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an experimental dataset on yields 
of pulses across Europe
Daniele antichi1,2 ✉, Silvia Pampana  1,2, Lorenzo Gabriele tramacere1,2, Véronique Biarnes3, 
Ina Stute4, Žydrė Kadžiulienė5, Becky Howard6, Isabel Duarte7, Oskars Balodis8, Iris Bertin9, 
David Makowski  10 & Nicolas Guilpart9

Future European agriculture should achieve high productivity while limiting its impact on the 
environment. Legume-supported crop rotations could contribute to these goals, as they request less 
nitrogen (N) fertilizer inputs, show high resource use efficiency and support biodiversity. However, 
legumes grown for their grain (pulses) are not widely cultivated in Europe. To further expand their 
cultivation, it remains crucial to better understand how different cropping and environmental features 
affect pulses production in Europe. To address this gap, we collected the grain yields of the most 
cultivated legumes across European countries, from both published scientific papers and unpublished 
experiments of the European projects LegValue and Legato. Data were integrated into an open-source, 
easily updatable dataset, including 5229 yield observations for five major pulses: chickpea (Cicer 
arietinum L.), faba bean (Vicia faba L.), field pea (Pisum sativum L.), lentil (Lens culinaris Medik.), and 
soybean (Glycine max (L.) Merr.). These data were collected in 177 field experiments across 21 countries, 
from 37° N (southern Italy) to 63° N (Finland) of latitude, and from ca. 8° W (western Spain) to 47° E 
(Turkey), between 1980 and 2020. Our dataset can be used to quantify the effects of the soil, climate, 
and agronomic factors affecting pulses yields in Europe and could contribute to identifying the most 
suitable cropping areas in Europe to grow pulses.

Background & Summary
Grain legumes (also named pulses) are Fabaceae crops sown and harvested for dry grain production and used as 
feed or food. Nowadays, they are widely recognized as key components of sustainable cropping systems, because, 
besides their use as food and feed, they may additionally deliver several supporting and regulating ecosystem 
services1,2.

Legumes have the unique ability to establish a symbiosis with rhizobia bacteria to fix atmospheric N2, thus 
providing another source of nitrogen (N) to the plant in addition to that available in soils. Moreover, the min-
eralization of their N-rich crop residues enlarges soil N availability for the following crops3,4. Together, these 
processes can reduce mineral N fertilizer requirements in cropping systems, and consequently can lower fossil 
energy use and direct/indirect net greenhouse gas (GHG) emissions in agriculture, associated with the manu-
facture and field application of mineral N fertilizers4. Moreover, increased cultivation of grain legumes would 
contribute to the diversification of cereal-dominated crop rotations in Europe, with expected positive effects on 
biodiversity, control of weeds, pests and diseases, and soil structure5,6, as well as on crop yields7.

Legumes can also have negative outcomes. For example, higher soil N losses to the environment have been 
observed due to the higher soil N content after legume harvest8,9. In comparison to cereals, some legume crops 
may also require a higher pesticide use intensity (e.g., pea) or more irrigation water (e.g., soybean)10,11. However, 
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despite these potential drawbacks, the overall benefits of increased legume cultivation in the European Union 
(EU) are still expected to be positive9,12. Nevertheless, the presence of legumes in cropping systems of the EU is 
still scarce (nowadays, about 2% of arable land) so that the EU is highly dependent on imports of feed-legumes 
and agricultural systems are still heavily reliant on fossil energy used for the manufacture of synthetic nitrogen 
fertilizers8,13.

Several subsidies have been introduced under the EU’s Common Agricultural Policy (CAP) and Rural 
Development Plans (RDPs) to increase the presence of grain legumes in European farming systems, to support 
both the transition to more sustainable food production9 and the goals of the European Green Deal “Farm to 
Fork” strategy14. Nevertheless, many socio-economic and agronomic factors have been shown to explain the 
marginalization of grain legumes in Europe15,16. Importantly, annual economic margins of pulses remain too 
low in comparison to other crops like cereals, due to inferior yields, higher yield instability17, and lower market 
prices18. Moreover, investments in research and development (R&D) have been lower for legumes than for other 
major crops, and legume cultivation is facing many genetic and agronomic challenges that need to be addressed 
to improve the yield and yield stability of pulses. These challenges include breeding for improved varieties19, as 
well as abiotic stress management20,21 and the control of pests, diseases, and weeds, which is particularly chal-
lenging if synthetic agrochemicals cannot be used like in organic farming systems22.

