
HAL Id: hal-04246950
https://hal.science/hal-04246950v2

Submitted on 12 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The asymptotics of the optimal holomorphic extensions
of holomorphic jets along submanifolds

Siarhei Finski

To cite this version:
Siarhei Finski. The asymptotics of the optimal holomorphic extensions of holomorphic jets along
submanifolds. Journal de Mathématiques Pures et Appliquées, 2022, �10.48550/arXiv.2207.02761�.
�hal-04246950v2�

https://hal.science/hal-04246950v2
https://hal.archives-ouvertes.fr


The asymptotics of the optimal holomorphic
extensions of holomorphic jets along submanifolds

Siarhei Finski

Abstract. For a complex submanifold in a complex manifold, we consider the operator which
for a given holomorphic jet of a vector bundle along the submanifold associates the L2-optimal
holomorphic extension of it to the ambient manifold. When the vector bundle is given by big
tensor powers of a positive line bundle, we give an asymptotic formula for this extension operator.

Résumé. Pour un sous-variété complexe dans un variété complexe, nous considérons l’opérateur
qui, pour un jet holomorphe d’un fibré vectoriel le long du sous-variété, associe l’extension holo-
morphe optimale L2 de ce jet au variété ambiant. Lorsque le fibré vectoriel est donné par les
grandes puissances tensorielles d’un fibré en droites positives, nous donnons une formule asymp-
totique pour cet opérateur d’extension.
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1 Introduction
The main goal of this paper is to study the asymptotics of the L2-optimal holomorphic extensions
of holomorphic jets associated to high tensor powers of a positive line bundle along a submanifold.
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Asymptotics of extensions of holomorphic jets 2

More precisely, we fix two (not necessarily compact) complex manifolds X, Y , of dimensions
n and m respectively. We fix also a complex embedding ι : Y → X , a positive line bundle (L, hL)
over X and an arbitrary Hermitian vector bundle (F, hF ) over X . In particular, we assume that for
the curvature RL of the Chern connection on (L, hL), the closed real (1, 1)-differential form

ω :=

√
−1

2π
RL (1.1)

is positive. We denote by gTX the Riemannian metric on X induced by ω as follows

gTX(·, ·) := ω(·, J ·), (1.2)

where J : TX → TX is the complex structure on X . We denote by gTY the induced metric on Y .
We assume throughout the whole article that the triple (X, Y, gTX), and the Hermitian vector

bundles (L, hL), (F, hF ), are of bounded geometry in the sense of Definitions 2.4, 2.5.
This means that we assume uniform lower bounds rX , rY > 0 on the injectivity radii of X , Y ,

the existence of the geodesic tubular neighborhood of Y of uniform size r⊥ > 0 in X , and some
uniform bounds on related curvatures and the second fundamental form of the embedding.

Now, we fix some positive (with respect to the orientation given by the complex structure)
volume forms dvX , dvY on X and Y . For smooth sections f, f ′ of Lp ⊗ F , p ∈ N, over X , we
define the L2-scalar product using the pointwise scalar product 〈·, ·〉h, induced by hL and hF , by

〈f, f ′〉L2(X,Lp⊗F ) :=

∫
X

〈f(x), f ′(x)〉hdvX(x). (1.3)

We denote by H0
(2)(X,L

p ⊗ F ) the vector space of L2-holomorphic sections of Lp ⊗ F over X .
Given a continuous smoothing linear operator K : L2(X,Lp ⊗ F ) → L2(X,Lp ⊗ F ), the

Schwartz kernel theorem guarantees the existence of the Schwartz kernel, K(x1, x2) ∈ (Lp ⊗
F )x1 ⊗ (Lp ⊗ F )∗x2; x1, x2 ∈ X , evaluated with respect to dvX , i.e.

(Ks)(x1) =

∫
X

K(x1, x2) · s(x2)dvX(x2), s ∈ L2(X,Lp ⊗ F ). (1.4)

Similarly, we define the Schwartz kernels K1(y, x), K2(x, y), x ∈ X , y ∈ Y , for smoothing
operators K1 : L2(X,Lp ⊗ F )→ L2(Y, ι∗(Lp ⊗ F )), K2 : L2(Y, ι∗(Lp ⊗ F ))→ L2(X,Lp ⊗ F )
with respect to the volume forms dvX and dvY respectively.

We denote below by TX and TY the (real) tangent bundles of X , Y . We identify the holomor-
phic parts T 1,0X , T 1,0Y of the corresponding complexifications with the associated holomorphic
tangent bundles. We denote by gN the metric on the normal bundle N of Y in X induced by gTX .
We introduce similarly the complex vector bundle N1,0 and endow it with the holomorphic struc-
ture given by T 1,0X/T 1,0Y . From gTX , we induce the Hermitian structure on N1,0 and denote it
by an abuse of notation by gN . Let PN : TX|Y → N , P Y : TX|Y → TY , be the orthogonal
projections induced by gTX . Clearly,∇N := PN∇TX |Y defines a connection on N .

The Hermitian product gN on N1,0 induces Hermitian product on Symk(N1,0)∗, k ∈ N, in the
usual way, cf. (1.24). Then, similarly to (1.3), using dvY , we define the L2-product 〈·, ·〉k,L2(Y,Lp⊗F )

on H0
(2)(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F )).

We denote by JY the ideal sheaf of holomorphic germs on X , which vanish on Y . For k ∈ N,
we endow the space H0

(2)(X,L
p ⊗ F ⊗ J k

Y ) with the L2-metric induced by the natural inclusion
H0

(2)(X,L
p ⊗ F ⊗ J k

Y ) ↪→ H0
(2)(X,L

p ⊗ F ).
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We assume that for the Riemannian volume forms dvgTX , dvgTY of (X, gTX), (Y, gTY ), for any
r ∈ N, there is Cr > 0, such that over X and Y , the following bounds hold∥∥∥dvgTX

dvX

∥∥∥
C r(X)

,
∥∥∥ dvX
dvgTX

∥∥∥
C r(X)

,
∥∥∥dvgTY
dvY

∥∥∥
C r(Y )

,
∥∥∥ dvY
dvgTY

∥∥∥
C r(Y )

≤ Cr. (1.5)

From Weierstrass division theorem, cf. (4.8), we see that for any k ∈ N, a k-jet associated to
a section from H0

(2)(X,L
p ⊗ F ⊗ J k

Y ) is holomorphic. Moreover, in Theorem 4.3, we prove that
for any k ∈ N, there is p0 ∈ N, depending only on k and the triple (X, Y, gTX), such that for any
p ≥ p0, the k-jets have bounded L2-norm. In other words, we prove that the operator

Resk,p : H0
(2)(X,L

p ⊗ F ⊗ J k
Y )→ H0

(2)(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F )), (1.6)

given by the following identity
Resk,p(f) = (∇kf)|Y , (1.7)

is well-defined, where∇ is some connection on Lp⊗F (due to the vanishing condition of f on Y ,
the definition doesn’t depend on the choice of the connection∇).

By extending Ohsawa-Takegoshi theorem for holomorphic jets, in Theorem 4.4, we prove that
for any k ∈ N, there is p0 ∈ N, such that for any p ≥ p0, the operator (1.6) is surjective. Then,
for the Bergman projector BY

k,p, given by the orthogonal projection from the space of L2-sections
L2(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F )) to H0

(2)(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F )), the extension operator

Ek,p : L2(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F ))→ H0
(2)(X,L

p ⊗ F ⊗ J k
Y ), (1.8)

is defined by Ek,p(g) = f , where f satisfies Resk,p(f) = BY
k,pg and has the minimal L2-norm

among the sections from H0
(2)(X,L

p ⊗ F ⊗ J k
Y ) with this property (since H0

(2)(X,L
p ⊗ F ⊗

J k+1
Y ) is closed inside of H0

(2)(X,L
p ⊗ F ⊗J k

Y ), such f is unique). Ohsawa-Takegoshi extension
theorem for holomorphic jets in our setting means precisely that the operator Ek,p is well-defined
and bounded for p big enough. Study of such operators is motivated by the previous works of
Popovici [32], Demailly [14] and Cao-Demailly-Matsumura [6] on the extension of holomorphic
jets in the classical setting (i.e. p = 0), and the works of Ohsawa-Takegoshi [30], [29], Manivel
[27] and Demailly [12, §13], on the extensions of holomorphic sections (again for p = 0).

One of the main goals of this article is to find an explicit asymptotic expansion of Ek,p, as
p→∞. To describe our results precisely, we need to fix some further notation.

For y ∈ Y , ZN ∈ Ny, let R 3 t 7→ expXy (tZN) ∈ X be the geodesic in X in direction
ZN , where we identified Ny as an orthogonal complement of TyY in TyX . Bounded geometry
condition means, in particular, that this map induces a diffeomorphism of r⊥-neighborhood of
the zero section in N with a tubular neighborhood U of Y in X . From now on, we use this
identification implicitly. Of course, (y, 0), y ∈ Y , then corresponds to Y .

We denote by π0 : U → Y the natural projection (y, ZN) 7→ y. Over U , we identify L, F to
π∗0(L|Y ), π∗0(F |Y ) by the parallel transport with respect to the respective Chern connections along
the geodesic [0, 1] 3 t 7→ (y, tZN) ∈ X , |ZN | < r⊥. We also define the function κN as follows

dvX = κNdvY ∧ dvN , (1.9)

where dvN is the relative Riemannian volume form on (N, gN). Of course, we have κN |Y = 1 if

dvX = dvgTX , dvY = dvgTY . (1.10)
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We fix a smooth function ρ : [0,+∞[→ [0, 1], satisfying

ρ(x) =

{
1, for x < 1

4
,

0, for x > 1
2
.

(1.11)

We fix g ∈ C∞(Y, SymkN∗⊗ ι∗(Lp⊗ F )), k ∈ N, and define using the above isomorphisms over
U the section {g} ∈ C∞(X,Lp ⊗ F ) as follows

{g}(y, ZN) := ρ
( |ZN |
r⊥

)
· Z
⊗k
N

k!
· g(y), (1.12)

where the norm |ZN |, is taken with respect to gN . Away from U , we extend {g} by zero.
We define the operator E0

k,p : L2(Y, Symk(N1,0)∗⊗ ι∗(Lp⊗F ))→ L2(X,Lp⊗F ) as follows.
For g ∈ L2(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F )), we let (E0

k,pg)(x) = 0, x /∈ U , and in U , we put

(E0
k,pg)(y, ZN) = {BY

k,pg}(y, ZN) · exp
(
− pπ

2
|ZN |2

)
. (1.13)

Now, for g ∈ H0
(2)(Y, Symk(N1,0)∗⊗ ι∗(Lp⊗F )), the section E0

k,pg satisfies (∇kE0
k,pg)|Y = g, but

E0
k,pg is not holomorphic over X , unless g = 0. Nevertheless, E0

k,pg can be used to approximate
very well the holomorphic section Ek,pg. More precisely, we have the following result.

Theorem 1.1. For any k ∈ N, there are C > 0, p1 ∈ N∗, such that for any p ≥ p1, we have∥∥Ek,p − E0
k,p

∥∥ ≤ C

p
n−m+k+1

2

. (1.14)

where ‖ · ‖ is the operator norm. Also, as p→∞, we have∥∥E0
k,p

∥∥ ∼ 1

p
n−m+k

2

· sup
y∈Y

κ
1
2
N(y) · 1√

k! · (2π)k
. (1.15)

Moreover, under assumption (1.10), in (1.14), one can replace p−
n−m+k+1

2 by an asymptotically
better estimate if and only if Y is a totally geodesic submanifold of (X, gTX), i.e. the second
fundamental form, see (2.2), vanishes.

Remark 1.2. a) For k = 0, this result was proved in [16, Theorem 1.1]. The proof we present here
is different even for k = 0. It is still based a lot on the ideas and the techniques from [16] and [17].

b) The boundness of κN follows from the bounded geometry condition, see [16, Section §2.1].
In particular, the right-hand side of (1.15) is finite.

c) Our result refines a theorem of Randriambololona [33, Théorème 3.1.10], stating in the
compact case that for any ε > 0, k ∈ N, there is p1 ∈ N∗, such that

∥∥Ek,p

∥∥ ≤ exp(εp) for p ≥ p1.

Let us now describe our second result, establishing a relation between two natural metrics on
the space of holomorphic jets. For this, define the map

Jetk,p : H0
(2)(X,L

p ⊗ F )/H0
(2)(X,L

p ⊗ F ⊗ J k+1
Y )

→ ⊕kr=0H
0
(2)(Y, Symr(N1,0)∗ ⊗ ι∗(Lp ⊗ F )), (1.16)
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as follows. We let Jetk,p(f) = (g0, . . . , gk) if and only if for any r ∈ N, r ≤ k, the following holds

f −
r∑
l=0

El,pgl ∈ H0
(2)(X,L

p ⊗ F ⊗ J r+1
Y ). (1.17)

Alternatively, we let g0 = f |Y , and inductively define

gr := Resr,p

(
f −

r−1∑
l=0

El,pgl

)
. (1.18)

As a direct consequence of the Ohsawa-Takegoshi extension theorem for holomorphic jets, cf.
Theorem 4.4, for any k ∈ N, there is p1 ∈ N, such that the map Jetk,p is an isomorphism for
p ≥ p1. As we explain next, this statement can be refined in the metric setting.

More precisely, consider the scalar product 〈·, ·〉Jetk,p on the space⊕kr=0H
0
(2)(Y, Symr(N1,0)∗⊗

ι∗(Lp ⊗ F )), defined as follows

〈·, ·〉Jetk,p :=
k∑
r=0

1

r! · (2π)r
1

pn−m+r
· 〈·, ·〉r,L2(Y,Lp⊗F ) (1.19)

Let us now consider the scalar product onH0
(2)(X,L

p⊗F )/H0
(2)(X,L

p⊗F⊗J k+1
Y ) induced by the

L2-scalar product onH0
(2)(X,L

p⊗F ), which we denote by an abuse of notation by 〈·, ·〉L2(X,Lp⊗F ).

Theorem 1.3. Under the assumption (1.10), the map Jetk,p is an asymptotic isometry with respect
to the above scalar products. More precisely, for any k ∈ N, there are C > 0, p1 ∈ N, such that
for any p ≥ p1, for the norms ‖ ·‖L2(X,Lp⊗F ), ‖ ·‖Jetk,p on⊕kr=0H

0
(2)(Y, Symr(N1,0)∗⊗ ι∗(Lp⊗F ))

associated to the scalar products defined above, we have

1− C

p
≤

‖ · ‖Jetk,p
‖ · ‖L2(X,Lp⊗F )

≤ 1 +
C

p
. (1.20)

Remark 1.4. a) An analogue of Theorem 1.3 in the setting of geometric quantization was estab-
lished by Ma-Zhang [26, Theorem 0.10]. Authors proved that there is a similar asymptotic relation
between the L2-metric on the space of holomorphic sections invariant under the Hamiltonian action
of a compact connected Lie group and the L2-metric on the corresponding symplectic reduction.

b) For k = 0, a refinement of Theorem 1.3 was established in [17, Theorem 1.8].

The proofs of Theorems 1.1, 1.3 are done in Section 5, essentially through establishing the
exponential bound for the Schwartz kernel of the extension operator in Theorem 5.1.a) and the
asymptotic expansion of this Schwartz kernel in Theorems 5.3.

These results seem to be new even when Y = {x}, where x ∈ X is a fixed point. In this
case, they give some results on the asymptotic expansion of higher order peak sections, previously
studied by Tian [38]. See Section 5.3 for more details.

As the last application of our techniques, we prove the asymptotic expansion of the Schwartz
kernel of the logarithmic Bergman kernel of order k ∈ N. More precisely, let BX,kY

p be the orthog-
onal projection from L2(X,Lp⊗F ) to H0

(2)(X,L
p⊗F ⊗J k

Y ). We call it the logarithmic Bergman
kernel of order k. The following theorem shows that away from Y , BX,kY

p is asymptotically close
to BX

p , and in a tubular neighborhood around Y , it can be expressed as a product of the Bergman
kernel BY

p and the logarithmic Bergman kernel of the model space, as described in Section 3.1.
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Theorem 1.5. For any k ∈ N, there are c > 0, p1 ∈ N∗, such that for any r ∈ N, there is C > 0,
such that for any p ≥ p1, x1, x2 ∈ X , the following estimate holds∣∣∣(BX,kY

p −BX
p

)
(x1, x2)

∣∣∣
C r

≤ Cpn+
r
2 exp

(
− c√p ·

(
dist(x1, x2) + dist(x2, Y ) + dist(x1, Y )

))
, (1.21)

where the pointwise C r-norm at a point (x1, x2) ∈ X × X is the sum of the norms induced
by hL, hF and gTX , evaluated at (x1, x2), of the derivatives up to order r with respect to the
connection induced by the Chern connections on L, F and the Levi-Civita connection on TX .
Moreover, in the tubular neighborhood around Y , under the identification as described before
(1.9), the following holds. For any k ∈ N, there are ε, c, Q > 0, p1 ∈ N∗, such that for any r ∈ N,
there is C > 0, such that for any y1, y2 ∈ Y , Z1, Z2 ∈ R2(n−m), |Z1|, |Z2| < ε, p ≥ p1, we have∣∣∣∣BX,kY

p

(
(y1, Z1), (y2, Z2)

)
− pn−m ·BY

p (y1, y2) · κ
− 1

2
N (y1) · κ

− 1
2

N (y2)·

· exp
(
− π

2
p
(
|Z1|2 + |Z2|2

))
·
∞∑

l=k+1

πl · pl ·
∑

β∈Nn−m
|β|=l

(z1z2)
β

β!

