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Abstract

This work concerns the enrichment of Discontinuous Galerkin (DG) bases, so that the resulting scheme
provides a much better approximation of steady solutions to hyperbolic systems of balance laws. The basis
enrichment leverages a prior — an approximation of the steady solution — which we propose to compute using a
Physics-Informed Neural Network (PINN). To that end, after presenting the classical DG scheme, we show how
to enrich its basis with a prior. Convergence results and error estimates follow, in which we prove that the basis
with prior does not change the order of convergence, and that the error constant is improved. To construct
the prior, we elect to use parametric PINNs, which we introduce, as well as the algorithms to construct a prior
from PINNs. We finally perform several validation experiments on four different hyperbolic balance laws to
highlight the properties of the scheme. Namely, we show that the DG scheme with prior is much more accurate
on steady solutions than the DG scheme without prior, while retaining the same approximation quality on
unsteady solutions.

1 Objectives and model

In the last decades, much work has been devoted to proposing numerical methods for hyperbolic systems with
source terms, which correctly capture stationary solutions of the system, as well as perturbations of flows around
these steady states. If the perturbation is smaller than the scheme error, traditional numerical schemes are not
able to provide a good approximation of the perturbed steady solution. To address such an issue, a first possibility
is to refine the mesh in space. However, for small perturbations, this would greatly increase the computational
overhead. To avoid this, schemes specifically dedicated to capturing stationary solutions have been introduced.
They are called well-balanced schemes.

There are two families of well-balanced (WB) schemes: exactly and approximately WB schemes. Exactly WB
schemes give an exact representation of the equilibria. Such schemes are usually developed for subclasses of steady
solutions, especially for complex balance laws, or multidimensional problems. For instance, first- and second-order
accurate exactly WB schemes have been developed for the shallow water equations [4, 31, 34, 35] or the Euler
equations with gravity [28, 49]. High-order exactly well-balanced schemes include [22, 37, 21, 36, 8, 9, 24] with
finite volume methods or related approaches, or [53, 11] with discontinuous Galerkin methods. The second family,
approximately WB schemes, consist in ensuring a better approximation of the equilibria compared to traditional
numerical schemes. This better approximation can be under the form of a better order of accuracy [18, 20, 23]
or a better error constant [1, 16]. Both families of WB schemes may incur significant additional computational
cost compared to traditional schemes, due to the extensive modifications necessary to ensure the WB property,
especially for complex systems and equilibria.

In this work, we focus on providing an approximately WB scheme for the following parametric partial differ-
ential equation (PDE):

{8tu+8a;Fu1(u) = Sll«z(u)’ (11)

u(t =0,2) = up(z),



with p; and ps the parameters of the PDE. We set u = {1, g2}, and we assume that 4 € P C R™. In (1.1), the
unknown function is u; F},, is celled the physical flux function, while S,,, is the source term. We assume that the
equation is hyperbolic, that is to say that the Jacobian matrix of F),, is diagonalizable with real eigenvalues. Our
goal will be to construct an approximately well-balanced approach for the general steady state 0, F},, (u) = S, (u).
The combination of learning and numerical methods (known as Scientific Machine Learning) has produced good
results for hyperbolic PDEs. Examples include work on the design of limiters or shock detection [41, 7, 55],
artificial viscosity [19, 42, 54, 10], or numerical schemes [5].

The approach proposed in this paper is also based on the hybridization of classical approaches and neural
networks. We endeavor to improve the classical Discontinuous Galerkin (DG) method, which usually relies on a
discontinuous approximation of the solution in a suitable polynomial basis. More information on the DG method
can be found in [26, 39] for instance. A natural way of improving the traditional DG method to improve the
accuracy on some family of solutions is to enrich the basis with a prior. This is for example the case of the Trefftz
method [30, 6, 12, 27], or the non-polynomial bases studied in [56].

To perform this basis enrichment, we use a learning-based offline computation with a neural network to build
a prior which approximates a parametrized family of equilibria. To that end, we use Physics-Informed Neural
Networks (PINNs), see e.g. [40, 13], and parametric neural networks [48]. This prior is then introduced into the
Discontinuous Galerkin basis, to increase the accuracy of the scheme around this family of equilibria. Note that
the prior construction could be handled without the use of neural networks, but we will show that the neural
network approach is more efficient. This framework could require significant offline calculation cost (depending
on the problem), but will generate a very small additional cost in the online phase, i.e., when actually using
the modified scheme. This method enhances the DG basis functions with a prior provided by a neural network.
Similar techniques based on neural networks have already been successfully implemented for other applications.
In [3], for elliptic problems, the authors use a network to provide a finite element basis that is dynamically
enriched. In [46, 47], the authors show that random neural networks can be used as DG bases, and can be more
accurate than classical ones for a sufficiently large number of basis function in each cell.

The paper is constructed as follows. First, we assume that we know a prior (an approximation) of a family of
equilibria, and we introduce the modification of the DG basis. Theoretical results show that this modification does
not change the order of accuracy of the method, but decreases the error constant close to steady solutions. Then,
we introduce the learning methods that will enable us to build our prior for a family of equilibria, and finally
we perform numerical experiments, in one and two space dimensions, on several linear and nonlinear systems of
balance laws. A conclusion ends this paper.

2 Modified Discontinuous Galerkin scheme

This section is devoted to the presentation of the modified DG scheme. We start by quickly introducing the
classical DG scheme in Section 2.1, and then move on to proposing the modification in Section 2.2. Theoretical
convergence results related to this modification will be presented in Section 3. In this section and the following
one, we write the scheme in the case of a scalar and one-dimensional PDE, but the method is easily extendable
to systems and to higher dimensions.

2.1 Classical Discontinuous Galerkin scheme

The goal of this section is to present the classical DG scheme in order to discretize the PDE (1.1). To that end,
we discretize the space domain Q C R? in cells Q, = (T—1/2, Tt1/2) of size Axy, and of centers xy.

The idea behind the classical DG scheme is to first compute the weak form of the considered PDE, and then
to locally approximate the solution in each cell, by projecting it onto a finite-dimensional vector space V;. We
consider a space V}, of dimension ¢ + 1:

Vi, = Span (¢p,0,- - -, Pr,q) -

Note that the space V}, can be different for each cell .
The first assumption of DG scheme is to approximate the solution u to the PDE, in each cell, with a value
in Vj:
vk, u|Qk (t,z) ~ up(t, ).



Since uy € V3, we can write .
)= Y ui ()i, (@)- (2.1)
j=0
To obtain the DG scheme, we first write the weak foim of the equation in each cell:
Opu(t, x)o(x) dx + 0u )y, (u(t, z))p(x) de = Sy, (u(t, x))o(x) de. (2.2)

Qp Qp Qp

with ¢(x) a smooth test function. Performing an integration by parts, this form is equivalent to

</Q“¢) /zk )06+ [ (w) 8]0 = / S (1 (2.3)

We now plug the DG representation (2.1) in the weak form (2.3), using ¢y ; as test function, for any ¢ €
{0,...,q¢}.

1. We begin with the first term:

/Qkuask,i—zq:(/ﬂku“()%( )bk,i(x dm) Zukj (/ b, j(x ¢kz()d$)

7=0 7=0

To handle the integral in the expression above, we introduce the following quadrature formula, with weights
wy,p and points x, p, valid for any smooth function ¢:

Nq
(z) dx ~ Z Wep (Thp)-

p=1

We assume that the first and last quadrature points coincide with the cell boundaries, i.e. T 1 = Tp_1/2
and N, = Tp41/2- In practice, we use the well-known Gauss-Lobatto quadrature rule, see e.g. [2] for
more information. Equipped with this quadrature formula, we introduce

N(I
Myij = Wkp Ok j(Thp) bri(Thp) = / Pre,j P
p=1 2

so that the first term of (2.3) becomes

q
/Q w(t, ) i) do = 3 My jun (1)

=0

2. Using the same techniques, the second term is approximated in the following way:

Ny q
/QFul(U)axcbk,izz WepFuy | D i (0)0k 5 (xhp) | Outr i)
k p=1 7=0

3. We note that the third term reduces to
(B () )22 = Fy (i y) ) Sy ) = By (wnltiziy)) dalwey),

Tr—1/2

where the physical flux F),, has to be approximated at the cell boundaries. To that end, like the well-known
finite volumes method, the DG method requires the introduction of a consistent numerical flux

G, (up,ur) such that G, (u,u) = F,, (u).

This numerical flux is then used to approximate the interface flux, as follows

Fu, (Uk(ta wk—l—%)) = G,ul (uk(tvxk—&-%)aukJrl(tvxk—i-%)) :



4. Finally, for the last term, we use a straightforward application of the quadrature rule:
Ny q
/Q Sz (W) & 2> N whpSpy [ Y k(). (@r) | Drirp)
k p=1 7=0

Gathering all these terms, we show that, in each cell, the DG scheme can be written as an ordinary differential
equation, where the interface flux term couples the cell €2 with its neighbors:

Mk atUk(t) — .F‘ul (Uk-) + g#l (uk—laulmuk-‘rl) = 8#2 (uk)

Now that we have recalled the classical DG space discretization, we have all the tools we need to introduce a
modification to this discretization that will enable us to provide an approximately WB scheme.

2.2 Enrichment of the modal DG basis

There are many vector spaces able to represent the solution in each cell. For instance, nodal DG schemes [26]
use Lagrange polynomials or other polynomials based on nodes chosen within each cell. Legendre polynomials or
Taylor expansions around the cell centers lead to modal DG schemes. In this work, we focus on the Taylor basis,
given on each cell Qj by

1 1
Vi, = Span (¢r,0, Pk,1, Ok,2, - - - » Phq) = Span (17 (x — ), 5(1’ —z)%,. ., a(m - xk)q> . (2.4)

In the remainder of this section, we assume that we have access to a prior on the equilibrium, denoted by
ug(x, u). Obtaining such a prior is discussed in Section 4. For the moment, suffice it to say that uy provides an
approximation of the steady solution for x € Q and for p in some parameter space P to be defined.

Given the prior ug, we modify the local basis V}, to incorporate the prior: for that, we propose two possibilities.

e The additive correction VhJr consists in replacing the first element of V}, by the prior:

.,ql'(sc:vk)q> . (2.5)

Vh+ = Span ((15_1;07 (ZS—];lv (ZS—];Qv ) ('25;:7(1) = Span <’U,9(£C, :LL)a (‘T - xk)v .-
o The multiplicative correction V}' consists in multiplying each element of V}, by the prior:
* * * * * 1
Viy = Span (650, $% 1+ Dk 2:- - - Pk q) = SPan (Ue(x,ﬂ% (z — k) uo(, ), - -, a(l’ - xk)"w(z,u)) - (2.6)

A first remark is that, if the prior is exactly equal to the steady solution, then it can be exactly represented by an
element of VhJr or V;* (namely, the first one) in each cell, which is not the case for the classical space V},. However,
whether the prior is exact or not, the method will only be of interest if the projector onto the modified vector space
is accurate (or even exact in the case of an exact prior). The second point to note is that, unlike conventional DG
approaches, the bases are not polynomial. We must therefore ensure that this does not hinder the convergence of
the DG method. In the next section, we follow Yuan and Shu’s work [56] to study the convergence of the modified
DG method, and provide error estimates.

3 Error estimates

In this section, we prove some convergence results on the modified DG scheme. We assume that our prior ug
is p times continuously differentiable, i.e., that it has differentiability class CP, with p > ¢ + 1. This hypothesis is
compatible with the construction of the prior from Section 4.