To increase the growth of grain legumes in Europe, an essential first step is to identify the most suitable areas 
for their cultivation, i.e., regions where high and stable yields can be attained. Indeed, a better knowledge of the 
most suitable areas for pulses is important to identify which legume species are best adapted to local conditions 
of climate and soils23, identify the most important limiting factors and improve agronomic management of these 
crops across a wide range of agroclimatic zones in Europe1,24, and give guidance for the development of value 
chains. To date, European regions potentially relevant to grow pulses have been only identified for soybean25, 
but not for other grain legumes. Moreover, many different cultivars were produced for a given species and they 
could respond differently to different environments and management practices (Genotype x Environment x 
Management interactions26). It is thus important to build large datasets including yield data covering a wide 
range of cultivars, environments, and management practices to robustly identify suitable areas23,25,27.

Some existing datasets provide yield data for grain legumes in Europe, but none of them meets all the char-
acteristics required for our purpose. For example, annual yield data of grain legumes are provided at the country 
level by the Food and Agriculture Organization (FAO) of the United Nations (see https://www.fao.org/faostat/
en/#data), but the spatial resolution is too coarse to capture local effects of variations in climate and soils on crop 
yield. The Global Dataset of Historical Yields for major crops provides annual yield data at a spatial resolution 
of 0.5° (grid cells of 55 km), but only for soybean28,29. The Spatial Production Allocation Model (SPAM) data 
provide yield data for 42 crops including grain legumes at the global scale at a spatial resolution of 0.083°, with 
10-km grid cells, but only for the year 201030. Moreover, available datasets mostly provide yield data where crops 
are grown, while observed actual yields in areas where grain legumes are not yet grown by farmers would be 
of interest as well, to identify areas where grain legumes could be potentially grown in the future. A previous 
dataset of legume yields from field experiments was made available by Cernay and co-authors27. It covers the 
period 1967–2016 and includes records across 41 countries and 18 Köppen-Geiger climatic zones. But this data-
set is focused on field experiments comparing several pulse species and does not include yield data collected in 
experiments including single pulse species. This dataset thus missed numerous experimental pulse yield data 
obtained in Europe.

To fill this gap, we present a new dataset on grain legume yields, gathering results from field experiments for 
the five dominant species in Europe: chickpea (Cicer arietinum L.), faba bean (Vicia faba L.), field pea (Pisum 
sativum L.), lentil (Lens culinaris Medik.), and soybean (Glycine max (L.) Merr.). This dataset, named the 
“European Grain Legume Dataset” (EGLD) includes 5229 yield observations from 177 field experiments across 
21 countries, from 1980 to 2020. EGLD can prove to be useful for disentangling the effects of soil, climate and 
agronomic drivers of legume yields in Europe.

Methods
Data were collected from three different sources (Fig. 1): (i) published experimental data from an online lit-
erature search; (ii) experimental data from trials conducted within the EU-FP7 LEGATO (LEGumes for the 
Agriculture of TOmorrow) Project (GA nr. 613551); (iii) experimental data from trials conducted within the 
EU-H2020 LEGVALUE (Fostering sustainable legume-based farming systems and agri-feed and food chains 
in the EU) Project (GA nr. 727672). Five pulses, namely chickpea, faba bean, field pea, lentil, and soybean have 
been searched, as the most cultivated in Europe.

Data collection from scientific papers. Concerning the first source of information, we used the Scopus 
collection to retrieve the foremost publications reporting peer-reviewed research on the selected pulse species. 
The systematic search of peer-reviewed journals was completed in June 2020. The search criteria included the 
following elements, searched for in the following order within article title, abstract, and keywords:

•	 Crop*
•	 AND one of the following terms: chickpea, faba bean, lentil, pea, soybean
•	 AND (yield OR ‘dry matter’ OR biomass)
•	 AND (compar* OR assessment OR product* OR performance*)
•	 AND (trial* OR factorial OR experiment* OR treatment* OR condition*).

