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The asymptotics of the optimal holomorphic

extensions of holomorphic jets along submanifolds

Siarhei Finski

Abstract. We study the asymptotics of the L2-optimal holomorphic extensions of holomorphic

jets associated with high tensor powers of a positive line bundle along submanifolds.

More precisely, for a fixed complex submanifold in a complex manifold, we consider the oper-

ator which for a given holomorphic jet along the submanifold of a positive line bundle associates

the L2-optimal holomorphic extension of it to the ambient manifold. When the tensor power of

the line bundle tends to infinity, we give an explicit asymptotic formula for this extension opera-

tor. This is done by a careful study of the Schwartz kernels of the extension operator and related

Bergman projectors. It extends our previous results, done for holomorphic sections instead of jets.

As an application, we prove the asymptotic isometry between two natural norms on the space

of holomorphic jets: one induced from the ambient manifold and another from the submanifold.
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1 Introduction

The main goal of this paper is to study the asymptotics of the L2-optimal holomorphic extensions

of holomorphic jets associated to high tensor powers of a positive line bundle along a submanifold.

More precisely, we fix two (not necessarily compact) complex manifolds X, Y , of dimensions

n and m respectively. We fix also a complex embedding ι : Y → X , a positive line bundle (L, hL)
over X and an arbitrary Hermitian vector bundle (F, hF ) over X . In particular, we assume that for

the curvature RL of the Chern connection on (L, hL), the closed real (1, 1)-differential form

ω :=

√
−1

2π
RL (1.1)

is positive. We denote by gTX the Riemannian metric on X induced by ω as follows

gTX(·, ·) := ω(·, J ·), (1.2)

where J : TX → TX is the complex structure on X . We denote by gTY the induced metric on Y .

We assume throughout the whole article that the triple (X, Y, gTX), and the Hermitian vector

bundles (L, hL), (F, hF ), are of bounded geometry in the sense of Definitions 2.4, 2.7.

This means that we assume uniform lower bounds rX , rY > 0 on the injectivity radii of X , Y ,

the existence of the geodesic tubular neighborhood of Y of uniform size r⊥ > 0 in X , and some

uniform bounds on related curvatures and the second fundamental form of the embedding.

Now, we fix some positive (with respect to the orientation given by the complex structure)

volume forms dvX , dvY on X and Y . For smooth sections f, f ′ of Lp ⊗ F , p ∈ N, over X , we

define the L2-scalar product using the pointwise scalar product 〈·, ·〉h, induced by hL and hF , by

〈f, f ′〉L2(X,Lp⊗F ) :=

∫

X

〈f(x), f ′(x)〉hdvX(x). (1.3)

We denote by H0
(2)(X,L

p ⊗ F ) the vector space of L2-holomorphic sections of Lp ⊗ F over X .

Given a continuous smoothing linear operator K : L2(X,Lp ⊗ F ) → L2(X,Lp ⊗ F ), the

Schwartz kernel theorem guarantees the existence of the Schwartz kernel, K(x1, x2) ∈ (Lp ⊗
F )x1 ⊗ (Lp ⊗ F )∗x2; x1, x2 ∈ X , evaluated with respect to dvX , i.e.

(Ks)(x1) =

∫

X

K(x1, x2) · s(x2)dvX(x2), s ∈ L2(X,Lp ⊗ F ). (1.4)

Similarly, we define the Schwartz kernels K1(y, x), K2(x, y), x ∈ X , y ∈ Y , for smoothing

operators K1 : L
2(X,Lp ⊗ F ) → L2(Y, ι∗(Lp ⊗ F )), K2 : L

2(Y, ι∗(Lp ⊗ F )) → L2(X,Lp ⊗ F )
with respect to the volume forms dvX and dvY respectively.

We denote below by TX and TY the (real) tangent bundles of X , Y . We identify the holomor-

phic parts T 1,0X , T 1,0Y of the corresponding complexifications with the associated holomorphic

tangent bundles. We denote by gN the metric on the normal bundle N of Y in X induced by gTX .

