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ABSTRACT:

One of the major quality control parameters in bundle adjustment are the posterior estimates of the covariance of the estimated
parameters. Posterior covariance computations have been part of the open source Damped Bundle Adjustment Toolbox in Matlab
(DBAT) since its first public release. However, for large projects, the computation of especially the posterior covariances of object
points have been time consuming.
The non-zero structure of the normal matrix depends on the ordering of the parameters to be estimated. For some algorithms, the
ordering of the parameters highly affect the computational effort needed to compute the results. If the parameters are ordered to
have the object points first, the non-zero structure of the normal matrix forms an arrowhead.
In this paper, the legacy DBAT posterior computation algorithm was compared to three other algorithms: The Classic algorithm
based on the reduced normal equation, the Sparse Inverse algorithm by Takahashi, and the novel Inverse Cholesky algorithm. The
Inverse Cholesky algorithm computes the explicit inverse of the Cholesky factor of the normal matrix in arrowhead ordering.
The algorithms were applied to normal matrices of ten data sets of different types and sizes. The project sizes ranged from 21
images and 100 object points to over 900 images and 400,000 object points. Both self-calibration and non-self-calibration cases
were investigated. The results suggest that the Inverse Cholesky algorithm is the fastest for projects up to about 300 images. For
larger projects, the Classic algorithm is faster. Compared to the legacy DBAT implementation, the Inverse Cholesky algorithm
provides a performance increase by one to two orders of magnitude. The largest data set was processed in about three minutes on a
five year old workstation.
The legacy and Inverse Cholesky algorithms were implemented in Matlab. The Classic and Sparse Inverse algorithms included
code written in C. For a general toolbox as DBAT, a pure Matlab implementation is advantageous, as it removes any dependencies
on, e.g., compilers. However, for a specific lab with mostly large projects, compiling and using the classic algorithm will most
likely give the best performance. Nevertheless, the Inverse Cholesky algorithm is a significant addition to DBAT as it enables a
relatively rapid computation of more statistical metrics, further reinforcing its application for reprocessing bundle adjustment results
of black-box solutions.

1. INTRODUCTION

1.1 Background

One of the major quality control parameters in bundle adjust-
ment are the posterior estimates of the covariance of the es-
timated parameters. In photogrammetric projects oriented to-
wards robust measuring purposes, this is not only essential but
very important for quality control. Indeed, the covariance val-
ues indicate the quality of the bundle adjustment result and thus
its feasibility for use as topographic and surveying products. A
common practice would be to compare these posterior covari-
ance values with the project requirements, which often times
depends on the required map scale. A photogrammetric mission
may be considered acceptable if and only if its quality param-
eters, including the covariance values, are within the project’s
tolerance.

A more in-depth analysis to the geometrical qualities of a pho-
togrammetric project is also sometimes necessary, for exam-
ple when errors or deviation from prior values are detected.
This becomes more and more important with the increasing
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use of UAV (Unmanned Aerial Vehicle) platforms, colloquially
known as drones. Contrary to classical metric photogrammetric
survey, the use of consumer-grade cameras in drone imagery is
less reliable and therefore requires more attention as far as the
quality is concerned. This in-depth analysis may be performed
by various means, including by computing the correlation rate
between the different calculated parameters; a metric which is
also derived from the covariance matrix.

Since geometric quality is of the utmost importance in these
spatial applications, the computation of covariance is very inter-
esting for quality control purposes. However, for large projects,
the computation of especially the posterior covariances of ob-
ject points (OP) can be a time consuming process.

