
have notably focused on smell detection in formula [29], but also
on extracting structural components and groups to reveal the un-
derlying semantics [12, 20-22]. In our case, we are interested in the
internal model of software that handle tabular data while providing
more expressive ways to structure the dependencies between data

and processes, and thus, to better define the semantics. This can also
be observed in all approaches building on model-driven engineering
to describe a model of the spreadsheet (e.g., ClassSheet [24]), and
mainly to reason from a spreadsheet on an inferred model [16-18]
containing functional dependencies and formulas. Interestingly, to
make a bidirectional transformation [18], Cunha et al. use a repre-
sentation based on atomic operations [8] on the spreadsheet itself
and its model representation in ClassSheet. We consider that our
approach is similar but with a business-oriented representation of
the tabular data and, above all, variability-related support.

In conclusion, to the best of our knowledge, while different
research results and approaches have tackled and sometimes solved
a part of the defined requirements, no solution currently exists to
meet all of them.

3 CONTRIBUTIONS

As discussed in the previous sections, we advocate that facing the
cloning and adaptations that must be done by end-users on their
data model while it is used, their model representation must be
captured along with each action. Representing actions at a high
level with an operation-based approach [8] should enable us to
build a complete trace, thereby eliminating the unintentional and
uncontrolled divergence in the model [53].

The model itself, which is presented in Section 3.1, will capture
both the business of data handling and processes, with concepts of
Observation, Requirement, and Value, and the trace of actions track-
ing the product evolution over time. On the business side, a product
is made of observations on subjects, associated with a value, and
constrained by explicit requirements on observations (which allows
for representing in the model dependencies between observations,
and consistency requirements between these dependencies). As
for the tracing part, the product evolution is explicitly represented
through linked trace objects that contain the different actions over
the model (cf. Section 3.3). To support the four variability-related
scenarios (cf. Sc.1to Sc.4 in Section 2.2), specific variability-aware
actions are captured in traces, creating explicit support for cloning
and adaptation actions (cf. Section 3.4).

It must be noted that we currently restrain the modeling part
to these observations, with no support for formulas that would
compute values, as in a spreadsheet. It would be also interesting
to study to which extent the business part of the model could be
generalized or applied in other domains. These two points are part
of our future work.

3.1 Model

3.1.1 Observation. In our model, the central element is observa-
tion. It enables the connection between a criterion evaluated, an
associated value, and the subjects being observed. Those concepts
are the key components of the domain (c¢f. Section 2.1). The nov-
elty and relevance of this model lie in its capacity to capture data
dependencies and to enable reasoning based on the usage of data.

As for our grasses trial example, we consider we are observing
the yield of two species (Andropogon Gerardii and Andropogon Halli)
growing in a specific plot and harvested at a specific date. The terms
"Species”, "Plot", "Yield" and "Harvest date" constitute the criteria
of the trial. A noted yield is about one of the species, in a plot at a

| Portfolio |

y0..* products

subjects criterion

1 observations 0..*

Product

Observation

observation 1 L N
0..1input| (1 output criteria 1..

constraint by
derived by 0..*| |1 adapted from

0..1 value

| Trace | \

| Value I 0.’
|Requirement|

derivedActions 1.y | 1_* adaptionActions

Action

Figure 3: The proposed model

Species Plot | Yield | Harvest date
Andropogon Gerardii*]™ ¥ 6 1/04
Andropogon Hallii | 2 8?\01/04

Andropogon Gerardii“’T;‘78T\>Ol/08

—> Requirements

—Value
—Criterion
— Subject
o IyieIdReq : Requirementl _
criterion 1 | criterion

criterion constraint
plot : Observation species : Observation yield : Observation
value = "Plot" value = "Species" value = "Yield" value = "Harvest Date"

Tcriterion
riterion ™ Species AG : Observation | criterion criterion

Ivalue ="Andropogon Gerardii“l

Isu bject

harvestDate : Observation

Ip\ot_1 : Observation I subject Iyield_AG1 .0104 : Observation subject ldate_m 04: Observationl
Ivalue =1 Ivalue =6]value ="01/04"

Figure 4: Partial instantiation of the model representing a
field book

precise date, the three latter being the subjects of the observation
evaluating the criterion "Yield".

The Figure 4 represents the tabular organization of a field book
in our example after applying scenarios 1 and 2, as in Figure 2. A
partial instantiation of the right part of our model (cf. Figure 3)
on this field book represented and mapped to the field book. The
bottom right grayed part corresponds to the rest of the instantiation
not represented.

It must be noted that the three concepts (observation, criterion,
subject) are by themselves observations. Notwithstanding its ap-
parent peculiarity, the observation postulates that a user’s data
input can assume the roles of a subject, a criterion, or an observa-
tion in a way analogous to a cell in a spreadsheet. The distinction
between the three types of entities comes from the usage made

Bounouas et al.

of the information and the way it impacts the gathering and the
post-process.
Our model can be mapped to the field book as follows:

— the first line corresponds to the criteria in the model which
are traced in Section 3.2 under the instance of species, plot,
yield, and hd

- all the cells in the Yield column are neither a criterion
nor a subject but are the observations evaluating the crite-
rion yield and dependent to subjects evaluating the criteria
species, plot and yield as illustrated thanks to the arrows.