In [56], the authors study the convergence of the DG scheme for non-polynomial bases. They show that, if
the non-polynomial basis can be represented in a specific way by a polynomial basis, then the convergence of the



local and global projection operators is not hampered. Using some stability results (given in [56] for the transport
equation) together with these estimations, convergence can be recovered.

These theoretical results will be split in two parts. To begin with, in Section 3.1, by prove that the bases pro-
posed in Section 2.2 fit into the hypotheses of [56], which ensures convergence. However, this study is insufficient
to show that the better the prior, the more accurate the modified DG scheme. To that end, in Section 3.2, we
derive the projector estimates in the case of V', in order to show the potential gains of the method.

3.1 Convergence in non-polynomial DG bases

In [56], the authors prove the following lemma.

Lemma 3.1. Consider an approximation vector space Vi, with local basis (Vg 0, ..., Vkq), which may depend on
the cell Q. If there exists constant real numbers a;e and b; independent of the size of the cell Axy such that, in
each cell Q,

q
Vi€ f0,....qh, |ons(@) = aje(z — 2x)*| < bj(Axg)™, (3.1)
£=0

then for any function u € HITY(Qy), there exists v, € Vi, and a constant real number C independent of Axy,
such that )
lon = ullLoo () < Cllullgati (o, (Azk)T 2.

Using this result, the authors show that the global projection error in the DG basis converges with an error in
(Az,)9t in the Sobolev norm H?*! and later prove the convergence of the whole scheme using a monotone flux
for a scalar equation. In the remainder of this section, we prove that the two new bases proposed in Section 2.2
satisfy the assumptions of Lemma 3.1. Using these results together with the proofs of [56], we will obtain that
both bases lead to a convergent scheme.

Proposition 3.2. If the prior ug(x; p) has differentiability class C1T1(R) with respect to x, then the approximation
space V,© satisfies the assumption (3.1).

Proof. Since the prior is C1t1(R), we can write its Taylor series expansion around the cell center z;. Namely,

there exists a constant ¢ € [x_1 /2, Tp11/2] such that

1 (& — )9 (z),) + Mu(qﬂ)(@‘ (3.2)

ug () =u(9(xk)+(x—xk)ug($k)+"'+a (g+1)!

With that expansion, we can write our basis VhJr with respect to the classical modal basis V}, as follows:

w@ T (¢
ug(z) up(zr) up(ze) ... %ué‘l) (k) 1 ((:1)(! )
(x —xp) 0 1 .. 0 (x —xp) 0
: = . . . . . + (1‘ — xk)‘ﬁl
(2 — a)" R R (o — a1 ;
Ay >

We remark that the matrix A, and the vector by are independent of Axy. Hence, assumption (3.1) is verified,
and Lemma 3.1 can be applied. O

Proposition 3.3. If the prior ug(x; p) has differentiability class C1T1(R) with respect to x, then the approximation
space V' satisfies the assumption (3.1).



Proof. The proof follows the same lines as the proof of the previous proposition. Namely, (3.2) is still satisfied
since the prior is C?71(R). Then, the basis V;* is written with respect to the classical modal basis V}, as follows:

ug(z) ug(zr)  ug(rk) wl®(zr) 1 A0

9 ) i o 2

_ uy' ™ (xk) . ug(c
e N R | L e
(x — xp)Tup(z) 0 0 oo ug(xg) (x — xp)? 1
A, by

Just like before, the matrix A, and the vector b, are independent of Azy. Hence, assumption (3.1) is verified,
and Lemma 3.1 can be applied. O

These two propositions show that, if the prior is sufficiently smooth, we can apply the results of [56], which
shows the convergence of the method. However, this approach does not give an estimation of the error with
respect to the quality of the prior. Indeed, we expect the modified DG scheme to be more accurate when the
prior is closer to the solution. Obtaining such an estimate is the objective of the following section.

3.2 Estimate with prior dependency

The goal of this section is to refine the error estimates from Section 3.1 for a specific modified basis. We consider
the case of V}, since it is easier to write the projector onto the classical basis. This will enable us to quantify the
gains that can be expected when using this new basis. The case of Vh+ is more complicated, since the projector
is harder to write. Nevertheless, we will show in the numerical experiments from Section 5 that both modified
bases exhibit similar behavior.

Recall that the basis V;* is obtained by multiplying each element of V}, by the prior. Therefore, its basis
functions are given by ¢j ; = ¢, jue for each cell ) and for j € {0,...,q}.

Lemma 3.4. Assume that the prior ug satisfies
ug(z;p)?> >m? >0, VeeQ, VYuecP.

For a given cell Qy, for any function v € HT(Qy), the L? projector onto V;¥, denoted by Py and such that
Pr(u) € V¥, satisfies the inequality

u()

Ua(' 5 H) ‘Hqﬂ(gk)

Ju- P

(u)"Lw(Qk) ~

, [[uo (-5 10)?]| L
s 12 )

Proof. The proof uses a strategy similar to [56]. We consider the cell ;. For any smooth function f defined on
Q, we define the operator T' by

(=3 f(%k)}(x .,
=0 :

and the operator Ty by
)= 3 (L) wam e -0 | wein

u
j=0 N0

For simplicity, we no longer explicitly write the dependence in g in this proof. Let u € H4"1(). Using Ty, we
write the following estimation:

[u = Prn(u)llLe0n) < llu—To(u)llpe ) + 1To(uw) = Pa(u)l[=(a,) = N1+ Na. (3.3)

To complete the proof, we need to estimate both terms N; and Ns.



We start with the estimation of N;. We obtain, according to the relationship between T and Ty,

u 5 (U)
Ug Ug
We can now use an intermediate result from [56]: for all f smooth enough, the Taylor formula and the Cauchy-
Schwartz inequality, followed by a direct computation, gives

IRERGEST

<

luoll Lo (o) - (3.4)
Lo ()

o Lo ()

u u
N1 = |lu = Tp(u)|| L~ () = Hugw9 - (> "

If = T(f)llze () = sup

xEQL T q'
. 2 NE( e a@-gp N
2 xr —
< sup (/ f(q+1)(§)’ dg) (/ — df) ,
ey Tk T q:
S W laavian (Bap)™H2. (3:5)
Going back to Ny and plugging (3.5) into the estimate (3.4), we obtain
U 1
M3 |— (Az) "2 Jugl o (g, (3.6)
U0 | Hat1 (o)

Now, we proceed with estimating Na, the second term of (3.3). The L? projector P, onto V;* is defined by

Pal) =2 (Ai‘;)j 95

q
7=0
with o = (o) jef1,....q} = (M*)~1b, where

L 6@ i) B o (@)
it = /m (Axy)d (Aka)e do, and by = /Qk u@) (Axy)? - 37

We are now ready to start estimating N;. Note that

a u\ W s 1 .
o= o)~ Bl = s 32 () 0 g ) e - movute

il

x€Q |- 0

1 A u\W 1 (v — )
< sup Z ((Axk)J (u> (zk) —aj> j,((Amkl)cj) ”ueHLO@(Qk)'

Using the Cauchy-Schwartz inequality on the sum, and bounding the resulting polynomial on the cell, we obtain
the estimate

1
2] 2

q ()
N
Na S Z ((Aﬂ?k)J (W) (zn) — aj) uoll oo () = 16 = el luoll oo () (3.8)

Jj=0

where the vector 0 = (J;) ;e o,....q} 15 defined by

5 = (A (;‘Q)m (o4).

Recalling the definition o = (M*)~1b, we obtain

16 = ally = [[(M) =1 (M6 = b|, < [[(M)7H], [[M76 = bl - (3.9)



We first take care of the term in M*§ — b. We have

2
q q
s b= [zM;mbj]

j=0 Le=1

Z@( oy i) ey (1) e [ ey i ] s

J

We denote the summand by Z;, and we use the definition of the basis to obtain

) L u\® ¢i(z) @i () 3 ()
= X £ — X X — u\xr J - QT
Vje{0,...,q}, Ej:= ;(A k) <u9> ( k)/ (Aup) (Ae k)fd /Qk ( )(Axk)ﬂd
q %)
e (N 6i@) d@) o[ u(@) 6i@) o
f;(A k) <ug> ( k)/ﬂk (A.Z‘k)J( )e ( ) /Qk UQ(m) (A.Tk)] 9( )d
q )
_ u . r _M ¢J( ) o 2)da
_/Qk (;} (ua> (xr)de(x) w(x)) Ay U@ (3.10)

Using a Taylor expansion, we obtain, for all j € {1,...,q},

=5--/ < | (;‘9)@“) GE: qf”dg) S o,

from which we get the following upper bound

[ ()" ot

Using the same ingredients as in the computation of (3.5) for the leftmost term and bounding the rightmost term
by the L> norm of the prior and by noting that the classical basis functions are bounded, we obtain the estimate

muz(x)dm .

Vﬁ € {1w"aq}7 |Ej|§ sup

TEQ

vie{l,....q}, |5 (M) (Axy) |[ud]],

U@ Ha+1(Qy,) (@) °
Going back to what we had set out to prove, we get
U 1
8075 — b, = Z\ =P <|s (A4 (Aag) |6 - (3.11)
U6 [pat1(qy) '
Plugging (3.11) into (3.9) and then into (3.8), we get
Ny < -1 Az)T7 (A 2 () - 3.12
SN0 ] @ @) o], el 0 (3.12)
Finally, we note that, for any y € R?*!, given the expression (3.7) of M*,
2 2
q * q ¢ (I’
(M*y, M*y) = / dr = / Z AJ ug(x)?da
Qp j= 0 Qp j= 0 xk
2
(b](x
;| dx = My, M
Axk ~y; | dw (My, My)



where M is the mass matrix associated with the classical basis functions

:/ 0i(@) ¢ulx) 4o BTNy
o (

M.
¢ Azi) (Azy)? 1+j+¢

J

where H = (H,y) ;¢ is the Hilbert matrix. Then we deduce the following inequality

o= 1 - 1 _
1) < 5 1M = — .

|
Axy,
Combining (3.12) and (3.13), we obtain

u

Up

Ny S

~

2
. (Azy) s Hu9||L°°(Qk.)'
a k

We get, from (3.6) and (3.14), the expected result.

(3.13)

(3.14)

O

The above proof relies on the smoothness of the prior. This may seem counter-intuitive in a hyperbolic context.
However, since the prior will be obtained from a neural network in Section 4, this smoothness assumption becomes

reasonable.

Lemma 3.5. We make the same assumptions as in the previous lemma, and still consider the vector space V.

For any function v € H1(Q),

u

A q+1 oo .
g (Azy) lluell (Q)

Ha+1(Q)

[ = Pr(w)]|p2() S

Proof. We begin by stating the definition of the discrete L? norm: by assuming that

N
=],
k=1

we obtain

N
lu— Pn(u ||L2 <Y Az Ju— Pa(w)[F 0y
k=1

Using the result from Lemma 3.4, we get

u2 o
u— rplu 2 Tk U Tk % +67
P < S poret (10 18lminn
=1 U6 | ga+1(qy) m
fi - dagret (14 1@ 2|| 12
Tk - 5 Up oo .
4o | ars e m2 Lo (Qy)

We assume that there exists d_, 64+ and Az such that, for all k € {1,..., N}, 6_Ax <

HUEHL ) ’
TRRAIE e (1) 2
Hf1+1(Qk)< ! m? ) ”ueHL ()

||u9||Loo(Qk) < ||’LL9||Loo(Q), we obtain

[u = Pr(w)]|72(0) S (Az) 2q+22

Ug

< (Ax)?+? (1 J 9““’“”) \uGHM)Z

The proof is concluded by recognizing the H9+1(Q) seminorm.