The Damped Bundle Adjustment Toolbox (DBAT) for Matlab
was conceived as an open source toolbox to perform bundle ad-
justment computations (Börlin and Grussenmeyer, 2013). It has
been used for several applications, most notably to reprocess
the bundle adjustment results of commercial solutions (Mur-
tiyoso et al., 2018). The main highlight of DBAT has always
been its modularity (Börlin et al., 2019) and openness, with the
possibility to access bundle adjustment metrics contrary to the
black-box nature of several commercial software.
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1.2 Related work

Various schemes that exploit the sparsity of the normal matrix
to speed up the bundle adjustment computations were presented
already in the early days of Bundle Adjustment (Brown, 1968,
1976) and are now part of standard photogrammetric textbooks
(e.g. Kraus, 2007; Wolf et al., 2013; Luhmann et al., 2014;
Förstner and Wrobel, 2016).

In most cases, the presentations are focused on speeding up the
computations during the bundle adjustment iterations, where
the linearised equation has a single right-hand side. In contrast,
the computation of the posterior covariance has a large number
of right-hand sides, and said algorithm cannot be immediately
applied. Literature that discusses algorithms for posterior co-
variance computations include Triggs et al. (2000); Wolf et al.
(2013); Förstner and Wrobel (2016); Ila et al. (2017). However,
the details of how the sparsity can be exploited are rarely given.

The method by Takahashi et al. (1980) can be used to compute
subsets of the inverse of a sparse matrix. The sparse inverse
(SI) method was developed for electrical networks, but can be
applied to any sparse matrix problem.

Recently, Kallin (2019) presented an algorithm that computed
the explicit inverse of the Cholesky factorisation of the nor-
mal matrix using a combination of sparse and dense compu-
tations. Depending on the density of a matrix, i.e., the frac-
tion of non-zeros, dense computations can have performance
advantage over sparse computations due to their more efficient
use of the memory hierarchy Duff et al. (2002); Goto and Van
De Geijn (2008). Furthermore, the dense algorithms are easier
to parallellise due to their predictable memory access patterns.
The inverse Cholesky algorithm (called VDSIBlock in Kallin
(2019)) was shown to outperform the SI algorithm on small-to-
medium-sized data sets.

1.3 Aim

The aim of this paper is to extend the investigation of the In-
verse Cholesky algorithm to larger data sets and to compare the
results with the current DBAT implementation and classic pho-
togrammetric algorithms.

2. THE STRUCTURE OF THE NORMAL MATRIX

2.1 Non-zero pattern

The normal matrix has a characteristic pattern of non-zero el-
ements. If the parameters are ordered with the external orien-
tation (EO) parameters first, the normal matrix may be blocked
as

N =

(
Nee Neo

Noe Noo

)
. (1)

The internal block structure is visualised in Figure 1. The Nee

and Noo blocks are block diagonal with 6-by-6 and 3-by-3
blocks, respectively. The non-zero coefficients of each block
relate only to the EO or OP parameters of a single camera or
point, respectively. In contrast, the Neo block contain 3-by-6
blocks that connect images to object points.

NeeNee

NooNooNoe

Neo

i
j

Figure 1: Non-zero structure of the normal matrix with the EO
parameters first (left). The Nee block has 6-by-6 blocks that
each correspond to the EO parameters of one camera. Similarly
for Noo and object points, but with 3-by-3 blocks. The Noe

block consists of 3-by-6 blocks that connect an image with an
object point. Non-zeros can only appear at block row i, block
column j of Neo if object point i was measured in image j
(right).

NooNoo

NooNeeNeo

Noe

Figure 2: If the object points are ordered first, the normal ma-
trix forms an arrowhead matrix, where the Noo block forms
the shaft of the arrow, and the remaining blocks form the tip
at the lower and right borders of the matrix (left). The arrow-
head shape is more clear for real projects, where the number of
OP make the Noo block dominate the matrix. The right figure
shows the normal matrix for the ROMA data set (see Section
4.1) with 60 images and about 25000 object points.

2.2 Arrowhead permutation

If the ordering of the unknown parameters is changed to have
the object points first, the blocks of the normal matrix are
swapped to

N =

(
Noo Noe

Neo Nee

)
. (2)

With this ordering, the non-zero structure of the matrix has the
shape of an arrowhead, where the large Noo block form the
shaft of the arrow, and the remaining block form the ”tip” of
the arrow at the lower and right borders (Figure 2).