We introduce similarly the complex vector bundle N1,0 and endow it with the holomorphic struc-

ture given by T 1,0X/T 1,0Y . From gTX , we induce the Hermitian structure on N1,0 and denote it

by an abuse of notation by gN . Let PN : TX|Y → N , P Y : TX|Y → TY , be the orthogonal

projections induced by gTX . Clearly, ∇N := PN∇TX |Y defines a connection on N .
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We induce the Hermitian product on Symk(N1,0)∗ as explained in (1.24). Then, similarly to

(1.3), using dvY , we define the L2-product 〈·, ·〉k,L2(Y,Lp⊗F ) onH0
(2)(Y, Sym

k(N1,0)∗⊗ι∗(Lp⊗F )).
We denote by JY the ideal sheaf of holomorphic germs on X , which vanish on Y . For k ∈ N,

we endow the space H0
(2)(X,L

p ⊗ F ⊗ J k
Y ) with the L2-metric induced by the natural inclusion

H0
(2)(X,L

p ⊗ F ⊗J k
Y ) →֒ H0

(2)(X,L
p ⊗ F ).

We assume that for the Riemannian volume forms dvgTX , dvgTY of (X, gTX), (Y, gTY ), for any

k ∈ N, there is Ck > 0, such that over X and Y , the following bounds hold

∥

∥

∥

dvgTX

dvX

∥

∥

∥

C k(X)
,
∥

∥

∥

dvX
dvgTX

∥

∥

∥

C k(X)
,
∥

∥

∥

dvgTY

dvY

∥

∥

∥

C k(Y )
,
∥

∥

∥

dvY
dvgTY

∥

∥

∥

C k(Y )
≤ Ck. (1.5)

From Weierstrass division theorem, cf. (4.7), we see that for any k ∈ N, a k-jet associated to

a section from H0
(2)(X,L

p ⊗ F ⊗ J k
Y ) is holomorphic. Moreover, in Theorem 4.3, we prove that

for any k ∈ N, there is p0 ∈ N, depending only on k and the triple (X, Y, gTX), such that for any

p ≥ p0, the k-jets have bounded L2-norm. In other words, we prove that the operator

Resk,p : H
0
(2)(X,L

p ⊗ F ⊗ J k
Y ) → H0

(2)(Y, Sym
k(N1,0)∗ ⊗ ι∗(Lp ⊗ F )), (1.6)

given by the following identity

Resk,p(f) = (∇kf)|Y , (1.7)

is well-defined, where ∇ is some connection on Lp⊗F (due to the vanishing condition of f on Y ,

the definition doesn’t depend on the choice of the connection).

By extending Ohsawa-Takegoshi theorem for holomorphic jets, in Theorem 4.4, we prove that

for any k ∈ N, there is p0 ∈ N, such that for any p ≥ p0, the operator (1.6) is surjective. Then,

for the Bergman projector BY
k,p, given by the orthogonal projection from the space of L2-sections

L2(Y, Symk(N1,0)∗⊗ ι∗(Lp⊗F )) to H0
(2)(Y, Sym

k(N1,0)∗⊗ ι∗(Lp⊗F )), we define the extension

operator

Ek,p : L
2(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F )) → H0

(2)(X,L
p ⊗ F ⊗ J k

Y ), (1.8)

by putting Ek,p(g) = f , where f satisfies Resk,p(f) = BY
k,pg and has the minimal L2-norm among

the sections fromH0
(2)(X,L

p⊗F⊗J k
Y ) with this property (sinceH0

(2)(X,L
p⊗F⊗J k+1

Y ) is closed

inside of H0
(2)(X,L

p ⊗ F ⊗ J k
Y ), such f is unique). Ohsawa-Takegoshi extension theorem for

holomorphic jets in our setting means precisely that the operator Ek,p is well-defined and bounded

as long as p is big enough. Study of such operator is motivated by the previous works of Popovici

[32], Demailly [14] and Cao-Demailly-Matsumura [6] on the extension of holomorphic jets in the

classical setting (i.e. p = 0), and the works of Ohsawa-Takegoshi [30], [29], Manivel [27] and

Demailly [12, §13], on the extensions of holomorphic sections (again for p = 0).

One of the main goals of this article is to find an explicit asymptotic expansion of Ek,p, as

p→ ∞. To describe our results precisely, we need to fix some further notation.