At first, we did not set any restrictions on publication date and language and retrieved 2610 papers. The 
search results were refined to “Agricultural and Biological Sciences” and “Environmental Sciences” as subject 
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areas in Scopus. After that, we further restricted the records to affiliation countries in Europe (EU-27 countries 
plus Turkey, Albania, Switzerland, United Kingdom, Norway, Ukraine, Serbia, Montenegro, North Macedonia, 
Kosovo, Moldova, Iceland, and Belarus).

At that point, the literature search identified 406 articles of potential interest (Fig. 1).
We also gathered 51 additional papers from the literature review by Ditzler et al.1 and from the references 

cited in the eligible papers identified above, that had not been identified by the initial search, according to our 
inclusion criteria.

Article titles and abstracts have then been screened for eligibility according to the following criteria:  
(i) article title and/or article abstract reporting one or more grain legume species grown as sole crop; (ii) article 
title and/or article abstract reporting at least one experiment at one of the countries listed above; (iii) article 
title and article abstract published in a peer-reviewed journal. All the eligible full-text articles were thoroughly 
read at least twice and by two different authors to assess their admissibility according to additional criteria: (i) at 
least one grain legume grown as sole crop per each experimental site included in the field experiment; (ii) data 
coming from experimental trials; (iii) study reporting grain yields (i.e., papers reporting only total plant bio-
mass were excluded); (iv) precise information on field site (region and site name and/or latitude and longitude 
coordinates); (v) main agronomic practices reported. At least the year was considered a mandatory information 
for sowing and harvest to relate the agronomic data with weather conditions. If the month of sowing/harvest, 
but not the day, was reported, then the central day of the month was used as a proxy of the actual sowing/har-
vest dates. Then, if grain yield data were expressed as fresh matter without indication of percent moisture, they 
were excluded; otherwise, fresh matter data were converted into dry matter and all values were reported as dry 
weights per unit area.

We finally picked out 146 eligible full-text articles published between 1990 and 202031–176. Data were man-
ually extracted from the tables of the selected papers and the WebPlotDigitizer-4.2.0 app (https://automeris.
io/WebPlotDigitizer) was used to extract data from figures. All data were converted into a digital format and 
inserted into a csv file.

Data collection from experimental trials. To expand the dataset, we sought out further yield data that 
met the following criteria: i) data coming from experimental trials; ii) at least one of the selected grain legume 
species grown as sole crop; iii) experimental site of the field experiment at one of the countries listed above; iv) 
study reporting grain yields; v) disposal of precise information on field site (region and site name and/or lati-
tude and longitude coordinates); vi) main agronomic practices available and reported. Accordingly, we included 
also open data provided by the former EU-FP7 project LEGATO “LEGumes for the Agriculture of TOmorrow” 

Fig. 1 PRISMA186 flow diagram for the systematic review process, including searches of database and of 
unpublished experiments of LEGVALUE and LEGATO Projects. *EU-27 countries plus Turkey, Albania, 
Switzerland, United Kingdom, Norway, Ukraine, Serbia, Montenegro, North Macedonia, Kosovo, Moldova, 
Iceland, Belarus) ** “Agricultural and Biological Sciences” and “Environmental Sciences”.
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(2014–2017), which has delivered the results of the 2-yr experimental activities performed on field pea, faba bean, 
chickpea, and lentil. The methodological aspects and the experimental details of the trials are openly available 
at https://intranet.iamz.ciheam.org/forms/Legato/WP6/files/Field_Trial_Protokol_5.1.2016.pdf. The dataset was 
downloaded from https://intranet.iamz.ciheam.org/forms/Legato/WP6/index.php and eligible data, according to 
the criteria, were extracted and manually added to the dataset. Overall, data were produced in field experiments 