∣∣∣∣
C r
≤ Cpn+k+

r−1
2 · |Z1Z2|k·

·
(
1 +
√
p|Z1|+

√
p|Z2|

)Q · exp
(
− c√p ·

(
distX(y1, y2) + |Z1 − Z2|

))
, (1.22)

where the C r-norm is taken with respect to y1, y2, Z1, Z2, and we used the multiindex notation as
we explain in (1.23).

Remark 1.6. The study of the asymptotic expansion of BX,kY
p has recently received considerable

attention for k = [εp], where ε > 0 is some small constant. See for example Ross-Thomas [36],
Pokorny-Singer [31], Ross-Singer [35], Zelditch-Zhou [41], Coman-Marinescu [9]. We believe
that our methods can be applied in this asymptotic regime as well.

Let us finally say a few words about the tools we use in this article. The proofs of Theorems
1.1, 1.3 rely on the exponential estimate for the Bergman kernel, cf. Ma-Marinescu [25], on
the asymptotic expansion of the Bergman kernel due to Dai-Liu-Ma [10], and on some technical
results about the algebras of operators with Taylor-type expansion of the Schwartz kernel, which
are inspired by the work of Ma-Marinescu [24], cf. [22, §7].

As an important intermediate result, we establish the asymptotic version of Ohsawa-Takegoshi
extension theorem for holomorphic jets. For this, we follow our strategy from [16], which treats
holomorphic sections instead of jets, and which was itself inspired by Bismut-Lebeau [2] and
Demailly [11]. Using this result, we prove the existence of a sequence of operators, which we
call multiplicative defect, relating the extension operator and the adjoint of the restriction operator.
We establish then that this sequence of operators forms a Toeplitz operator with weak exponential
decay, which is a notion introduced in [17] (as a refinement of the notion of Toeplitz operators
in the sense of [22, §7]). The asymptotic criteria for those operators, established in [17], relying
on the analogous result of Ma-Marinescu [23, Theorem 4.9] for compact manifolds and Toeplitz
operators in the sense of [22, §7], plays a foundational role in our approach.

Differently from the approach from [16], which was based on the spectral geometry and local-
isation techniques, the main results of this article are obtained through the use of the multiplicative



Asymptotics of extensions of holomorphic jets 7

defect, and we argue by induction on the order of jets, k ∈ N. The general strategy for dealing
with semi-classical limits here is inspired by Bismut [1] and Bismut-Vasserot [3].

To conclude, we mention that recently there has been a surge of interest in Ohsawa-Takegoshi
extension theorem for holomorphic jets, see for example Hosono [20], McNeal-Varolin [28], Rao-
Zhang [34]. See also Cao-Păun [7] for an application of a version of extension theorem for jets to
a conjecture of deformational invariance of plurigenera for Kähler families.

This article is organized as follows. In Section 2, we recall the bounded geometry assumptions,
and the results about the convergence of the exponential integrals on such manifolds. In Section
3, we recall the kernel calculus which studies the composition rules of basic operators on the
model vector space. We recall a notion of Toeplitz operators with weak exponential decay and
an asymptotic criteria for those operators. In Section 4, we prove the existence of a sequence of
operators, which we call multiplicative defect. Finally, in Section 5, by the use of the above results,
we prove the exponential bounds for the extension operator, orthogonal Bergman kernel of order k,
and study the asymptotic expansion of their Schwartz kernels. As a consequence of those studies,
we establish the main results of this article.

Notations. For α = (α1, . . . , αk) ∈ Nk, B = (B1, . . . , Bk) ∈ Ck, we write by

|α| =
k∑
i=1

αi, α! =
k∏
i=1

αi!, Bα =
k∏
i=1

Bαi
i . (1.23)

Let (V, hV ) be a Hermitian (or Euclidean) vector space. We endow SymkV with a Hermitian
metric induced by the induced metric on V ⊗k and the inclusion SymkV → V ⊗k, defined as

v1 � . . .� vk 7→
1

k!

∑
vσ(1) ⊗ . . .⊗ vσ(k), (1.24)

where the sum runs over all permutations σ on k indices. Clearly, if v1, · · · , vl form an orthonormal

basis of V , then
√

k!
α!
·v�α, α ∈ Nk, |α| = k, forms an orthonormal basis of SymkV . The inclusion

(1.24) gives also a natural isomorphism SymkV ∗ → (SymkV )∗. For a fixed basis v1, . . . , vl of V
and the dual basis u1, . . . , ul of V ∗, we have the following relation

u�β(v�α) =

{
0, if α 6= β,
α!
k!
, otherwise.

(1.25)

For a (V, hV ) be a Hermitian vector space with a complex structure J , we denote by V 1,0,
V 0,1 the holomorphic and antiholomorphic components of V ⊗ C. We endow V 1,0 and V 0,1 with
the natural metrics, verifying ‖v ±

√
−1Jv‖ =

√
2‖v‖. In this way, when V = Cl is endowed

with the standard Hermitian product and with the usual linear (complex) coordinates zi, we have
‖dzi‖ =

√
2 and ‖ ∂

∂zi
‖ = 1√

2
.

We use notationsX, Y for complex manifolds andM,H for real manifolds. The complex (resp.
real) dimensions of X, Y (resp. M,H) are denoted here by n,m (resp. 2n, 2m). An operator ι
always means an embedding ι : Y → X (resp. ι : H →M ). We denote by ResY (resp. ResH) the
restriction operator from X to Y (resp. M to H).

For a Riemannian manifold (M, gTM), we denote the Levi-Civita connection by ∇TM , by
RTM the curvature of it, and by dvgTM the Riemannian volume form. For a closed subset W ⊂M ,
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r ≥ 0, let BM
W (r) be the ball of radius r around W . For a Hermitian vector bundle (E, hE), note

Br(E) := {Z ∈ E : |Z|hE < r}.
For a fixed volume form dvM on M , we denote by L2(dvM , h

E) the space of L2-sections of E
with respect to dvM and hE . When dvM = dvgTM , we also use the notation L2(gTM , hE). When
there is no confusion about the data, we also use the simplified notation L2(M,E) or L2(M).

For n ∈ N∗, we denote by dvCn the standard volume form on Cn. We view Cm (resp. R2m)
embedded in Cn (resp. R2n) by the first m (resp. 2m) coordinates. For Z ∈ Rk, we denote by
Zl, l = 1, . . . , k, the coordinates of Z. If Z ∈ R2n, we denote by zi, i = 1, . . . , n, the induced
complex coordinates zi = Z2i−1 +

√
−1Z2i. We frequently use the decomposition Z = (ZY , ZN),

where ZY = (Z1, . . . , Z2m) and ZN = (Z2m+1, . . . , Z2n). For a fixed frame (e1, . . . , e2n) in TxX ,
x ∈ X , (resp. y ∈ Y ) we implicitly identify Z (resp. ZY , ZN ) to an element in TxX (resp. TyY ,
Ny) by

Z =
2n∑
i=1

Ziei, ZY =
2m∑
i=1

Ziei, ZN =
2n∑

i=2m+1

Ziei. (1.26)

If the frame ei satisfies the condition
Je2i−1 = e2i, (1.27)

we denote ∂
∂zi

:= 1
2
(e2i−1 −

√
−1e2i), ∂

∂zi
:= 1

2
(e2i−1 +

√
−1e2i), and identify z, z to vectors in

TxX ⊗R C as follows

z =
n∑
i=1

zi ·
∂

∂zi
, z =

n∑
i=1

zi ·
∂

∂zi
. (1.28)

Clearly, in this identification, Z = z + z. We define zY , zY ∈ TyY ⊗R C, zN , zN ∈ Ny ⊗R C in a
similar way.

Acknowledgement. I would like to thank the anonymous referee for the corrections and CNRS
with École Polytechnique for support.

2 Second fundamental form and bounded geometry
The main goal of this section is to recall the basic facts about the geometry of manifolds of bounded
geometry and the second fundamental form. More precisely, in Section 2.1, we recall the definition
and various properties satisfied by the second fundamental form. We also recall the definition of
manifolds (resp. pairs of manifolds, vector bundles) of bounded geometry. In Section 2.2, we recall
the results about the convergence of exponential integrals on manifolds of bounded geometry.

2.1 The second fundamental form and bounded geometry assumption
Here we recall some basic facts about the second fundamental form and its relation with bounded
geometry assumptions. Let H be an embedded submanifold of a Riemannian manifold (M, gTM),
gTH := gTM |H . We identify the normal bundle NM |H of H in M to an orthogonal complement of
TH in TM as

TM |H → TH ⊕NM |H . (2.1)

We denote by gNM|H the metric onNM |H induced by gTM . We denote by PM |H
N : TM |H → NM |H ,

P
M |H
H : TM |H → TH , the projections induced by (2.1). Clearly, ∇NM|H

:= P
M |H
N ∇TM |H



Asymptotics of extensions of holomorphic jets 9

defines a connection on NM |H . Recall that the definition of the second fundamental form A ∈
C∞(H,T ∗H ⊗ End(TM |H)) is given by

A := ∇TM |H −∇TH ⊕∇NM|H
. (2.2)

Recall that the mean curvature νM |H ∈ C∞(H,NM |H) of ι is defined as follows

νM |H :=
1

2m

2m∑
i=1

A(ei)ei, (2.3)

where the sum runs over an orthonormal basis of (TH, gTH).

Proposition 2.1 (cf. [17, Proposition 2.3]). The second fundamental form satisfies the following
properties.

1. It takes values in skew-symmetric endomorphisms of TM |H , interchanging TH and NM |H .

2. For any U, V ∈ TH , we have A(U)V = A(V )U .

Assume, moreover, that (M, gTM) is Kähler and H is a complex submanifold. Then the following
holds.

3. A commutes with the action of the complex structure.

4. For any U ∈ TH , V ∈ TM , U = u+ u, V = v + v, u, v ∈ T 1,0M , we have

A(U)v = A(u)v, A(U)v = A(u)v, if V ∈ NM |H ,

A(U)v = A(u)v, A(U)v = A(u)v, if V ∈ TH.
(2.4)

5. We have νM |H = 0.

Let us now recall the definitions of manifolds (resp. pairs of manifolds, vector bundles) of
bounded geometry. For more detailed overview of this part, refer to [15], [37], [18], cf. also [16].
Now, for a Hermitian vector bundle (E, hE) with a fixed connection∇E over M , we denote

C∞b (M,E) :=
{
f ∈ C∞(M,E) : for any k ∈ N, there is C > 0, so that |∇kf | ≤ C

}
, (2.5)

where ∇ is the connection induced by ∇E and the Levi-Civita connection on TM , and | · | is the
norm induced by the metrics gTM , hE . When M is complex and E is holomorphic, we implicitly
take∇E to be the associated Chern connection.

Definition 2.2. We say that a Riemannian manifold (M, gTM) is of bounded geometry if the fol-
lowing two conditions are satisfied.

(i) The injectivity radius of (M, gTM) is bounded below by a positive constant rM .
(ii) For the Riemann curvature tensorRTM ofM , we haveRTM ∈ C∞b (M,Λ2T ∗M⊗End(TM)).

Remark 2.3. By Hopf-Rinow theorem, the condition (i) implies that (M, gTM) is complete.
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Definition 2.4. We say that the triple (M,H, gTM) of a Riemannian manifold (M, gTM) and a
submanifold H is of bounded geometry if the following conditions are fulfilled.

(i) The manifold (M, gTM) is of bounded geometry.
(ii) The injectivity radius of (H, gTH) is bounded below by a positive constant rH .
(iii) There is a collar around H (a tubular neighborhood of fixed radius), i.e. there is r⊥ > 0

such that for any x, y ∈ H , the normal geodesic balls B⊥r⊥(x), B⊥r⊥(y), obtained by the application
of the exponential mapping to vectors, orthogonal to H , of norm bounded by r⊥, are disjoint.

(iv) The second fundamental form, A, satisfies A ∈ C∞b (H,T ∗M |H ⊗ End(TM |H)).

We will now introduce a local coordinate system in M , which is particularly well-adapted
to study of triples of bounded geometry. We fix a point y0 ∈ H and an orthonormal frame
(e1, . . . , e2m) (resp. (e2m+1, . . . , e2n)) in (Ty0H, g

TH
y0

) (resp. in (N
M |H
y0 , gN

M|H
y0

)). ForZ = (ZH , ZN),
ZH ∈ R2m, ZN ∈ R2(n−m), ZH = (Z1, . . . , Z2m), ZN = (Z2m+1, . . . , Z2n), |ZH | ≤ rH ,
|ZN | ≤ r⊥, we define a coordinate system ψ

M |H
y0 : BR2m

0 (rH)×BR2(n−m)

0 (r⊥)→M by

ψM |Hy0
(ZH , ZN) := expMexpHy0 (ZH)(ZN(ZH)), (2.6)

where ZN(ZH) is the parallel transport of ZN ∈ NM |H
y0 along expHy0(tZH), t = [0, 1], with respect

to the connection∇NM|H on NM |H . The coordinates ψM |Hy0 are called the Fermi coordinates at y0.
In the special case whenH = M and x0 := y0, those coordinates correspond to the exponential

coordinates φMx0 : R2n →M , x0 ∈M , defined as follows

φMx0(Z) := expMx0(Z). (2.7)

The importance of Fermi coordinates stems from the fact, cf. [37, Lemma 3.9], [18, Theorem
4.9], that for triples of bounded geometry the metric tensor has uniformly bounded derivatives in
Fermi coordinates. From this we see, in particular, for a triple of bounded geometry (M,H, gTM),
the Riemannian manifold (H, gTH) has bounded geometry. Along with the assumption (1.5), this
result implies that in the notations of (1.9), we have κN ∈ C∞b (U).

Definition 2.5. Let (E,∇E, hE) be a Hermitian vector bundle with a fixed Hermitian connection
over a manifold (M, gTM) of bounded geometry. We say that (E,∇E, hE) is of bounded geometry
if RE ∈ C∞b (M,Λ2T ∗M ⊗ End(E)).

If (E, hE) is a Hermitian vector bundle over a complex manifold, we say that it is of bounded
geometry if (E,∇E, hE) is of bounded geometry for the Chern connection∇E on (E, hE).

Let us now define several trivializations of vector bundles which are particularly well-adapted
to the bounded geometry assumption. Let us fix y0 ∈ H and an orthonormal frame f1, . . . , fr ∈
Ex0 . Define the local orthonormal frame f̃1, . . . , f̃r of E around y0 by the parallel transport of
f1, . . . , fr with respect to ∇E , done first along the path ψ(tZH , 0), t ∈ [0, 1], and then along the
path ψ(ZH , tZN), t ∈ [0, 1], ZH ∈ R2m, ZN ∈ R2(n−m), |ZH | < rH , |ZN | < r⊥. When H = M ,
we denote this frame by f̃ ′1, . . . , f̃

′
r.

Notation. For g ∈ C∞(M,F ), by an abuse of notation, we write g(φMy0 (Z)) ∈ Rr, Z ∈ R2n,
|Z| ≤ R, for coordinates of g in the frame (f̃ ′1

M , . . . , f̃ ′r
M). We identify g(φMy0 (Z)) with an element

in Fy0 using the frame (f1, . . . , fr). Similarly, we denote by g(ψy0(Z)) ∈ Rr the coordinates in
the frame (f̃1, . . . , f̃r) and identify them with an element from Fy0 . Similar notations are used for
sections of F ∗, F ⊗ Lp, (F ⊗ Lp)∗, F � F ∗, etc.
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As it was explained in [15], [18], cf. [16, Section 2.1], if (E,∇E, hE) has bounded geometry
over (M,H, gTM) and g ∈ C∞b (M,E), then for any y0 ∈ H (resp. x0 ∈ M ), the function
Z 7→ g(ψ

M |H
y0 (Z)) (resp. Z 7→ g(φMx0(Z))) is in C∞b (BR2n

0 (r), Fy0) (resp. C∞b (BR2n

0 (r), Fx0)) for
some constant r > 0, independent of y0 (resp. x0).

2.2 Exponential bounds over manifolds of bounded geometry
The main goal of this section is to recall some results about the convergence of exponential inte-
grals for triples of bounded geometry from [16], [17]. More precisely, fix a triple (M,H, gTM) of
bounded geometry. Let us recall the exponential bound from [16, Corollary 3.3], established using
Bishop-Gromov inequality.

Proposition 2.6. There are c, C ′ > 0, which depend only on n, m, rM , rN , r⊥ and sup-norm on
RTM , RTH , A, such that for any y0 ∈ H , l ≥ c, we have∫

H

exp
(
− ldistM(y0, y)

)
dvgTH (y) <

C ′

l2m
. (2.8)

Now, in addition to the triple (M,H, gTM) of bounded geometry, we consider a Riemannian
manifold (K, gTK) with an embedding ι1 : M → K, such that ι∗1g

TK = gTM . We assume that
the triple (K,M, gTK) is of bounded geometry. Let (E, hE) be a Hermitian vector bundle over M
and D : L2(H, ι∗E) → L2(M,E) be a fixed linear operator. Assume that there is c > 0 as in
Proposition 2.6 and C > 0, such that for some l ≥ c and any y ∈ H , x ∈ M , the Schwartz kernel
of D, evaluated with respect to dvgTH , satisfies the bound∣∣D(x, y)

∣∣ ≤ Cl2m exp
(
− ldistK(x, y)

)
. (2.9)

By essentially relying on Heintze-Karcher estimate [19, Corollary 3.3.1] and Young’s inequality
for integral operators, we obtained in [17, Proposition 2.12] the following bound.