2.3 Self-calibration

For a self-calibration project, the normal matrix also include
blocks for the internal orientation (IO) parameters. With the IO
parameters first, the blocking becomes

N =

Nii Nie Nio

Nei Nee Neo

Noi Noe Noo

 , (3)

where the new blocks have the width corresponding to the num-
ber of IO parameters and are typically fully dense. The corre-
sponding arrowhead ordering is

N =

Noo Noe Noi

Neo Nee Nei

Nio Nie Nii

 . (4)

See Figure 3.
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NeeNee

NooNooNoe

Neo

Nii

Nei

Noi

Nie Nio

NooNoo

NeeNeeNeo

Noe

NiiNio Nie

Noi

Nei

Figure 3: A self-calibration normal matrix has an added border
of dense blocks. The blocks have a thickness equal to the num-
ber of estimated IO parameters. In the standard ordering (left),
the IO blocks form the left and upper border of the matrix. In
the arrowhead ordering, the IO blocks instead form the lower
and right border.

Algorithm 1 The classic algorithm for computing posterior co-
variance for object points. The sparse and dense steps are com-
puted in Matlab using sparse and dense linear algebra routines,
respectively. The C code step is computed by compiled C-code
called from Matlab (”mex” code).
Require: N has standard ordering

1: A← Nee. . Extract blocks
2: B ← Neo.
3: C ← Noo.
4: E ← D−1 . Sparse
5: F ← BEBT . Sparse
6: Cee ← F−1 . Dense
7: G← BE . Sparse
8: H ← GTCeeG . C code, 3-by-3 diagonal blocks only
9: Coo ← G+H . Sparse

3. ALGORITHMS

3.1 Classic

The classic algorithm, as described in Wolf et al. (2013, Ch.
17-12) uses the normal matrix N in standard ordering (eq. (1)):

N =

(
Nee Neo

Noe Noo

)
=

(
A B
BT D

)
, (5)

where m and n are the number of images and object points,
respectively.

Given the same partitioning of the posterior covariance

N−1 = C =

(
Cee Ceo

Coe Coo

)
, (6)

the matrix Coo contain the posterior covariance for the object
points. Mathematically, the matrix Coo can be computed as
follows (cf. (Wolf et al., 2013, eq. (17-34–36))):

Cee = (A−BD−1BT )−1, (7)
Coo = D−1 +D−1BTCeeBD−1. (8)

The actual computation is given in Algorithm 1.

3.2 Inverse Cholesky

The Inverse Cholesky algorithm uses the arrowhead ordering
(eq. (2))

N =

(
Noo NT

eo

Neo Nee

)
, (9)

L11L11

L22L22L21

0 K11K11

K22K22K21

0

Figure 4: The non-zero patterns of the Cholesky factor L (left)
forms half an arrowhead. The L11 block is block diagonal with
3-by-3 lower triangular blocks. Due to the arrowhead shape of
the normal matrix, the fill-in during the Cholesky factorisation
is restricted to the lower triangular L22 block. The L21 block
does not experience any fill-in at all. The non-zero pattern of
the Cholesky inverse K = L−1 (right) is similar to that of L,
except that the K21 and K22 block may experience fill-in. The
K22 block will typically be close to half full.

The normal matrix is Cholesky factorised into LLT = N with

L =

(
L11 0
L21 L22

)
. (10)

The non-zero structure of L forms half an arrowhead (Figure 4,
left). The L11 block will be 3-by-3 block diagonal with lower
triangular blocks. Due to the arrowhead structure of the nor-
mal matrix, there will be no fill-in in the L21 block during the
Cholesky factorisation. Instead, the fill-in is restricted to the
lower triangular L22 block.