— all the other cells are subjects (observations evaluating the
criteria Species, Plot, and Harvest date).

An observation o is defined by:

— a value v, which is a reference to a datum;

— the criterion c, it evaluates, if ¢, is null, o is itself a criterion;

- the set of observed subjects so, if the set is empty and o
evaluates a criterion, o is itself a subject;

- the requirement r, associated with a criterion c, enables
the conformity check that all observations o; evaluating c,
conform to the expectations noted conforms(r,, 0;).

We note o = (co, So, 70, Vo). Eponymous functions are defined, such
as subjects(o) = so. We note the absence of value by null and any
value by _.

For the sake of simplicity in the examples, we note the values
directly in the tuple and the requirement only as a set of criteria to
which the observations should refer.

The observation yield4G01.0104 in Figure 4 can then be rep-
resented as: 0yag1.0104 = (yield, (ag, 1,01/04), null, 6). It is worth
noting that ry is, here, null since the requirement object is an aggre-
gation of criteria defining the constraints applied to the criterion
itself which is, then, transposed into the subjects’ dependency on
the observations evaluating the criterion.

A concept that can be considered unique within the business
domain is represented by the same instance within our model when
it’s referenced within multiple contexts. For example, plot number 1
in the field book is considered unique and, therefore, is represented
by a unique instance. The yields valued by 8 are, unlikely, specific
to a set of subjects and are represented by distinct instances.

Criterion characterization. A criterion is an observation c that
neither evaluates any other criterion nor observes any subject. It
represents one of the aspects that should drive the observation by
the person in charge of the trial (e.g., "Number of Tomatoes on the
plant", "Maze’s height", "Strawberry’s redness (0 to 5)").

i.e., isCriterion(c) & criterion(c) = null A subjects(c) = {}

Subject characterization. A subject is an observation s that evalu-
ates one criterion and does not observe a subject. This characteristic
offers the possibility to compose an observed object while keeping
its components observable by themselves and correlate two obser-
vations about a common subject (e.g., making possible to correlate
a species performance within a plot and the soil analysis of the
plot).

i.e., isSubject(s) & criterion(s) # null A subjects(s) = {}

Observation properties. An observation o is well-formed if it
respects the following properties, isWellFormed(o) &

An Action-based Model to Handle Cloning and Adaptation in Tabular Data Applications

(1) itis a criterion, or it evaluates one criterion
isCriterion(o)V(c = criterion(o), ¢ # null, isCriterion(c))
(2) it only observes subjects, i.e.,
Vs € subjects(0), isSubject(s)
(3) arequirement r references only criteria, i.e.,
Yo € criteria(r), isCriterion(o)
(4) only criteria references requirements, i.e.,
requirement (o) # null = isCriterion(o)
(5) it complies with the requirements of its criterion ie.,
—isCriterion(o) =
Ve € criterion(o), conforms(requirement(c),0)

3.1.2 Product. As explained in Section 1 a product aggregates a
set of observations and their relations. A product p is defined by

- anameny

— a set of observations Op,

— atracet) that stores the actions whose product is the result
(see next section).

We note p = (np, Op, tp). Eponymous functions are defined, such
as observations(p) = Op and derivate functions such criteria(p) =
{0 € Oy | isCriterion(o)}

Product properties. A product p is well-formed if it respects
the following properties, isWellFormed(p) &

(1) All the observations are well-formed, i.e.,
Yo € observations(p), isWellFormed(o),
(2) The product is complete, i.e.,
observations(p) = Op,Vo € Op
criteria(o) € Op,
subjects(o) € Op,
criteria(requirement (o)) C Op
(3) All the observations on the same criterion relate to different
sets of subjects* keeping those observations distinguishable
ie,
Ve € criterion(p),Yo; € observations(c),
—3Joj # oj, subjects(o;) = subjects(o;)
(4) Any observation respects the requirements of its criterion,
ie.,
Ve € criterion(p), re = requirement(c) # null,
Yo; € observations(c), conforms(re,0;)

We define the product p1 corresponding to the table shown
in Figure 4 as being formed by the set of observations defined
previously:

i.e, observations(pl) = {species, ..., hd1,y1}

A portfolio pf is a set of Products and is well-formed if all of its
products are well-formed i.e., Vproduct(p) € pf, isWellFormed(p)
and all are named distinctly.

It is possible to find a product from its name. As we only work
with one portfolio, we simply note: getProduct(productName) —
product

3.2 Computed trace

A product conceived to be reused as a clone candidate (which can
also be referred to as a template) is illustrated within Figure 2 by the
“If several observations are on the same criterion and the same subjects, then it is the

same, or a subject is missing, which makes it possible to distinguish them, such as a
date or an author.

first product issued from the empty set (scenario Sc.1). It contains the
expected criteria and also the associated Requirements as expressed
in the upper part of Figure 4. A cloned product contains the trace
of all the actions required to reach its state and the references to
the traces leading to its children.

