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TREE PROPORTIONS
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Introduction and preliminaries

This paper studies analogical proportions between trees called tree proportions within the abstract algebraic framework in [START_REF] Antić | Analogical proportions[END_REF] recently introduced within the general setting of universal algebra, where we focus on the mathematical foundations of tree proportions, not on their applications to natural language processing or artificial intelligence.

We show that least general generalizations (lggs) of terms play a key role for the computation of tree proportions. In fact, it turns out that in term algebras, solutions to proportional tree equations have a simple form (Theorem 11) and that the tree proportions can be derived from a simple syntactic check involving lggs (Theorem 15). For the future, this motivates the study of the general role of semantic anti-unification [START_REF] Antić | Semantic anti-unification in general algebras[END_REF] for analogical proportions (cf. [START_REF] Schmidt | Heuristic-driven theory projection: an overview[END_REF]. For a recent survey on syntactic anti-unification we refer the reader to [START_REF] Cerna | Anti-unification and generalization: a survey[END_REF].

We expect the reader to be fluent in basic universal algebra as it is presented for example in Burris and Sankappanavar (2000, §II) and Baader and Nipkow (1998, §3).

A language L of algebras is a set of function symbols 1 together with a rank function r : L → N, and a denumerable set Z = {z, z 1 , z 2 , . . .} of variables distinct from L. Terms are formed as usual from variables from Z and function symbols from L and we denote the set all such L-terms by T L (Z). We denote the set of variables occurring in a term s by Z(s), and we say that s has rank n iff Z(s) consists of n variables.

An L-algebra A consists of a non-empty set A, the universe of A, and for each function symbol f ∈ L, a function f : A r( f ) → A, the functions of A (the distinguished elements of A are the 0-ary functions). Every term t induces a function t on A in the usual way. We call a term t injective in A iff t is an injective function.

Given a language L and set of variables Z, the term algebra T L (Z) over L and Z has as universe the set T L (Z) of all terms over L and Z and each function symbol f ∈ L is interpreted by itself, that is,

f T L (Z) (p 1 , . . . , p r( f ) ) := f (p 1 , . . . , p r( f ) ).
In the sequel, we do not distinguish between a function symbol f and its induced function f T L (Z) and we call both term functions.

1 We omit constant symbols as we identify them with 0-ary function symbols.
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We say that a term t is a generalization of s -in symbols, s ≲ t -iff there is a substitution σ such that s = tσ. The generalization ordering is reflexive and transitive and thus a pre-order. The It is well-known that any two terms p and q have a least general generalization in T L (Z) -in symbols, p ⊓ q -computed by [START_REF] Plotkin | A note on inductive generalization[END_REF] algorithm as follows. Given an injective mapping ζ : T L (Z) × T L (Z) → Z and two L-terms p, q ∈ T L (Z), if p = f (p 1 , . . . , p r( f ) ) and q = f (q 1 , . . . , q r( f ) ), for some f ∈ L and p 1 , . . . , p r( f ) , q 1 , . . . , q r( f ) ∈ T L (Z), then define

p ⊓ ζ q := f (p 1 , . . . , p r( f ) ) ⊓ ζ f (q 1 , . . . , q r( f ) ) := f (p 1 ⊓ ζ q 1 , . . . , p r( f ) ⊓ ζ q r( f ) ); otherwise define p ⊓ ζ q := ζ(p, q).
Notice that since each constant symbol a induces an 0-ary term function a( ), we have

a ⊓ ζ a = a( ) ⊓ ζ a( ) = a.

Tree proportions

We shall now recall the abstract algebraic framework of analogical proportions in [START_REF] Antić | Analogical proportions[END_REF] interpreted in term algebras.

Convention 1. We will always write s(z) → t(z) or s → t instead of (s, t), for any pair of L-terms s and t containing variables among z such that every variable in t occurs in s, that is, Z(t) ⊆ Z(s). We call such expressions L-rewrite rules or L-justifications where we often omit the reference to L. We denote the set of all L-justifications with variables among Z by J L (Z).

Convention 2. We make the convention that → binds weaker than every other algebraic operation.

In the rest of the paper, we assume the underlying term algebra to be T L (Z), for some language L and set of variables Z.