2
) |u9||L°°(Qk)>

Up

k < 04 Azx. Then, since



This global error estimate Lemma 3.5 shows that projection error onto the basis V" is bounded by

u

Ug

Hat1(Q) '

This bound is equal to zero if the prior is exact, since it is nothing but the (g + 1)*® derivative of the constant
function equal to one. This estimate also proves that the closer the prior is to the solution, the smaller the bound
of the projection error. However, to obtain an even smaller bound, we need the prior and the solution to be close
in the sense of the H7+1(Q) seminorm. This means that the prior must be constructed in such a way that it also
gives a good approximation of the derivatives of the solution.

As a summary, we have shown that the L? projection error tends to zero when the prior tends to the solution.
This result gives an idea of the expected gains in error ensured by using the modified basis V;*. The final
convergence error depends on this projection error, as has been shown in [56]. The proof to obtain the final
convergence result is the same as in [56].

For the additive basis Vh+, such error estimates are harder to obtain, since the projection in the new basis is
harder to write with respect to the traditional one. We expect an error bounded by a term in ||u — ugl| ga+1(0),
which would enable us to draw similar conclusions as for the multiplicative basis V,". Namely, the error would
also tend to zero when the prior tends to the solution, and the derivatives of the prior would need to be close
to the derivatives of the solution. Proving this result is out of the scope of this paper, even though it should be
ensured by the results of [56]. However, we will extensively study the behavior of the additive basis in Section 5.

4 Prior construction and algorithm

Equipped with the modified bases from Section 2.2 and with the theoretical results from Section 3, what is left
to do is to propose a way to obtain a suitable prior ug.

Note that the approach described in Section 2 will be interesting if the prior ug is a good approximation of
the steady solution to (1.1) for a wide range of parameters. In addition, according to Section 3.2, the derivatives
of the prior must also be good approximations of the derivatives of the steady solution.

This means that we wish to capture large families of solutions, i.e. we want to be able to calculate an
approximation for several parameters. For example, assuming that (1.1) depends on 4 physical parameters leads
to 1 € R*, and considering a problem in two space dimensions, leads to x € R2. Therefore, we are looking for
a prior ug(z; i), where ug € C7(R? x R* R). Approaching such a function using polynomials defined on a mesh
would be a very difficult task, especially if the space or parameter domains have a complex geometry. Neural
networks have demonstrated their ability to approximate functions in fairly high dimensions, notably thanks
to their intrinsic regularity. PINNs are a mesh-free approach to solving PDEs using neural networks. Their
properties make them good candidates for approaching solutions to high-dimensional problems.

To build our prior, we propose to solve the parametric steady problem with PINNs. To that end, we now briefly
introduce this method in Section 4.1, and we show how to compute and store the prior. Then, our algorithm is
summarized in Section 4.2.

4.1 Parametric PINNs
Note that the steady solutions to (1.1) are given by
aﬂﬂFMl (u) = Sll«z (u)
This is nothing but a parametric elliptic problem. Therefore, we introduce PINNs for the following generic

boundary value problems (BVPs):

{D(u,x;u) = [f(z,p)  forzecQ, (4.1)

u(t,z) = g(z, @), for x € 01,

where D is a differential operator involving the solution u and its space derivatives, and with u some physical
parameters. We recall that ¢ € P C R™. PINNs use the fact that classical fully-connected neural networks are
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smooth functions of their inputs, as long as their activation functions are also smooth, to approximate the solution
o (4.1). Contrary to traditional numerical schemes such as the DG method, where the degrees of freedom encode
some explicit modal or nodal values of the solutions, the degrees of freedom of PINNs representation are the
weights 6 of the neural network, and so do not explicitly represent the solution. Equipped with both of these
remarks, the idea behind PINNs is to plug the network, which represents the solution to (4.1), into the equation.
Then, the degrees of freedom (i.e. the weights 6 of the network) are found by minimizing a loss function. Since
the neural network is differentiable, the derivatives can be exactly computed. In our case, the PINN is thus a
smooth neural network that takes as input the space variable = and the parameter vector u, which we denote by
ug(x; ).
Thanks to these definitions, solving the PDE can be rewritten as the following minimization problem:

mein J(0), where J(0) = T.(0) + Tp(0) + Taata (). (4.2)

In (4.2), we have introduced three different terms: the residual loss function J,., the boundary loss function 7,
and the data loss function Jyata. For parameters p € P, the residual loss function is defined by

7:0) = [ [ [Pwn.i10) = fGa ) dod (43)

while the boundary loss function is given by

30 = [ [ Juote.0 = a(e.0); dod. (4.4)

Finally, to define the data loss function, we assume that we know the exact solution to (4.1) at some points z;
and for some parameters p;, and we set

jdata(e) = Z ||’LL9(1'“LL7,) - u(x“l“l)Hz

In practice, the integrals in (4.3) and (4.4) are approximated using a Monte-Carlo method. This method relies
on sampling a certain number of so-called “collocation points” in order to approximate the integrals. Then, the
minimization problem on 6 is solved using a gradient-type method, which corresponds to the learning phase.

The main advantage of PINNs is that they are mesh-free and less sensitive to dimension than classical meth-
ods. Indeed, neural networks easily deal with large input dimensions, and the Monte-Carlo method converges
independently of the dimension. Consequently, PINNs are particularly well-suited to solving parametric PDEs
such as (4.1). Thanks to that, we do not solve for a single equilibrium but rather for families of equilibria indexed
by the parameters pu.

Traditional PINNs use this method to approximate both (4.3) and (4.4). However, for the boundary conditions,
we elected to use another approach, which makes it possible to completely eliminate J, from the minimization
algorithm. The idea is to define the approximate solution through a boundary operator B, which can for instance
be a multiplication by a function which satisfies the boundary condition. We obtain

ﬂe(x;ﬂ) = B(’U,g,l‘;,u),

with ug the neural network and B a simple operator such as uy exactly satisfies the boundary conditions. Using ug,
the residual loss becomes, instead of (4.3):

7:0) = [ [ 1P(0,zip0) ~ i) dod (45)

Examples of such functions B are provided in Section 5.

With this approach, we have presented one method for offline construction of our prior for a family of equilibria.
Note that it is possible to further enhance this prior with data from previous simulations, thanks to the loss
function Jgata- Even though training PINNs may be harder than training traditional purely data-driven neural
networks, they are much more efficient as priors. Indeed, the error estimates of Section 3.2 show that the error
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depends on the ¢-th derivative of the ratio between the prior and the solution. Therefore, to obtain a small
error, it is important for the prior to provide a good approximation of not only the steady solution, but also of
its derivatives. Since the PINN loss (4.5) inherently contains derivatives of ug, the resulting trained PINN will
be more efficient in this respect. Note that a purely data-driven network could also be interesting if the data
contains information on the derivatives.

4.2 Algorithm

Now that we have discussed the strategy we use to obtain our prior, we give some details on the offline and online
algorithms that we developed to construct the modified DG bases in practice. We start by describing the offline
step, where the families of priors are computed. Then, we move on to an online algorithm, explaining how to
construct the DG bases using the prior, and how to apply them to the actual DG time iterations.

Algorithm 1. Offline part: neural network training

Input: space domain €, parameter set I, initial neural network ug, (x; 1), n learning rate, N number of collocation
points, Nepochs NUmMber of training epochs
Output: trained neural network wug(x; )
1: initialize the weights: 6 = 6,
2: for n < nepochs do
3 sample N values of z in Q2 and p in P
4: compute the loss function J(6)
5 update 6 using the gradient of J(6): 6 =0 —nVyJ(0)
6: end for

In practice, we do not use a classical gradient descent to update the weights, but rather the Adam algorithm.
Moreover, sampling is done through a uniform law on the space and parameter domains. It would also be possible
use non-uniform sampling like in [52] for instance, but we elected to use uniform sampling for the sake of simplicity.
Note that Algorithm 1 does not contain solution data in its inputs. Indeed, almost all numerical experiments from
Section 5 do not require data on the solution. This avoids the cost of data production, which would otherwise
require sampling the exact solution if it is known, or using a numerical scheme otherwise.

Algorithm 2. Online part: using the neural network in the DG scheme

Input: prior ug, degree N, of the Gauss-Lobatto quadrature rule, initial data ug, space mesh 2, parameters p,
ny number of time steps

Output: numerical solution ug(t,z) on each cell

: use the mesh €2, to obtain all quadrature points z , in each cell Q

: evaluate the prior at each point xj ,: we obtain iy, = ug(Tk p; 1)

: reconstruct uy (0, z) using Uy,

: for n < n; do
construct the mass matrix M, the nonlinear flux F, the interface flux G and the source term S using uy, p

and the quadrature rule

6: update the solution u; at the next time step, using uj at the previous time step as well as the terms
computed in the previous step

7: end for

Uk W

In this second step, the additional computational overhead associated to our method, compared to the classical
DG scheme, comes from two distinct sources. The first one is a preprocessing phase, where we evaluate the prior
on the quadrature points (step 2 of Algorithm 2). Even though such networks have been made to be quickly
evaluated on GPUs, this evaluation step remains fast on CPUs. The second source of computational cost is
associated to the quadrature rule. Indeed, in some cases, we will require a quadrature rule with a higher degree
than the traditional DG scheme. The classical approach is to use N, = g quadrature points for bases made of ¢
polynomial functions, since the quadrature is exact for polynomials of degree q. However, in our case, our basis
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is non-polynomial. Hence, to have a good approximation of the integral of the prior, we may need to increase
the degree of the quadrature. In most cases, this increase is slight; for a few test cases, especially to approximate
functions with large derivatives, we will need to use fine quadrature rules.

5 Applications and numerical results

This section is dedicated to a validation of the approach on several parametric hyperbolic systems of balance laws:
the linear advection equation in Section 5.1, the 1D shallow water equations in Section 5.2, the Euler-Poisson
system in Section 5.3, and the 2D shallow water equations in Section 5.4. In the first two cases, there exist some
exact well-balanced schemes in the literature. However, for the Euler-Poisson system and the 2D shallow water
equations, exact (or even approximate) WB schemes are either not available or very complicated to implement.
Code replicating the experiments of Section 5.1 is freely available [33] on GitHub®.

In this section, we denote by K the number of cells. We test both bases V;* and VhJr at first, showing that both
display similar results. To cut down on the number of tables, we then only present the results for the additive
basis Vh+.

Moreover, the time step At is given by

minke{lw’K} Afk;
2\ )

At = Ccrr, Crx (5.1)
where A is the maximal wave speed of the system, Ccpy, is a CFL (Courant-Friedrichs-Lewy) coefficient, and Crk
is the stability coefficient associated to the time discretization. All experiments are run using a strong stability-
preserving Runge-Kutta (SSPRK) time discretization of the correct order. The time discretizations, with their
associated stability coefficients Cry, are collected in Table 1. To determine Ccpy,, we run a study of the stability
condition for the first experiment; this study is not repeated for the other experiments, since the new bases do
not influence the stability condition.

number ¢ of basis elements 0 1 2 3
time discretization explicit Euler SSPRK2 [45] SSPRK3(5) [45] SSPRK4(10) [29]
stability coefficient Crk 1 1 2.65 3

Table 1: Stability coefficients Crk of the high-order time discretizations used in the numerical experiments, with
respect to the number ¢ of basis elements.