The inverse K of the Cholesky factor is

K = L−1 =

(
K11 0
K21 K22

)
. (11)

This leads to the following equations:

K11 = L−1
11 , (12)

K21 = −L−1
22 L21K11, (13)

K22 = L−1
22 . (14)

The K11 block can be computed using sparse linear algebra and
will have the same sparsity pattern as L11. In the computation
of K21, K11 is known to be sparse, whereas the density of L21

and L22 may vary. The K21 block can expect a fill-in compared
to L22. The K22 block will typically be close to half full. See
Figure 4, right.

Using the Cholesky factor, the posterior covariance matrix can
be computed as

C = N−1 = (LLT )−1 = KTK (15a)

=

(
KT

11K11 +KT
21K21 KT

21K22

KT
22K21 KT

22K22

)
. (15b)

For notational convenience, let P = K11, Q = K21. Then,

Coo = PTP +QTQ. (16)

Note that the K22 block is not needed. The structure of the
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3-by-3 diagonal blocks of Coo are

Coo =



c11 c12 c13
c21 c22 c23
c31 c32 c33

c44 c45 c46
c54 c55 c56
c64 c65 c66

. . .



=



kT
1 k1 kT

1 k2 kT
1 k3

kT
2 k1 kT

2 k2 kT
2 k3

kT
3 k1 kT

3 k2 kT
3 k3

kT
4 k4 kT

4 k5 kT
4 k6

kT
5 k4 kT

5 k5 kT
5 k6

kT
6 k4 kT

6 k5 kT
6 k6

. . .


,

(17)

where ki are column vectors of K. Thus, the diagonal elements
of Coo are the inner products of ki with themselves. Further-
more, the (2,1) element within each block is the inner product
of ki and ki+1, and similar for the other off-diagonal elements.
Due to symmetry, only the sub-diagonal elements need to be
computed.

Given that

ki =

(
pi
qi

)
, (18)

the inner product can be computed as

kT
i kj = pTi pj + qTi qj , (19)

where pi is sparse with at most three non-zeros, but qi may be
dense. Thus, the computation may be split into a combination
of sparse and dense linear algebra.

The computation of the diagonal elements can be performed
efficiently in Matlab using a combination of the Hadamard
(element-wise) product � and the colsum function. The call
v=colsum(A) returns a vector such that vi holds the sum of
the elements of the i:th column of A. Also, let the function
extract(A,d) return every third column of A starting with
column d.

The actual computation is given in Algorithm 2. The di-
agonal elements are collected in one 3n-vector d, where
n is the number of object points. The sub-diagonal ele-
ments are collected in three n-vectors sij . Finally, the call
C=assemble(d, s21, s31, s32) assembles the vectors to a block-
diagonal matrix C.

3.3 Sparse inverse

The SparseInv (SI) algorithm (Förstner and Wrobel, 2016;
Kallin, 2019) is a C implementation of the Takahashi et al.
(1980) algorithm (Davis, 2014). The SI algorithm computes
a subset of the non-zero elements of the inverse C = N−1.

3.4 Legacy DBAT

The posterior covariance computation in DBAT up until version
0.9.1 used the inverse Cholesky approach but looped over the
object points.

If the normal matrix is in arrowhead ordering and the identity
matrix is column blocked as

I =
(
E1 E2 ...

)
, (20)

Algorithm 2 The inverse Cholesky algorithm for computing
posterior covariance for object points.
Require: N has arrowhead ordering

1: L← chol(N) . Sparse Cholesky factorisation
2: P ← L−1

11 . Sparse block inverse
3: S ← L21P . Sparse multiplication
4: T ← full(L22) . Convert to full
5: Q← −T−1S . Dense triangular solve
6: d← colsum(P � P ) . Sparse
7: d←+ colsum(Q�Q) . Dense
8: for i = 1, 2, 3 do
9: Pi ← extract(P, i) . Sparse