We are now ready to introduce the main notion of the paper following Antić (2022, Definition 8):

Definition 3. We define the tree proportion relation in T L (Z) in two steps:

(1) Define the set of justifications of an arrow p → q by

Jus(p → q) := s → t ∈ J L (Z) p → q = s(o) → t(o), for some o ∈ T L (Z) r(s) , extended to an arrow proportion p → q : • r → u 2 in T L (Z) by Jus(p → q : • r → u) := Jus(p → q) ∩ Jus(r → u).
A justification is trivial in T L (Z) iff it justifies every arrow proportion in T L (Z), and we say that J is a trivial set of justifications in T L (Z) iff every justification in J is trivial. Now we say that p → q :

• r → u holds in T L (Z) -in symbols, T L (Z) | = p → q : • r → u iff (a)
either Jus(p → q) ∪ Jus(r → u) consists only of trivial justifications, in which case there is neither a non-trivial relation from p to q in T L (Z) nor from r to u in T L (Z);

(b) or Jus(p → q : • r → u) is maximal with respect to subset inclusion among the sets Jus(p → q : • r → u ′ ), u ′ ∈ T L (Z), containing at least one non-trivial justification, that is, for any term u ′ ∈ T L (Z),3 

∅ ⊊ Jus(p → q : • r → u) ⊆ Jus(p → q : • r → u ′ ) implies ∅ ⊊ Jus(p → q : • r → u ′ ) ⊆ Jus(p → q : • r → u).
We abbreviate the above requirement by simply saying that Jus(p → q : • r → u) is u-maximal.

(2) Finally, the analogical proportion entailment relation is most succinctly defined by the following derivation:

p : q :: r : u :⇔ p → q : • r → u and q → p : • u → r r → u : • p → q and u → r : • q → p.
This means that in order to prove T L (Z) | = p : q :: r : u, we need to check the four relations with respect to | = in T L (Z).

Convention 4. We will sometimes use a diagrammatic representation of justifications s) , given by (cf. Antić, 2022, Convention 15):

s → t of p → q : • r → u with p → q = s(o 1 ) → t(o 1 ) and r → u = s(o 2 ) → t(o 2 ), for some sequences of terms o 1 , o 2 ∈ T L (Z) r(
p → q : • r → u. s(z) t(z) z/o 1 z/o 2 z/o 1 z/o 2
Computing all justifications of an arrow proportion is difficult in general, which fortunately can be omitted in many cases (cf. Antić, 2022, Definition 20): Definition 5. We call a set J of justifications a characteristic set of justifications of p → q : • r → u in T L (Z) iff J is a sufficient set of justifications in the sense that

(1) J ⊆ Jus(p → q : • r → u), and

(2)

J ⊆ Jus(p → q : • r → u ′ ) implies u ′ = u, for each u ′ ∈ T L (Z). In case J = {s → t} is a singleton set satisfying both conditions, we call s → t a characteristic justification of p → q : • r → u in T L (Z).
The following result is an instance of the Uniqueness Lemma in Antić (2022):

Lemma 6 (Injectivity Lemma). If s → t is a non-trivial justification of p → q : • r → u in T L (Z) so that s and t are injective in T L (Z) and Z(s) = Z(t), then T L (Z) | = p : q :: r : u.

The following observation in combination with the Injectivity Lemma 6 shows that tree proportions within term algebras have some very nice properties: Fact 7. Every term function is injective and thus every justification is a characteristic one.

Proof. A direct consequence of the Injectivity Lemma 6. □

Example 8. The following example shows that there may be terms p, q, r, u, u ′ , u u ′ , such that p → q : • r → u and p → q :

• r → u ′ both hold in T L (Z): 4 f (a, a, a) → f (a, a, a) : • f (a, b, c) → f (a, c, b); f (c, b, a). f (a, z 1 , z 2 ) f (a, z 2 , z 1 ); f (z 2 , z 1 , a) (z 1 , z 2 )/(a, a) (z 1 , z 2 )/(b, c) (z 1 , z 2 )/(a, a) (z 1 , z 2 )/(b, c)
The diagram is a compact representation of the fact that

f (a, z 1 , z 2 ) → f (a, z 2 , z 1 ) is a justification of f (a, a, a) → f (a, a, a) : • f (a, b, c) → f (a, c, b) and f (a, z 1 , z 2 ) → f (z 2 , z 1 , a) is a justification of f (a, a, a) → f (a, a, a) : • f (a, c, b) → f (c, b, a),
and Fact 7 shows that they are in fact characteristic ones.