5.1 Linear advection
We first consider the case of a linear advection equation with a source term, on the space domain 2 = (0,1). The
equation is given as follows:
Opu + Ogu = s(u; pb), for z € Q
u(t = O,J)) = uini(x;u)v (52)
u(t,xz = 0) = g,

Here, the parameter vector u is made of three elements:

(0%
p=|B8)€EPCR’ aecRy, BeRy, ugeR:.
()

The source term depends on y as follows:
s(u; p) = au + Bu?,

Lhttps://github.com/Victor-MichelDansac/DG-PINNs.git
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and straightforward computations show that the associated steady solutions take the form

auUg
o+ Bug)e=% — Bug’

Ueg (@5 ) = ( (5.3)

To compute the time step, we take A = 1 in (5.1), since the advection velocity in (5.2) is equal to 1. The first
paragraph of this section shows how to choose Ccpy, to complete the determination of the time step. Unless
otherwise stated, we prescribe Dirichlet boundary conditions consisting in the steady solution.

To obtain a suitable prior ug, we train a PINN with parameters #. To avoid cumbersome penalization of
boundary conditions, we define 1y using a boundary operator B, as follows:

tug(x; ) = Blug, x5 1) = ug + zug(z; 1),

so that the boundary condition %y (0; 1) = ug is automatically satisfied by ug. The parameter space P is chosen
such that the steady solution is well-defined, and we take

P = [0.5,1] x [0.5,1] x [0.1,0.2]. (5.4)
Thanks to the boundary operator B, the loss function only concerns the ODE residue, and we set
_ ~ o2
J(0) = H@xug — ally — ﬁu§H2 .

We use a neural network with 5 fully connected hidden layers, and around 1200 trainable parameters. Training
takes about 4 minutes on a dual NVIDIA K80 GPU, until the loss is equal to about 107%. For this experiment,
we increased the order of the quadrature compared to the baseline for the case with one basis function. Indeed,
we take ng = max(q + 2, 3), to ensure a sufficient precision when integrating the prior.

In this section, we compare four strategies: the basis V3 (2.4), the basis V;* with multiplicative prior (2.6),
the basis V," with additive prior (2.5), and the basis V,"" which uses the exact steady solution (5.3) as a prior.
First, we study the stability condition in Section 5.1.1. Then, we tackle the approximation of a steady solution
without perturbation in Section 5.1.2 and with perturbation in Section 5.1.3. Finally, the approximation of an
unsteady solution is computed in Section 5.1.4.

5.1.1 Study of the stability condition

The very first experiment we run aims at making sure that the new bases do not alter the stability condition of
the DG scheme. To that end, we slowly increase Ccpy, until the time step At is too large for the scheme to be
stable. For this experiment, the initial condition is made of the steady solution

Uini (5 1) = Ueq (T3 1), (5.5)

and the final time is "= 0.5. Table 2 contains the optimal values of Ccpy, (larger values leading to instabilities)
obtained with the four bases and for ¢ € {0,1,2,3}. We observe that the new bases do not change the stability
condition, except for V,fx’+ with ¢ = 1, which is slightly more stable. This study will not be repeated for other
experiments, since it would yield similar results. In practice, we take Ccpr, = 0.1 to ensure stability.

q basis Vj,  basis V;¥  basis V;§  basis V7T
0 1.250 1.250 1.250 1.250
1 0.399 0.399 0.399 0.416
2 0.209 0.209 0.209 0.209
3 0.185 0.185 0.185 0.185

Table 2: Maximal values of Ccpr, obtained for the four bases and for a number of basis elements g € {0,1,2, 3}.
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5.1.2 Steady solution

We now study the approximation of a steady solution, with and without perturbation. The goal of this section
is to check whether the prior indeed makes it possible to decrease the error compared to the usual modal basis.
For this experiment, the initial condition remains (5.5), and the final time is 7' = 0.1.

As a first step, the values of the parameters p are set to the midpoints of the intervals making up the parameter
space (5.4). The L? errors between the exact and approximate solutions are collected in Table 3.

In this case, we expect both V;* and Vh+ to show similar behavior. Moreover, we expect the basis V,fx’+
to provide an exactly well-balanced scheme, up to machine precision. To that end, only for V,fx’+, we take
ng = max(¢ + 2, 5), to ensure that the quadrature of the exact prior is also exact, up to machine precision.

We observe that the bases with and without prior allow a convergence of the correct order, i.e. of the same
order as the number of basis elements. Moreover, we observe a consistent gain for all mesh resolutions, for a given
size of the modal basis, which is lower the larger the size of the basis. Bases V;* and VhJr seem to have comparable
performance, with V;* being somewhat better for large values of ¢, and Vh+ taking the lead for small values of q.
Finally, we observe that the basis V} %% is indeed able to provide a solution that is exact up to machine precision,
thus validating the exact well-balanced property of the scheme using this basis.

As a second step, to refine this study, we now consider 10 parameters, randomly sampled from the parameter
space (5.4). For g € {0,1,2,3} and K = 10 discretization cells, we compute the minimum, average and maximum
gains obtained with both bases V;* and Vh+. These values are reported in Table 4. We observe, on average, a
significant gain in all cases, with larger gains obtained for smaller values of ¢. Furthermore, the minimum gain is
always greater than one. Like in the previous experiment, we observe that, even though both bases display similar
behavior and very good results, Vh+ behaves better than V,* for small values of ¢, and vise versa. Consequently,
and to limit the number of tables in the remainder of this section, we perform all subsequent experiments with
the basis Vh+.

5.1.3 Perturbed steady solution

We now test the scheme on a perturbed steady solution, For this experiment, the initial condition is similar
o (5.5), but with a perturbation. Indeed, we take

Uini (25 ) = (1 + e8in(272) ) teq (@3 1),

where ¢ is taken nonzero or zero, to control the strength of the perturbation. The final time is T' = 2, and we
study the impact of the perturbation by taking ¢ € {107%,1072,1}, and K = 10 discretization cells. The results
are collected in Figure 1. We observe two different states: first, while the perturbation is being dissipated, the
errors with the two bases are similar. Then, we note that the introduction of the prior has made it possible for the
approximate solution to converge towards a final solution that is closer to the exact, unperturbed steady solution.

5.1.4 Unsteady solution

Next, we seek to confirm that our proposed basis does not deteriorate the approximation of unsteady solutions. To
that end, we consider an unsteady solution of the homogeneous problem, i.e. a solution to (5.2) with s(u;p) = 0.
We take the following initial condition:

up(z) = 0.1 (1 + exp (—100(z — 0.5)?)),

so that u(t,z) = ug(x — t). The final time is set to T = 1, and periodic boundary conditions are prescribed.

We compute the approximate solution with the two bases, for several values of ¢q. The results are collected in
Table 5. We note that the basis with prior does not affect the approximate solution for ¢ > 1, while the results
are slightly worse with the prior for ¢ = 0. To improve the results here, one could introduce a space-time basis in
a space-time discontinuous Galerkin method; this will be the object of future work.
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basis V}, basis V;* basis V" basis VT
h h h

K error order error order gain error order gain error

10 1.75-1072 — 1.45-107®> —  1200.02 1.45-107®> —  1200.02 1.66 - 10714
20 8.75-1073  1.00 7.61-1076 0.93 1149.11 7.61-1076 0.93 1149.11 2.78-10~17
40 4.38-1073  1.00 3.92-107% 0.96 1118.29 3.92-107% 0.96 1118.29 5.89-10~17

80 2.19-107%  1.00 2.00-107¢ 097 1098.77 2.00-107% 097 1098.77 2.78 -10~17
160 1.10-107%  1.00 1.01-107% 0.98 1085.96 1.01-107% 0.98 1085.96 2.19-107Y7

(a) Errors with a basis made of one element: ¢ = 0.

basis V}, basis V* basis V" basis fo’Jr
K error order error order  gain error order  gain error
10 493-107% — 2.18-107¢ —  226.00 1.03-107%  —  479.78 2.04-107

20 1.24-107%  2.00 3.20-1077 2.77  386.66 2.74-1077  1.91  450.59 6.48 - 10716
40 3.09-107°  2.00 8.07-107% 1.99 382.88 7.00-107% 197  441.39 9.46 - 10716
80 7.72-107%  2.00 2.05-107% 1.98 376.52 1.76-107%  1.99  438.98 1.46 - 10715
160 1.93-107%  2.00 516-1072 1.99  374.49 4.40-107°%  2.00 438.34 2.13-1071

(b) Errors with a basis made of two elements: ¢ = 1.

basis V}, basis V;* basis V, basis V,&F
K error order error order gain error order gain error
10 7.89-1076 — 1.00-1077 — 78.58 1.05-1077  — 74.90 9.92-10713

20 9.94-10"7 2.99 1.33-107% 291 74.60 1.41-1078 290 70.65 7.84-10715
40 1.24-10~7 3.00 1.72-1072 295 72.13 1.79-1072 297 69.19 2.84-1071°
80 1.55-1078 3.00 2.17-10719 2,99  71.43 2.25-10719 2.99 68.81 7.81-10715
160 1.94-107°2 3.00 2.72-10"" 3.00 71.25 2.82-10"1 3.00 68.72 1.15-10~14

(c¢) Errors with a basis made of three elements: ¢ = 2.

basis V}, basis V}* basis V" basis V7t
K error order error order  gain error order  gain error
10 1.20-1077 — 831-107% — 14.40 1.12-107% — 10.67 4451071
20 7.39-107%  4.02 5.51-10710 3.91 13.40 7.28-10710 3.95 10.15 77210713
40 4.59-1071% 4.01 3.48-1071" 3.99 13.19 4.56-10~'" 4.00 10.06 1.70 - 10~
80 2921071 3.98 2.20-107'2 3.99 13.27 2.86-1071? 3.99 10.18 6.93-1071°

160 1.85-10"12 3.98 1.29-10713 410 14.38 1.72-1071% 4.06 10.76 2.59-10714

(d) Errors with a basis made of four elements: ¢ = 3.

Table 3: Advection equation: errors, orders of accuracy, and gain obtained when approximating a steady solution
for bases without prior (basis V},), with a PINN prior (bases V;* and V,"), and with an exact prior (basis V™).
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gains in basis V)

. . . +
gains in basis V,

q minimum average maximum minimum average maximum
0 63.46 735.08 4571.89 63.46 735.08 4571.89
1 32.22 149.38 450.74 26.01 190.08 830.20
2 6.20 54.16 118.45 5.92 45.47 313.07
3 1.55 19.54 108.10 1.56 13.69 184.17

Table 4: Advection equation: statistics of the gains obtained for the approximation of a steady solution in bases
Vi and VhJr with respect to basis Vj.
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Figure 1: Advection equation: errors, with respect to time, for the approximation of a perturbed steady solution
for bases with and without prior.

5.2 Shallow

water equations

After studying a scalar linear advection equation in Section 5.1, we now turn to a nonlinear system of conservation

laws. Namely, we tackle the shallow water equations
Oth + 0;Q =0,

2 1
2,Q + 0, (CfL + 2#?)