Proposition 2.7. There is C ′ > 0, which depends on the same data as C ′ from Proposition 2.6 and
the analogous data on (K,M, gTK), such that

‖D‖ ≤ C ′C

ln−m
. (2.10)

We will now recall a related result about the bound on the composition of operators with
Schwartz kernels having exponential bounds. More precisely, we fix q ∈ N, q ≥ 2, and oper-
ators Gt,A1

t , . . . ,A
q
t , t ∈ [0, 1], acting on the sections of the trivial vector bundle Cr0×Cn over Cn

by the convolutions with smooth kernels Gt(Z,Z ′),A1
t (Z,Z

′), . . . ,Aqt (Z,Z ′) ∈ End(Cr0) with re-
spect to the volume form dvCn on Cn. We assume that there are c0, q1 > 0, such that for any l ∈ N,
there are C > 0, Qh,1 ≥ 0, h = 1, . . . , q, such that for any t ∈ [0, 1], Z,Z ′ ∈ R2n, α, α′ ∈ N2n,
|α|+ |α′| ≤ l, we have∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

Aht (Z,Z ′)
∣∣∣∣ ≤ C

(
1 + |Z|+ |Z ′|

)Qh,1+q1l
exp

(
− c0

(
|ZY − Z ′Y |+ |ZN |+ |Z ′N |

))
,∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

Gt(Z,Z ′)
∣∣∣∣ ≤ C

(
1 + |Z|+ |Z ′|

)Q1,1+q1l

exp
(
− c0|Z − Z ′|

)
. (2.11)
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Lemma 2.8 ( [16, Lemma 3.5]). The operators Dt := A1
t ◦ · · · ◦ A

q
t , D′t := Gt ◦ A2

t ◦ · · · ◦ A
q
t

are well-defined and have smooth Schwartz kernels Dt(Z,Z ′), D′t(Z,Z ′) with respect to dvCn .
Moreover, for any l ∈ N, there is C > 0, such that for any t ∈ [0, 1], Z,Z ′ ∈ R2n, α, α′ ∈ N2n,
|α|+ |α′| ≤ l, we have∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

Rt(Z,Z
′)

∣∣∣∣ ≤ C
(

1 + |Z|+ |Z ′|
)Q1,1+···+Qq,1+q1l

·

· exp
(
− c0

8

(
|ZY − Z ′Y |+ |ZN |+ |Z ′N |

))
, (2.12)

whereRt designates either Dt or D′t.

3 Kernel calculus and asymptotic criteria of Toeplitz operators
The main goal of this section is to study the basic properties of Schwartz kernels of Toeplitz
operators. More precisely, in Section 3.1, we consider the model situation, for which an explicit
formula for the Schwartz kernels of Bergman projectors, the extension and restriction operators
can be given. We then study the composition rules for the operators with related kernels. Then,
in Section 3.2, we recall a definition and an asymptotic characterization of Toeplitz operators with
weak exponential decay.

3.1 Model operators and the Fock-Bargmann space
In this section, we consider the model situation, for which an explicit formula for the Schwartz
kernels of Bergman projectors, the extension and restriction operators can be given. We then use
these explicit formulas to give a description for compositions of operators, the Schwartz kernels
of which can be expressed using the above kernels. This section is motivated in many ways by the
works of Ma-Marinescu [24], [22] and Dai-Liu-Ma [10], cf. also [16, §3.2].

Endow Cn with the standard Riemannian metric and consider a trivialized holomorphic line
bundle L0 on Cn. We endow L0 with the Hermitian metric hL0 , given by

‖1‖hL0 (Z) = exp
(
− π

2
|Z|2

)
, (3.1)

where Z is the natural real coordinate on Cn, and 1 is the trivializing section of L0. An easy
verification shows that (3.1) implies that (1.2) holds in our setting. From [22, Theorem 4.1.20], we
know that the functions (π|β|

β!

) 1
2
zβ exp

(
− π

2

n∑
i=1

|zi|2
)
, (3.2)

viewed as sections of L0 using the orthonormal trivialization of L0 by 1 exp(π
2
|Z|2), form an

orthonormal basis of H0
(2)(Cn, L0), endowed with the induced L2-metric. From this, we see that

H0
(2)(Cn, L0), endowed with this L2-metric, coincides with the Fock-Bargmann space, cf. [42].

From (3.2), cf. [22, (4.1.84)], the Bergman kernel Pn of Cn, which is an orthogonal projection
from the space of L2-sections of L0, L2(Cn, L0), to H0

(2)(Cn, L0), is given by

Pn(Z,Z ′) = exp
(
− π

2

n∑
i=1

(
|zi|2 + |z′i|2 − 2ziz

′
i

))
, for Z,Z ′ ∈ Cn. (3.3)
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From (3.2), we see easily, cf. [16, (3.28), (3.29)], that the Schwartz kernel of the orthogonal
Bergman kernel of order k ∈ N, P⊥,k

n,m, corresponding to the projection onto the subspace of
H0

(2)(Cn, L0 ⊗ J k
Cm), orthogonal to H0

(2)(Cn, L0 ⊗ J k+1
Cm ), is given by

P⊥,k
n,m(Z,Z ′) = exp

(
− π

2

m∑
i=1

(
|zi|2 + |z′i|2 − 2ziz

′
i

)
− π

2

n∑
i=m+1

(
|zi|2 + |z′i|2

))
·

· πk ·
∑

β∈Nn−m
|β|=k

zβN · (z′N)β

β!
. (3.4)

Remark that if we view zN and z′N as n−m vectors in a natural way, we also have∑
β∈Nn−m
|β|=k

zβN · (z′N)β

β!
=

(zN · z′N)k

k!
. (3.5)

Let us now denote V := Cn−m and consider the holomorphic and antiholomorphic parts V 1,0,
V 0,1 of the complexification V ⊗R C. We denote by ∇ the standard covariant derivative on V .
Remark now that∇|β|zβN ∈ ((V 1,0)∗)⊗|β| satisfies the following identity

∇|β|zβN
( ∂

∂zσ(1)
⊗ · · · ⊗ ∂

∂zσ(|β|)

)
=

∂

∂zσ(1)
· · · ∂

∂zσ(|β|)
zβN =

{
β!, if #σ−1(i) = βi,

0, otherwise,
(3.6)

where σ : [1, N ]→ [m+ 1, n] is any map. From this, we conclude that∇|β|zβN lies in the image of
the natural map Sym|β|((V 1,0)∗)→ ((V 1,0)∗)⊗|β|, and under this map, from (1.25) we have

∇|β|zβN = |β|! · dz�βN . (3.7)

From (1.25) and (3.2), the L2-extension operator E k
n,m : H0

(2)(Cm, Symk(V 1,0)∗ ⊗ L0) →
H0

(2)(Cn, L0 ⊗ J k
Cm), mapping to the sections with minimal L2-norm as in (1.6), is given in the

the orthonormal trivialization 1 exp(π
2
|Z|2) of L0 by the multiplication by exp(−π

2

∑n
i=m+1 |zi|2).

From this and (3.3), the Schwartz kernel E k
n,m(Z,Z ′Y ) of E k

n,m is given by

E k
n,m(Z,Z ′Y ) = exp

(
− π

2

m∑
i=1

(
|zi|2 + |z′i|2 − 2ziz

′
i

)
− π

2

n∑
i=m+1

|zi|2
)
·

·
∑

β∈Nn−m
|β|=k

1

β!
· zβN ·

( ∂

∂zN

)�β
, (3.8)

where we implicitly identified (Symk(V 1,0)∗)∗ and Symk(V 1,0) as in (1.25). Remark that under
our identification, the following identities hold

IdSymk(V 1,0)∗ =
∑

β∈Nn−m
|β|=k

k!

β!
· (dzN)�β ·

( ∂

∂zN

)�β
,

∑
β∈Nn−m
|β|=k

1

β!
· zβN ·

( ∂

∂zN

)�β
=

(zN)⊗k

k!
,

(3.9)
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where for the second identity we used the notations (1.28) for zN . From (3.3), (3.4), (3.8) and
(3.9), we can verify that the following natural relation holds

ResCm ◦ ∇kE k
n,m = Pm · IdSymk(V 1,0)∗ , (3.10)

where we identified H0
(2)(Cm, Symk(V 1,0)∗ ⊗ L0) with H0

(2)(Cm, L0)⊗ Symk(V 1,0)∗.
For k ∈ N, recall that the logarithmic Bergman kernel, PCn,kCm

n,m , corresponding to the pair
(Cn, k · Ck), is the orthogonal projection from L2(Cn, L0) onto H0

(2)(Cn, L0 ⊗ J k
Cm). It clearly

satisfies the following identity

PCn,kCm
n,m := Pn −

k−1∑
l=0

P⊥,l
n,m. (3.11)

From (3.2), (3.3) and (3.4), we can write

PCn,kCm
n,m (Z,Z ′) = exp

(
− π

2

m∑
i=1

(
|zi|2 + |z′i|2 − 2ziz

′
i

)
− π

2

n∑
i=m+1

(
|zi|2 + |z′i|2

))
·

·
∑

β∈Nn−m
|β|≥k

π|β| · z
β
N · (z′N)β

β!
. (3.12)

Hence, by (3.7), the Schwartz kernel of the operator Rk
n,m := ResCm ◦ ∇kPCn,kCm

n,m is given by

Rk
n,m(ZY , Z

′) = exp
(
− π

2

m∑
i=1

(
|zi|2 + |z′i|2 − 2ziz

′
i

)
− π

2

n∑
i=m+1

|z′i|2
)
·

· πk ·
∑

β∈Nn−m
|β|=k

k!

β!
· (dzN)�β · (z′N)β. (3.13)

Let us consider f ∈ H0
(2)(Cn, L0 ⊗ J k

Cm) (resp. g ∈ H0
(2)(Cm, Symk(V 1,0)∗ ⊗ L0)), given

in the holomorphic trivialization of L0 by f = zβN (resp. g = dz�β
′

N ), where β, β′ ∈ N2(n−m),
|β|, |β′| = k. By (3.7), we have

Rk
n,mf = k! · dz�βN , E k

n,mg =
1

k!
· zβ

′

N . (3.14)

From the discussion after (1.24) and (3.2), we see that

〈Rk
n,mf, g〉L2(Y ) = 2k · β! · δββ′ = (2π)k · k! · 〈f,E k

n,mg〉L2(X), (3.15)

where δββ′ is the Kronecker delta. This implies the following identity

(Rk
n,m)∗ = (2π)k · k! · E k

n,m, (3.16)

which is compatible with (3.8) and (3.13) in view of the identity

((dzN)�β)∗ = 2|β| ·
( ∂

∂zN

)�β
. (3.17)
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Similarly, we deduce the following equality

P⊥,k
n,m = E k

n,m ◦Rk
n,m. (3.18)

Later we will see that the analogues of (3.16) and (3.18) hold in the approximate sense for any pair
(X, Y ) instead of the model case (Cn,Cm).

Now, a lot of calculations in this article will have something to do with compositions of opera-
tors having Schwartz kernels, given by the product of polynomials with the above kernels. For that
reason, the following lemma will be of utmost importance in what follows.

Lemma 3.1. For any polynomials A1(Z,Z
′), A2(Z,Z

′), Z,Z ′ ∈ R2n, there is a polynomial A3 :=
Kn,m[A1, A2], the coefficients of which are polynomials of the coefficients of A1, A2, such that

(A1 ·P⊥,0
n,m) ◦ (A2 ·P⊥,0

n,m) = A3 ·P⊥,0
n,m. (3.19)

Moreover, degA3 ≤ degA1 + degA2. Also, if both polynomials A1, A2 are even or odd (resp.
one is even, another is odd), then the polynomial A3 is even (resp. odd).

Also, for any polynomials A(Z,Z ′Y ), B(ZY , Z
′
Y ), Z ∈ R2n, ZY , Z ′Y ∈ R2m, there is a polyno-

mial A′′3 := KEPn,m[A,B] with the same properties as A3, such that

(A · E 0
n,m) ◦ (B ·Pm) = A′′3 · En,m. (3.20)

Finally, for any polynomials A(Z,Z ′Y ), C(ZY , Z
′), Z,Z ′ ∈ R2n, ZY , Z ′Y ∈ R2m, there is a

polynomial A′′′3 := KERn,m[A,C] with the same properties as A3, such that

(A · E 0
n,m) ◦ (C ·R0

n,m) = A′′′3 ·P⊥,0
n,m. (3.21)

Remark 3.2. The statement (3.19) for n = m is due to Ma-Marinescu [22, Lemma 7.1.1, (7.1.6)].

Proof. Statements (3.19) and (3.21) were proved in [17, Lemma 3.1]. Let us recall the relation
between KEPn,m and Kn,m, established in [17, (3.20)].

We represent A(Z,Z ′Y ) :=
∑
Zα
N · Aα(ZY , Z

′
Y ). Then, from (3.3) and (3.4), the following

equation holds

(Aα · E 0
n,m) ◦ (B ·Pm) = exp

(
− π

2
|ZN |2

)
· (Aα ·Pm) ◦ (B ·Pm). (3.22)

By this and (3.19), we clearly have (3.20) for

KEPn,m[A,D] =
∑
α

Zα
N · Km,m[Aα, D]. (3.23)

To establish (3.21), we decompose polynomials A(Z,Z ′Y ), C(ZY , Z
′) as follows

A(Z,Z ′Y ) =
∑
α

Zα
N · Aα(ZY , Z

′
Y ), C(ZY , Z

′) =
∑
α′

Cα′(ZY , Z
′
Y )Z ′N

α′ , (3.24)

where α, α′ ∈ N2(n−m) verify |α| ≤ degA, |α′| ≤ degC.
Now, an easy verification, based on (3.3), (3.4) and (3.13), shows that
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(
(Aα · E 0

n,m) ◦ (Cα′ ·R0
n,m)

)
(Z,Z ′) = exp

(
− π

2

(
|ZN |2 + |Z ′N |2

))
·

·
(

(Aα ·Pm) ◦ (Cα′ ·Pm)
)

(ZY , Z
′
Y ). (3.25)

From (3.24) and (3.25), we see that (3.21) holds for

KERn,m[A,C] =
∑
α,α′

Zα
N · Z ′Nα

′ · Km,m[Aα, Cα′ ]. (3.26)

This clearly finishes the proof, as the statements about the degree, the coefficients and the parity
now follow from (3.26).

From the above, we see that to compute the polynomials from Lemma 3.1, it suffices to give
an algorithm for the calculation of Kn,m. Below, we explain how to do this. Directly from the
definitions, we see that Kn,m[1 · P (Z ′), A] = Kn,m[1, P (Z) · A] for any polynomial A. Also, we
trivially haveKn,m[P (Z) ·A(Z,Z ′), A′(Z,Z ′)] = P (Z)Kn,m[A(Z,Z ′), A′(Z,Z ′)] for any polyno-
mials P,A,A′. Hence, it is enough to give an algorithm for the calculation of Kn,m where the first
argument is given by 1. For this, remark that for any i = 1, . . . , n, a, b ∈ N, we have

Kn,m[1, Pi(Z)zai z
b
i ] = Kn,m[1, Pi(Z)] · Kn,m[1, zai z

b
i ], (3.27)

where the polynomial Pi(Z) doesn’t depend on zi and zi. Hence, to understand Kn,m, it suffices to
know how to calculate it for polynomials zai z

b
i . For i ≤ m, by [17, (3.28)], we have

Kn,m[1, zai z
b
i ] =

∑
l+k=b
a≥k

1

πk
a!b!

(a− k)!l!k!
za−ki z′i

l. (3.28)

For m+ 1 ≤ i ≤ n, by [17, (3.30)], we have

Kn,m[1, zai z
b
i ] = δab

a!

πa
. (3.29)

3.2 Toeplitz operators with weak exponential decay and their properties
The main goal of this section is to recall the definition of Toeplitz operators with weak exponential
decay and to recall the asymptotic characterization of them in terms of their Schwartz kernels.

More precisely, for a section f ∈ C∞b (X,End(F )), we associate a sequence of linear operators
TXf,p ∈ End(L2(X,Lp ⊗ F )), p ∈ N, called Berezin-Toeplitz operator, by

TXf,p(g) := BX
p (f ·BX

p g). (3.30)

We fix some Riemannian manifold (Z, gTZ) and an embedding ι′ : X → Z, such that
(ι′)∗gTZ = gTX , and such that the triple (Z,X, gTZ) is of bounded geometry.

Definition 3.3. A sequence of linear operators TXp ∈ End(L2(X,Lp ⊗ F )), p ∈ N, verifying
BX
p ◦ TXp ◦BX

p = TXp , is called a Toeplitz operator with weak exponential decay with respect to Z
if there is a sequence fi ∈ C∞b (X,End(F )) and c > 0, p1 ∈ N∗, such that for any r, l ∈ N, there is
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C > 0, such that for any p ≥ p1, the Schwartz kernel, evaluated with respect to dvX , satisfies for
any x1, x2 ∈ X , the following estimate∣∣∣TXp (x1, x2)−

r∑
j=0

p−jTXfj ,p(x1, x2)
∣∣∣
C l
≤ Cpn−r+

l
2 · exp

(
− c√p · distZ(x1, x2)

)
, (3.31)

where the pointwise C l-norm at a point (x1, x2) ∈ X ×X is interpreted as in (1.21). The sections
fi will later be denoted by [TXp ]i.