Properties

Recall that a filter F on a pre-ordered set (P, ≤) is a subset of P satisfying:

(1) F is non-empty.

(2) F is downward directed, that is, for every a, b ∈ F, there is some c ∈ F such that c ≤ a, b.

(3) F is an upper set or upward closed, that is, for every a ∈ F and b ∈ P, if a ≤ b then b ∈ F.

The smallest filter containing an element a is a principal filter and a is a principal element -it is given by

↑ (P,≤) a := {b ∈ P | a ≤ b}.
We extend the generalization pre-ordering from terms to justifications via

(s → t) ≲ (s ′ → t ′ ) ⇔ s ≲ s ′ and t ≲ t ′ .
Fact 9. The set of all generalizations of a term forms a principal filter with respect to the generalization pre-ordering generated by that term. Moreover, the set of all justifications of an arrow forms a principal filter with respect to the generalization pre-ordering generated by that justification.

Notation 10. Fact 9 motivates the following notation which we will use in the rest of the paper:

↑ (p → q) := Jus(p → q),
extended to an arrow proportion by

↑ (p → q : • r → u) := Jus(p → q : • r → u).
Given some L-term p and s ∈ ↑ p, by Fact 7 there is always a unique o ∈ T L (Z) r(s) such that p = s(o) which we will denote by o(s, p), that is,

s(o(s, p)) = p. Moreover, define, for some o ∈ T L (Z) k , k ≥ 1, ↑ o q := {t ∈ T L (Z) | q = t(o)}.
We are now ready to prove a simple characterization of solutions to proportional term equations.

Theorem 11. S ol(p → q : • r → x) = s∈↑(p⊓ ζ r) (↑ o(s,p) q)(o(s, r)).
Proof. Every justification s → t of p → q : • r → u has the following form:

p → q : • r → u = t(o(s, r)). p ⊓ ζ r s t ∈ ↑ o(s,p) q o(s, p) o(s, r) o(s, p) o(s, r)
Since every justification is a characteristic one by Fact 7, every solution u to p → q : • r → x has the form u = t(o(s, r)), for some s ∈ ↑ (p ⊓ ζ r) and t ∈ ↑ o(s,p) q. □ For a set of terms S and a term s, define

Z S (s) := Z(s) -Z(S ).
Moreover, we write s⟨p i /q i | i ∈ I⟩ for the term which we obtain from s by replacing one or more occurrences of the subterm p i in s by q i , for every i ∈ I. Notice that we have s⟨ ⟩ = s.

Lemma 12. u = r⟨p/q | ζ(p, q) ∈ Z {p,q,r,u} (r ⊓ ζ u)⟩.
Proof. By structural induction on the shape of u and r:

• u = a ∈ L 0 : -r = a: Z {p,q,r,u} (r ⊓ ζ u) = ∅ and a = a⟨ ⟩.
r a: Z {p,q,r,u} (r ⊓ ζ u) = {ζ(r, a)} and a = r⟨r/a⟩.

• u = z ∈ Z: -r = z: Z {p,q,r,u} (r ⊓ ζ u) = Z {p,q,r,u} (z ⊓ ζ z) = Z {p,q,r,u} (z) = ∅ and z = z⟨ ⟩.
r z: Z {p,q,r,u} (r ⊓ ζ u) = {ζ(r, z)} and z = r⟨r/z⟩.

• u = f (u 1 , . . . , u r( f ) ) ∈ T L (Z):
r = f (r 1 , . . . , r r( f ) ): By induction hypothesis, we have

u i = r i ⟨p/q | ζ(p, q) ∈ Z {p,q,r,u} (u i ⊓ ζ r i )⟩.
This implies

f (u 1 , . . . , u r( f ) ) = f (r 1 ⟨p/q | ζ(p, q) ∈ Z(u 1 ⊓ ζ r 1 )⟩, . . . , r r( f ) ⟨p/q | ζ(p, q) ∈ Z(u r( f ) ⊓ ζ r r( f ) )⟩) = f (r 1 , . . . , r r( f ) ) p/q ζ(p, q) ∈ r( f ) i=1 Z {p,q,r,u} (u i ⊓ ζ r i ) .
r = g(r 1 , . . . , r r(g) ): Z {p,q,r,u} (r ⊓ ζ u) = {ζ(r, u)} and u = r⟨r/u⟩.