The product trace is processable by the cloning actions to create
a new product containing those criteria with their requirements
and enables the adaptations without altering the source product
(scenario Sc.2). The adaptations can relate to the data gathered (the
subjects and the related observations) but also to the criteria they
refer to. This is illustrated within the Figure 2 by the adaptations
leading to the addition of the subjects Andropogon Gerardii, An-
dropogon Hallii, and their related data but also with the addition
of the new criterion Harvest date. That additional information is
part of the product but exists also through the trace of the products.
Furthermore, as the cloning actions can be made from a product
under use, scenario Sc.3 will be covered while filtering capabilities
added to the cloning action (Subsequently, this filtered cloning ac-
tion is referred to as "extraction action") will support scenario Sc.4.
This latter scenario is depicted in Figure 2 by the conservation of
the yield’s observation related to the species Andropogon Gerardii
in plot number 1 and harvested the 01/04. This filtered clone can
be, then, adapted to collect a new additional set of data enabling
business operations that are not in the scope of this paper (see
Section 6).

3.3 Adaptation actions

We are defining the following independent and atomic actions®.

Those actions can lead to inconsistent objects6 that are, in this case,
unaltered:

e createProduct(name) — Product : Create a new named product
— Pre-conditions:

(1) there is no product with the same name in the

current portfolio
— Post-conditions:

(1) a well-formed named product exists in the port-
folio and can be derived or adapted. It does not
contain any observations.

e createObservation(criterion, subjectList) — Observation : Cre-
ate a new observation
— Pre-conditions:

(1) criterion can be null or must be an existing cri-
terion

(2) subjectList can be empty or every element must
be an existing subject

(3) the construction of the observation conforms
with the criterion associated with it

— Post-conditions:
(1) the new observation exists and is well-formed
e valuateObservation(observation,value) — wvoid : Associate a
value to a pre-existing observation
— Pre-conditions:

5Observation removal are not supported as filtering is provided with the cloning actions
(Section 3.4). The modification of a value (rather than the removal of an observation)
is not supported in this context, and is closely related to the future work on formulas.
®Many inconsistencies may occur in traces. Detecting them is part of our future work,
and some trails are discussed in Section 4.2.

(1) observation exists and is well-formed
— Post-conditions:
(1) the observation exists, is valued, and is well-
formed
o addObservation(product, observation) — void : Add an obser-
vation to a product
- Pre-conditions:
(1) the product and the observation exist and are
well-formed
(2) the observation’s criteria exist and its require-
ments are respected
— Post-conditions:
(1) the product exists and is well-formed
o createRequirement(criterion, criteriaList) — Requirement : Cre-
ate a requirement for a specific criterion
— Pre-conditions:
(1) the criterion exists, is valid, and is not associated
with another requirement
(2) the criteria within the list exist and are well-
formed
(3) all the criteria exist within the same product
— Post-conditions:
(1) the product is well-formed (all observations as-
sociated with the criterion respect the require-
ment)

By design, the observations and the products are always well-
formed.

Example:

(1) createProduct(’GrassesTemplate’) — p1
(2) createObservation(null, {}) — species
(3) valuateObservation(species,”Species”)
(4) addObservation(pl, species)

()

(6)

™)

createObservation(plot,{}) — pl1
valuateObservation(pl1, 1), ...

Trace 1: The trace leading to the product which can be
mapped to the table in 4:

At this stage, there are no requirements. According to the product
p1’s characteristics, all the observations on the criterion yield are
related to a species, a plot, and a harvest date. We can then create a
requirement relating to the criterion yield traced as:
createRequirement (yield, {plot, species, hd}.

This requirement creation inducts a conformity check that every
observation on the criterion yield conforms to it and references a set
of observations valuating the criteria defined by the requirement.

A trace t = [ay, ...an] is well-formed if all the actions lead to a
well-formed product.

Various filtering actions that do not modify the cloned products
can be defined. We will not present them here since those actions
are product and use case specifics, although they are very useful.

Bounouas et al.

3.4 Cloning actions

Based on the adaptation actions, we are now interested in actions
that allow the cloning of existing products and extracting new
products by limiting the embedded observations.

Those actions are only applicable to well-formed elements.

3.4.1 Derivation.
derive(originProduct, newProductName) — Product

The derivation produces a new product which is a deep copy of
the original product thanks to its trace. By design, this new product
is well-formed. This action is advantageous in situations where it
is required to adapt a product with additional data without altering
the original version. The trace embedded within the new product is,
therefore, a duplicate of the trace of the product which it is derived
from. The derivation action is marked within the source product to
trace its derivations. The derivation action generates atomic actions
which are denoted as derived actions (da) (derivedActions in the
model).

Example:
(1) derive(grassesTemplate,”grassTrialOne”) — p2
(2) da: createObservation(null,{}) — harvestdatepy
(3) da : valuateObservation(harvestdateys, "Harvestdate”)
(4) da: addObservation(p2, harvestdatep;)

Trace 2: The trace leading to the product p2 derivative of the
GrassesTemplate product (first step of Scenario 2 in Figure 2).