10: Qi ← extract(Q, i) . Dense
11: end for
12: for (i, j) = (2, 1), (3, 1), (3, 2) do
13: sij ← colsum(Pi � Pj) . Sparse
14: sij ←+ colsum(Qi �Qj) . Dense
15: end for
16: C ← assemble(d, s21, s31, s32) . Assemble output

Algorithm 3 The legacy DBAT algorithm for computing poste-
rior covariance for object points.
Require: N has arrowhead ordering

1: L← chol(N) . Sparse Cholesky factorisation
2: for all object points i in steps of 30 do
3: E ← columns from I .
4: W ← L−1E . Sparse triangular solve
5: U ←WTW . Sparse
6: Make U block diagonal.
7: Insert U in C at the appropriate place.
8: end for

where each block column is three columns wide, the block Cii

corresponding to object point i becomes (cf. eq. (15a))

Cii = ET
i CEi = ET

i N
−1Ei = ET

i K
TKEi = WT

i Wi,
(21)

where Wi = KEi.

In an attempt to use memory more efficiently, the implemented
algorithm loops over blocks of 30 points. The algorithm is
given as Algorithm 3.

3.5 Total variance only

The diagonal elements of Coo can be used to compute the total
variance (trace) of each point. The necessary modification of
the classic algorithm is to modify step 8 to compute the diagonal
elements only. In the inverse Cholesky algorithm, steps 8–15
are omitted and the matrix is assembled from the diagonal only.

3.6 Self-calibration

For self-calibration projects, the only modification of the classic
Algorithm 1 is to have steps 1–2 include the IO blocks, i.e., to
match

N =

 Nii Nie Nio

Nei Nee Neo

Noi Noe Noo

 =

(
A B

BT D

)
. (22)

No modification of the inverse Cholesky algorithm is necessary.
Instead the L21 and L22 blocks are re-interpreted to correspond
to all non-OP parameters.
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Table 1: Statistics for the data sets used in the paper.
Ray Point

Data Object Image count density
Set Name Type Images points points IP/OP IP/Ims OP/Ims

1 Camcal Camera calibration 21 100 2074 20.7 99 5
2 Vexcel Aerial, vertical 41 43251 141510 3.3 3451 1055
3 Roma Close-range 60 26321 90561 3.4 1509 439
4 StPierre Close-range 239 17993 196715 10.9 823 75
5 UmU-2D Drone, vertical strips 133 70600 287528 4.1 2162 531
6 Sewu Drone, vertical strips 210 107785 658438 6.1 3135 513
7 UmU-3D-R Drone, vertical cross-hatch 210 107226 477752 4.5 2275 511
8 UmU-3D Drone, vertical cross-hatch 272 133948 636883 4.8 2341 492
9 UmU-2-LYR Drone, 2-layer 607 296516 1484959 5.0 2446 488

10 UmU-3-LYR Drone, 3-layer 944 426971 2290687 5.4 2427 452

4. EXPERIMENTS AND RESULTS

4.1 Data sets

Ten data sets of varying sizes were prepared for the experi-
ments:

Camcal A 21-image camera calibration data set from Börlin
and Grussenmeyer (2014).

Vexcel A 41-image vertical aerial dataset flown at an altitude of
950 m above sea level (ASL) above the city of Strasbourg
with an UltraCam Osprey Mark 3 Premium camera.

Roma A 60-image terrestrial close-range data set of the Arco
di Constantino monument in Rome, Italy from Börlin and
Grussenmeyer (2013).

StPierre A 239-image close-range data set of the St-Pierre-le-
Jeune church in Strasbourg from Murtiyoso et al. (2017).

Sewu A 210-image data set acquired by the DJI Phantom 4
RTK drone flown at 60 m ASL over the Sewu temple in
Central Java, Indonesia.

UmU Five data sets from several flights with a DJI Phantom
4 V2.0 drone over the Umeå University Campus, Umeå,
Sweden.