Country

Chickpea Faba bean Field pea Lentil Soybean
Total 
(country)

n (%) n (%) n (%) n (%) n (%) n

Austria 2 (0.4) 48 (2.8) 52 (3.7) 6 (0.5) 108

Belgium 14 (1.2) 14

Bulgaria 4 (0.9) 24 (1.7) 28

Croatia 24 (2.0) 24

Czech Republic 38 (2.2) 66 (4.7) 104

Denmark 4 (0.9) 75 (4.3) 113 (8.0) 4 (1.0) 4 (0.3) 200

Estonia 38 (2.2) 38 (2.7) 76

Finland 38 (2.2) 51 (3.6) 89

France 212 (12.2) 150 (10.6) 44 (3.7) 406

Germany 661 (38.0) 331 (23.4) 58 (14.0) 486 (40.5) 1536

Greece 168 (36.3) 20 (1.1) 36 (2.5) 137 (33.2) 361

Italy 85 (18.5) 186 (10.7) 63 (4.4) 25 (6.1) 88 (7.3) 447

Latvia 5 (0.3) 1 (0.1) 5 (0.4) 11

Lithuania 5 (0.3) 31 (2.2) 24 (2.0) 60

Poland 7 (0.4) 39 (2.8) 57 (4.8) 103

Portugal 51 (11.1) 20 (1.1) 26 (1.8) 97

Romania 12 (0.8) 24 (5.8) 82 (6.8) 118

Serbia 12 (0.7) 34 (2.4) 147 (12.3) 193

Spain 112 (24.4) 161 (9.2) 90 (6.4) 49 (11.9) 412

Turkey 33 (7.2) 70 (4.9) 116 (28.1) 218 (18.2) 437

United Kingdom 215 (12.3) 190 (13.4) 405

Total (crop) 459 — 1741 — 1417 — 413 — 1199 — 5229

Table 1. Distribution of dataset entries among European Union countries for the five pulse species included in 
EGLD. n = number of entries and (%) = percent of entries by country.

Fig. 2 Geographic distribution of the experimental sites reporting the yields of the five pulse species. The insert 
provides the number of data in the seven most represented Koppen Geiger climate zones186,187.

https://doi.org/10.1038/s41597-023-02606-0
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in compliance with a common protocol. The field experiments were conducted on plots of 10 m2 and replicated 
four times in space, according to a completely randomized design (CRD). Plant samples for grain yield assess-
ment were collected on 1 m2 sampling areas when the crops reached harvest maturity.

The dataset was also complemented with the European H2020 LEGVALUE Task 1.2 Partners (www.legvalue.eu)  
own data, which were generated both on-station and on-farm but always under well-determined field condi-
tions. The authors, as effective partners of the Project could deliver their not already published results. Data that 
met the eligibility criteria were added by each partner to the original dataset, following the related instructions 
(see Data records section). The trials were conducted according to site-specific experimental protocols, that were 
documented by the providing partners and are available in the dataset (Supplementary Table S1).

Those details on geographical site, pedoclimatic conditions, treatment replications, and agronomic manage-
ment (i.e., cultivar choice, tillage, plant density, fertilization, crop protection, growing cycle length) have been 
included in the dataset for each entry coming from both LEGATO and LEGVALUE experiments.

Additional information on the experimental methodology of the trials of both LEGATO and LEGVALUE are 
summarized in Supplementary Table S2.

Data records
The dataset created with all the extracted data, named “European Grain Legumes Dataset” (EGLD) is available 
at figshare177.

Overview of data files. In the figshare repository, the following files are provided177: (i) “European Grain 
Legume Dataset.csv” that contains the data; (ii) “EGLD instructions.pdf ” and “EGLD instructions.csv” that 
report the list and the definition of each column in the dataset (meta-data); (iii) “List of sources.pdf ” and “List of 
sources.csv” that provide the list of the sources where the data were collected from.

In “EGLD instructions” files we reported a brief description and the assumptions for each column (category) 
for the reader’s guidance, to facilitate data entry operations as well as to inform the proper interpretation of the 
data.