= _ghaxZ(ZC, Oé,ﬁ),

(5.6)



basis Vj, basis V,;L basis V}, basis VhJr

K error order error order gain K error order error order gain

10 4.04-1072 — 5.04-1002 — 0.80 10 1.92-1072 —  1.93-1072 — 1.00
20 3.46-1072 0.22 4.28-1072 024 0.81 20 6.26-107% 162 6.27-107% 1.62 1.00
40 2.84-1072 0.28 3.50-1072 0.29 0.81 40 1.19-107% 239 1.20-107% 2.39 1.00
80 2.15-1072 040 264-1072 040 0.81 80 1.99-107* 2,59 1.99-107* 259 1.00
160 1.47-1072 0.55 1.81-1072 0.55 0.81 160 4.19-107° 2.24 4.20-107° 2.24 1.00

(a) Errors with a basis made of one element: ¢ = 0. (b) Errors with a basis made of two elements: ¢ = 1.
basis V}, basis Vh+ basis V}, basis Vh+
K error order error order gain K error order error order gain
10 5.15-1073 — 5.15-1073 — 1.00 10 4.72-1074 — 4.72-107* — 1.00

20 4.56-107* 350 4.56-107* 3.50 1.00 20 2.87-107° 4.04 2.87-107° 4.04 1.00
40 4.55-107° 3.32 4.55-107° 3.32  1.00 40 1.81-107% 3.99 1.81-107% 3.99 1.00
80 5.42-107% 3.07 5.42-107% 3.07 1.00 80 1.14-10"7 398 1.14-10"7 398 1.00
160 6.75-1077 3.01 6.75-10"7 3.01 1.00 160 7.20-10"° 3.99 7.20-107° 3.99 1.00

(c) Errors with a basis made of three elements: g = 2. (d) Errors with a basis made of four elements: ¢ = 3.

Table 5: Advection equation: errors, orders of accuracy, and gain obtained when approximating an unsteady
solution for bases with and without prior.

where h > 0 is the water height, @) the water discharge, g = 9.81 the gravity constant, and where the parameterized

topography function is
1
Z(z;a, B) = Bw <a <x — 2)) . (5.7)

In (5.7), the function w € {wgy,w.} is either a Gaussian bump function

1 _oope
wg(x) = 1€ 50 (5.8)

or a compactly supported bump function, with parameter d = 0.15:
1 .
exp|l—- ——— if |z| < 9,

0 otherwise.

Unless otherwise mentioned, the final physical time is 7" = 0.05, and the space domain is Q = (0,1). For each
experiment, Dirichlet boundary conditions corresponding to the steady solution are prescribed.

The steady solutions are given by cancelling the time derivatives in (5.6), and we get the following character-
ization:

_ _ ( Q3 ) . 0 B) =
Qeq = constant =: Qo and 1— ——————— | Ozheq(z; ) + 0 Z(x; 00, ) = 0. (5.10)
gheq(T; 11)°

To solve the nonlinear ODE on h, we impose h = hy at some point in space. Without loss of generality, we
restrict the study to the case @y > 0. This leads us to a family of steady solutions with four parameters, and
thus a parameter vector p made of four elements:
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Hence, we compute At in (5.1) by taking A = %‘3 + Vgho.
Depending on the values of these parameters, the Froude number

_ Q2
=g

controls the so-called flow regime for the steady solution. They can be in three distinct regimes: subcritical
(Fr < 1 everywhere), supercritical (Fr > 1 everywhere) or transcritical (Fr = 1 somewhere in the domain). Each
regime has its own parameter space for hg and gy, described later, but in all cases we take, unless otherwise
stated,

05<a<ls ; 0.5 <8< 1.5. (5.11)

To approximate the steady water height within this parameter space, we use a fully-connected PINN with about
4000 trainable parameters. Its result hy is modified through a boundary function B that will be defined for each
regime. The loss function is once again made only of the steady ODE, and we minimize

Q3 >
0)=1||1— —=—— | Ozhe(z; 0.Z(x; .
0 H( ghe(x;u)?,) ol )+ 0.2 B)H

Training takes about 5 minutes on a dual NVIDIA K80 GPU, and lasts until the loss is about 107*, depending
on the regime.

5.2.1 Subcritical flow

We start with a subcritical flow, where the parameter space for hy and Qg is:
2<hy<3 ; 3<Qy<A4. (5.12)
To strongly enforce the boundary conditions, the prior 71.9 is obtained as follows from the result hy of the PINN:
ho(w; 1) = Blho, w3 1) = ho + Z(w; v, B) ho (; ). (5.13)

To test the preservation of the steady solution, we set the initial water height to heq.

A goal of this section is to better understand the differences between the two topography functions: the
Gaussian bump (5.8) and the compactly supported bump (5.9). It is well-known that compactly supported
functions exhibit large derivatives close to the support, see for instance [44]. As a consequence, to get a good
approximation of these derivatives when computing integrals involving the PINN, we take ng = ¢ + 6 when
w = we. Note that this choice is also motivated by the results in [44], where the authors had to take larger
polynomial degrees to observe the correct orders of convergence. The Gaussian topography also suffers from the
same drawback, but to a lesser extent, and we take ng = ¢ + 3 when w = w, when integrating the result of the
PINN.

For the compactly supported topography, the results are reported in Table 6; for the Gaussian topography,
the results are reported in Table 7.

As a conclusion of this first test case, we observe that using a Gaussian topography compared to a compactly
supported topography leads to a more stable order of accuracy, but with lower gains, except for small values of
K where the compactly supported topography is not well-approximated. The most important point is that the
Gaussian topography requires a lower order quadrature to converge. These results are in line with [44]. As a
consequence, we use the Gaussian topography in the remainder of this section.

Like in the previous section, we now consider 10® parameters in P, and we compute the minimum, average and
maximum gains for ¢ € {0,1,2}. To that end, we take K = 20 discretization cells. The results are reported in
Table 8, where we observe that the average gains are substantial, whatever the value of ¢, and that the minimum
gain is always greater than 1.
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h, basis V3 Q, basis Vj, h, basis VhJr @, basis V,;L

K error order error order error order  gain error order  gain

20  5.76-1072 — 1.89-1071 — 6.20 - 10~4 — 92.82 2.90-1073 — 65.38
40  3.06-1072 091 1.50-107% 0.34 5.65-107° 3.46 541.59 3.94-10~* 2.88  380.39
80 1.82-107%2 0.75 830-107%2 0.85 3.46-107° 0.71 52520 1.70-10"%* 1.21 488.25
160 9.94-107* 0.87 4.53-1072 0.87 1.94-107° 0.84 511.96 9.28-107° 0.87 488.31
320 526-107% 092 237-1072 093 1.04-107° 0.91 507.63 4.89-107° 0.92  484.02

(a) Error with a basis made of one element: ¢ = 0.

h, basis V3, Q, basis V}, h, basis VhJr @, basis Vth
K error order error order error order  gain error order  gain
20 2.13-1072 — 6.69 1072 — 1.05-1074 — 202.69 3.96-104 — 168.97

40 3.90-107% 245 1.37-1072 228 1.93-1075 244 202.12 8.14-107° 2.28 168.62
80 835-107* 222 291-107% 224 159-107% 3.60 525.18 7.27-10"% 3.48 399.73
160 2.04-10~* 2.03 6.72-10~* 211 3.67-1077 211 556.12 1.55-107% 2.23 432.74
320 5.13-107° 1.99 1.65-107* 2.02 9.06-10"% 2.02 566.17 3.62-10"7 2.10 455.78

(b) Error with a basis made of two elements: ¢ = 1.

h, basis V}, Q, basis V}, h, basis Vh+ Q, basis Vh+
K error order error order error order  gain error order  gain
20 6.08-1073 — 1.89-102 — 1.44-107% — 4226 6.14-107* — 30.75

40 7.98-107% 293 257-107% 288 2.52-107% 5.83 31656 7.71-107% 6.32 333.56
80 1.05-107* 293 3.93-107* 271 224-1077 3.49 46799 8.54-1077 3.17 460.48
160 1.71-107° 261 7.02-1075 249 4.09-107% 245 418.00 1.76-10"7 2.28 399.05
320 2.22-100% 294 1.01-107® 280 6.02-107° 277 369.32 291-10"% 2.59 345.73

(c) Error with a basis made of three elements: ¢ = 2.

Table 6: Shallow water system, compactly supported topography (5.9): errors, orders of accuracy, and gain
obtained when approximating a subcritical steady solution for bases with and without prior.

5.2.2 Supercritical flow
We now turn to a supercritical flow. In this case, the remaining parameters hy and @y are taken such that:
0.5<hyg<0.75 ; 4< Qo <5 (5.14)

The boundary conditions are enforced using the same expression (5.13) as in the subcritical case. We check the
approximate preservation of the steady solution by taking the initial water height equal to the steady solution.
The results are displayed in Table 9, and we note that the gains are in line with the subcritical case, from
Table 7.
Furthermore, in Table 10, we display some statistics on the gains obtained by using the prior, in the same
configuration as for the subcritical regime. We draw similar conclusions to the subcritical case.

5.2.3 Transcritical flow

The last steady experiment we study is the preservation of a transcritical steady solution. Such steady solutions
are significantly harder to capture. Indeed, when Fr = 1, the steady ODE (5.10) yields 9, Z = 0, and therefore
the derivative of the steady water height is not defined using only (5.10). This is a well-known issue when
approximating transcritical steady solutions, see for instance [14, 24].
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h, basis Vj Q, basis Vj, h, basis VhJr Q, basis V,;L

K error order error order error order  gain error order  gain

20 4.07-1002 — 165-100' — 927-107° —  439.14 3.87-107* —  425.63
40 2.30-1072 0.83 1.04-10"' 067 5.85-107° 0.67 393.05 2.65-10* 0.55 391.09
80 1.26-1072 0.86 5.86-1072 0.82 3.28-107° 0.83 38493 1.60-10* 0.73 366.15
160 6.74-107% 0.91 3.13-1072 090 1.74-107° 0.91 386.04 872-10° 0.88 359.19
320 350-107% 095 1.62-1072 0.95 9.27-107% 091 37748 4.56-107°> 094 356.17

(a) Error with a basis made of one element: ¢ = 0.

h, basis V3, Q, basis V}, h, basis VhJr @, basis Vth
K error order error order error order  gain error order  gain
20 3.21-103 — 9.80-1073 — 2.37-107° — 135.38 8.94-107° — 109.61

40 7.96-107* 2.01 2.35-107% 2.06 5.53-107% 2,10 143.75 1.89-107° 224 124.54
80 1.99-107* 2.00 5.82-107* 2.01 1.36-107% 2.02 14547 4.53-10"% 2.06 128.58
160 4.96-107° 2.00 1.45-107* 2.00 3.39-10~7 2.01 146.20 1.12-10"% 2.02 129.69
320 1.24-107° 2.00 3.63-107®> 2.00 846-10"% 2.00 146.56 2.79-10~7 2.00 129.97

(b) Error with a basis made of two elements: ¢ = 1.

h, basis V}, Q, basis V}, h, basis Vh+ Q, basis Vh+
K error order error order error order  gain error order gain
20  3.06-107* — 1.23-1073 —  3.90-10°¢ — 7849 1.39-107° —  88.29

40 420-107° 2.86 1.83-107* 275 587-1077 2.73 71.56 2.46-107°5 250 74.27
80 5.44-107¢ 295 243-107° 291 8.10-107% 286 6724 3.66-10"7 275 66.26
160 6.88-1077 298 3.09-107°® 298 1.05-107% 295 6554 4.86-10"% 291 63.52
320 8.62-107% 3.00 3.88-1077 299 1.33-107° 299 65.05 6.18-107° 298 62.76

(c) Error with a basis made of three elements: ¢ = 2.