UmU-3D A 272-image data set flown at 70 m ASL in
”3D” cross-hatch mode. The data set includes both
east-west and north-south strips.

UmU-2D A 133-image subset of UmU-3D with the east-
west strips only.

UmU-3D-R The UmU-3D data set, reduced to 210 im-
ages to match Sewu. The reduction was done by re-
moving every other north-south strip.

UmU-2-lyr UmU-3D extended with another ”3D” flight
at 120 m ASL over a larger area.

UmU-3-lyr UmU-2-lyr extended with another ”3D”
flight at 40 m ASL over a smaller area.

All data sets were self-calibration data sets. The Camcal and
Roma images were processed by PhotoModeler Scanner 20121

and imported to DBAT. The remaining data sets were processed
by AgiSoft Metashape v1.62. During import of the Metashape
projects into DBAT, all object points with fewer than 3 rays
and/or an estimated intersection angle below 5 degrees were
removed before processing by DBAT. The statistics for the data
sets are presented in Table 1.

1https://www.photomodeler.com/
2https://www.agisoft.com/

4.2 Algorithm variants

The following algorithm variants were implemented and used
to process normal matrices:

CC The classic Algorithm 1 of Section 3.1.

SI1 The sparse inverse algorithm of Section 3.3 with the nor-
mal matrix in standard ordering.

SI2 Same as SI1, but with the normal matrix in arrowhead or-
dering.

IC The inverse Cholesky Algorithm 2 of Section 3.2.

IC-S The inverse Cholesky Algorithm 2 where the sparse-to-
dense-conversion step 4 was omitted and all subsequent
operations were performed using sparse linear algebra.

LD The legacy DBAT Algorithm 3 of Section 3.4.

4.3 Experiments

A total of four experiments were performed:

Self-calibration (SC) The unchanged normal matrices of each
data set of Section 4.1 were given to each of the algorithms
of Section 4.2.

No self-calibration (NSC) Same as the SC experiment, except
the normal matrices were stripped of the IO blocks before
processing.

Total variance only (TV) The SC and NSC experiments were
repeated with the diagonal-only-variants of the CC and IC
algorithm described in Section 3.5.

The effect of the number of cores The SC experiment was
repeated with the CC, SI1, and IC algorithms where the
number of available CPU cores were varied from one to
six.

In all cases, the execution time for each algorithm on each data
set was recorded. The normal matrix was assumed to have been
computed by the last iteration of the preceding bundle adjust-
ment. Thus, the time to compute the normal matrix was not
included. Furthermore, the time to permute the normal matrix
to the ordering preferred by each algorithm was excluded. Ad-
ditionally, the density of the L22 and K21 blocks of the IC al-
gorithm were recorded, as well as the density of the K22 block.

The timings were performed on an HP Z440 workstation from
2015 with a 6-core Intel Xeon E5-1650 v3 @ 3.50GHz and
64GB of RAM running Matlab 2019b Update 1 under De-
bian 10.
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Table 2: Block non-zero density for the data sets. The B column correspond to the B block of the original problem in equations
(22) and (5), respectively. The K21 (Q), and L22 columns are densities for corresponding blocks in the IC algorithm. All recorded
K22 densities were very close to 50%.

Self-calibration No self-calibration
Data Set Name B K21 L22 B K21 L22

1 Camcal 98.8 100.0 50.4 98.7 100.0 50.4
2 Vexcel 10.9 62.8 44.0 8.0 61.6 43.5
3 Roma 8.0 54.8 31.0 5.7 53.6 30.0
4 StPierre 5.1 66.6 47.4 4.6 66.5 47.4
5 UmU-2D 4.0 55.3 31.8 3.1 54.9 31.4
6 Sewu 3.5 55.6 33.6 2.9 55.3 33.4
7 UmU-3D-R 2.7 62.4 38.0 2.1 62.1 37.8
8 UmU-3D 2.2 63.8 41.0 1.7 63.6 40.9
9 UmU-2-LYR 1.0 58.5 43.4 0.8 58.4 43.3