Fig. 3 Box plots showing the distributions of grain yield data for the five pulse species. Values are reported as 
dry weights per unit area (t ha−1). Main body of the boxplot shows the interquartile range (IQR = Q3-Q1), and 
the central line the median (Q2). Whiskers (bars) represent Q1-1.15 IQR (lower) and Q3 + 1.5 IQR (upper), and 
dots indicate outliers.

Source
Soil 
classification

Soil 
texture Cultivar Tillage

Plant 
density

Sowing 
density

Row 
spacing

LEGATO Experiment 801 357 0 581 139 173 839

LEGVALUE Experiment 878 202 100 1162 1316 460 1038

Paper 1563 1161 264 961 2432 974 839

Total 3242 1720 364 2704 3887 1607 2716

Table 2. Number of entries with missing data about soil classification, texture, cultivar, plant and sowing 
density, and row spacing (per source of information and in total).

https://doi.org/10.1038/s41597-023-02606-0
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The files “List of sources” complement information about the founts from which the data has been acquired, 
together with the web link at which they are accessible and the responsible institution.

Overview of the structure of the dataset. The “European Grain Legume Dataset.csv” file contains all 
the data for the five selected pulse species, with variables as columns and entries as rows. As several papers and 
experiments reported multiple yield assessments, a unique ID was assigned to a single combination of year x site 
x crop species x experimental treatment level and was reported as a single entry (i.e., a single row) in the dataset.

This process led to a total of 5229 yield data for the five selected pulses all over Europe (Table 1 and 
Fig. 2), of which 2864 were collected from published papers, 1526 from non-published experimentations of 
the LEGVALUE project, and 839 from the LEGATO project. Records identified from published papers or the 
LEGATO Project or other experiments of the LEGVALUE Project were differently labeled in the database in the 
column “source” as Paper, Experiment LEGATO or Experiment LEGVALUE, respectively. The coordinates of 
each yield data were extracted and included in “European Grain Legume Dataset.csv”.

All the sources from which data were recovered are reported in the file named “List of Sources.pdf ”, avail-
able on the figshare repository177. For data obtained from the LEGATO project or from experiments of the 
LEGVALUE project, a brief description of the experiment is delineated, while for published papers the full 
reference is reported. We also provide a web address where the sources can be accessed (through the digital 
identification number (doi) if available). Most of the published papers are publicly available under Open Access 
licenses. A few can be accessed by personal or institutional subscription, depending on each journal policy.

All records enclose 72 columns that describe a corresponding number of variables with different types of 
information. These variables can be grouped into four categories: the first provides information on the source of 
the data, the second on the experiment, the third on agricultural management practices, and the fourth category 
conveys figures about crop yield. The full list of variables included in the dataset, together with their detailed 
description and unit has been reported in Supplementary Table 1.

Overview of the data. The EGLD177 contains yield data from 21 countries, from ca. 37° N (southern Italy) 
to 63° N (Finland) of latitude, and from ca. 8° W (western Spain) to 47° E (Turkey) (Fig. 2), thus capturing a 
wide range of pedoclimatic conditions. With about one third (29%) of the data, Germany is the country with 
the highest number of observations, followed by Italy, Turkey, Spain, France, the UK, and Greece, each of these 
countries representing about 8% of the dataset (Table 1). Other countries have lower numbers of observations, 
with Bulgaria, Croatia, Belgium, and Latvia having less than 30 observations each.

Faba bean, pea, and soybean are well represented in the dataset as they account for 33%, 27%, and 23% of 
total number of observations, and are present in 19, 16, and 13 of the 21 countries, respectively. On the other 
hand, chickpea and lentil are much less represented as they account for only 9% and 8% of the whole dataset, and 
are present in 8 and 7 countries, respectively. Belgium and Croatia provide information only for one pulse (soy-
bean), while Italy and Denmark have information about all the five species. The dataset captures a wide range of 
grain yield values, from complete crop failure (yield almost null) to very high yield (for all the species, the max-
imum yield was higher than 6 t ha−1 of dry matter) (Fig. 3). The most represented agronomic practice that has 

Fig. 4 Box plots of grain yields dry matter (t ha−1), ranked by soil type. Main body of the boxplot shows the 
interquartile range (IQR), and the central line the median. Whiskers (bars) represent Q1-1.15 IQR (lower) and 
Q3 + 1.5 IQR (upper), with dots to indicate outliers. n = Number of entries. Values are pooled across the five 
species.

https://doi.org/10.1038/s41597-023-02606-0
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been evaluated in the experimental trials was found to be the genotype (cultivar) as it represents more than 50% 
of all the entries of the dataset. Tillage and weed control are the next, with 8 and 6% of total entries, respectively.