□

Lemma 13. Z {p,q,r,u} (q

⊓ ζ u) ⊆ Z {p,q,r,u} (p ⊓ ζ r) iff p ⊓ ζ r → q ⊓ ζ u ∈ ↑ (p → q : • r → u).
Proof. The direction from right to left holds by definition of justifications. We prove the other direction by nested structural induction on the shape of p, q, r, u:

• p = a ∈ L 0 : -r = a: Z {p,q,r,u} (p ⊓ ζ r) = Z {p,q,r,u} (a ⊓ ζ a) = ∅ implies Z {p,q,r,u} (q ⊓ ζ u) = ∅ implies q = u.
We then have

p ⊓ ζ r → q ⊓ ζ u = a → q ∈ ↑ (a → q : • a → q).
r a: Z {p,q,r,u} (p ⊓ ζ r) = {ζ(a, r)}: * Z {p,q,r,u} (q ⊓ ζ u) = ∅ implies q = u. Hence,

p ⊓ ζ r → q ⊓ ζ u = ζ(a, r) → q ∈ ↑ (a → q : • r → q). * Z {p,q,r,u} (q ⊓ ζ u) = {ζ(a, r)} implies u = q⟨s/t | ζ(s, t) ∈ Z {p,q,r,u} (q ⊓ ζ u)⟩ = q⟨a/r⟩ (Lemma 12). Hence, p ⊓ ζ r → q ⊓ ζ u = ζ(a, r) → q⟨a/ζ(a, r)⟩ ∈ ↑ (a → q : • r → q⟨a/r⟩).
• p = z ∈ Z: Z {p,q,r,u} (p ⊓ ζ r) = {ζ(z, r)}:

-Z {p,q,r,u} (q

⊓ ζ u) = ∅ implies q = u and p ⊓ ζ r → q ⊓ ζ u = ζ(z, r) → q ∈ ↑ (z → q : • r → q).
-Z {p,q,r,u} (q

⊓ ζ u) = {ζ(z, r)} implies u = q⟨s/t | ζ(s, t) ∈ Z {p,q,r,u} (q ⊓ ζ u)⟩ = q⟨z/r⟩ (Lemma 12). Hence, p ⊓ ζ r → q ⊓ ζ u = z → q⟨z/ζ(z, r)⟩ ∈ ↑ (z → q : • r → q⟨z/r⟩). • p = f (p 1 , . . . , p r( f ) ) ∈ T L (Z): -r = f (r 1 , . . . , r r( f ) ): * q = a ∈ L 0 : • u = a ∈ L 0 : p ⊓ ζ r → q ⊓ ζ u = p ⊓ ζ r → a ∈ ↑ (p → a : • r → a). • u a: Z {p,q,r,u} (a ⊓ ζ u) = {ζ(a, u)} ⊆ Z {p,q,r,u} (p ⊓ ζ r) implies ζ(a, u) ∈ Z {p,q,r,u} (p ⊓ ζ r)
. By induction hypothesis, we have

p i ⊓ ζ r i → ζ(a, u) ∈ ↑ (p i → a : • r i → u),
for all 1 ≤ i ≤ r( f ). This holds iff

p i = (p i ⊓ ζ r i )(o i ), r i = (p i ⊓ ζ r i )(o ′ i ), for some o i = (o i,1 , . . . , o i,|Z ... (p i ⊓ ζ r i )| ) ∈ T L (Z) |Z ... (p i ⊓ ζ r i )| such that o i, j = ζ(a, u), for some 1 ≤ j ≤ |Z ... (p i ⊓ ζ r i )|.
We then have:

f (p 1 , . . . , p r( f ) ) → a : • f (r 1 , . . . , r r( f ) ) → u. f (p 1 ⊓ ζ r 1 , . . . , p r( f ) ⊓ ζ r r( f ) )(z | z ∈ Z {p,q,r,u} (p i ⊓ ζ r i ), 1 ≤ i ≤ r( f )) ζ(a, u) z/(o 1 , . . . , o r( f ) ) z/(o ′ 1 , . . . , o ′ r( f ) ) z/(o 1 , . . . , o r( f ) ) z/(o ′ 1 , . . . , o ′ r( f ) ) This shows p ⊓ ζ r → q ⊓ ζ u = f (p 1 ⊓ ζ r 1 , . . . , p r( f ) ⊓ ζ r r( f ) ) → ζ(a, u) ∈ ↑ (p → a : • r → u). * q = z ∈ Z: • u = z: p ⊓ ζ r → z ∈ ↑ (p → z : • r → z). • u z: Z {p,q,r,u} (q ⊓ ζ u) = {ζ(z, u)} ⊆ Z {p,q,r,u} (p ⊓ ζ r) implies ζ(z, u) ∈ Z {p,q,r,u} (p ⊓ ζ r
). Now proceed as in the case "u a" above. * q = g(q 1 , . . . , q r(g) ):

• u = q: trivial.