3.4.2 Extraction.

extract(originProduct, observationsList, newProductName)
— Product x Listoflostobservations

The extraction produces a new product in which only the re-
quested observations have been cloned and adapted, only, that they
allow for the construction of a well-formed product.

Observations that could not be cloned are returned as "lost". Ob-
servations are lost if the criterion associated with them is not part
of the required observations. Subjects that are no longer among
the requested observations will not be referenced by cloned obser-
vations. Observations can thus become subjects according to our
definition.

In the implementation, this action first returns an atomic action
list and the list of lost observations. The user can, then, carry out
the extraction action by requesting the execution of the actions or
reformulating the request.

Example:
(1) extract(p2,
{speciespg, plotps, yieldys, harvestdatepz},
“trialTwo”) — p3
(2) da: createObservation(null,{}) — tempps
(3) da : valuateObservation(tempps, " Temp”)
(4) da: addObservation(p3, tempp3)

Trace 3: The trace leading to the product p3 extracted from
the p2 product (first step of Scenario 3 in Figure 2).

The detailed process of a filtered extraction is as follows:

(1) Retrieve the source product’s trace ay, ...an

An Action-based Model to Handle Cloning and Adaptation in Tabular Data Applications

(2) Remove every creation trace corresponding to an observa-
tion that is not kept:
- An observation about a non-kept criterion (i.e., a crite-
rion absent from the list of kept observations).
— An observation about a non-kept subject (i.e., a subject
absent from the list of kept observations).
- Every value of a non-kept observation

The trace leading to the execution of Scenario 4 is not presented
here but can be obtained from our reproduction package (cf. Sec-
tion 4.2).

4 EVALUATION
4.1 Measurements in an industrial case study

Doriane, our industrial partner, provides its customer with a tai-
lored complex software system whose configuration can be refined
by the end-user afterward. As some customer data were available
for the usage of the application for several years (following the cur-
rent solution organization of Figure 1), we conducted an experiment
to validate our initial hypotheses and the relevance of our approach.
One of the main objectives was to confirm that adaptations and
cloning were actually present in the saved spreadsheet-oriented
models. While we conducted interviews first (cf. Section 2.2), it ap-
peared that the teams currently lack tools to compare products and
trace their provenance. Nevertheless, all participants confirmed the
derivation of products, particularly over multiple years to monitor
experiment evolution and extract knowledge to start new trials.

We then extracted 6 portfolios from one of Doriane’s largest
customers, each one representing a sub-domain of this customer.
We gathered the products, and identified their usages thanks to the
interviews. The extracted data are covering a period from 2004 to
2022 for a total of 242 413 trials carried out across all portfolios over
18 years. We then calculated the different input information that
would be needed to build each element in our model. It must be
noted that we did not couple this extraction tooling to our Prolog
prototype (cf: next section) as it would need a generation of each
action, which was not possible due to the lack of information about
the dependencies among the data. Indeed the strength of our model
should lie in its ability to track actions by modeling observations
that take into account the observed subjects. However, automati-
cally discovering these dependencies remains challenging in the
general case and, in our experience, appears to depend on the orga-
nization of teams in its implementation. In the used portfolios, as
everything was organized in columns, we could not automatically
derive these dependencies, but we managed to obtain criteria and
manually analyzed with application engineers their dependencies
in data to determine subjects and observations. We extracted stan-
dard requirements such as the relationships between observations,
dates, plants, and plots.

The resulting metrics are shown in Table 1. The number of "actual
products” corresponds to the identified products at the beginning of
2023. However, this is not the real number of products, as the current
version of the Doriane application cannot trace and name the cloned
products. As we knew from the conducted interviews that a yearly
release is quite common among customers and is at least a minimum,
we estimated a number of "yearly-released products" with a yearly
derivation decision point per product. We then calculate criteria,

1

3

4

5

Port- # of # of # of # of # of # of
folio actual yearly- | criteria| subjects | observations model
products | released actions
products (estim.)
(estim.)
A 16 288 989 272 835 11 137 621 11 411 445
B 32 576 1328 518 783 40 210 197 40 730 308
C 29 522 1224 99 690 5 841 945 5942 859
D 21 378 1046 47 170 2962 399 3010615
E 18 324 2781 9637 3254 960 3267 378
F 11 198 1297 148 133 5513299 5662 729

Table 1: Metrics of our model applied to our industrial case

subjects, and observations. The subjects presented in Table 1 are
only associated with the standard requirements described in the
previous paragraph. Regarding model actions, we estimated their
number by tracking atomic actions at the level of the tabular data,
and divided the number by 3, as on average, 3 of these actions
correspond to a high-level action in our model. This process is
close, but simpler here, to the one used in semantic lifting for model
differences [32, 52].