Remark 3.4. a) From Proposition 2.7, we see that (3.31) implies that for any k ∈ N, there is C > 0,
such that for any p ≥ p1, we have ‖TXp −

∑r
j=0 p

−jTXfj ,p‖ ≤ Cp−r. In particular, for compactX , the
sequence of operators TXp , p ∈ N, forms a Toeplitz operator in the sense of Ma-Marinescu [22, §7].

b) In [17, Corollary 3.13], we showed that the sections fi, i ∈ N, verifying (3.31), are uniquely
defined. Hence, the notation [·]i, i ∈ N, from Definition 3.3 is well-defined.

For the theorem below, we use the notational convention introduced after Definition 2.5. Let us
fix some further notation. Recall that geodesic coordinates were defined in (2.7). We fix x0 ∈ X .
Define the function κXφ,x0 : BR2n

0 (rX)→ R, by

((φXx0)
∗dvX)(Z) = κXφ,x0dZ1 ∧ · · · ∧ dZ2n. (3.32)

Theorem 3.5. A family of operators TXp ∈ End(L2(X,Lp ⊗ F )), p ∈ N, forms a Toeplitz operator
with weak exponential decay with respect to Z if and only if the following conditions hold

1. For any p ∈ N, TXp = BX
p ◦ TXp ◦BX

p .

2. There is p1 ∈ N, such that for any l ∈ N, there is C > 0, such that for any p ≥ p1, the
Schwartz kernel TXp (x1, x2); x1, x2 ∈ Y , of TXp , evaluated with respect to dvX , satisfies∣∣∣TXp (x1, x2)

∣∣∣
C l
≤ Cpn+

l
2 · exp

(
− c√p · distZ(x1, x2)

)
. (3.33)

3. For any x0 ∈ X , r ∈ N, there are IXr (Z,Z ′) ∈ End(Fx0) polynomials in Z,Z ′ ∈ R2n

of the same parity as r, such that the coefficients of IXr lie in C∞b (X,End(F )), and for
Fr := IXr · Pn, the following holds. There are ε, c > 0, p1 ∈ N∗, such that for any
r, l, l′ ∈ N, there are C,Q > 0, such that for any x0 ∈ X , p ≥ p1, Z,Z ′ ∈ R2n, |Z|, |Z ′| ≤ ε,
α, α′ ∈ N2n, |α|+ |α′| ≤ l, the following bound holds∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

(
1

pn
TXp
(
φXx0(Z), φXx0(Z

′)
)

−
r∑
j=0

p−
j
2Fj(
√
pZ,
√
pZ ′)κXφ,x0(Z)−

1
2κXφ,x0(Z

′)−
1
2

)∣∣∣∣
C l′

≤ Cp−
r+1−l

2

(
1 +
√
p|Z|+√p|Z ′|

)Q
exp(−c√p|Z − Z ′|), (3.34)

where the C l′-norm is taken with respect to x0.
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Moreover, for any sequence of operators TXp , verifying the above assumptions, the polynomial IX0
is constant and it is related to the expansion from Definition 3.3 by the identity IX0 (0, 0) = [TXp ]0.

Proof. For Toeplitz operators in the sense of Ma-Marinescu [22, §7], cf. Remark 3.4.a), the anal-
ogous result was established by Ma-Marinescu in [23, Theorem 4.9]. The proof for Toeplitz oper-
ators with weak exponential decay was done in [17, Theorem 3.18].

Proposition 3.6. Assume that a family of linear operators TXp ∈ End(L2(X,Lp ⊗ F )), p ∈ N
satisfies all the three assumptions of Theorem 3.5, with the only exception that the parity of IXr
equals to the parity of r + 1 instead of r. Then IX0 = 0, IX1 (Z,Z ′) is a constant polynomial,√
pTXp forms a Toeplitz operator with weak exponential decay with respect to Z, and we have

[
√
pTXp ]0 = IX1 (0, 0).

Proof. In the proof of Ma-Marinescu of [23, Theorem 4.9], authors established that regardless of
the parity assumption on IXr , the polynomial IX0 (Z,Z ′) is always constant. This was proved in the
compact setting, but the proof remains verbatim for manifolds of bounded geometry, cf. [17, proof
of Theorem 3.19]. Now, since the parity of IX0 is odd by our assumption, the above result implies
IX0 = 0. Hence all the assumptions of Theorem 3.5 are satisfied for the sequence of operators√
pTXp , p ∈ N∗, which implies Proposition 3.6.

Now, for technical reasons we will need to consider sequences of operators TXp : L2(X,Lp ⊗
F1)→ L2(X,Lp ⊗ F2), p ∈ N, where (Fi, h

F
i ), i = 1, 2, are Hermitian vector bundles of bounded

geometry overX . For such sequences of operators, we have a notion of (F1, F2)-Toeplitz operators
with weak exponential decay, analogous to Definition 3.3. The only difference between this defini-
tion and the one for (F1, h

F
1 ) = (F2, h

F
2 ) is that the Berezin-Toeplitz operators are now associated

to f ∈ C∞b (X,Hom(F1, F2)) as follows TXf,p(g) := BX
2,p(f · BX

1,pg), where BX
i,p, i = 1, 2, are the

Bergman kernels associated to Lp ⊗ Fi. We similarly use the notation [TXp ]i, i ∈ N, to designate
elements of C∞b (X,Hom(F1, F2)), corresponding to the asymptotic expansion of TXp .

Proposition 3.7. A family of linear operators TXp : L2(X,Lp ⊗ F1) → L2(X,Lp ⊗ F2), p ∈ N,
forms a (F1, F2)-Toeplitz operator with weak exponential decay with respect to Z if and only if
the following conditions hold

1. For any p ∈ N, TXp = BX
2,p ◦ TXp ◦BX

1,p.

2. Exponential bound analogous to (3.33) holds.

3. For any x0 ∈ X , r ∈ N, there are polynomials IXr (Z,Z ′) ∈ Hom(F1,x0 , F2,x0), satisfying
the same assumptions as in (3.34), and for which an analogue of the expansion (3.34) holds.

Moreover, for any sequence of operators TXp , verifying the above assumptions, the polynomial
IX0 (Z,Z ′) is constant and we have IX0 (0, 0) = [TXp ]0.

Proof. Consider a sequence of operators GX
p ∈ End(L2(X,Lp ⊗ (F1 ⊕ F2))), p ∈ N, which in a

matrix form associated to the decompositionL2(X,Lp⊗(F1⊕F2)) = L2(X,Lp⊗F1)⊕L2(X,Lp⊗
F2) corresponds to

GX
p =

(0 TXp
0 0

)
. (3.35)

An easy verification shows that the assumptions of Theorem 3.5 are satisfied for GX
p if and only

if the corresponding assumptions from Proposition 3.7 are satisfied for TXp . Proposition 3.7 now
follows from this and Theorem 3.5.
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Remark 3.8. From the above proof and Proposition 3.6, we see that a proposition, analogous to
Proposition 3.6 holds for (F1, F2)-Toeplitz operator with weak exponential decay.

Later on, we will need a precise bound on the degrees of the polynomials from (3.34). For this,
we fix any f ∈ C∞b (X,End(F )), and denote by IXf,r the polynomials associated to TXf,p as in (3.34).

Proposition 3.9. For any f ∈ C∞b (X,End(F )), we have deg IXf,r ≤ 3r.

This result is definitely well-known to experts, but we were not able to find a precise reference
for it anywhere in the literature. Due to this and to the fact that the preliminary statement, used
in the proof of Proposition 3.9, will later be used in this article several times, we will explain
the proof below. To state the result in the generality we will need later on, we fix some further
notation. Recall that geodesic coordinates were defined in (2.7). We assume as in Introduction
that the triple (X, Y, gTX) has bounded geometry. Similarly to (3.32), for y0 ∈ Y , we define the
function κYφ,y0 : BR2m

0 (rY )→ R, by

((φYy0)
∗dvY )(ZY ) = κYφ,y0dZ1 ∧ · · · ∧ dZ2m. (3.36)

Recall that Fermi coordinates were defined in (2.6). Define the function κ
X|Y
ψ,y0

: BR2m

0 (rY ) ×
BR2(n−m)

0 (r⊥)→ R by

((ψX|Yy0
)∗dvX)(Z) = κ

X|Y
ψ,y0

dZ1 ∧ · · · ∧ dZ2n. (3.37)

Recall that the function κN was defined in (1.9). Clearly, for Z = (ZY , ZN) ∈ R2n, ZY ∈ R2m,
we have the following relation between different κ-functions

κ
X|Y
ψ,y0

(Z) = κN(ψy0(Z)) · κYφ,y0(ZY ). (3.38)

Also, under assumptions (1.10), we have κX|Yψ,y0
(0) = κYφ,y0(0) = 1.

Theorem 3.10. For any r ∈ N, y0 ∈ Y , there are JX|Yr (Z,Z ′) ∈ End(Fy0) polynomials in
Z,Z ′ ∈ R2n, with the same parity as r and deg J

X|Y
r ≤ 3r, whose coefficients are polynomials in

RTX ,A,RF , (dvX/dvgTX )±
1
2n , (dvY /dvgTY )±

1
2n , and their derivatives of order≤ 2r, all evaluated

at y0, such that for the functions FX|Y
r := J

X|Y
r ·Pn over R2n × R2n, the following holds. There

are ε, c > 0, p1 ∈ N∗, such that for any r, l, l′ ∈ N, there exists C > 0, such that for any y0 ∈ Y ,
p ≥ p1, Z,Z ′ ∈ R2n, |Z|, |Z ′| ≤ ε, α, α′ ∈ N2n, |α|+ |α′| ≤ l, Q1

r,l,l′ := 3(n+ r + l′ + 2) + l:∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

(
1

pn
BX
p

(
ψy0(Z), ψy0(Z

′)
)

−
r∑
j=0

p−
j
2F

X|Y
j (
√
pZ,
√
pZ ′)κ

X|Y
ψ (Z)−

1
2κ

X|Y
ψ (Z ′)−

1
2

)∣∣∣∣
C l′

≤ Cp−
r+1−l

2

(
1 +
√
p|Z|+√p|Z ′|

)Q1
r,l,l′

exp
(
− c√p|Z − Z ′|

)
, (3.39)

where the C l′-norm is taken with respect to y0. Also, the following identity holds

J
X|Y
0 (Z,Z ′) = IdFy0 . (3.40)
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Moreover, under the assumption (1.10), we have

J
X|Y
1 (Z,Z ′) = IdFy0 · π

(
g
(
zN , A(zY − z′Y )(zY − z′Y )

)
+ g
(
z′N , A(zY − z′Y )(zY − z′Y )

))
. (3.41)

Proof. For X = Y , the result is due to Dai-Liu-Ma [10] and the calculation of JX|X1 is due to Ma-
Marinescu [22, Remark 4.1.26]. Related results were previously obtained by Tian [38], Bouche [5],
Zelditch [40], Catlin [8], Lu [21], Wang [39]. The proof of the general case is done in [16, Theorem
5.5] by relying on the result of [10] and some local calculations.

Proof of Proposition 3.9. In [22, Lemma 7.2.4], Ma-Marinescu proved that for compact manifolds,
for any r ∈ N, the following identity holds

IXf,r :=
∑
α∈N2m

∑
a+b+|α|=r

Kn,n
[
JX|Xa ,

∂αf(φXx0(Z))

∂Zα
(0) · Z

α

α!
· JX|Xb

]
, (3.42)

where Kn,n was defined in Lemma 3.1. As it was explained in [17, (3.51)], since by the result
of Ma-Marinescu [25], cf. Theorem 4.7, the Bergman kernel decays exponentially away from the
diagonal, the same proof holds for manifolds of bounded geometry. The result now follows from
(3.28), the bound on the degrees of JX|Xr from Theorem 3.10 and (3.42).

The final result about Toeplitz operators we will need is given below.

Lemma 3.11. For non-zero f ∈ C∞b (X,End(F )), as p→∞, the following asymptotics holds

‖TXf,p‖ ∼ sup
x∈X
‖f(x)‖. (3.43)

Proof. For compact manifolds X , this result is due to Bordemann-Meinrenken-Schlichenmaier [4,
Theorem 4.1] (for (F, hF ) trivial) and Ma-Marinescu [24, Theorem 3.19, (3.91)] (for any (F, hF )).
Essentially the same proof works in our more general situation. The details are given in the end of
the proof of [16, Theorem 1.1].

4 Multiplicative defect and optimal extensions
The main goal of this section is to make a comparison between the dual of the restriction operator
and the extension operator. For this, we prove the existence of a sequence of operators, which we
call the multiplicative defect. It will play a central role in most of the proofs of this article, as it
relates the Bergman kernel, studied extensively in the past, and the extension operator, which is
the main object of this paper. We conserve the notations from Introduction.

More precisely, for k ∈ N, we denote by B⊥,kp the orthogonal projection from L2(X,Lp ⊗ F )

to the orthogonal complement of H0
(2)(X,L

p ⊗ F ⊗J k+1
Y ) in H0

(2)(X,L
p ⊗ F ⊗J k

Y ). We call the
operator B⊥,kp the orthogonal Bergman kernel of order k. Clearly, the logarithmic Bergman kernel
of order k, introduced before Theorem 1.5, relates to orthogonal Bergman kernels as

BX,kY
p = BX

p −
k−1∑
l=0

B⊥,lp . (4.1)

The main result of this section is as follows.
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Theorem 4.1. For any k ∈ N, there is p1 ∈ N∗, such that for any p ≥ p1, there is a unique operator
Ak,p ∈ End(H0

(2)(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F ))), verifying

(ResY ◦ ∇kBX,kY
p )∗ = Ek,p ◦ Ak,p. (4.2)

Remark 4.2. The sequence of operators Ak,p, will be later called “multiplicative defect”. For
k = 0, Theorem 4.1 was proved in [17, Theorem 4.3] in its relation with the problem of transitivity
of optimal holomorphic extensions.

To establish this result, we rely on several statements of independent interest. The proofs of
these extend our methods from [16], [17]. The first result we need is the following semi-classical
analogue of the trace theorem from the theory of Sobolev spaces, to be proved in Section 4.1.

Theorem 4.3. For any k ∈ N, p ∈ N, and f ∈ H0
(2)(X,L

p ⊗ F ⊗ J k
Y ) the section (∇kf)|Y ∈

C∞(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F )) is holomorphic. Also, for any k ∈ N, there are p1 ∈ N∗,
C > 0, such that for any f ∈ H0

(2)(X,L
p ⊗ F ⊗ J k

Y ), p ≥ p1, in the notations of (1.6), we have
Resk,p(f) ∈ H0

(2)(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F )), and the following bound is satisfied∥∥Resk,p(f)
∥∥
L2(Y )

≤ Cp
n−m+k

2

∥∥f∥∥
L2(X)

(4.3)

The second result is an asymptotic version of Ohsawa-Takegoshi extension theorem for holo-
morphic jets, which we prove in Section 4.3 by relying on the results from Section 4.2.

Theorem 4.4. For any k ∈ N, there are C > 0, p1 ∈ N∗, such that for any p ≥ p1 and g ∈
H0

(2)(Y, Symk(N1,0)∗⊗ ι∗(Lp⊗F )), there is f ∈ H0
(2)(X,L

p⊗F ⊗J k
Y ), such that Resk,p(f) = g

and the following bound holds

‖f‖L2(X) ≤
C

p
n−m+k

2

‖g‖L2(Y ) . (4.4)

Remark 4.5. For k = 0, Theorems 4.3 and 4.4 were proved in [16, §4.1 and Theorem 4.4].

Proof of Theorem 4.1. Clearly, it suffices to prove that for any k ∈ N, there is p1 ∈ N, such that the
kernels and the images of the operators (ResY ◦ ∇kBX,kY

p )∗ and Ek,p coincide for p ≥ p1, where
we view both operators acting on the space L2(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F )).

For this, we first of all note

ker(ResY ◦ ∇kBX,kY
p )∗ = (Im(ResY ◦ ∇kBX,kY

p ))⊥. (4.5)

Now, in Theorem 4.3, we proved that there is p1 ∈ N, such that for any p ≥ p1, ResY ◦ ∇kBX,kY
p

has its image inside of H0
(2)(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F )). In Theorem 4.4, we proved that

there is p1 ∈ N, such that for any p ≥ p1, the image of ResY ◦ ∇kBX,kY
p coincides exactly with

H0
(2)(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F )). On another hand, the extension operator is defined as the

optimal holomorphic extension of the Bergman projection of a section from L2(Y, Symk(N1,0)∗⊗
ι∗(Lp⊗F )). Hence, the kernel of the extension operator coincides with the kernel of the Bergman
projection, which is the orthogonal complement ofH0

(2)(Y, Symk(N1,0)∗⊗ ι∗(Lp⊗F )). From this,
and (4.5), we see that the kernels of (ResY ◦ ∇kBX,kY

p )∗ and Ek,p coincide.
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Let us now establish that the images of these operators coincide as well. Indeed, we have

Im(ResY ◦ ∇kBX,kY
p )∗ = (ker(ResY ◦ ∇kBX,kY

p ))⊥. (4.6)

Recall that BX,kY
p vanishes on H0

(2)(X,L
p ⊗ F ⊗ J k

Y )⊥ . Hence, ResY ◦ ∇kBX,kY
p vanishes on

the vector space spanned by the kernel of BX,kY
p and H0

(2)(X,L
p ⊗ F ⊗ J k+1

Y ). In particular,
(ker(ResY ◦∇kBX,kY

p ))⊥ is the orthogonal complement ofH0
(2)(X,L

p⊗F⊗J k+1
Y ) inH0

(2)(X,L
p⊗

F ⊗ J k
Y ) . But by Theorem 4.4, this space coincides with the image of Ek,p.