• u q: Z {p,q,r,u} (q ⊓ ζ u) = {ζ(q, u)} ⊆ Z {p,q,r,u} (p ⊓ ζ r) implies ζ(q, u) ∈ Z {p,q,r,u} (p ⊓ ζ r). Now proceed as in the case "u a" above. * r = g(r 1 , . . . , r r(r) ): p ⊓ ζ r = ζ(p, r) and Z {p,q,r,u} (q ⊓ ζ u) ⊆ {ζ(p, r)}. We distinguish two cases:

(1) Z {p,q,r,u} = ∅ implies q = u.

(2) Z {p,q,r,u} = {ζ(p, r)} implies u = q⟨p/r⟩ (Lemma 12). Hence, ζ(p, r) → q⟨p/ζ(p, r)⟩ ∈ ↑ (p → q : • r → u).

□

Lemma 14. Z {p,q,r,u} (q ⊓ ζ u) ⊆ Z {p,q,r,u} (p ⊓ ζ r) implies T L (Z) | = p → q : • r → u.

Proof. A direct consequence of Lemma 13 and Fact 7. □

We have thus arrived at the following sufficient condition for tree proportions:

Theorem 15. Z {p,q,r,u} (q ⊓ ζ u) = Z {p,q,r,u} (p ⊓ ζ r) implies T L (Z) | = p : q :: r : u.

Proof. A direct consequence of Lemma 14 and the definition of a tree proportion in terms of arrow proportions. □

We say that a term function f : T L (Z) → T L (Z) satisfies the strong proportion-preserving property (Antić, 2023b) (and see [START_REF] Couceiro | Analogy-preserving functions: a way to extend boolean samples[END_REF][START_REF] Couceiro | Galois theory for analogical classifiers[END_REF] iff T L (Z) | = p : q :: r : u ⇔ T L (Z) | = f (p) : f (q) :: f (r) : f (u).

Read as "p transforms into q as r transforms into u".

We ignore trivial justifications and write "∅ ⊊ . . ." instead of "{trivial justifications} ⊊ . . ." et cetera.

Here we have joined two diagrams into one for brevity separated by semicolons.

Corollary 16. Every term function satisfies the strong proportion-preserving property.

Proof. A direct consequence of Theorem 15 and the fact that Z {p,q,r,u} (q ⊓ ζ u) = Z {p,q,r,u} (p

□

Problems

We shall now list problems which remained unsolved in this paper and appear to be interesting lines of future research: Problem 17. Prove or disprove the following inference rule: p : q :: r : u p ′ : q ′ :: r ′ : u ′ ? p ⊓ p ′ : q ⊓ q ′ :: r ⊓ r ′ : u ⊓ u ′ Notice that according to Theorem 15, the above implication follows from the following implication:

Try to prove this using nested structural induction on the shape of p, q, r, u, p ′ , q ′ , r ′ , u ′ .

Problem 18. Characterize those substitutions σ satisfying p : q :: pσ : qσ for all p, q ∈ T L (Z), that is, those substitutions which are proportional functors (cf. [START_REF] Antić | Proportional algebras[END_REF]. Problem 20. Infinite trees naturally arise in the study of programming languages [START_REF] Courcelle | Fundamental properties of infinite trees[END_REF]. Generalize the concepts and results of this paper to tree proportions between infinite trees. Problem 21. A hedge is a sequence of unranked terms with applications to representing semistructured data [START_REF] Yamamoto | Modelling semi-structured documents with hedges for deduction and induction[END_REF]. Generalize the concepts and results of this paper from terms to hedges by using [START_REF] Kutsia | Anti-unification for unranked terms and hedges[END_REF] generalized anti-unification algorithm.

Problem 22. In this paper, we studied only unilingual tree proportions where all four trees have the same underlying language of algebras. For the future, it is desirable to understand bilingual tree proportions where the underlying languages may differ by studying Antić's (2023a) bilingual generalization of the framework for trees.