Table 7: Shallow water system, Gaussian topography (5.8): errors, orders of accuracy, and gain obtained when
approximating a subcritical steady solution for bases with and without prior.

minimum gain average gain maximum gain
q h Q h Q h Q
0 21.28 17.40 309.84  269.59 1562.20 1628.39
1 7.47 5.47 161.16  129.90 845.97 729.03
2 4.37 5.02 96.54 102.36 707.41 704.55

Table 8: Shallow water system, Gaussian topography (5.8): statistics of the gains obtained for the approximation
of a subcritical steady solution in basis Vh+ with respect to basis V.

However, in our case, we provide a simple PINN by defining the water height such that the Froude number is
equal to 1 at the top of the topography bump, i.e. at x = 1/2, where 9,Z = 0. When Fr = 1, the water height
becomes equal to h.(u) = Qg/ K g~1/3, and we fix this value for the prior evaluated at = = 1/2. This eliminates hg
as a degree of freedom, and we choose 2 < Qo < 3. Moreover, we take 0.75 < o < 1.25 for this regime. _

Then, to ensure a correct treatment of the boundary conditions and to obtain the correct value of hy at the
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h, basis Vj Q, basis Vj, h, basis VhJr Q, basis V,;L

K error order error order error order  gain error order  gain

20 1.25-1072 —  4.49-1072 —  220-100° —  566.64 7.25-10"° —  619.66
40 837-107% 0.58 3.21-1072 048 1.54-107° 0.51 542.09 5.17-10"° 049 621.10
80 5.03-107% 0.74 2.02-1072 067 9.46-107° 0.71 53146 3.20-107° 0.69 630.14
160 2.80-107% 0.84 1.16-1072 0.80 5.18-107% 0.87 540.85 1.81-107° 0.82 638.36
320 1.49-107% 091 6.23-1073 0.89 2.81-107% 0.88 52925 1.04-107°> 0.80 599.95

(a) Error with a basis made of one element: ¢ = 0.

h, basis V3, Q, basis V}, h, basis VhJr @, basis Vth
K error order error order error order  gain error order  gain
20 5.32-1074 — 1.96 - 1073 — 4.96-1076 — 107.22 1.57-107° — 124.92

40 1.16-107* 2.19 4.50-107* 2.12 811-1077 261 143.39 3.21-107% 229 140.36
80 2.80-107° 2.05 1.11-10=* 2.03 1.67-1077 228 167.57 7.30-1077 2.14 151.60
160 6.93-107% 202 2.76-107° 2.01 3.97-107% 2.07 17456 1.78-10"7 2.04 154.79
320 1.73-107% 200 6.88-107% 200 9.82-107° 202 17599 442-10"% 2.01 155.59

(b) Error with a basis made of two elements: ¢ = 1.

h, basis V}, Q, basis V}, h, basis Vh+ Q, basis Vh+
K error order error order error order  gain error order gain
20 8.33-107° —  250-107* —  6.98-1077  — 119.47 2.59-107¢ —  96.70

40  1.33-107° 264 3.85-107° 270 1.45-1077 227 92.12 4.45-1077 2.54  86.58
80 1.83-107% 287 5.21-107% 289 247-1078 255 73.83 7.19-107% 2.63 72.48
160 2.34-1077 296 6.67-1077 297 3.50-107% 2.82 67.04 1.00-107% 2.84 66.59
320 2.95-1078% 299 839-107% 299 4.54-10710 2.95 65.00 1.30-107% 295 64.74

(c) Error with a basis made of three elements: ¢ = 2.

Table 9: Shallow water system, Gaussian topography (5.8): errors, orders of accuracy, and gain obtained when
approximating a supercritical steady solution for bases with and without prior.

minimum gain average gain maximum gain
q h Q h Q h Q
0 19.83  23.50 309.13 314.36 1789.56 1923.34
1 5.36 5.54 111.41  120.11 354.89 376.47
2 7.29 7.18 123.58 104.49 468.92 381.27

Table 10: Shallow water system, Gaussian topography (5.8): statistics of the gains obtained for the approximation
of a supercritical steady solution in basis Vh+ with respect to basis V.

top of the bump, we take

To(s 1) = ha(p) + (1 _ tanh (15 <x - ;))) M ho (2 1).

In this expression, hp () and hgr(u) are the left and right boundary conditions. Since we consider a smooth
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steady solution, relations (5.10) lead to

_ @3

+ g(h+ Z(z;, B)) = constant.
Since Z(0.5;c, 8) = /4, we obtain that hr(u) > hgr(p) are the two solutions of the following equation, with

unknown h:
Q3 1
% M-

2h2
Table 11 contains the errors, order of convergence and the gains. We observe that the gains are lower than in
the other two cases, but that was to be expected since the transcritical solution comes from a singular ODE, and
it is harder for the PINN to approximate its solutions.

T gh= E(hc(u),

h, basis V3 Q, basis V}, h, basis VhJr @, basis Vh+
K error order error order error order gain error order gain
40 4.81-1072 — 4.29-1072 — 1.79-10~* — 268.84 2.10-10~* — 204.54
80 2.58-1072 0.90 2.55-1072 0.75 1.37-107% 0.39 189.00 1.53-10"* 045 165.82
160 1.34-1072 094 1.40-10"2 0.86 9.50-107° 0.52 141.21 1.00-10~* 0.61 139.28
320 6.84-1072 097 7.35-1072 093 6.00-10"® 0.66 114.00 6.03-107° 0.74 121.99
640 3.46-1073 098 3.77-107% 096 3.56-107° 0.75 9720 3.40-10° 0.82 110.81
(a) Error with a basis made of one element: g = 0.
h, basis V}, Q, basis Vj, h, basis V,© Q, basis V,"
K error order error order error order gain error order gain
40 6.69-10~% — 6.15-10~4 — 1.85-107° — 36.18 1.16-107° — 52.90
80 1.67-107* 2.00 1.53-10~* 2.01 3.11-107% 2,57 53.69 2.11-1076 246 72.26
160 4.17-107° 2.00 3.81-10"® 2.00 6.77-1077 220 61.66 4.36-10"7 2.28 87.42
320 1.04-107° 2.00 9.53-107% 200 165-1077 2.04 63.28 1.05-1077 2.06 91.04
640 2.61-107% 2.00 2.38-107° 200 4.10-10~% 2.01 63.67 259-10"% 2.01 91.90
(b) Error with a basis made of two elements: ¢ = 1.
h, basis V}, Q, basis V3, h, basis V,© Q, basis V;"
K error order error order error order  gain error order gain
40 9.76-107° — 7.21-107° — 2.95-1076 — 33.10 1.81-10°° — 39.88
80 1.91-107° 235 1.19-107® 2.60 6.89-10"7 2.10 27.74 3.86-10"7 223 30.84
160 3.25-107% 256 1.80-107% 272 1.66-10"7 2.05 19.54 8.68-10"8 2.15 20.76
320 5.01-1007 270 2.51-1077 2.84 3.82-107® 2112 13.10 1.78-107% 229 14.16
640 7.42-107% 276 3.34-107% 291 7.74-107° 2.30 9.58 3.13-107° 2.50 10.66

(c¢) Error with a basis made of three elements: ¢ = 2.

Table 11: Shallow water system, Gaussian topography (5.8): errors, orders of accuracy, and gain obtained when
approximating a transcritical steady solution for bases with and without prior.

Finally, we report in Table 12 the minimum, average and maximum gains obtained by using the basis VhJr
instead of the basis Vj,. We draw the same conclusions as in the other two regimes, even though the gains are, on
average, lower. This was to be expected, since the transcritical regime is harder to capture than the subcritical
and supercritical ones, and therefore that the prior is of lower quality. Nevertheless, the gains remain substantial
for all values of q.
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minimum gain average gain maximum gain

¢« b Q hQ hQ
0 35.82  26.19 254.53 177.02 928.03 668.73
1 5.01 4.73 30.83 38.69 134.83 142.11
2 4.55 6.16 16.49 24.29 96.95 109.94

Table 12: Shallow water system, Gaussian topography (5.8): statistics of the gains obtained for the approximation
of a transcritical steady solution in basis Vth with respect to basis V.

5.2.4 Perturbation of a steady flow

This last experiment related to the shallow water equations concerns a perturbed steady flow. We only perform
this study on the subcritical flow, but the other regimes behave the same. We take ¢ € {5 - 107}@}1«5{1,2,3} and 20
space cells, and set the initial water height to h(0,z; p) = (1 + £ sin(27z)) heq(2; 11).

The errors on h with respect to time are displayed in Figure 2, until the final physical time T' = 1. Like in
Section 5.1, with the prior, the error decreases to a much lower level than without the prior. This good behavior
was expected since the prior makes it possible for the enhanced DG scheme to achieve higher accuracy on steady
solutions.

5.3 Euler-Poisson equations in spherical geometry

We now consider the Euler-Poisson equations in spherical geometry. This system is used in astrophysics, for
instance, where it serves to model stars held together by gravitation, see e.g. [15, 17, 32]. They are given by

o +0,Q=-20Q,
2 2
0@ +0, (T 1p)=-2L o0,
5.15
0o, (2 +n) =2 2e 4 - o
t r p) = (E+p) Q0r¢,
p rp
rlgarr(r2¢) = 4G,

where G is a gravity constant, fixed to G = 1 in our applications, and where we take p as a function of p, @
and E through a pressure law to be specified. In (5.15), p is the density, @ is the momentum, F is the energy,
and ¢ is the gravitational potential. Unless otherwise mentioned, the boundary conditions are of Dirichlet type,
with the value of the steady solution prescribed of the boundaries.

The space domain is 7 € (0,1). The apparent singularity at r = 0 is resolved by imposing suitable boundary
conditions, namely p(0) = 1 and 9,p(0) given according to the pressure law. Indeed, the assumption that there
is no gravity at r = 0 leads to 9,p(0) = 0, which makes it possible to determine 9,p(0). For more information on
the boundary conditions and on the DG discretization of (5.15), the reader is referred to [57].

The steady solutions at rest are given by

Q@ =0,
Orp+ porp =0,
Opr (12¢) = 47r2Gop.

For the steady solutions, we shall distinguish two cases for the pressure law: a polytropic pressure law, and a
temperature-dependent pressure law.
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Figure 2: Shallow water equations, compactly supported topography: errors, with respect to time, for the ap-
proximation of a perturbed subcritical steady solution for bases with and without prior.

5.3.1 Polytropic pressure law

In this case, we introduce two parameters x and -y, so the parameter vector u is composed of two elements:
W= (g) cPCR? kKeRy, v¢€(1,+00).

Equipped with this parameter vector, we define the polytropic pressure law
p(p; ) = kp?,

and the steady solutions are then given as solutions to the following nonlinear second-order ordinary differential
equation:

d 2 y—2 dp _ 2
e (r KYp o) = 4r=Gp.



In general, this ODE does not have analytic solutions. However, it turns out that, for specific values of -, there
exists an analytic solution to this ODE. For instance, with v = 2, we obtain

p(r) = sm(ar)’ with  «a= \/%.
ar K

Regarding the boundary conditions, the condition 9,p(0) = 0 leads to 9,.p(0) = 0 for this pressure law. In this
case, we take A = 14 /7 in (5.1) to compute the time step At.