Hence, the kernels and the images of the operators (ResY ◦ ∇kBX,kY
p )∗ and Ek,p coincide for

p ≥ p1, which implies that there is a unique sequence of operators Ak,p as in (4.2).

Remark 4.6. As we see from the proof, we never used the precise calculations of the constants
on the right-hand side of Theorems 4.3 and 4.4. We nevertheless decided to include the precise
estimates there due to the fact that our proof becomes no easier if one wishes to get simply the
existence.

4.1 Bounds on jets of holomorphic sections
The main goal of this section is to prove Theorem 4.3, i.e. to give an estimate of the L2-norm of a
jet of a holomorphic section in terms of the L2-norm of the section. The following result is crucial
for this proof and later arguments.

Theorem 4.7 (Ma-Marinescu [25, Theorem 1]). There are c > 0, p1 ∈ N, such that for any r ∈ N,
there is C > 0, such that for any p ≥ p1, x1, x2 ∈ X , we have∣∣∣BX

p (x1, x2)
∣∣∣
C r
≤ Cpn+

r
2 · exp

(
− c√p · dist(x1, x2)

)
, (4.7)

where the pointwise C r-norm at a point (x1, x2) ∈ X ×X is defined as in (1.21).

Proof of Theorem 4.3. The main idea of our proof is to study the Schwartz kernel of the operator
sending a holomorphic section to its k-jet and to use the exponential bound on the Bergman kernel.

First of all, let us verify that for any f as above, (∇kf)|Y is a holomorphic section of the vector
bundle Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F ). As this is a local statement, let us fix a point y0 ∈ Y with
holomorphic coordinates t1, . . . , tm, z1, . . . , zn−m, around y0 in X in such way that z1, . . . , zn−m
vanish along Y . From Weierstrass division theorem, cf. [13, Theorem II.2.3], we see that in a local
holomorphic trivialization of L and F around y0, we may represent f in the following way

f =
∑

β∈Nn−m
|β|=k

zβ · gβ(t, z), (4.8)

where gβ are some local holomorphic functions. Using this representation and (3.7), we see that in
the induced local frame over Y , the following identity holds

(∇kf)|Y = k! ·
∑

β∈Nn−m
|β|=k

(dz)�β · gβ(t, 0). (4.9)
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Since gβ are holomorphic, we see that (∇kf)|Y is a holomorphic section.
Let us now verify that the restriction satisfies the stated L2-bound. Consider the operator Tp :

L2(X,Lp ⊗ F )→ C∞(Y, Symk(ι∗TX1,0)∗ ⊗ ι∗(Lp ⊗ F )), defined as follows

Tp = ResY ◦ ((∇1,0)kBX
p ), (4.10)

where ∇1,0 represents above the holomorphic component of the covariant derivative, induced by
the Chern connection on L, F and TX . Let us now calculate the norm of Tp.

For this, we remark that the Schwartz kernel Tp(y, x), y ∈ Y , x ∈ X , evaluated with respect to
the volume form dvX , of Tp is given by

Tp(y, x) = (∇1,0)kBX
p (y, x). (4.11)

Consider now the operator Up := Tp ◦ T ∗p . Directly from (4.11) and the fact that BX
p ◦ BX

p = BX
p ,

we conclude that the Schwartz kernel Up(y, y′), y, y′ ∈ Y , of Up, evaluated with respect to the
volume form dvY , satisfies

Up(y, y
′) = ((∇1,0)kBX

p (∇1,0;∗)k)(y, y′), (4.12)

where∇1,0;∗ is the induced connection on the dual of Lp⊗F and T 1,0X . Directly from Proposition
2.7, Theorem 4.7 and (4.12), we deduce that there are C > 0 and p1 ∈ N, such that for p ≥ p1, we
have ‖Up‖ ≤ Cpn−m+k. We deduce the bound (4.3) by this, the trivial remark ‖Up‖ = ‖Tp‖2 and
the fact that for any f ∈ H0

(2)(X,L
p ⊗ F ⊗ J k

Y ), we have Tp(f) = Resk,p(f).

4.2 Taylor expansion of the holomorphic differential near a submanifold
The main goal of this section is to recall the calculation of the first two terms of the Taylor expan-
sion of ∂

Lp⊗F
-operator, considered in a shrinking neighborhood of Y of size 1√

p
, as p→∞. This

section is taken almost entirely from [16, §4.1].
We consider a triple (X, Y, gTX) of bounded geometry. By means of the exponential map as

in (1.9), we identify a neighborhood of the zero section Br⊥(N) in the normal bundle N , to a
neighborhood U := BX

Y (r⊥) of Y in X .
Recall that the projection π0 : U → Y and the identifications of L, F to π∗0(L|Y ), π∗0(F |Y ) in

BX
Y (r⊥) were defined before (1.13). We similarly identify TX to π∗0(TX|Y ) overBX

Y (r⊥) using the
parallel transport with respect to the Levi-Civita connection∇TX . Remark that since gTX is Kähler
by (1.2), the decomposition TX ⊗R C = T 1,0X ⊕ T 0,1X is preserved by ∇TX , cf. [22, Theorem
1.2.8]. In other words, the identification of TX with π∗0(TX|Y ) induces the identifications

τ : π∗0(T 1,0X|Y )→ T 1,0X|U , τ : π∗0(T 0,1X|Y )→ T 0,1X|U . (4.13)

We define the 1-form ΓF with values in End(π∗0(F |Y ))

ΓF = ∇F − π∗0(∇F |Y ), (4.14)

where we implicitly used the above isomorphism. Similarly, we define ΓL. Recall also that the
connection∇N on N was introduced before (2.2). The connection∇N induces the splitting

TN = N ⊕ THN (4.15)
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of the tangent space of the total space of N . Here THN is the horizontal part of N with respect to
the connection on N . If U ∈ TY , we denote by UH ∈ THN the horizontal lift of U in THN .

For ε > 0, we denote by E(ε) (resp. E) the set of smooth sections of π∗0(Lp|Y ⊗F |Y ) on Bε(N)
(resp. on the total space of N ). We also denote by E(0,1)(ε) (resp. E(0,1)) the set of smooth sections
of π∗0(T ∗(0,1)X|Y )⊗ π∗0(Lp|Y ⊗ F |Y ) on Bε(N) (resp. on the total space of N ).

Clearly, the above isomorphisms allow us to see ∂
Lp⊗F

as an operator

∂
Lp⊗F

: E(r⊥)→ E(0,1)(r⊥). (4.16)

We fix a point y0 ∈ Y and an orthonormal frame (e1, . . . , e2m) (resp. (e2m+1, . . . , e2n)) in
(Ty0Y, g

TY ) (resp. in (Ny0 , g
N
y0

)) such that (1.27) is satisfied. Using the exponential coordinates on
Y and the parallel transport of (e2m+1, . . . , e2n) along the geodesics on Y , as in Fermi coordinates
ψy0 in (2.6), we introduce complex coordinates z1, . . . , zm on Y and linear “vertical” coordinates
zm+1, . . . , zn on N . Using those coordinates, we define the operators

∂
Lp⊗F
H ,LLp⊗FN : E→ E(0,1), (4.17)

by prescribing their action at a point (y0, ZN), ZN ∈ R2(n−m), as follows

∂
Lp⊗F
H =

m∑
i=1

dzi|y0 ·
( ∂

∂zi

∣∣
y0

)H
, LLp⊗FN =

n∑
i=m+1

dzi|y0 ·
( ∂

∂zi
+
πzi
2

)
. (4.18)

The first differentiation in (4.18) is well-defined because π0∗( ∂
∂zi
|y0)H = ∂

∂zi
|y0 is of type (0, 1),

and the second derivation is well-defined because the vector bundles are trivialized along fibers of
π0.

Below a variable t ∈ R is related to p ∈ N by

t =
1
√
p
. (4.19)

For any ε > 0 define the rescaling operator Ft : E(ε)→ E( ε
t
) for f ∈ E(ε) as follows

(Ftf)(y, ZN) := f
(
y, tZN

)
, (y, ZN) ∈ B ε

t
(N). (4.20)

The operator Ft : E(0,1)(ε)→ E(0,1)( ε
t
) is defined in an analogous way.

Theorem 4.8 ( [16, Theorem 4.3]). As p→∞, we have

Ft ◦ ∂
Lp⊗F ◦ F−1t =

1

t
LLp⊗FN + ∂

Lp⊗F
H +O

(
t|ZN |2∇N + t|ZN |∇H + t|ZN |

)
, (4.21)

where O(t|ZN |2∇N + t|ZN |∇H + t|ZN |) is an operator of the form
∑2m

i=1 ai(t, y, ZN) · dxi|y0 ·
( ∂
∂xi
|y0)H +

∑2n
j=2m+1 bj(t, y, ZN) · dxj|y0 · ∂

∂xj
+ c(t, y, ZN), such that there is a constant C > 0,

for which |ai(t, y, ZN)| ≤ Ct|ZN |2, |bj(t, y, ZN)| ≤ Ct|ZN |, |c(t, y, ZN)| ≤ Ct|ZN | holds for any
y ∈ Y , |ZN | < r⊥, i = 1, . . . ,m, and j = m+ 1, . . . , n.

Remark 4.9. Bismut-Lebeau in [2, Theorem 8.18] established an analogue of Theorem 4.8, which
corresponds to trivial (L, hL) in our setting. In this case the operator LLp⊗FN from (4.18) doesn’t
have an additional πzi

2
term. Another closely related Taylor expansion is due to Dai-Liu-Ma [10,

Theorem 4.6], and it corresponds to Y equal to a point in our setting.
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4.3 Asymptotic Ohsawa-Takegoshi extension theorem for holomorphic jets
The main goal of this section is to establish the asymptotic analogue of Ohsawa-Takegoshi exten-
sion theorem for holomorphic jets. In other words, we show that Theorem 4.4 holds.

The main idea of the proof of Theorem 4.4, which follows rather closely our proof from [16,
Theorem 4.4], corresponding to the case k = 0, is to pass through the general framework of the
proof of Ohsawa-Takegoshi extension theorem. We choose a smooth extension of g over X , and
then obtain the holomorphic extension by modifying the smooth one using a solution of ∂-equation
with singular weight, which forces the solution to annihilate along Y .

The novelty here as well as in [16] is that instead of choosing an arbitrary smooth extension,
we choose a specific one, given by the operator (1.13). This allows us to significantly simplify the
original proof of Ohsawa-Takegoshi extension theorem (in our asymptotic setting). In particular,
instead of considering a double sequence of singular weights (depending on p and on additional
parameter ε), which would dampen the fact that we do not know much of an arbitrary smooth
extension, it would suffice to consider a single sequence of weights (only depending on p).

Recall that the function ρwas defined in (1.11). Let us now consider the functions δY : X\Y →
R, αY : X → R, defined as

δY (x) := log
(
distX(x, Y )

)
· ρ
(distX(x, Y )

r⊥

)
,

αY (x) := distX(x, Y )2 · ρ
(distX(x, Y )

r⊥

)
+
(

1− ρ
(distX(x, Y )

r⊥

))
.

(4.22)

As distX(x, Y )2 is smooth on the r⊥-geodesic tubular neighborhood of Y , δY and αY are smooth.
We assume in what follows for simplicity r⊥ ≤ 1. Then δY ≤ 0.

Now, recall that a function f : X → [−∞,+∞[ on a complex Hermitian manifold (X,ω) is
called quasi-plurisubharmonic if it is upper-semicontinuous, and there is a constant C ∈ R, such
that the following inequality holds in the distributional sense

√
−1∂∂f ≥ −Cω. (4.23)

We denote by PSH(X,Cω) the set of quasi-plurisubharmonic functions f , verifying (4.23).

Theorem 4.10 ( [16, Theorem 2.31]). There is C > 0, such that δY , αY ,−αY ∈ PSH(X,Cω).

Another result we will use concerns the L2-bounds of derivatives of holomorphic sections.

Proposition 4.11 ( [16, Proposition 4.5]). For any k ∈ N, there are C > 0, p1 ∈ N∗, such that for
any p ≥ p1 and f ∈ H0

(2)(X,L
p ⊗ F ), we have∥∥∇kf

∥∥
L2(X)

≤ Cp
k
2

∥∥f∥∥
L2(X)

, (4.24)

where∇ is the covariant derivative with respect to the induced Chern and Levi-Civita connections.

Proof of Theorem 4.4. Recall that the operator E0
k,p was defined in (1.13). We would like to verify

that for any g ∈ H0
(2)(Y, Symk(N1,0)∗⊗ ι∗(Lp⊗F )), the form α := ∂

Lp⊗F
(E0

k,pg) vanishes at least
up to order k + 1 over Y .
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Indeed, let us work in a neighborhood V := BX
Y ( r⊥

4
) of Y in X . Recall that t ∈ R+ and Ft

were defined in (4.20). Then in the notations of (1.13), on V , we have

E0
k,pg =

F−1t g̃
√
pk
, g̃(y, ZN) = z⊗kN · g(y) · exp

(
− π

2
|ZN |2

)
. (4.25)

Recall that ∂
Lp⊗F
H ,LLp⊗FN were defined in (4.18). A trivial calculation shows that on V , we have

LLp⊗FN g̃ = 0. (4.26)

Also, since∇N preserves gN , in the notations of (4.18), similarly to [2, (8.97)], we have(( ∂

∂zi

∣∣
y0

)H
g̃
)

(y0, ZN) =
( ∂

∂zi

(
z⊗kN · g

))
(y0) exp

(
− π

2
|ZN |2

)
. (4.27)

As a consequence of (4.27) and the fact that g is holomorphic, we obtain

∂
Lp⊗F
H g̃ = 0. (4.28)

From (4.25), (4.26), (4.28) and the fact that all the residue terms in Theorem 4.8 contain |ZN |, we
deduce that α vanishes at least up to order k + 1 along Y .

Now, using the L2-estimates, let us construct a holomorphic perturbation of E0
k,pg, satisfying

the assumptions of Theorem 4.4. Recall that δY : X \ Y → R, αY : X → R, were defined in
(4.22). For ε > 0, let us now define the weight δp : X \ Y → R as follows

δp := 2(n−m+ k)δY − εpαY . (4.29)

By taking ε small, from Theorem 4.10, we see that there exists p1 ∈ N∗, such that for any p ≥ p1,
over X , the following inequality holds in the distributional sense

pω +

√
−1

2π
∂∂δp >

p

2
ω. (4.30)

Let us fix ε small enough, so that it verifies the above inequality and for any |ZN | < r⊥, we have

π

2
|ZN |2 − εαY (y, ZN) ≥ π

4
|ZN |2. (4.31)

We will now prove that there are C > 0, p1 ∈ N∗, such that for any p ≥ p1, g ∈
H0

(2)(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F )) and α := ∂
Lp⊗F

(E0
k,pg), we have∫

X\Y
|α|2e−δpdvX ≤ C‖g‖2L2(Y ). (4.32)

Remark first that α has support in BX
Y ( r⊥

2
), and so we can work in (y, ZN), y ∈ Y , ZN ∈ Ny

coordinates. Over BX
Y ( r⊥

2
) \ BX

Y ( r⊥
4

), we then have −pπ
2
|ZN |2 − δp ≤ −pπ4 |ZN |

2 ≤ −p π
64
r2⊥. By

this, the coordinate-wise description of bounded geometry from Section 2.1, we see that there are
c, C > 0, p1 ∈ N∗, such that for any p ≥ p1, we have∫

X\BXY (
r⊥
4
)

|α|2e−δpdvX ≤ C exp(−cp)
(
‖g‖2L2(Y ) + ‖∇g‖2L2(Y )

)
. (4.33)
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Now, as α has support in BX
Y ( r⊥

2
), it is enough to work in (y, ZN), y ∈ Y , ZN ∈ Ny coordinates.

To estimate the integral over BX
Y ( r⊥

4
), we use (4.25) and make the change of variables by Ft to get∫

BXY (
r⊥
4
)

|α|2e−δpdvY ∧ dvN

=

∫
B r⊥

4t
(N)

∣∣∣(Ft ◦ ∂Lp⊗F ◦ F−1t

)
g̃
∣∣∣2(y, ZN)

eεpαY (y,tZN )

|ZN |2(n−m+k)
dvY ∧ dvN . (4.34)

We see that to estimate the right-hand side of (4.34), we may apply Theorem 4.8. From (4.26),
(4.28), we see that the first two terms of the asymptotic expansion of (Ft ◦ ∂

Lp⊗F ◦ F−1t )g̃ vanish.
In particular, we conclude that (Ft ◦ ∂

Lp⊗F ◦F−1t )g̃ vanishes up to order k+ 1 along Y . From this
and the trivial fact that there is C > 0, such that for j = 1, 2, we have∫

R2(n−m)

|ZN |2k+j exp(−π
4
|ZN |2)dvR2(n−m)(ZN)

|ZN |2(n−m+k)
< C, (4.35)

we conclude that there are C > 0, p1 ∈ N, such that for any p ≥ p1, g ∈ H0
(2)(Y, Symk(N1,0)∗ ⊗

ι∗(Lp ⊗ F )) and α := ∂
Lp⊗F

(E0
k,pg), we have∫

BXY (
r⊥
4
)

|α|2e−δpdvX ≤
C

p

(
‖g‖2L2(Y ) + ‖∇g‖2L2(Y )

)
. (4.36)

From Proposition 4.11, (4.33) and (4.36), we deduce (4.32).
By [11, Theorem 1.5], X \Y is a complete Kähler manifold. Hence, by (4.30), we may resolve

the ∂-equation onX \Y , see [12, Proposition 13.4]. From this, the trivial fact that ∂
Lp⊗F

α = 0 and
(4.32), we see that there are C > 0, p1 ∈ N∗, such that for any p ≥ p1, g ∈ H0

(2)(Y, Symk(N1,0)∗⊗
ι∗(Lp ⊗ F )), there is a section f0 ∈ C∞(X \ Y, Lp ⊗ F ), such that

∂
Lp⊗F

f0 = α,

∫
X\Y
|f0|2e−δpdvX ≤

C

p
‖g‖2L2(Y ). (4.37)

Let us prove that f := E0
k,pg − f0 verifies the assumptions of Theorem 4.4.