10 UmU-3-LYR 0.7 59.2 45.4 0.6 59.2 45.4

Table 3: Execution times in seconds for the SC, NSC, and TV experiments. The fastest algorithm within each block is highlighted.
Overall, the IC algorithm is the fastest for small data sets, whereas the CC algorithm is fastest for large data sets. The SI algorithm
has intermediate performance. The cross-over point depends on the requested computation and whether the data set is a self-
calibration data set or not. The IC algorithm is faster than the legacy LD algorithm by 1–2 orders of magnitude.

Full 3-by-3 blocks Diagonal only
Data Self-calibration No self-calibration Self-cal. No self-cal.

Set Name CC SI IC LD CC SI IC LD CC IC CC IC
1 Camcal 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 Vexcel 1.9 2.7 0.7 15.6 1.1 1.6 0.5 15.6 1.1 0.5 0.7 0.4
3 Roma 1.3 1.7 0.5 9.4 0.7 1.0 0.4 9.3 0.8 0.4 0.4 0.3
4 StPierre 9.9 6.9 1.3 55.3 8.2 6.4 1.2 55.4 5.2 1.1 4.6 1.0
5 UmU-2D 4.0 6.1 2.1 90.9 2.5 3.6 2.0 91.0 2.4 1.6 1.5 1.5
6 Sewu 12.8 14.8 5.4 326.4 9.6 11.0 5.2 327.2 7.5 4.2 5.7 4.0
7 UmU-3D-R 7.3 11.7 5.1 314.5 4.9 9.8 4.9 314.5 4.3 3.9 2.9 3.7
8 UmU-3D 10.4 16.9 8.8 623.3 7.2 13.0 8.5 623.4 6.1 6.9 4.3 6.6
9 UmU-2-LYR 27.2 47.6 62.6 6443.6 19.8 40.2 62.3 6422.0 16.2 53.8 11.9 53.5

10 UmU-3-LYR 48.3 99.3 191.9 22877.1 37.0 88.4 189.6 22663.9 28.9 172.1 22.5 170.4

4.4 Results

The density numbers are given in Table 2. The L22 density var-
ied between 30% and 50%. Except for the camera calibration
data set, the K21 density varied between 53% and 66%. All
K22 densities were very close to 50%.

The execution times for the CC, SI1, IC, and LD algorithms
for the SC and NSC experiment are given in Table 3. The CC
execution times were dominated (80–90%) by the computation
of the 3-by-3 blocks in step 8. For the large problems (data sets
6–10), the IC execution times were dominated by (50–85%) by
the K21 (Q) computation in step 5. The execution times for
the SI2 algorithm was within 15% of the SI1 algorithm. The
IC-S algorithm was several orders of magnitude slower than
the IC algorithm. The results show that the IC algorithm is
fastest on SC data sets 1–8 and on NSC data sets 1–7. The
CC algorithm is fastest on the remaining data sets, with the SI
algorithm somewhere in between. In both cases, the cross-over
point correspond to a B density of about 2%. Except for the
camera calibration data set, the IC algorithm is 20-120 times
faster than the legacy LD algorithm. For the TV experiment,
also presented in Table 3, the IC algorithm was fastest for SC
data sets 1–7 and NSC data sets 1–6. In this case, the cross-over
point corresponds to a B density of about 2.5%.

On average, the execution times for the SC data sets were 40–
50% higher for the CC and SI algorithms compared to their
NSC counterparts. In contrast, with the exception of the camera
calibration data set, the SC and NSC times were within 1% of
each other. In the diagonal-only TV experiment, the execution

times decreased by about 40% for the CC algorithm and about
20% for the IC algorithm compare the full-block SC and NSC
results.