To obtain a prior py, as usual, we train a PINN with about 1400 trainable parameters on 7 fully connected
layers. The boundary conditions are taken into account by setting

po(rsp) =1+12pg(rs ),
where pg is the result of the PINN. The PINN is trained on the parameter space
P =[2,5] x [1.5,3.5], (5.16)

with only the physics-based loss function corresponding to the steady solution:

d _odpy -
Lo = Hdr <r2/<wﬁg d?") — 472Gyl -

In addition, the prior for q is set to @y = 1 since we wish to approximate a constant momentum. Finally, the
prior for E is set to Ey = p(pp; u)/(y — 1). Training takes about 5 minutes on a dual NVIDIA K80 GPU, until
the loss is equal to about 5-107°. In the DG discretization, the degree of the quadrature formula is the usual
ng = q + 2: there is no need to further increase the order of the quadrature rule in this case.

We first collect, in Table 13, the results of the approximation in both bases (with and without prior), for k = 2
and v = 2.5, and until the final time 7' = 0.01. As usual, the observed gain is larger for smaller number of basis
elements. We observe a slight superconvergence on the momentum ) when using the prior with ¢ = 0. For these
values of k and ~, gains on the density are not very large for ¢ = 2, but this is compensated by larger gains on
the energy.

To extend this study, we compute the statistics over the whole parameter space (5.16) by uniformly sampling
103 values and taking 10 cells in the mesh. The results are reported in Table 14. Just like before, the average
gain is substantial, while the minimum rarely falls below 1. Moreover, note that the gains recorded in Table 13
correspond to a rather bad set of parameters compared to the average.

5.3.2 Temperature-dependent pressure law

In this case, we take a given smooth temperature function 7'(r, 1) parameterized by u, where the parameter vector
1 is composed of two elements:

MZ(Z>EPCR2, kERy, a€cR,.

—Qar

This allows us to define the parameterized temperature function T'(r;a) = e~ ", and so we get the following

temperature-based pressure law:
p(p; p) = rpT.

For this pressure law, the steady solutions are given by the following nonlinear second-order ODE:

d (4 Tdp d (45 dTl 9
- el - =) =4
o (r /{pdr>+dr (7’ Rdr) mr<Gp,

and the boundary condition 9,p(0) = 0 leads to 0,p(0) = a. For this pressure law, we also take A = 1+ /%
in (5.1) to compute At.
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p, basis Vj, Q, basis V3 E, basis Vj p, basis V,f Q, basis VJ E, basis V,;L

K error  order error  order error  order error order gain error  order gain error order gain

10 337-10702 — 260-100® — 755-1002 — 1.08-107* — 312,50 894-107% — 291 3.43-107%* — 219.99
20 1.69-1072 1.00 1.51-107% 0.79 3.78-1072 1.00 6.49-10"° 0.73 259.80 3.34-10"* 1.42 451 2.10-10~* 0.71 180.21
40 8.44-107% 1.00 8.27-107* 0.87 1.89-1072 1.00 3.41-107° 0.93 247.75 1.06-10"* 1.65 7.78 1.11-10"* 0.93 171.17
80 4.22-1072 1.00 4.60-10"* 0.85 9.46-1072 1.00 1.72-107° 0.99 246.26 3.24-107° 1.71 14.20 5.57-107° 0.99 169.99
160 2.11-1072 1.00 2.59-10"%* 0.83 4.73-1072 1.00 8.17-107°% 1.07 258.59 9.15-107% 1.82 28.25 2.64-107° 1.07 178.96

(a) Errors with a basis made of one element: g = 0.

p, basis Vj, Q, basis Vj, FE, basis V}, p, basis V,f Q, basis V,f E, basis V,;L
K error  order error  order error  order error  order gain error order gain error  order gain
10 1.03-107° — 1.30-107® — 223.100° — 1.06-107° — 96.73 1.11-107° — 117.58 3.29-107° — 67.74

20 2.57-107% 2.00 4.17-107%* 1.64 5.61-107%* 1.99 2.74-107°% 1.9593.71 4.33-107°% 1.36 96.42 8.44-107°% 1.96 66.43
40 6.43-107° 2.00 1.11-107%* 1.91 1.41-107* 2.00 6.96-1077 1.98 92.37 1.25-107° 1.79 88.87 2.14-107° 1.98 65.80
80 1.61-107° 2.00 2.80-107° 1.99 3.51-107° 2.00 1.74-1077 2.00 92.17 3.22-1077 1.96 86.81 5.34-10"7 2.00 65.70
160 4.01-107° 2.00 6.99-107% 2.00 8.74-107° 2.01 4.33-107% 2.01 92.65 8.10-107% 1.99 86.38 1.32-10"7 2.01 65.99

(b) Errors with a basis made of two elements: ¢ = 1.

p, basis Vj, Q, basis Vj, E, basis Vj, p, basis V,j' Q, basis Vh+ FE, basis Vh+
K error  order error  order error  order error  ordergain error  ordergain error  order gain
10 138-100° — 1.74-100° — 438-107° — 888-1077 — 155 949-1077 — 1.83 2.74-10°° — 15.97

20 1.85-1077 290 4.05-1077 2.10 5.74-107% 293 1.25-1077 2.83 1.48 2.58-10"7 1.88 1.57 3.58-1077 2.94 16.01
40 2.89-107% 2.68 5.84-107% 2.79 7.40-1077 2.95 1.79-107% 2.81 1.62 3.31-107% 2.96 1.76 4.80-107% 2.90 15.43
80 352-107° 3.04 6.95-107° 3.07 9.26-107% 3.00 2.24-107° 2.99 1.57 4.25-107° 2.96 1.63 5.96-10"° 3.01 15.55
160 4.45-1071°2.98 8.87-107192.97 1.16-107% 3.00 2.83-107192.98 1.57 5.50-1071°2.95 1.61 7.47-1071°2.99 15.50

(c) Errors with a basis made of three elements: g = 2.

Table 13: Euler-Poisson system, polytropic pressure law: errors, orders of accuracy, and gain obtained when
approximating a steady solution for bases with and without prior.

minimum gain average gain maximum gain
q p Q E P Q E P Q E
0 19.14 233 17.04 233.48 3.73  197.28 510.42 4.48  371.87
1 7.61 8.28  6.98 158.25 188.92 130.57 1095.68 1291.90 1024.59
2 0.14 022 299 12.11 16.55  23.73 89.47  109.93 169.28

Table 14: Euler-Poisson system, polytropic pressure law: statistics of the gains obtained for the approximation
of a steady solution in basis V,j' with respect to basis V.

The prior pyg is obtained via a PINN with the same characteristics as in the polytropic case, and whose result
is still denoted by pg. To impose the boundary conditions, this time, we set
po(r; ) = 1+ ar + 12 pg(r; ).

The parameter space is
P =[2,5] x [0.5,1.5], (5.17)
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and the PINN is trained using only the physics-based loss function

d (5 T dpe d (45 dT 9y~
—_ —_ 7 — | =4
dr (r Hﬁ@ dr ) + dr (T Hdr) G

£ |

Training takes about 5 minutes on a dual NVIDIA K80 GPU, until the loss is equal to about 5-10~%. The
priors Q¢ and Ejy are then defined in the same way as in the polytropic case. In this case, we also take ng = ¢+2.

As is becoming usual, we first report, in Table 15, the results of the approximation in both bases (with and
without prior). The final time is set to 7' = 0.01, and we take k = 3.5 and o = 0.5. As usual, using the prior
provides significant gains, especially for low values of ¢q. Compared to the polytropic case, gains are consistently
better for the large values of q.

p, basis Vj, Q, basis Vj, E, basis Vj, p, basis Vh+ @, basis V,f E, basis V,f
K error  order error  order error  order error order gain error  order gain error order gain
10 391-107° — 280-100° — 1.56-107' — 2.65-107" — 147.33 1.18-107° 2.37 8.41-107* — 186.02

20 1.96-10721.00 1.66-107°0.76 7.83-10"21.00 1.39-10"% 0.93 140.95 4.18-10"* 1.50 3.97 4.96-10"* 0.76 157.73
40 9.81-10721.00 9.02-107%0.88 3.92-10721.00 7.04-107°0.98 139.37 1.23-10"*1.77 7.35 2.58-10"* 0.94 151.77
80 4.91-10721.00 5.30-10"%0.77 1.96-10721.00 3.61-107°0.96 135.81 3.85-107° 1.67 13.75 1.41-10"* 0.87 138.76
160 2.46-10721.00 2.94-10"%0.85 9.80-10721.00 1.80-107° 1.00 136.36 1.09-107° 1.82 26.86 6.98-107° 1.02 140.52

(a) Errors with a basis made of one element: g = 0.

p, basis Vj, Q, basis Vj, FE, basis Vj, p, basis V,;L Q, basis V,f FE, basis V;r
K error  order error  order error  order error  order gain error  order gain error order gain
10 1.89-107° — 219-107° —  4.61-100° — 2.85-107° — 66.41 2.67-107° — 81.99 880-107° — 52.42

20 4.74-107%2.00 7.95-107%*1.46 1.16-10721.99 7.46-107° 1.93 63.53 1.16-107° 1.21 68.68 2.39-107° 1.88 48.51
40 1.19-107*2.00 2.31-107%*1.79 2.90-107%2.00 1.92-107°1.96 61.82 3.68-107° 1.65 62.63 6.28-107° 1.93 46.22
80 2.96-107°2.00 6.04-107°1.93 7.24-107°2.00 4.83-1077 1.99 61.27 1.00-107° 1.88 60.25 1.58-107° 2.00 45.96
160 7.40-107%2.00 1.51-107°2.00 1.80-107°2.01 1.20-1077 2.00 61.43 2.54-10"7 1.98 59.61 3.80-1077 2.05 47.45

(b) Errors with a basis made of two elements: ¢ = 1.

p, basis Vj, Q, basis Vj, FE, basis V}, p, basis V,;L Q, basis V,:L FE, basis VhJr
K error  order error  order error  order error  order gain error  order gain error order gain
10 3.83-107° —  449.107° — 1.27-107* — 2.77-107° — 13.83 3.75-107° — 11.98 8.95-107¢® — 14.20

20 5.71-107%275 825-107%244 2.67-107°225 4.88-1077 2.50 11.70 7.62-10"7 2.30 10.82 2.03-107° 2.14 13.14
40 7.37-10772.95 872-1077324 3.66-107°287 7.19-107%2.76 10.25 9.64-107% 2.98 9.05 3.07-1077 2.73 11.93
80 8.88-107%3.05 1.09-10773.00 4.48-10773.03 8.89-107°3.02 9.99 1.14-10783.08 9.55 3.85-10° 2.99 11.64
160 1.11-10783.00 1.36-107%3.01 5.61-10783.00 1.14-107°2.96 9.74 1.47-107° 2.96 9.23 4.96-107° 2.96 11.31

(c) Errors with a basis made of three elements: g = 2.

Table 15: Euler-Poisson system, temperature-based pressure law: errors, orders of accuracy, and gain obtained
when approximating a steady solution for bases with and without prior.

To understand gains on the whole parameter space (5.17), we uniformly sample 103 values of k and « and
take a mesh made of 10 cells. We compute the minimum, average and maximum gains. These values are reported
in Table 16. For this pressure law, the minimum gain is always larger than 1, and we obtain consistently large
average gains, even for ¢ = 2.