From (4.37), we see that over X \ Y , ∂
Lp⊗F

f = 0. Also, by (4.37), we easily get that f ∈
L2(X,Lp ⊗ F ). By the standard regularity result, [11, Lemme 6.9], f extends smoothly and the
equation ∂

Lp⊗F
f = 0 holds on X . In particular, f0 extends smoothly as well. However, since

exp(−2(n−m+ k)δY ) is not integrable, the L2-bound (4.37) implies that f0 has to vanish at least
up to order k + 1 along Y . Hence, we conclude that (∇kf)|Y = g. It is only left to verify that f
satisfies the needed L2-bound (4.4).

From the Gaussian integral calculation, using the coordinate-wise description of bounded ge-
ometry condition from Section 2.1 and (1.5), cf. [16, (4.38)], we see that there are c, C > 0, such
that we have

c

p
n−m+k

2

‖g‖L2(Y ) ≤
∥∥E0

k,pg
∥∥
L2(X)

≤ C

p
n−m+k

2

‖g‖L2(Y ) . (4.38)

Let us now prove the following bound∫
X

|f0|2e−δpdvX ≥ Cpn−m+k

∫
X

|f0|2dvX . (4.39)
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This would finish the proof, as from the L2-bound in (4.37), (4.38) and (4.39), we would then
deduce the L2-bound (4.4).

First of all, since αY ≥ min{1
2
( r⊥

4
)2, 1

2
} on X \BX

Y ( r⊥
4

), there are c, C > 0, such that∫
X\BXY (

r⊥
4
)

|f0|2e−δpdvX ≥ C exp(εcp)

∫
X\BXY (

r⊥
4
)

|f0|2dvX (4.40)

It is now only left to give the lower bound for the integrand on the left-hand side of (4.39),
where the integration is done over BX

Y ( r⊥
4

). But remark that from (4.22) and (4.29), over BX
Y ( r⊥

4
),

there is C > 0, such that for any p ∈ N∗, we have e−δp ≥ Cpn−m+k. To see this, for any i ∈ N, we
have δY (x) ≤ log( i+1√

p
) and αY (x) ≥ i2

p
for any x ∈ BX

Y ( i+1√
p

) \ BX
Y ( i√

p
), i ≤ r⊥

√
p

4
. So we obtain

that over BX
Y ( i+1√

p
) \BX

Y ( i√
p
), we have δp ≤ −(n−m+ k) log p+ 2(n−m+ k) log(i+ 1)− εi2.

From this, and the fact that logarithm grows slower at infinity than the square function, we deduce∫
BXY (

r⊥
4
)

|f0|2e−δpdvX ≥ Cpn−m+k

∫
BXY (

r⊥
4
)

|f0|2dvX . (4.41)

From (4.40) and (4.41), we obtain (4.39).

Remark 4.12. Our proof shows that there is E1
k,p : H0

(2)(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F )) →
H0

(2)(X,L
p ⊗ F ⊗ J k

Y ), verifying (∇kE1
k,pg)|Y = g for g ∈ H0

(2)(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F )),
and such that (1.14) holds for E1

k,p instead of E0
k,p.

5 Asymptotics of the extension operator for holomorphic jets
The main goal of this section is to study the asymptotic expansion of the extension operator for
holomorphic jets. For this, in Section 5.1, we prove the exponential bounds for the Schwartz ker-
nels of the extension operator and orthogonal Bergman kernel of order k, and study their asymp-
totics. We also deduce from these statements Theorems 1.1 and 1.5. Then, in Section 5.2, we
establish the announced exponential bounds and asymptotics, and deduce Theorem 1.3 from our
methods. Finally, in Section 5.3, we apply the results from Section 5.1 to the case when the sub-
manifold corresponds to a fixed point and deduce the asymptotics of higher order peak sections.

5.1 Schwartz kernels of the extension and orthogonal Bergman projectors
The main goal of this section is to study the Schwartz kernels of the extension operator and orthog-
onal Bergman kernels of order k ∈ N. In particular, we prove the exponential estimates for the
Schwartz kernels of these operators, and show that these Schwartz kernels admit a full asymptotic
expansion, as powers of the line bundle tend to infinity.

We use notations from Section 1 and assume that the triple (X, Y, gTX) is of bounded geometry.
Our first main result goes as follows.

Theorem 5.1. For any k ∈ N, there are c > 0, p1 ∈ N∗, such that for any r ∈ N, there is C > 0,
such that for any p ≥ p1, x1, x2 ∈ X , y ∈ Y , the following estimates hold

a)
∣∣Ek,p(x1, y)

∣∣
C r
≤ Cpm+ r−k

2 exp
(
− c√p · dist(x1, y)

)
,

b)
∣∣B⊥k,p(x1, x2)∣∣C r ≤ Cpn+

r
2 exp

(
− c√p · (dist(x1, x2) + dist(x1, Y ) + dist(x2, Y ))

)
.

(5.1)
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Remark 5.2. For k = 0, the corresponding result was proved in [16, Theorems 1.5, 1.8]. Our proof
here is different even in the case k = 0.

Theorem 5.1 implies that to understand fully the asymptotics of the Schwartz kernel of the
extension operator and orthogonal Bergman kernels of order k, it suffices to do so in a neighbor-
hood of a fixed point (y0, y0) ∈ Y × Y in X × Y and X ×X . Our next result shows that after a
reparametrization by a homothety with factor

√
p in Fermi coordinates around (y0, y0), the kernel

of these operators admit a complete asymptotic expansion in integer powers of
√
p, as p→∞.

Theorem 5.3. For any k, r ∈ N, y0 ∈ Y , there are polynomials JEk,r(Z,Z
′
Y ) ∈ Symk(N1,0

y0
) ⊗

End(Fy0) in Z ∈ R2n, Z ′Y ∈ R2m, of parity k + r, deg JEk,r ≤ k2 + k2r + 3r, whose coefficients
have the same properties as the coefficients of the polynomials from Theorem 3.10, and which
vanish at least up to order k along R2m ×R2m ⊂ R2n ×R2m, such that for FE

k,r := JEk,r · E 0
n,m, the

following holds.
For any k ∈ N, there are ε, c > 0, p1 ∈ N∗, such that for any r, l, l′ ∈ N, there are C,Q > 0,

such that for any y0 ∈ Y , p ≥ p1, Z = (ZY , ZN), ZY , Z ′Y ∈ R2m, ZN ∈ R2(n−m), |Z|, |Z ′Y | ≤ ε,
α ∈ N2n, α′ ∈ N2m, |α|+ |α′| ≤ l, we have∣∣∣∣ ∂|α|+|α

′|

∂Zα∂Z ′Y
α′

(
1

pm−
k
2

Ek,p

(
ψX|Yy0

(Z), φYy0(Z
′
Y )
)

−
r∑
j=0

p−
j
2FE

k,j(
√
pZ,
√
pZ ′Y )κ

X|Y
ψ (Z)−

1
2κYφ (Z ′Y )−

1
2

)∣∣∣∣
C l′

≤ Cp−
r+1−l

2 ·
(

1 +
√
p|Z|+√p|Z ′Y |

)Q
exp

(
− c√p

(
|ZY − Z ′Y |+ |ZN |

))
, (5.2)

where the C l′-norm is taken with respect to y0. Also, the following identity holds

JEk,0(Z,Z
′
Y ) = IdFy0 · κ

1
2
N(y0) ·

∑
β∈Nn−m
|β|=k

1

β!
· zβN ·

( ∂

∂z′N

)�β
. (5.3)

Moreover, under the assumption (1.10), we have

JEk,1(Z,Z
′
Y ) = IdFy0 · g

(
zN , A(zY − z′Y )(zY − z′Y )

)
·
∑

β∈Nn−m
|β|=k

1

β!
· zβN ·

( ∂

∂z′N

)�β
, (5.4)

where A is the second fundamental form of ι, introduced in (2.2).

Remark 5.4. In particular, from (3.8), we have FE
k,0(Z,Z

′
Y ) = E k

n,m and under the assumption
(1.10), we have

FE
k,1(Z,Z

′
Y ) = IdFy0 · g

(
zN , A(zY − z′Y )(zY − z′Y )

)
· E k

n,m. (5.5)

Theorem 5.5. For any k, r ∈ N, y0 ∈ Y , there are polynomials J⊥k,r(Z,Z
′) ∈ End(Fy0), Z,Z ′ ∈

R2n, of parity k, deg J⊥k,r ≤ 2k2 + k2r + 3r, whose coefficients have the same properties as the
coefficients of the polynomials from Theorem 3.10, and which vanish at least up to order k along
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R2m × R2n ⊂ R2n × R2n and R2n × R2m ⊂ R2n × R2n, such that for F⊥k,r := J⊥k,r ·P⊥,0
n,m, the

following holds.
For any k ∈ N, there are ε, c > 0, p1 ∈ N∗, such that for any r, l, l′ ∈ N, there are C,Q > 0,

such that for any y0 ∈ Y , p ≥ p1, Z = (ZY , ZN), Z ′ = (Z ′Y , Z
′
N), ZY , Z ′Y ∈ R2m, ZN , Z ′N ∈

R2(n−m), |Z|, |Z ′| ≤ ε, α, α′ ∈ N2n, |α|+ |α′| ≤ l, we have∣∣∣∣ ∂|α|+|α′|∂Zα∂Z ′α′

(
1

pn
B⊥k,p

(
ψy0(Z), ψy0(Z

′)
)

−
r∑
j=0

p−
j
2F⊥k,j(

√
pZ,
√
pZ ′)κ

X|Y
ψ (Z)−

1
2κ

X|Y
ψ (Z ′)−

1
2

)∣∣∣∣
C l′

≤ Cp−
r+1−l

2 ·
(

1 +
√
p|Z|+√p|Z ′|

)Q
exp

(
− c√p

(
|ZY − Z ′Y |+ |ZN |+ |Z ′N |

))
, (5.6)

where the C l′-norm is taken with respect to y0. Also, we have

J⊥k,0(Z,Z
′) = πk · IdFy0 ·

∑
β∈Nn−m
|β|=k

zβN · (z′N)β

β!
. (5.7)

Moreover, under the assumption (1.10), we have

J⊥k,1(Z,Z
′) = πk+1 · IdFy0 ·

(
g
(
zN , A(zY − z′Y )(zY − z′Y )

)
+ g
(
z′N , A(zY − z′Y )(zY − z′Y )

))
·
∑

β∈Nn−m
|β|=k

zβN · (z′N)β

β!
. (5.8)

Remark 5.6. a) In particular, from (3.4), we have F⊥k,0(Z,Z
′) = P⊥,k

n,m and under the assumption
(1.10), we have

F⊥k,1(Z,Z
′) = π · IdFy0 ·

(
g
(
zN , A(zY − z′Y )(zY − z′Y )

)
+ g
(
z′N , A(zY − z′Y )(zY − z′Y )

))
·P⊥,k

n,m. (5.9)

b) Theorems 5.3 and 5.5 were established for k = 0 in [16, Theorems 1.6, 1.8]. Our proof here
is different from the one from [16], even for k = 0.

c) Our methods allow to give a precise estimate for Q from Theorems 5.3 and 5.5, but as this
is quite lengthy and cumbersome, we leave their derivation to the interested reader.

Proof of Theorem 1.1 assuming Theorems 5.1.a) and 5.3. The main idea of the proof is to compare
the Schwartz kernels of Ek,p and E0

k,p. For this, we introduce Kp := Ek,p − E0
k,p. From (1.13),

remark that the Schwartz kernel, E0
k,p(x, y), x = (y′, ZN) ∈ BX

Y (r⊥), y ∈ Y , of E0
k,p, evaluated

with respect to dvY , equals to

E0
k,p(x, y) = ρ

( |ZN |
r⊥

)
· exp

(
− pπ

2
|ZN |2

)
· Z⊗kN ·B

Y
k,p(y

′, y). (5.10)
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From this, the fact that for any k ∈ N, there is C > 0, such that for any Z ∈ R, we have
exp(−p|Z|2)|Z|k ≤ Cp−

k
2 , and Theorem 4.7, we conclude that there are c, C > 0, p1 ∈ N∗, such

that for any p ≥ p1, x ∈ X , y ∈ Y , the following estimate holds∣∣∣E0
k,p(x, y)

∣∣∣ ≤ Cpm−
k
2 exp

(
− c√pdist(x, y)

)
. (5.11)

This along with Theorem 5.1.a) implies that there are c, C > 0, p1 ∈ N∗, such that for any p ≥ p1,
x ∈ X , y ∈ Y , the following estimate holds∣∣∣Kp(x, y)

∣∣∣ ≤ Cpm−
k
2 exp

(
− c√pdist(x, y)

)
. (5.12)

Now, by studying the asymptotic expansion of the Schwartz kernel Kp(x, y), we improve the
estimate (5.12) by lowering the degree of p in the polynomial part of the right-hand side of (5.12).

We denote by J
Y |Y
k,r the polynomials from Theorem 3.10 associated to X = Y and F =

Symk(N1,0)∗ ⊗ ι∗F . From Theorem 3.10, the second equation from (3.9) and (5.10), we deduce
that for polynomials JE0

k,r (Z,Z ′Y ), defined for r ∈ N as follows

JE0
k,r (Z,Z ′Y ) :=

∑
β∈Nn−m
|β|=k

1

β!
· zβN ·

( ∂

∂zN

)�β · JY |Yk,r (ZY , Z
′
Y ), (5.13)

and the functions FE0
k,r := JE0

k,r · E 0
n,m over R2n × R2m, the following holds. There are ε, c > 0,

p1 ∈ N∗, such that for any r ∈ N, there are C,Q > 0, such that for any y0 ∈ Y , p ≥ p1,
Z = (ZY , ZN), ZY , Z ′Y ∈ R2m, ZN ∈ R2(n−m), |Z|, |Z ′Y | ≤ ε, we have∣∣∣∣ 1

pm−
k
2

E0
k,p

(
ψy0(Z), φYy0(Z

′
Y )
)
−

r∑
j=0

p−
j
2FE0

j,K(
√
pZ,
√
pZ ′Y )κYφ (ZY )−

1
2κYφ (Z ′Y )−

1
2

∣∣∣∣
≤ Cp−

r+1
2

(
1 +
√
p|Z|+√p|Z ′Y |

)Q
exp

(
− c√p

(
|ZY − Z ′Y |+ |ZN |

))
. (5.14)

For r ∈ N, let us expand κN(ψ(Z))
1
2 in a neighborhood of Z = 0 as follows

κN(ψ(Z))
1
2 =

r∑
i=0

κ
1
2

N,[i](Z) +O(|Z|r+1), (5.15)

where κ
1
2

N,[i](Z) are homogeneous polynomials of degree i.
From Theorem 5.3, (3.38) and (5.14), we deduce that for polynomials JEKk,r (Z,Z ′Y ), defined for

r ∈ N as follows
JEKk,r (Z,Z ′Y ) := JEk,r(Z,Z

′
Y )−

∑
a+b=r

κ
1
2

N,[a](Z) · JE0
k,b , (5.16)

and the functions FEK
k,r := JEKk,r · E 0

n,m over R2n × R2m, the following holds. There are ε, c > 0,
p1 ∈ N∗, such that for any r ∈ N, there are C,Q > 0, such that for any y0 ∈ Y , p ≥ p1,
Z = (ZY , ZN), ZY , Z ′Y ∈ R2m, ZN ∈ R2(n−m), |Z|, |Z ′Y | ≤ ε, we have
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∣∣∣∣ 1

pm−
k
2

Kp

(
ψy0(Z), φYy0(Z

′
Y )
)
−

r∑
j=0

p−
j
2FEK

k,j (
√
pZ,
√
pZ ′Y )κ

X|Y
ψ (Z)−

1
2κYφ (Z ′Y )−

1
2

∣∣∣∣
≤ Cp−

r+1
2

(
1 +
√
p|Z|+√p|Z ′Y |

)Q
exp

(
− c√p

(
|ZY − Z ′Y |+ |ZN |

))
. (5.17)

From (3.40), (5.3), (5.13) and (5.16), we deduce

JEKk,0 (Z,Z ′Y ) = 0. (5.18)

In particular, from (5.17) and (5.18), we see that we can improve (5.12) as follows∣∣∣Kp(x, y)
∣∣∣ ≤ Cpm−

1+k
2 exp

(
− c√pdist(x, y)

)
. (5.19)

From Proposition 2.7 and (5.19), we deduce that there are C > 0, p1 ∈ N∗, such that for any
p ≥ p1, we have ‖Kp‖ ≤ C

p
n−m+k+1

2
, which is exactly (1.14) by the definition of Kp.

Now, similarly to the derivation of (5.18), we see that under assumption (1.10), from (3.41),
(5.16) and the fact from [16, (5.35)], stating

∂

∂ZN
κN = 0, (5.20)

we deduce that we have
JEKk,1 (Z,Z ′Y ) = JEk,1(Z,Z

′
Y ). (5.21)

Let us now prove (1.15). Recall that for any β ∈ Nn−m, |β| = k, we have∫
R2(n−m)

|z2βN | · exp(−π|ZN |2) · dZ2m+1 ∧ · · · ∧ dZ2n =
β!