The different metrics on products, criteria, subjects, and espe-
cially observations, show that they are a huge number of adap-
tations, and cloning, in all portfolios over the years. On metrics
themselves, we observe a large number of subjects in comparison
with criteria, which correspond to the fact that the same criteria are
used and reused across many different trials and thus subjects (e.g.,
different plants, plots). This shows that adaptations and cloning,
in the forms of the scenarios determined by our interviews, are
present in all portfolios, demonstrating also their relevance. Over-
all these metrics also demonstrate that the underlying models at
customer sites are really complex and of important size.

4.2 Prototype and reproduction package

To evaluate the capabilities of our approach to cover the scenar-
ios defined in Section 2, we implemented as a proof of concept
a prototype in Prolog. The main idea is to produce construction
actions, as well as derive/extract actions, as Prolog facts, like in the
work of Blanc et al. [8]. Thanks to the Prolog inference engine, it
enables us to have a direct interpretation of the model based on
predicate logic while maintaining each action as a first-class citizen.
With this prototype, we are able to represent the model through
Prolog facts and each Prolog definition is very close to the formal
definition. For example, Listing 1 shows the Prolog facts that define
the creation of a product, an observation, and a requirement, as
well as the operation to add an observation to a product. The only
additional statement used is the trace operation to force logging
of the reasoning engine. The Prolog implementation of the whole
action model, later with its extensions, will enable inconsistency
detection [8] at many levels (e.g., consistency of requirements with
dependent observations, consistency of extracted product). Still, we
believe that the separate formalization helps in providing a neat
definition decoupled from Prolog implementation details.
createProduct (OutProductRef ,ProductName) :-
gensym(ProductName ,OutProductRef),

asserta(product (OutProductRef ,ProductName)),
trace(createProduct ,[OutProductRef ,ProductName]).

createObservation(ProductRef ,OutRef,Criteria, Subjects) :-
checkPrecondition(createObservation, createObservation(
ProductRef ,OutRef ,Criteria, Subjects)),
gensym(obs, OutRef),
asserta(obs(OutRef ,Criteria,Subjects)),
checkRequirementOnCriteria(Criteria,OutRef),
trace(createObservation,[OutRef,Criteria, Subjects]).

3 addObservation(ProductRef ,RefToObs) :-

checkPrecondition(addObservation, addObservation(ProductRef ,
RefToObs)),!,
asserta(obs(ProductRef ,RefToObs)),
trace(addObservation,[ProductRef ,RefToObs]).

createRequirement (_ProductRef ,RefToCriterion,RefToCriteria) :-
asserta(req(RefToCriterion,RefToCriteria)),
trace(createRequirement ,[RefToCriterion,RefToCriterial).

Listing 1: Prolog facts representing the model

In the implementation, the scenarios can be designed as an or-
dered sequence of operations also defined as Prolog facts. The four
scenarios are available in the reproduction package as a single run
of the Prolog engine. We added to the implementation an evaluator
of the generated trace to show that it can be interpreted as defined in
the model. To create a new product as a clone, our implementation
then re-executes the trace of the targeted product.

A reproduction package is available online [9]. The Prolog code
of the implemented model and the four scenarios are provided
within a Dockerized environment containing SWI-Prolog to ease
execution.

5 THREATS TO VALIDITY

On the application to the customer data provided by our partner,
the first threat comes from the data treatment we applied. We had
to determine by ourselves the derivation decision points within
the extracted products extracted. This requirement came from the
clone-and-own process currently implemented. To overcome this
threat, we would have to iterate the whole generated traces with
all the involved end-users at the customer site, as well as Doriane
application engineers. Furthermore, it is obvious that a better val-
idation could arise from a complete integration of the extracted
facts from the customer data into our implementation. This is part
of our plan for future work.

As for the Prolog prototype, the threats to validity are both
internal, through the quality of its implementation, and external,
with the scenarios coverage. The current implementation is only
executed on the illustrative examples used in the paper, but we
mitigated this threat by providing a trace generator that allows for
re-interpreting the trace by the Prolog engine, leading to a kind of
bootstrap of the tracing part. While the coverage of usage scenarios
is by nature partial in comparison with the tackled problem, the fact
that they were determined through interviews with our industrial
partner gives us confidence in their relevance.

We also acknowledge two main limitations. First, the model and
its traces are currently not exploited to reason on change prop-
agation while it is a valuable feature to provide after making all
differences explicit and complete. Still, we believe that our contribu-
tion is the first consistent step towards this goal. Second, we do not
handle formulas as they certainly need specific handling to capture
changes and reason about them. This is part of our future work.

Bounouas et al.

6 CONCLUSION

Tabular data processing is at the center of almost all data-intensive
applications. When tabular data are managed in dedicated software,
more powerful than spreadsheets, they are mainly represented as
column and row models. By the nature of the processes, such as
research trials, these models are constantly cloned and adapted
by the actions of the final users. Both the low-level nature of the
models and the clone-and-own approach used then harm the ease
of maintenance. - Our approach i) represents each high-level action
as construction actions [8] over a model at the domain level so that
adaptations are traced, and ii) represents extraction from a model
to a template (actually another model) and derivation actions as
the same kind of actions to trace cloning. As highlighted by four
different scenarios, the generated trace keeps the whole history of
model differences with explicit definitions of each clone, removing
any model drift. A study conducted on customer data from our
industrial partner shows the relevance of the supported scenarios
to reason over all the changes and clones that happened over 19
years and could be properly captured. We have also validated the
approach by implementing in Prolog the complete set of actions,
as well as a trace generator that makes it possible to replay the
generated traces on some small-scale examples.