The Sewu and UmU-3D-R data sets has the same number of
images and object points. However, the number of image points
are 38% higher in the Sewu data set. The same difference is
seen in the number of rays per object point and the B-block
density for the NSC data set, with a slightly lower difference for
the SC data set. The increased point density translated to a 75-
100% longer execution time for the CC algorithm. In contrast,
the corresponding increase for the IC algorithm was about 6%.

The result of the speedup Experiment 4 are shown in Figure 5.
Only the IC algorithm benefited from an increased number of
cores, but with a decreasing efficiency as the number of cores
are increased. Using six cores the speedup was about 2.5. On
a single core, the IC algorithm was faster the the CC algorithm
for data sets 1–4, and within a factor of 2 for data sets 1–8.

5. DISCUSSION

In this paper, several algorithm for the computation of poste-
rior covariance of object points were applied to self-calibration
and non-self-calibration data sets of varying sizes, ranging from
21-944 images. On the smallest data sets, the fastest algorithm
was the Inverse Cholesky (IC) algorithm. On the largest data
sets, the classic (CC) algorithm was fastest. The performance
of the Sparse Inverse (SI) algorithm was somewhere in between
CC and IC. The relative results between SI and IC are consis-
tent with the results by Kallin (2019), on similar problem sizes.
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Figure 5: Average speedup as a function of the number of
cores. Only the IC algorithm benefits from an increased number
of cores, but at a diminishing rate as the number of available
cores increases.

Compared to the legacy algorithm in DBAT, the IC algorithm
was 1-2 orders of magnitude faster.

Several factors affect the computation time for a given algo-
rithm, including the number of images, object points, and im-
age points. A critical parameter appears to be the density of
the mixed block of the normal matrix. As the image and point
numbers increase, the density of the mixed block typically de-
creases. When the full 3-by-3 blocks of the posterior covariance
matrix are computed, the density cross-over point for the fastest
algorithm appear to be around 2%.

If the posterior correlations of the estimated object points are
needed, the full 3-by-3 block must be computed. Otherwise, if
only the total variance of each point is needed, only the diago-
nal elements of the posterior covariance have to be computed.
In this case, a decrease in execution time of about 40% for the
CC algorithm and 20% for the IC algorithm was observed, com-
pared to the full block computations and the density cross-over
point shifted to about 2.5%.

The IC algorithm is written completely in the Matlab language.
As such, it benefits from an increased number of available cores
due to the efficiency of the underlying numeric libraries used by
Matlab. The performance increase was sub-linear. In contrast,
the SI and CC algorithms were partially implemented in the C
language and called from Matlab. The C code was not opti-
mised for multiple cores. Further performance improvements
are likely if the C code is parallellised, although the level is
uncertain.

For a general toolbox as DBAT, a pure Matlab implementation
is advantageous, as it removes any dependencies on, e.g., com-
pilers. However, for a specific lab with mostly large projects,
compiling and using the classic algorithm will give improved
performance.

Compared to the previous version of DBAT, users can expect
posterior covariance computations that are a few orders of mag-
nitude faster. In summary, the computation time for the largest,
944-image dataset in this paper decreased by a factor of over
100. The actual computation time was around three minutes.

6. CONCLUSIONS

On medium-sized data sets of up to about 300 images, the
Matlab-only IC algorithm is faster than the classic algorithm.
On larger data sets, the classic algorithm is faster. However, on
data sets up to about 900 images, and if a computation time of
a few minutes at the end of a bundle adjustment processing is
acceptable, the IC algorithm is still a useful high-level alterna-
tive.

We have shown throughout this paper that the novel IC algo-
rithm implemented in DBAT managed to accelerate its com-
putation of covariance values significantly. Experiments by
comparing it to other methods, including the classical ap-
proach, showed that the results are comparable, albeit with a
few caveats. For DBAT this is a significant addition as it en-
ables a relatively rapid computation of more statistical metrics,
further reinforcing its application for reprocessing bundle ad-
justment results of black-box solutions. Further investigations
and experiments in this regard may also reveal other options for
optimisation.
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