πk
. (5.22)

Remark also from (1.24) and the description below (1.25) that

‖dz�βN ‖
2 = 2k · β!

k!
. (5.23)

In particular, we have∫
R2(n−m)

κN(y,
√
pZN) · |z

2β
N |
k!2
· exp(−pπ|ZN |2)ρ

( |ZN |
r⊥

)2
dZ2m+1 ∧ · · · ∧ dZ2n

=
κN(y)

pn−m+k
· 1

k! · (2π)k
· ‖dz�βN ‖

2 +O
( 1

pn−m+k+ 1
2

)
. (5.24)

From (1.9) and (5.24), cf. [16, (4.38)] for the case k = 0, we see that for any g ∈ L2(Y, Symk(N1,0)∗⊗
ι∗(Lp ⊗ F )), we have

∥∥E0
k,pg
∥∥2
L2(dvX)

=
1

pn−m+k
· 1

k! · (2π)k
·
∥∥∥κN(y)

1
2 ·BY

k,pg
∥∥∥2
L2(Y )

+O
( ‖g‖2L2(Y )

pn−m+k+ 1
2

)
. (5.25)

Consider the Toeplitz operator T YκN ,p ∈ End(L2(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F ))), given by

T YκN ,pg := BY
k,p(κN ·BY

k,pg). (5.26)



Asymptotics of extensions of holomorphic jets 33

Then, we clearly have 〈
T YκN ,pg, g

〉
L2(Y )

=
〈
κN ·BY

k,pg,B
Y
k,pg
〉
L2(Y )

. (5.27)

Thus, by (5.25) and (5.27), we have∥∥E0
k,p

∥∥ =
1

p
n−m+k

2

· 1√
k! · (2π)k

·
∥∥T YκN ,p∥∥ 1

2 +O
( 1

p
n−m+k+1

2

)
. (5.28)

From Lemma 3.11 and (5.28), we deduce (1.15).
Now it is only left to prove that if A 6= 0, then under additional assumption (1.10), one can not

replace p−
n−m+k+1

2 by an asymptotically better estimate. For this, remark that as long as A 6= 0,
by (5.5) and (5.21), the operator, acting on Cn with the kernel FEK

k,1 (Z,Z ′Y ), has non-zero norm.
Then, by the calculations, similar to (5.25), we see that the operator, acting on Cn with the kernel
FEK
k,1 (
√
pZ,
√
pZ ′Y ), has norm of order p−

n−m+k
2 , as p → ∞. We deduce from this that as long as

A 6= 0, one can not replace p−
n−m+k+1

2 by an asymptotically better estimate.

Proof of Theorem 1.5 assuming Theorems 5.1.b) and 5.5. First of all, remark that by definition

BX
p −BX,kY

p =
k−1∑
l=0

B⊥l,p. (5.29)

Clearly, the estimate (1.21) follows from Theorem 5.1.b) and (5.29). From Theorems 3.10, 5.5,
(3.11), (3.12), and the use of (5.29), we deduce that for any k ∈ N, there are ε, c > 0, p1 ∈ N∗,
such that for any r, l′ ∈ N, there are C,Q > 0, such that for any y0 ∈ Y , p ≥ p1, Z = (ZY , ZN),
Z ′ = (Z ′Y , Z

′
N), ZY , Z ′Y ∈ R2m, ZN , Z ′N ∈ R2(n−m), |Z|, |Z ′| ≤ ε, α ∈ N2n, α′ ∈ N2n, |α|+ |α′| ≤

l′, we have∣∣∣∣ ∂|α|+|α
′|

∂Zα∂Z ′Y
α′

(
1

pn
BX,kY
p

(
Z,Z ′

)
−PCn,kCm

n,m (
√
pZ,
√
pZ ′) · κX|Yψ (y0)

− 1
2 · κX|Yψ (y0)

− 1
2

)∣∣∣∣
C r

≤ Cp
l′+r−1

2 ·
(
1 +
√
p|Z|+√p|Z ′|

)Q · exp
(
− c√p ·

(
|ZY − Z ′Y |+ |ZN |+ |Z ′N |

))
. (5.30)

By using the fact that the term under the parenthesizes of the left-hand side of (5.30) vanishes up
to order k along Y in each variable Z and Z ′ and taking Taylor expansion, we deduce from (5.30)
that for any k ∈ N, there are ε, c > 0, p1 ∈ N∗, such that for any r ∈ N, there are C,Q > 0, such
that for any y0 ∈ Y , p ≥ p1, Z = (ZY , ZN), Z ′ = (Z ′Y , Z

′
N), ZY , Z ′Y ∈ R2m, ZN , Z ′N ∈ R2(n−m),

|Z|, |Z ′| ≤ ε, we have∣∣∣∣ 1

pn
BX,kY
p

(
Z,Z ′

)
−PCn,kCm

n,m (
√
pZ,
√
pZ ′) · κX|Yψ (y0)

− 1
2 · κX|Yψ (y0)

− 1
2

∣∣∣∣
C r
≤ Cpk+

r−1
2 ·

· |ZN |k|Z ′N |k ·
(
1 +
√
p|Z|+√p|Z ′|

)Q · exp
(
− c√p ·

(
|ZY − Z ′Y |+ |ZN |+ |Z ′N |

))
. (5.31)

However, directly from (3.12), we obtain

PCn,kCm
n,m (Z,Z ′) = Pm,m(ZY , Z

′
Y ) · exp

(
− π

2

(
|ZN |2 + |Z ′N |2

))
·

·
∑

β∈Nn−m
|β|≥k

π|β| · z
β
N · (z′N)β

β!
. (5.32)

From Theorem 3.10, (3.38), (5.31) and (5.32), we deduce (1.22).
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5.2 Multiplicative defect: from Bergman projections to extension operators
The main goal of this section is to prove Theorems 5.1, 5.3 and 5.5. As a consequence of this,
we also establish Theorem 1.3. Our proof relies heavily on the existence of the multiplicative
defect operator, Ak,p ∈ End(H0

(2)(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F ))), p ≥ p1, k ∈ N, established in
Theorem 4.1. More precisely, the following statement plays a crucial role in our approach.

Theorem 5.7. For any k ∈ N, the sequence of operators 1
pn−m+kAk,p, p ≥ p1, viewed as a sequence

of elements from End(L2(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F ))) by precomposing with the Bergman pro-
jector BY

k,p, forms a Toeplitz operator with weak exponential decay with respect to X . Moreover,
the first term of the asymptotic expansion of it can be calculated as follows[ 1

pn−m+k
Ak,p

]
0

= (2π)k · k! · κ−1N |Y · IdSymkN1,0
y0
⊗ IdFy0 . (5.33)

Remark 5.8. For k = 0, Theorem 5.7 was established in [17, Theorem 4.3].

The core of our argument in the proofs of Theorems 5.1, 5.3 and 5.5 lies in the following
inductive argument. We fix k0 ∈ N.

Lemma 5.9. Assume that for any k < k0, Theorems 5.1.b) and 5.5 hold. Then for k := k0,

Theorem 5.7 holds,a) Theorems 5.1.a) and 5.3 hold,b)

Theorems 5.1.b) and 5.5 hold.c)

The following statement will be useful in our proof of Lemma 5.9.

Lemma 5.10. Assume that for any k < k0, Theorems 5.1.b) and 5.5 hold. Then for k := k0,
and any r ∈ N, y0 ∈ Y , there are polynomials JR,0k,r (ZY , Z

′) ∈ Symk(N1,0
y0

)∗ ⊗ End(Fy0) in Z ′ ∈
R2n, ZY ∈ R2m, with the same properties as those from Theorem 5.3 (including the analogous
vanishing, degree and parity requirements), such that for FR,0

k,r := JR,0k,r ·R
0
n,m, the following holds.

There are ε, c > 0, p1 ∈ N∗, such that for any r, l, l′ ∈ N, there are C,Q > 0, such that for
any y0 ∈ Y , p ≥ p1, Z ′ = (Z ′Y , Z

′
N), ZY , Z ′Y ∈ R2m, Z ′N ∈ R2(n−m), |ZY |, |Z ′| ≤ ε, α ∈ N2m,

α′ ∈ N2n, |α|+ |α′| ≤ l, the following bound holds∣∣∣∣ ∂|α|+|α′|∂Zα
Y ∂Z

′α′

(
1

pn+
k
2

· (ResY ◦ ∇kBX,kY
p )

(
φYy0(ZY ), ψy0(Z

′)
)

−
r∑
j=0

p−
j
2FR,0

k,j (
√
pZY ,

√
pZ ′)κYφ (ZY )−

1
2κ

X|Y
ψ (Z ′)−

1
2

)∣∣∣∣
C l′

≤ Cp−
r+1−l

2

(
1 +
√
p|ZY |+

√
p|Z ′|

)Q
exp

(
− c√p

(
|ZY − Z ′Y |+ |Z ′N |

))
, (5.34)

where the C l′-norm is taken with respect to y0. Also, the following identity holds

JR,0k,0 (ZY , Z
′) = πk · IdFy0 · κ

− 1
2

N (y0) ·
∑

β∈Nn−m
|β|=k

k!

β!
· (dzN)�β · (z′N)β. (5.35)
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In particular, from (3.13), we have FR,0
k,0 (ZY , Z

′) = Rk
n,m. Moreover, under the assumption (1.10)

JR,0k,1 (ZY , Z
′) = πk+1 · IdFy0 · g

(
z′N , A(zY − z′Y )(zY − z′Y )

)
·

·
∑

β∈Nn−m
|β|=k

k!

β!
· (dzN)�β · (z′N)β. (5.36)

Proof. From Section 3.1, remark the following trivial identities

Pn(Z,Z ′) = R0
n,m(ZY , Z

′) · Pn−m(ZN , Z
′
N)

P⊥,0
n−m,0(0, Z

′
N)

,

P⊥,0
n,m(Z,Z ′) = R0

n,m(ZY , Z
′) ·

P⊥,0
n−m,0(ZN , Z

′
N)

P⊥,0
n−m,0(0, Z

′
N)

.

(5.37)

From the fact that in the notations introduced in the end of Section 2.1, we have
ResY (f̃

X|Y
1 , . . . , f̃

X|Y
r ) = f̃ ′1

Y , . . . , f̃ ′r
Y , the fact that ∂ψ

∂Zj
|ZN=0, j = 2m + 1, . . . , 2n, are paral-

lel alongBR2m

0 (rY ) ⊂ R2n, (3.38), (3.39), (5.6), (5.29) and (5.37), we see that the expansion (5.34)
holds for polynomials JR,0k,r (ZY , Z

′) ∈ Symk(N1,0
y0

)∗ ⊗ End(Fy0), defined as

JR,0k,r (ZY , Z
′) := ∇k

ZN

[ ∑
a+b=r

(
JX|Ya (Z,Z ′) · Pn−m(ZN , Z

′
N)

P⊥,0
n−m,0(0, Z

′
N)

−
k−1∑
i=0

J⊥i,a(Z,Z
′) ·

P⊥,0
n−m,0(ZN , Z

′
N)

P⊥,0
n−m,0(0, Z

′
N)

)
· κ−

1
2

N,[b](Z)

]∣∣∣
ZN=0

. (5.38)

Remark, however, that since the first multiplicand after the summation sign in (5.38) corre-
sponds to the asymptotic expansion of BX,kY

p , it has to vanish up to order k along Y . In particular,
we obtain

JR,0k,r (ZY , Z
′) :=

∑
a+b=r

∇k
ZN

(
JX|Ya (Z,Z ′) ·Pn−m(ZN , Z

′
N)

−
k−1∑
i=0

J⊥i,a(Z,Z
′) ·P⊥,0

n−m,0(ZN , Z
′
N)
)∣∣∣

ZN=0
·

κ
− 1

2

N,[b](ZY )

P⊥,0
n−m,0(0, Z

′
N)
. (5.39)

Now, from (3.4) and (5.7), we deduce that J⊥i,0(Z,Z
′) · P⊥,0

n−m,0(ZN , Z
′
N) = IdFy0 ·

P⊥,i
n−m,0(ZN , Z

′
N). From this, (3.40) and (5.39), we conclude that

JR,0k,0 (ZY , Z
′) = ∇k

ZN

(
Pn−m(ZN , Z

′
N)−

k−1∑
i=0

P⊥,i
n−m,0(ZN , Z

′
N)
)∣∣∣

ZN=0
·
κ
− 1

2
N (y0) · IdFy0

P⊥,0
n−m,0(0, Z

′
N)
. (5.40)

But from the calculations as in (3.12), we have

Pn−m(ZN , Z
′
N)−

k−1∑
i=0

P⊥,i
n−m,0(ZN , Z

′
N) =

( ∑
β∈Nn−m
|β|≥k

π|β|·z
β
N · (z′N)β

β!

)
·P⊥,0

n−m,0(ZN , Z
′
N). (5.41)
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From this, (3.7) and (5.40), we deduce (5.35). Moreover, under the assumption (1.10), from (5.20)
and (5.39), we also obtain that

JR,0k,1 (ZY , Z
′) = ∇k

ZN

(
J
X|Y
1 (Z,Z ′) ·Pn−m(ZN , Z

′
N)

−
k−1∑
i=0

J⊥i,1(Z,Z
′) ·P⊥,0

n−m,0(ZN , Z
′
N)
)∣∣∣

ZN=0
·
κ
− 1

2
N (y0) · IdFy0

P⊥,0
n−m,0(0, Z

′
N)
. (5.42)

From this, using (5.41) as in the proof of (5.35), but now using (3.41) and (5.8), we deduce (5.36).
The fact that the parity of JR,0k,r coincides with the parity of k + r follows from the analogous

statements from Theorems 3.10, 5.5 and (5.38). From the bounded geometry assumption and the
boundness properties of the coefficients of JX|Ya , J⊥i,a from Theorems 3.10, 5.5, we see that the
coefficients of JR,0k,r are bounded with all their derivatives. From (5.38), we see that

deg(JR,0k,r ) ≤ max
{

deg(JX|Ya ) + k, deg(J⊥i,a) + k
}
, (5.43)

where the maximum is taken over a = 0, . . . , k and i = 0, . . . , k − 1. From (5.43) and the
corresponding bounds on the degrees of JX|Ya and J⊥i,a from Theorems 3.10 and 5.5, we deduce the
needed bound on the degree of JR,0k,r .

It is only left to establish the vanishing of JR,0k,r at least up to order k along R2m × R2m ⊂
R2m × R2n. For this, let us define the polynomials JE,0k,r (Z,Z ′Y ) ∈ Symk(N1,0

y0
) ⊗ End(Fy0) in

Z ∈ R2n, Z ′Y ∈ R2m as follows

JE,0k,r (Z,Z ′Y ) := (JR,0k,r (Z ′Y , Z))∗. (5.44)

Clearly, it is enough to establish the analogous vanishing property for the polynomials JE,0k,r . As-
sume that r0 ∈ N is the first index, for which this vanishing property doesn’t hold. We denote by
k′ < k the order of vanishing of JE,0k,r0

along R2m × R2m ⊂ R2n × R2m.
First of all, directly from (5.34), we obtain that for FE,0

k,r := JE,0k,r · E 0
n,m, the following holds.

There are ε, c > 0, p1 ∈ N∗, such that for any r, l, l′ ∈ N, there are C,Q > 0, such that for any
y0 ∈ Y , p ≥ p1, Z = (ZY , ZN), ZY , Z ′Y ∈ R2m, ZN ∈ R2(n−m), |Z|, |Z ′Y | ≤ ε, α ∈ N2m,
α′ ∈ N2n, |α|+ |α′| ≤ l, the following bound holds∣∣∣∣ ∂|α|+|α′|∂Zα

Y ∂Z
′α′

(
1

pn+
k
2

· (ResY ◦ ∇kBX,kY
p )∗

(
ψy0(Z), φYy0(Z

′
Y )
)

−
r∑
j=0

p−
j
2FE,0

k,j (
√
pZ,
√
pZ ′Y )κ

X|Y
ψ (Z)−

1
2κYφ (Z ′Y )−

1
2

)∣∣∣∣
C l′

≤ Cp−
r+1−l

2

(
1 +
√
p|Z|+√p|Z ′Y |

)Q
exp

(
− c√p

(
|ZY − Z ′Y |+ |ZN |

))
, (5.45)

where the C l′-norm is taken with respect to y0.
Let us consider the operator T Yp : L2(Y, Symk(N1,0)∗⊗ ι∗(Lp⊗F ))→ L2(Y, Symk′(N1,0)∗⊗

ι∗(Lp ⊗ F )), given by the following formula

T Yp := pm−n−
k+k′

2 · ResY ◦ ∇k′(ResY ◦ ∇kBX,kY
p )∗. (5.46)
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First of all, remark that since the image of (ResY ◦∇kBX,kY
p )∗ is included in the space of holomor-

phic sections of Lk vanishing to order k (see the proof of Theorem 4.1), we deduce that T Yp = 0.
We will now establish that the sequence of operators T Yp satisfies the assumptions of Propo-

sition 3.7 or Remark 3.8, depending on the parity of k + k′. Clearly, the first property from
Proposition 3.7 follows from Theorem 4.3 and (5.46).