In the short term, we plan to improve the experiments to vali-
date the current state of the proposed model, bridging the Prolog
prototype with the data extraction from customer data. This would
need to obtain more information from the application engineers
but should bring a more complete empirical validation and some
insights on where to improve the model.

Two main research lines are part of our research plan in the
longer term. First, we have to build on our model to define merging
operations with inconsistency detection, so that change propaga-
tion support can be fully provided and experimented with. Second,
we have to extend the model to also capture formulas or other
source codes that are currently relating many elements in our mod-
els, just like in spreadsheets. To handle formulas, our operation-
based approach could be too costly or simply not applicable as the
edit actions could not be fully captured. It may be interesting to
exploit the work done to extract models or semantic structures
from spreadsheets [17, 22], as well as edit scripts generated from
AST differencing [25] and semantic lifting from mined edits [52].

REFERENCES

[1] Kerstin Altmanninger, Martina Seidl, and Manuel Wimmer. 2009. A survey on
model versioning approaches. International Journal of Web Information Systems
5,3 (2009), 271-304.

[2] Sofia Ananieva, Sandra Greiner, Thomas Kiihn, Jacob Kriiger, Lukas Linsbauer,
Sten Griiner, Timo Kehrer, Heiko Klare, Anne Koziolek, Henrik Lénn, et al. 2020.
A conceptual model for unifying variability in space and time. In Proceedings of
the 24th ACM Conference on Systems and Software Product Line: Volume A-Volume
A 1-12.

[3] Michat Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki, Thomas

Schmorleiz, Ralf Limmel, Stefan Stinciulescu, Andrzej Wasowski, and Ina Schae-

fer. 2014. Flexible product line engineering with a virtual platform. In Companion

Proceedings of the 36th International Conference on Software Engineering. 532-535.

Wesley KG Assuncio, Roberto E Lopez-Herrejon, Lukas Linsbauer, Silvia R

Vergilio, and Alexander Egyed. 2017. Reengineering legacy applications into

software product lines: a systematic mapping. Empirical Software Engineering

22, 6 (2017), 2972-3016.

[5] Wesley KG Assuncio, Silvia R Vergilio, and Roberto E Lopez-Herrejon. 2020.
Automatic extraction of product line architecture and feature models from UML
class diagram variants. Information and Software Technology 117 (2020), 106198.

[4

An Action-based Model to Handle Cloning and Adaptation in Tabular Data Applications

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Thorsten Berger, Jan-Philipp Steghofer, Tewfik Ziadi, Jacques Robin, and Jabier
Martinez. 2020. The state of adoption and the challenges of systematic variability
management in industry. Empirical Software Engineering 25 (2020), 1755-1797.
Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. 2012. Formal foundation
of consistent EMF model transformations by algebraic graph transformation.
Software & Systems Modeling 11 (2012), 227-250.

Xavier Blanc, Isabelle Mounier, Alix Mougenot, and Tom Mens. 2008. Detecting
model inconsistency through operation-based model construction. In Proceedings
of the 30th international conference on Software engineering. 511-520.

Nassim Bounouas, Mireille Blay-Fornarino, and Philippe Collet. 2023. SPLC’23
Reproduction Package. https://doi.org/10.5281/zenodo.8111700

Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Comai, and
Maristella Matera. 2003. Morgan Kaufmann series in data management systems:
Designing data-intensive Web applications. Morgan Kaufmann.

Yolande E Chan and Veda C Storey. 1996. The use of spreadsheets in organizations:
Determinants and consequences. Information & Management 31, 3 (1996), 119—
134.

Zhe Chen and Michael Cafarella. 2013. Automatic web spreadsheet data extrac-
tion. In Proceedings of the 3rd International Workshop on Semantic Search over the
Web. 1-8.

Dave Clarke, Michiel Helvensteijn, and Ina Schaefer. 2010. Abstract delta model-
ing. ACM Sigplan Notices 46, 2 (2010), 13-22.

Samuel Clemens. 2011. Five Ways To Tell You Have Outgrown Excel. https:
//www.insightsquared.com/blog/5-ways- to-tell-you- have-outgrown-excel/
Rob Collie. 2012. Big Data is Just Data, Why Excel “Sucks”, and 1,000 Miles
of Data. http://www.powerpivotpro.com/2012/10/big-data-is-just-data-why-
excel-sucks-and-1000-miles-of-data/

Jacome Cunha, Martin Erwig, Jorge Mendes, and Joao Saraiva. 2016. Model
inference for spreadsheets. Automated Software Engineering 23 (2016), 361-392.
Jacome Cunha, Martin Erwig, and Joao Saraiva. 2010. Automatically inferring
classsheet models from spreadsheets. In 2010 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing. IEEE, 93-100.