Missing data are indicated as “NA” (not available) cells in the dataset. For example, cultivar was missing in 7% 
of entries, soil texture in 33% of the total, while the soil classification was not reported for more than half entries 
(about 62%), and tillage was missing in half (52%) of entries (Table 2).

Technical Validation
After the data extraction, the quality check was further carried out by comparing the entire set of collected data 
against the corresponding original source (papers or experiments) to make sure the data were digitalized cor-
rectly. The formats of each column (numerical or string) were checked to correct misprinting. We visualized the 
data distribution for each numerical column and detected outliers, that were manually checked and validated 
by comparing them with the values reported in the original papers or experiments. Moreover, the values of 
crop yield reported in the database are consistent with the results of published research1,17,23,178–180. Graphical 
exploration of the data was performed by using the package ggplot2 with the ggplot function of the statistical 
software R, version 4.1.2.

Fig. 5 Two examples of management practices included in the dataset: organic cultivation and month of 
sowing. (a) Box plot of the effect of organic cultivation (grey) vs conventional cultivation (white) on the yield 
of the five pulse species. Main body of the boxplots shows the interquartile range (IQR), and the central line 
the median. Whiskers (bars) represent Q1-1.15 IQR (lower) and Q3 + 1.5 IQR (upper), with dots to indicate 
outliers. (b) Violin plot of the month of sowing for the five pulse species. The width of the areas represents the 
proportion of data located. n = Number of entries.

https://doi.org/10.1038/s41597-023-02606-0
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Usage Notes
The yield dataset can be used for several purposes. First it is useful to improve our knowledge of the relation-
ships between pedoclimatic factors, agronomic practices, and legume yield. The wide range of soil types (Fig. 4), 
climate zones (Fig. 1), and management practices (Fig. 5) covered by our dataset provides a unique opportunity 
to identify the main factors influencing yield of pulses8,181,182. A better understanding of GxExM interactions 
impacts of the yield for grain legumes would contribute to improving our understanding of the determinants 
of productive performances of the cultivars tested in Europe and identify the most promising in different 
regions15,16.

Second, the dataset can be used to map achievable yields of grain legumes over Europe under current and 
future climate scenarios. This can be done by fitting statistical or machine learning models to predict grain 
yield from climate (and possibly other factors like soil and management practices) inputs, as done by Guilpart 
et al. for soybean25. Thanks to the experiment geographical coordinates, it is possible to associate climate and 
soil information with the yield data included in our dataset183–185. It would be then possible to train data-driven 
yield forecasting models and produce yield maps for the five pulse species under various hypothetical climate 
and management scenarios, as done for soybean25. Such yield maps may be highly relevant to: (i) identify suit-
able areas for pulses cultivation in Europe under both current and future climate; (ii) simulate the impact of 
an increase of pulses growing area on the pulse production in Europe; (iii) support the definition of market 
scenarios as well as policies on protein/starch production in the EU, highlighting potentialities, environmental 
barriers, and constraints; (iv) identify pulses species and cultivars best adapted to local pedoclimatic conditions 
over Europe.

Notably, the EGLD dataset could be easily updated using data retrieved from recently published papers and 
data recorded in new experiments. However, at the figshare accession data is that peer reviewed in 2023177 and 
this version will be maintained.

code availability
Prisma Flow Diagram (http://www.prisma-statement.org/documents/PRISMA_2020_flow_diagram_new_SRs_
v2.docx) was used to generate Fig. 1.

The statistical software R (version 4.1.2, 2021-11-01-“Bird Hippie” Copyright © 2021. The R Foundation for 
Statistical Computing) was used to produce Figs. 2–5. R scripts used to produce figures are openly available on 
the figshare repository.
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