From Theorem 4.7 and Theorem 5.1.b), applied for k ≤ k0−1, we deduce that there are c > 0,
p1 ∈ N∗, such that for any r ∈ N, there is C > 0, such that for any p ≥ p1, x1, x2 ∈ X , the
following estimate holds∣∣∣BX,kY

p (x1, x2)
∣∣∣
C r
≤ Cpn+

r
2 exp

(
− c√p · dist(x1, x2)

)
. (5.47)

From (5.47), we deduce that there are c > 0, p1 ∈ N∗, such that for any r ∈ N, there is C > 0,
such that for any p ≥ p1, y1, y2 ∈ Y , the following estimate holds∣∣∣T Yp (y1, y2)

∣∣∣
C r
≤ Cpm+ r

2 exp
(
− c√p · distX(y1, y2)

)
. (5.48)

This implies the second property from Proposition 3.7 with respect to X .
We will now show that the third property is a direct consequence of Theorems 3.10 and 5.5

for k ≤ k0 − 1. Remark first that from (3.16) we have (R0
n,m)∗ = E 0

n,m, and thus, directly from
Section 3.1, remark the following trivial identity

E 0
n,m(Z,Z ′Y ) = Pn−m(ZY , Z

′
Y ) ·P⊥,0

n−m,0(ZN , 0), (5.49)

From this, (5.45) and the reasoning similar to (5.38), we see that the expansion (3.34) for T Yp as
above holds for the polynomials IYr (ZY , Z

′
Y ), ZY , Z ′Y ∈ R2m, defined as follows

IYr (ZY , Z
′
Y ) = ∇k

ZN

( ∑
a+b=r

JE,0k,a (Z,Z ′Y ) ·P⊥,0
n−m,0(ZN , 0) · κ−

1
2

N,[b](Z)−
1
2

)∣∣∣
ZN=0

. (5.50)

From the parity statements on JR,0k,r from above (implying the corresponding statements for JE,0k,r ),
we see that the parity of IYr equals to the parity of r + k + k′. From (5.50), by our choice of r0,
we also see that IYr (ZY , Z

′
Y ) = 0 for r < r0 and IYr0(ZY , Z

′
Y ) = ∇k′

zN
JE,0k,r0

(Z,Z ′Y )|ZN=0. Hence the
sequence of operators p

r0
2 · T Yp still satisfies the assumptions of either Proposition 3.7 or Remark

3.8, and the first term of the associated asymptotic expansion (3.34) holds with nonzero term by
our choice of k′ and r0. This, however, goes in contradiction with the last part of Proposition 3.7
or Remark 3.8 and the fact that T Yp = 0.

Proof of Lemma 5.9.a). Let us verify that the validity of Theorems 5.1.b) and 5.5 for any k < k0
imply that the sequence of operators 1

pn−m+kAk,p, p ≥ p1, for k := k0, satisfies all the properties of
Theorem 3.5.

Remark first that by Theorems 4.3, 4.4, there is p1 ∈ N, such that for any p ≥ p1, we have
ResY ◦ ∇kEk,p = BY

k,p. From this and (4.2), we conclude that for any p ≥ p1, we have

Ak,p = ResY ◦ ∇k(ResY ◦ ∇kBX,kY
p )∗. (5.51)

From the above identity, we see that 1
pn−m+kAk,p coincides with the operator T Yp , considered

in (5.46) for k′ = k. From the proof of Lemma 5.10, we see that the sequence of operators
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1
pn−m+kAk,p, p ≥ p1, for k = k0, forms a Toeplitz operator with weak exponential decay with
respect to X . Let us estimate the first term of this asymptotic expansion.

Recall that the polynomials JE,0k,r were defined in (5.44). From (3.17), (5.35) and (5.44), we
obtain that

JE,0k,0 (Z,Z ′Y ) = (2π)k · k! · IdFy0 · κ
− 1

2
N (y0) ·

∑
β∈Nn−m
|β|=k

1

β!
· zβN ·

( ∂

∂zN

)�β
. (5.52)

From this, (3.7), (3.9) and (5.50), we deduce that

IY0 (ZY , Z
′
Y ) = (2π)k · k! · κ−1N (y0) · IdSymk(N1,0

y0
)∗ ⊗ IdFy0 . (5.53)

From the last statement of Theorem 3.5, we deduce (5.33), which finishes our proof.

In the proof of Lemma 5.9.b), we will need to express the extension operator in terms of the
orthogonal Bergman projector. For this, we need to invert the operators Ak,p. The following result
gives a sufficient condition for inverting Toeplitz operators with weak exponential decay.

Lemma 5.11 ( [17, Lemma 4.5]). Assume that a sequence of operators Gp, p ∈ N, forms a
Toeplitz operator with weak exponential decay with respect to a manifold Z in the notations from
Definition 3.3. Assume that for f := [Gp]0, and any y ∈ Y , the endomorphism f(y) is invertible
and f−1 ∈ C∞b (Y,End(ι∗F )). Then there is p1 ∈ N, such that for any p ≥ p1, the operators Gp are
invertible. Moreover, the sequence of operators G−1p , p ≥ p1, forms a Toeplitz operator with weak
exponential decay with respect to the same manifold Z and we have [(Gp)

−1]0 = f−1.

Proof of Lemma 5.9.b). Remark that by Lemma 5.9.a) and Lemma 5.11, for any k ∈ N, there is
p1 ∈ N, such that the operator Ak,p is invertible for any p ≥ p1. The main idea of our proof is to
use the following formula

1

pm−
k
2

Ek,p =
1

pn+
k
2

· (ResY ◦ ∇kBX,kY
p )∗ ◦

( 1

pn−m+k
Ak,p

)−1
, (5.54)

which follows from (4.2). On the level of Schwartz kernels, the identity (5.54) means

1

pm−
k
2

Ek,p(x, y) =

∫
y1∈Y

1

pn+
k
2

· (ResY ◦ ∇kBX,kY
p )∗(x, y1)·

·
( 1

pn−m+k
Ak,p

)−1
(y1, y)dvY (y1). (5.55)

From Proposition 2.6, Theorem 5.7, Lemma 5.11, (3.33) and (5.47), we deduce Theorem 5.1.a).
Now, let ε > 0 be the minimum of ε from Theorems 3.10 and 5.5 for k ≤ k0 − 1. We put

ε0 := ε
2
. Let y0 ∈ Y and y1, y2 ∈ BY

y0
(ε0). We decompose the integral in (5.55) into two parts: the

first one over BY
y0

(ε), and the second one is over its complement, which we denote by Q. Clearly,
for y3 ∈ Q, we get

dist(y1, y3) + dist(y3, y2) ≥ ε. (5.56)

Hence, from Proposition 2.6, Theorems 4.7, 5.1.b), 5.7 and (1.5), we see that the contribution
from the integration over Q is smaller than exp(−c√p(1 + dist(y1, y2))) for some constant c > 0.
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Consequently, only the integration over y1 ∈ BY
y0

(ε) is non-negligible. We use the notations intro-
duced before Theorem 3.10. We denote by IY

A−1
k,p,b

the polynomials associated to ( 1
pn−m+kAk,p)

−1

as in Theorem 3.5 and by JE,0k,a the polynomials introduced in (5.44). After the change of variables
Z 7→ √pZ, an estimate, similar to the one which bounded the integral over Q, Lemma 2.8, the
second part of Lemma 3.1, applied for n := m, (3.34) and (5.45), we see that (5.2) holds for

JEk,r(Z,Z
′
Y ) :=

∑
a+b=r

KEPn,m
[
JE,0k,a , I

Y
A−1
k,p,b

]
. (5.57)

From the corresponding statements about the parity of JE,0k,r , IY
A−1
k,p,r

from Theorem 3.5 and Lemma

5.10, and from the properties of KEPn,m from Lemma 3.1, we deduce that the parity of JEk,r coincides
with k + r. From Proposition 3.9 and (5.57), we deduce that

deg(JEk,r) ≤ max
{

deg(JE,0k,a ) + deg(IY
A−1
k,p,b

)
}
, (5.58)

where the maximum is taken over a + b = r. From Proposition 3.9, Lemma 5.10, (5.44), (5.58)
and the bound on the degree of JR,0k,a from Lemma 5.10, we deduce the bound on the degree of JEk,r
from Theorem 5.3.

Directly from (5.33), (5.52) and (5.57), we see that the formula (5.3) holds for JEk,0. Moreover,
under assumption (1.10), by Theorem 5.7, for i = 0, 1, we have

IY
A−1
k,p,i

=
1

(2π)k · k!
· JY |Yk,i , (5.59)

where J
Y |Y
k,i are the polynomials from Theorem 3.10, associated to X, Y := Y and F :=

Symk(N1,0)∗ ⊗ ι∗(F ). From this, (3.40), (3.41), (5.57), we conclude that

JEk,1(Z,Z
′
Y ) =

1

(2π)k · k!
· KEPn,m

[
JE,0k,1 , 1

]
. (5.60)

We deduce (5.4) from this, (3.23), (5.36) and (5.44).
The proof of the fact that JEk,r vanishes at least up to order k along R2m × R2m ⊂ R2n × R2m

proceeds along the same lines as the corresponding result from Lemma 5.10. In total, this finishes
the proof of Theorem 5.3 for k := k0.

Proof of Lemma 5.9.c). First of all, by Theorems 4.3, 4.4, there is p1 ∈ N, such that for any p ≥ p1,
we have

1

pn
B⊥,kp =

1

pm−
k
2

Ek,p ◦
1

pn−m+ k
2

(ResY ◦ ∇kBX,kY
p ). (5.61)

On the level of Schwartz kernels, the identity (5.61) basically means that

1

pn
B⊥,kp (x1, x2) =

∫
y∈Y

1

pm−
k
2

Ek,p(x1, y) · 1

pn−m+ k
2

(ResY ◦ ∇kBX,kY
p )(y, x2)dvY (y). (5.62)

Remark first that Lemma 5.9.b) says that Theorem 5.1.a) holds for k = k0. From this, Proposition
2.6 and Theorems 4.7, 5.1.b) for k ≤ k0−1, we see by (5.62) that Theorem 5.1.b) holds for k = k0.
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Remark now that Lemma 5.9.b) says that Theorem 5.3 holds for k = k0. From Theorem 5.3,
Lemma 5.10, (5.61) and the third part of Lemma 3.1, we see that the expansion (5.6) holds for J⊥k,r,
defined as follows

J⊥k,r(Z,Z
′) :=

∑
a+b=r

KERn,m
[
JEk,a, J

R,0
k,b

]
. (5.63)

From this (3.26), (3.28), (5.3) and (5.35) (resp. (5.4) and (5.36)), we deduce (5.7) (resp. (5.8)).
The parity statement about the polynomials J⊥k,r follows from Lemma 3.1 and the corresponding
statements for JEk,a and JR,0k,b , proved in Theorem 5.3 and Lemma 5.10. The vanishing up to order k
of the polynomials J⊥k,r follows from (3.26), (5.63) and the corresponding statements for JEk,a and
JR,0k,b , proved in Theorem 5.3 and Lemma 5.10. From Proposition 3.9 and (5.63), we deduce that

deg(J⊥k,r) ≤ max
{

deg(JEk,a) + deg(JR,0k,b )
}
, (5.64)

where the maximum is taken over a + b = r. From Lemma 5.10, (5.64) and the bound on the
degree of JR,0k,a (resp. JEk,a) from Lemma 5.10 (resp. Theorem 5.3), we deduce the needed bound
on the degree of J⊥k,r.

Proof of Theorems 5.1, 5.3, 5.5, 5.7. Follows directly from Lemma 5.9 by induction.

Proof of Theorem 1.3 . First of all, let us establish that for any k ∈ N, there are p1 ∈ N, C > 0,
such that if the assumption (1.10) holds, then for any p ≥ p1, we have∣∣∣∥∥Ek,p

∥∥− 1

p
n−m+k

2

· 1√
k! · (2π)k

∣∣∣ ≤ C

p
n−m+k+2

2

,∣∣∣∥∥Resk,p
∥∥− pn−m+k

2 ·
√
k! · (2π)k

∣∣∣ ≤ Cp
n−m+k−2

2 .

(5.65)

Indeed, remark that from Proposition 2.7 and Theorem 5.7, for any k ∈ N, there are p1 ∈ N,
C > 0, such that for any p ≥ p1, we have∥∥∥ 1

pn−m+k
Ak,p − k! · (2π)k ·BY

k,p

∥∥∥ ≤ C

p
. (5.66)

In particular, we conclude that∣∣∣∥∥Ak,p∥∥− pn−m+k · k! · (2π)k
∣∣∣ ≤ Cpn−m+k−1. (5.67)

Using Lemma 5.11 and similar arguments, we see that∣∣∣∥∥A−1k,p∥∥− 1

pn−m+k
· 1

k! · (2π)k

∣∣∣ ≤ C

pn−m+k+1
. (5.68)

From Theorems 4.3 and 4.4, there is p1 ∈ N, such that for any p ≥ p1, we have

Resk,p ◦ Ek,p = BY
k,p. (5.69)

From this and (4.2), there is p1 ∈ N, such that for any p ≥ p1, we have the following identities

(Ek,p)
∗ ◦ Ek,p =

(
(Ak,p)

∗)−1, Resk,p ◦ (Resk,p)
∗ = Ak,p. (5.70)
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Clearly, we have ‖(Ek,p)
∗ ◦ Ek,p‖ = ‖Ek,p‖2 and ‖Resk,p ◦ (Resk,p)

∗‖ = ‖Resk,p‖2. The bounds
(5.65) now follow from this observation, (5.67), (5.68) and (5.70).

Now, from (5.65) and (5.69), we conclude that there are p1 ∈ N, C > 0, such that for any
k ∈ N, p ≥ p1, g ∈ H0

(2)(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F )), g 6= 0, we have∣∣∣∣‖Ek,p(g)‖L2(X,Lp⊗F )

‖g‖k,L2(Y,Lp⊗F )

− 1

p
n−m+k

2

· 1√
k! · (2π)k

∣∣∣∣ ≤ C

p
n−m+k+2

2

. (5.71)

Now, let us fix f ∈ H0
(2)(X,L

p⊗F ), and denote by [f ] the element it represents in the quotient
space H0

(2)(X,L
p ⊗ F )/H0

(2)(X,L
p ⊗ F ⊗ J k+1

Y ). Directly from the definition, we have

∥∥[f ]
∥∥2
L2(X,Lp⊗F )

=
k∑
l=0

‖B⊥l,pf‖2L2(X,Lp⊗F ). (5.72)

We let Jetk,p(f) = (g0, . . . , gk), where gi ∈ H0
(2)(Y, Symi(N1,0)∗ ⊗ ι∗(Lp ⊗ F )). From the

definition of the map Jetk,p from (1.16) and the characterization of gi from (1.17), we see that

gi = Resi,p(B
⊥
i,pf). (5.73)

We conclude from (5.65) and (5.73) that∥∥gi∥∥k,L2(Y,Lp⊗F )
=
(
p
n−m+k

2 ·
√
k! · (2π)k +O(p

n−m+k−2
2 )

)
·
∥∥B⊥i,pf∥∥L2(X,Lp⊗F )

. (5.74)

The result now follows from (5.71), (5.72), (5.74) and the definition of the scalar product 〈·, ·〉Jetk,p
from (1.19).

5.3 Higher order peak sections as a special case of extension theorem
The main goal of this section is to illustrate Theorems 5.1, 5.3 on a simple example when the
submanifold corresponds to a fixed point. We denote the extension operator in this case by E

{x}
k,p ,

i.e.
E
{x}
k,p : SymkT 1,0X∗x ⊗ (Lp ⊗ F )x → H0

(2)(X,L
p ⊗ F ⊗ J k

x ). (5.75)

Clearly, for any v ∈ Symk(N1,0
x )∗⊗ (Lp⊗F )x, the section sx,vk,p := E

{x}
k,p (v) minimizes the L2-norm

among all sections from H0
(2)(X,L

p ⊗ F ⊗ J k
x ), having k-th jet equal to v.

The sections sx,vk,p were defined in complex geometry by Tian [38]. For k = 0, they bear the
name “peak sections”. Due to this reason, for k ≥ 1, we call sx,vk,p the higher order peak sections.

Theorem 5.12. For any k ∈ N, there are c > 0, p1 ∈ N, such that for any x, y ∈ X , p ∈ N,
p ≥ p1, v ∈ Symk(N1,0

x )∗ ⊗ (Lp ⊗ F )x, we have∣∣sx,vk,p(y)
∣∣
C r
≤ C · |v| · p

r−k
2 · exp(−c√pdist(x, y)). (5.76)

Moreover, for any k ∈ N, there are ε > 0, c, C > 0, such that for any x ∈ X , for any Z ∈ R2n,
|Z| < ε, p ∈ N, p ≥ p1, v ∈ Symk(N1,0

x )∗ ⊗ (Lp ⊗ F )x, we have∣∣∣sx,vk,p(φXx (Z))− (v · Z⊗k) · exp
(
− π

2
p|Z|2

)∣∣∣
C r
≤ C · |v| · p

r
2
−1 · |Z|k · exp(−c√p|Z|), (5.77)

where the C r-norm is taken with respect to x, Z.
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Remark 5.13. For r ≤ 2, similar results were obtained by Tian [38, Lemma 1.2]. For k = 0, this
statement follows directly from Dai-Liu-Ma [10].

Proof. The first statement follows directly by applying Theorem 5.1.a) for Y := {y0}. Remark
that for Y as above, the second fundamental form vanishes, so the second term of the asymptotic
expansion from Theorem 5.3 vanishes according to (5.4). The second statement of Theorem 5.12
then follows from this remark and the application of Theorem 5.3 for Y := {y0} and r := 1.
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