Jacome Cunha, Joao P Fernandes, Jorge Mendes, Hugo Pacheco, and Joao Saraiva.
2012. Bidirectional transformation of model-driven spreadsheets. In Theory
and Practice of Model Transformations: 5th International Conference, ICMT 2012,
Prague, Czech Republic, May 28-29, 2012. Proceedings 5. Springer, 105-120.
Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature Location in Source Code: A Taxonomy and Survey. Journal of Software:
Evolution and Process 25, 1 (2013), 53-95. https://doi.org/10.1002/smr.567
Haoyu Dong, Shijie Liu, Zhouyu Fu, Shi Han, and Dongmei Zhang. 2019. Se-
mantic structure extraction for spreadsheet tables with a multi-task learning
architecture. In Workshop on Document Intelligence at NeurIPS 2019.

Wensheng Dou, Shi Han, Liang Xu, Dongmei Zhang, and Jun Wei. 2018. Expand-
able group identification in spreadsheets. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 498-508.

Lun Du, Fei Gao, Xu Chen, Ran Jia, Junshan Wang, Jiang Zhang, Shi Han, and
Dongmei Zhang. 2021. TabularNet: A neural network architecture for under-
standing semantic structures of tabular data. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining. 322-331.

Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker,
and Krzysztof Czarnecki. 2013. An exploratory study of cloning in industrial
software product lines. In 2013 17th European Conference on Software Maintenance
and Reengineering. IEEE, 25-34.

Gregor Engels and Martin Erwig. 2005. ClassSheets: automatic generation of
spreadsheet applications from object-oriented specifications. In Proceedings of
the 20th IEEE/ACM international Conference on Automated software engineering.
124-133.

Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-grained and accurate source code differencing. In Pro-
ceedings of the 29th ACM/IEEE international conference on Automated software
engineering. 313-324.

Wolfram Fenske, Jens Meinicke, Sandro Schulze, Steffen Schulze, and Gunter
Saake. 2017. Variant-preserving refactorings for migrating cloned products to
a product line. In 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 316-326.

Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing clone-and-own with systematic reuse for developing
software variants. In 2014 IEEE International conference on software maintenance
and evolution. IEEE, 391-400.

Stefan Fischer, Lukas Linsbauer, Roberto E Lopez-Herrejon, and Alexander Egyed.
2015. The ECCO tool: Extraction and composition for clone-and-own. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 2.
IEEE, 665-668.

Felienne Hermans, Bas Jansen, Sohon Roy, Efthimia Aivaloglou, Alaaeddin
Swidan, and David Hoepelman. 2016. Spreadsheets are code: An overview of
software engineering approaches applied to spreadsheets. In 2016 IEEE 23rd Inter-
national Conference on Software Analysis, Evolution, and Reengineering (SANER),
Vol. 5. IEEE, 56-65.

(30]

[31

(32]

(34]

(35]

(36]

[37

(38]

[39

[40

N
furg

[42

[43

(44

'S
)

[46

[47

[48

[49]

[51

[52

Tony Hey. 2012. The Fourth Paradigm-Data-Intensive Scientific Discovery.
In E-Science and Information Management: Third International Symposium on
Information Management in a Changing World, IMCW 2012, Ankara, Turkey,
September 19-21, 2012. Proceedings, Vol. 317. Springer, 1.

Christian Késtner, Alexander Dreiling, and Klaus Ostermann. 2013. Variability
mining: Consistent semi-automatic detection of product-line features. IEEE
Transactions on Software Engineering 40, 1 (2013), 67-82.

Timo Kehrer, Udo Kelter, and Gabriele Taentzer. 2011. A rule-based approach to
the semantic lifting of model differences in the context of model versioning. In
2011 26th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2011). IEEE, 163-172.

Timo Kehrer, Thomas Thiim, Alexander Schultheify, and Paul Maximilian Bittner.
2021. Bridging the gap between clone-and-own and software product lines. In
2021 IEEE/ACM 43rd International Conference on Software Engineering: New Ideas
and Emerging Results (ICSE-NIER). IEEE, 21-25.

Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. 2006. Model com-
parison: a foundation for model composition and model transformation testing.
In Proceedings of the 2006 international workshop on Global integrated model
management. 13-20.

Jacob Kriiger and Thorsten Berger. 2020. Activities and costs of re-engineering
cloned variants into an integrated platform. In Proceedings of the 14th Interna-
tional Working Conference on Variability Modelling of Software-Intensive Systems.
1-10.

Jacob Kriiger and Thorsten Berger. 2020. An empirical analysis of the costs of
clone-and platform-oriented software reuse. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 432-444.

Yuehua Lin, Jing Zhang, and Jeff Gray. 2004. Model comparison: A key chal-
lenge for transformation testing and version control in model driven software
development. In OOPSLA Workshop on Best Practices for Model-Driven Software
Development, Vol. 108. Citeseer, 6.