5.3.3 Spherical blast wave

The goal of this last test case is to show that our prior does not negatively affect the capability of the scheme
to capture discontinuous solutions. Let us emphasize that numerical viscosity is not an object of this study, and
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minimum gain average gain maximum gain

q p Q E P Q E P Q E

0 13.30  1.05 16.24 151.96  1.88 150.63 600.13 291 473.83
1 6.30 7.53  5.40 72.63  77.20  51.09 321.20 302.58 257.19
2 3.35 345 220 18.96 22.58  13.56 55.47  63.45  47.83

Table 16: Euler-Poisson system, temperature-based pressure law: statistics of the gains obtained for the approx-
imation of a steady solution in basis VhJr with respect to basis V.

therefore that we have not used any regularization procedure. Consequently, results will show some oscillations.
This experiment is nothing but a Riemann problem in spherical geometry, inspired by the experiments in [50].
As such, the initial condition is piecewise constant on the space domain r € (0,0.4), as follows:

2 ifr <0.2,

1 otherwise.

p<o,x>={2 T2 0w =0 p<o,x>={

1 otherwise;

For this experiment, the pressure law is the standard ideal gas law
1Q?
b= (612

and we take the gas constant 7 equal to 1.4. The experiment is run until the final time 7" = 0.1, and with
Neumann boundary conditions. We take 25 discretization cells, and we use a basis made of 3 elements. Moreover,
the source term is deactivated: we set ¢ = 0, and we merely consider the Euler equations in spherical geometry,
without gravity effects.

p U p
2+ 2 1
0.4 +
1.5 + 0.2 + 1.5 +

1} 0 1
; ; ; ; > T : : ; . > T ; ; . ; > T
0 01 02 03 04 0 01 02 03 04 0 01 02 03 04

reference === with prior —— without prior

Figure 3: Euler equations, temperature-based pressure law: statistics for the approximation of a steady solution
for bases with and without prior.

The results are depicted in Figure 3, where we compare the two bases (with and without prior, blue and
orange lines respectively) to a reference solution (green line). We observe very good agreement with the reference
solution, even though oscillations are present, as expected. We also note that the graphs for the solutions with
and without prior are superimposed, which means that the quality of the approximation of this discontinuous
solution has not been degraded by the introduction of the prior in the basis.
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5.4 Shallow water equations in two space dimensions
The last system considered in this series of experiments is the two-dimensional shallow water system. It is given
by

Hh+V-Q=0,

h

where ¢ is the gravity constant, Id is the 2 x 2 identity matrix, h is the water height, Q is the water discharge,
and Z is the topography. For this system, At is computed by setting A\ =2+ /7 in (5.1).

0Q+ V- (Q ©Q + ;gh2ld> = —ghVZ(x; p),

The space variable = (21, z2) belongs to the space domain Q = [—3, 3]?, and we introduce three parameters:
«@
p=|T | ePCR’ a€cR:, TeR;, reR;.
To

This enables us to define the topography as the following Gaussian bump function, with r = ||z||:
Z(@;p) = Texp (a(rg — 7)),

see for instance [43] for a similar test case. On this topography, we consider the following steady solution:

r
heq (5 1) = 2 — Z(a; 1) — gjgz(w;u)‘*, (518)

Qeq(@; 1) =~ heq (a5 1) teq (5 1),
with £+ = (—z9, 1) and where
Ueq(@; 1) = aZ(@; p)*.
To obtain a relevant prior, we approximate heq and ucq, using a different PINN for each of the two functions.

The results of the PINN are denoted by hy and ug, and we define the priors 7L9 and uy as follows, to include the
boundary conditions:

ho(a; i) = 2 — Z(@; p) ho(; pn)®  and g (a; ) = Z(; ) ug (3 ).

Another possibility would be to strongly impose the divergence-free constraint, by learning a potential and taking
the prior Qg (x; 1) as the curl of this potential. However, we elected not to do so, since the current strategy was
able to train faster. The parameter space is

P = [0.25,0.75] x [0.1,0.4] x [0.5,1.25].

The loss function is made in equal parts of the now usual PDE loss, and of the minimization with respect to
data. Data is regenerated at each epoch, and helps to avoid falling in a local minimum corresponding to a lake at
rest, where hy + Z = constant and ugp = 0. Each PINN has about 2500 parameters, and training takes about 10
minutes on an NVIDIA V100 GPU, until the loss functions reaches about 4 x 10~7. This prior is integrated with
a quadrature formula of degree ng = ¢+ 3: we needed to increase the usual quadrature degree by 1 to obtain the
best possible approximation.

5.4.1 Approximation of a steady solution

We take the steady solution (5.18) as the initial condition to test the approximate well-balanced property. The
experiments are run until the final physical time T"= 0.01. We prescribe Dirichlet boundary conditons consisting
in the value of the steady solution.

First, we take the parameters as the center of the parameter cube P. The results are collected in Table 17,
and we note that, as expected, the presence of the prior makes it possible to reach much lower errors, especially
for the water height h.

In addition, we provide some statistics over the whole parameter space P, computed on a mesh with 25 x 25
cells, in Table 18. We not that, on average, the gains are substantial. However, note that the minimum gains
may be smaller than 1, which denotes a loss of precision due to the prior. This happens in around 0.75% of cases,
so we obtain an improvement in an overwhelming majority of cases.
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h, basis Vj @1, basis Vj, Q2, basis Vj, h, basis VhJr @1, basis V;r @2, basis VJ
K error  order error  order error  order error order gain error  ordergain error  ordergain
20 1.94-100' — 4311072 — 431-1002 — 1.31-107* — 147751 6.24-107° — 691 6.24-107% — 6.91
40 9.75-10720.99 2.19-10720.98 2.19-10720.98 6.37-107° 1.04 1531.52 2.84-107° 1.14 7.69 2.84-107° 1.14 7.69
80 4.88-10721.00 1.09-10721.00 1.09-10721.00 3.17-107° 1.01 1540.17 1.43-10720.99 7.63 1.43-1072 0.99 7.63
160 2.44-10721.00 5.48-10721.00 5.48-107%1.00 1.59-107° 1.00 1539.94 7.21-10"*0.99 7.60 7.21-10"* 0.99 7.60
320 1.22-10721.00 2.74-107%1.00 2.74-10731.00 7.93-107° 1.00 1539.59 3.61-10"* 1.00 7.58 3.61-10"* 1.00 7.58

(a) Errors with a basis made of one element: g = 0.

h, basis Vj Q1, basis Vj, Q2, basis V3, h, basis VhJr Q1, basis VhJr Q2, basis Vh+
K error  order error  order error  order error order gain error order gain error  order gain
20 2.17-1072 — 2558-1072 — 258.1072 — 851-107° — 254.60 1.42-107% — 1821 1.42-107% — 18.21
40 5.46-10721.99 8.88-10721.54 8.88-10721.54 3.23-107° 1.40 169.11 3.70-107* 1.94 23.99 3.70-10~* 1.94 23.99
80 1.37-10722.00 2.50-10721.83 2.50-10731.83 9.43-107°1.78 145.10 9.35-107° 1.98 26.74 9.35-107° 1.98 26.74
160 3.42-107%2.00 6.46-107%1.95 6.46-107*1.95 2.47-107%1.94 138.89 2.35-107° 2.00 27.54 2.35-107° 2.00 27.54
320 8.56-107°2.00 1.62-107*2.00 1.62-107*2.00 6.19-1077 1.99 138.25 5.87-10762.00 27.55 5.87-1075 2.00 27.55

(b) Errors with a basis made of two elements: ¢ = 1.

h, basis V3 Q1, basis V3, Q2, basis Vj, h, basis Vh+ Q1, basis Vh+ Q2, basis V,j'
K error  order error  order error  order error  order gain error  order gain error  order gain
20 161-107% — 3.03-100® — 3.03-100® — 1.63-107° — 9879 295-107* — 10.27 295-107% — 10.27
40 2.18-107%2.89 4.83-107% 265 4.83-107%2.65 2.55-107° 2.68 85.60 4.03-107° 2.87 11.97 4.03-107° 2.87 11.97
80 2.85-107°294 5.77-107°3.06 5.77-107°3.06 3.12-10773.0391.29 5.11-107°298 11.30 5.11-107° 2.98 11.30
160 3.47-107°3.04 6.86-107°3.07 6.86-107°3.07 3.69-107% 3.08 94.23 6.33-1077 3.01 10.84 6.33-10"7 3.01 10.84
320 4.35-10773.00 8.56-10773.00 8.56-10"7 3.00 4.66-107° 2.98 93.43 7.85-107% 3.01 10.91 7.85-107% 3.01 10.91

(c) Errors with a basis made of three elements: g = 2.

Table 17: Shallow water equations in two space dimensions: errors, orders of accuracy, and gain obtained when
approximating a steady solution for bases with and without prior.

minimum gain

average gain

maximum gain

g P Q1 Q2 4 Q1 Q2 P Q1 Q2

0 48.21 0.39 0.39 1131.55 6.18 6.18 1592.52 11.24 11.24
1 0.96 0.16 0.16 186.82 21.00 21.00 422.68 49.05 49.05
2 0.06 0.02 0.02 82.45 8.76 8.76 206.29 22.43 22.43

Table 18: Shallow water equations in two space dimensions: statistics of the gains obtained for the approximation
of a steady solution in basis V,j' with respect to basis V.

5.4.2 Perturbed steady solution

We now compare the new basis to the classical one when the initial condition is a perturbed steady solution. To
that end, the initial water height is set to

h(0, @; ) = heq(@; ) — 0.02exp (—2((z1 +2)> + (22 +2)?)),

thus creating a bump-shaped perturbation whose center is located at (—2,—2). For simplicity, we still use the
value of the steady solution as Dirichlet boundary conditions. Moreover, we set the parameters u to be the center
of the cube P, and we take ¢ = 1 with 162 discretization cells.
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The pointwise difference between h and heq is displayed in Figure 4. We observe that the prior-enriched
basis Vh+ (right panels) is able to capture the perturbation much better than the classical basis V}, (left panels).
Indeed, the background, underlying steady solution has been smeared by basis V},, while is is preserved with much
greater resolution by basis Vh+.

6 Conclusion

In this work, we proposed a Discontinuous Galerkin scheme whose basis has been enriched by neural networks to
ensure an approximate well-balance property for a generic PDE and a generic equilibrium. The offline phase of
the algorithm consists in learning a family of equilibria using parametric PINNs. Then, during the online phase,
the trained network is used to enrich the DG basis and to approximate the solution to the PDE.

The results show significant gains in accuracy compared with the conventional DG method, particularly for
low-dimensional approximation spaces. To obtain the same accuracy, we can significantly reduce the number of
cells and use larger time steps. The method has been validated on a wide range of PDEs and equilibria, showing
that it is a general-purpose approach. Furthermore, it makes it possible to handle complicated equilibria, on
complex geometries, which are rarely treated by conventional WB schemes, especially in two space dimensions.
The cost of training the network is low, as is the cost of inference. The main additional cost of the method comes
from the quadrature rule, whose order has to be increased to ensure a good approximation of the integral of the
prior. In most cases, this increase in order is not very important, and the gain between our approach and the
classical ones remains significant.

There are several possible ways of extending our approach. From an application point of view, we wish
to deal with more difficult equilibria, such as equilibria for the magnetohydrodynamics in tokamaks. From a
methodological point of view, we would like to improve the determination of the prior by replacing parametric
PINNs with physics-informed neural operators [51, 25] in order to widen the family of equilibria that can be
considered. The other approach is to extend the method with time-dependent priors, in order to increase the
accuracy of the scheme around families of unsteady solutions. To that end, we wish to move on to space-time
DG methods, see e.g. [38].
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