Lukas Linsbauer, Thorsten Berger, and Paul Grinbacher. 2017. A classification
of variation control systems. ACM SIGPLAN Notices 52, 12 (2017), 49-62.
Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander Egyed. 2018.
Variability extraction and modeling for product variants. In Proceedings of the
22nd International Systems and Software Product Line Conference-Volume 1. 250
250.

Ernst Lippe and Norbert Van Oosterom. 1992. Operation-based merging. In
Proceedings of the fifth ACM SIGSOFT symposium on Software development envi-
ronments. 78—-87.

Roberto Erick Lopez-Herrejon, Sheny Illescas, and Alexander Egyed. 2018. A
systematic mapping study of information visualization for software product line
engineering. Journal of software: evolution and process 30, 2 (2018), e1912.
Jabier Martinez, Tewfik Ziadi, Tegawendé F Bissyandé, Jacques Klein, and Yves
Le Traon. 2015. Automating the extraction of model-based software product
lines from model variants (T). In 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 396-406.

Gabriela K Michelon, Lukas Linsbauer, Wesley KG Assuncéo, Stefan Fischer,
and Alexander Egyed. 2021. A Hybrid Feature Location Technique for Re-
engineering Single Systems into Software Product Lines. In 15th International
Working Conference on Variability Modelling of Software-Intensive Systems. 1-9.
Celina M Olszak and Ewa Ziemba. 2007. Approach to building and implementing
business intelligence systems. Interdisciplinary Journal of Information, Knowledge,
and Management 2, 1 (2007), 135-148.

Klaus Pohl, Giinter Bockle, and Frank J van Der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer Science &
Business Media.

Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. 2013. Managing cloned
variants: a framework and experience. In Proceedings of the 17th International
Software Product Line Conference. 101-110.

Julia Rubin, Andrei Kirshin, Goetz Botterweck, and Marsha Chechik. 2012. Man-
aging forked product variants. In Proceedings of the 16th International Software
Product Line Conference-Volume 1. 156~160.

Christopher Scaffidi, Mary Shaw, and Brad Myers. 2005. Estimating the numbers
of end users and end user programmers. In 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC’05). IEEE, 207-214.

Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tan-
zarella. 2010. Delta-oriented programming of software product lines. In Software
Product Lines: Going Beyond: 14th International Conference, SPLC 2010, Jeju Island,
South Korea, September 13-17, 2010. Proceedings 14. Springer, 77-91.

Matthew Stephan and James R Cordy. 2013. A Survey of Model Comparison
Approaches and Applications. Modelsward (2013), 265-277.

Christof Tinnes, Timo Kehrer, Mitchell Joblin, Uwe Hohenstein, Andreas Biesdorf,
and Sven Apel. 2021. Learning domain-specific edit operations from model
repositories with frequent subgraph mining. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 930-942.

Christof Tinnes, Timo Kehrer, Mitchell Joblin, Uwe Hohenstein, Andreas Bies-
dorf, and Sven Apel. 2023. Mining domain-specific edit operations from model

https://doi.org/10.5281/zenodo.8111700
https://www.insightsquared.com/blog/5-ways-to-tell-you-have-outgrown-excel/
https://www.insightsquared.com/blog/5-ways-to-tell-you-have-outgrown-excel/
http://www.powerpivotpro.com/2012/10/big-data-is-just-data-why-excel-sucks-and-1000-miles-of-data/
http://www.powerpivotpro.com/2012/10/big-data-is-just-data-why-excel-sucks-and-1000-miles-of-data/
https://doi.org/10.1002/smr.567

Bounouas et al.

repositories with applications to semantic lifting of model differences and change [54] Yinxing Xue. 2011. Reengineering legacy software products into software product

profiling. Automated Software Engineering 30, 2 (2023), 17. line based on automatic variability analysis. In Proceedings of the 33rd Interna-
[53] Christof Tinnes, Wolfgang Rossler, Uwe Hohenstein, Torsten Kithn, Andreas tional Conference on Software Engineering. 1114-1117.

Biesdorf, and Sven Apel. 2022. Sometimes you have to treat the symptoms: [55] Tewfik Ziadi, Luz Frias, Marcos Aurélio Almeida da Silva, and Mikal Ziane. 2012.

tackling model drift in an industrial clone-and-own software product line. In Feature identification from the source code of product variants. In 2012 16th

Proceedings of the 30th ACM Joint European Software Engineering Conference and European Conference on Software Maintenance and Reengineering. IEEE, 417-422.

Symposium on the Foundations of Software Engineering. 1355-1366.

	Abstract
	1 Introduction
	2 Motivations
	2.1 Context
	2.2 Problem statement
	2.3 State of the art

	3 Contributions
	3.1 Model
	3.2 Computed trace
	3.3 Adaptation actions
	3.4 Cloning actions

	4 Evaluation
	4.1 Measurements in an industrial case study
	4.2 Prototype and reproduction package

	5 Threats to validity
	6 Conclusion
	References