For y ∈ Y , ZN ∈ Ny, let R ∋ t 7→ expXy (tZN ) ∈ X be the geodesic in X in direction

ZN , where we identified Ny as an orthogonal complement of TyY in TyX . Bounded geometry

condition means, in particular, that this map induces a diffeomorphism of r⊥-neighborhood of

the zero section in N with a tubular neighborhood U of Y in X . From now on, we use this

identification implicitly. Of course, (y, 0), y ∈ Y , then corresponds to Y .

We denote by π : U → Y the natural projection (y, ZN) 7→ y. Over U , we identify L, F to

π∗(L|Y ), π∗(F |Y ) by the parallel transport with respect to the respective Chern connections along
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the geodesic [0, 1] ∋ t 7→ (y, tZN) ∈ X , |ZN | < r⊥. We also define a function κN as follows

dvX = κNdvY ∧ dvN , (1.9)

where dvN is the relative Riemannian volume form on (N, gN). Of course, we have κN |Y = 1 if

dvX = dvgTX , dvY = dvgTY . (1.10)

We fix a smooth function ρ : R+ → [0, 1], satisfying

ρ(x) =

{

1, for x < 1
4
,

0, for x > 1
2
.

(1.11)

We fix g ∈ C ∞(Y, SymkN∗ ⊗ ι∗(Lp ⊗ F )), k ∈ N, and define using the above isomorphisms over

U the section {g} ∈ C ∞(X,Lp ⊗ F ) as follows

{g}(y, ZN) := ρ
( |ZN |
r⊥

)

· g(y) · Z⊗k
N , (1.12)

where the norm |ZN |, is taken with respect to gN . Away from U , we extend {g} by zero.

We define the operator E0
k,p : L

2(Y, Symk(N1,0)∗ ⊗ ι∗(Lp⊗F )) → L2(X,Lp⊗F ) as follows.

For g ∈ L2(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F )), we let (E0
k,pg)(x) = 0, x /∈ U , and in U , we put

(E0
k,pg)(y, ZN) = {BY

k,pg}(y, ZN) exp
(

− p
π

2
|ZN |2

)

. (1.13)

where the norm |ZN |, ZN ∈ N , is taken with respect to gN . Now, for g ∈ H0
(2)(Y, Sym

k(N1,0)∗ ⊗
ι∗(Lp ⊗ F )), the section E0

k,pg satisfies (∇kE0
k,pg)|Y = g, but E0

k,pg is not holomorphic over X ,

unless g = 0. Nevertheless, as we shall see, E0
k,pg can be used to approximate very well the

holomorphic section Ek,pg. More precisely, we have the following result.

Theorem 1.1. For any k ∈ N, there are C > 0, p1 ∈ N∗, such that for any p ≥ p1, we have

∥

∥Ek,p − E0
k,p

∥

∥ ≤ C

p
n−m+k+1

2

. (1.14)

where ‖ · ‖ is the operator norm. Also, as p→ ∞, we have

∥

∥E0
k,p

∥

∥ ∼ 1

p
n−m+k

2

· sup
y∈Y

κ
1
2
N(y) ·

1
√

k! · (2π)k
. (1.15)

Moreover, under assumption (1.10), in (1.14), one can replace p−
n−m+k+1

2 by an asymptotically

better estimate if and only if Y is a totally geodesic submanifold of (X, gTX), i.e. the second

fundamental form, see (2.2), vanishes.

Remark 1.2. a) For k = 0, this result was proved in [16, Theorem 1.1]. The proof we present here

is different even for k = 0. It is still based a lot on the ideas and the techniques from [16] and [17].

b) The boundness of κN follows from the bounded geometry condition, see [16, Corollary

2.10]. In particular, the right-hand side of (1.15) is finite.

c) Our result refines a theorem of Randriambololona [33, Théorème 3.1.10], stating in the

compact case that for any ǫ > 0, k ∈ N, there is p1 ∈ N∗, such that
∥

∥Ek,p
∥

∥ ≤ exp(ǫp) for p ≥ p1.
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Let us now describe our second result, establishing a relation between two natural metrics on

the space of holomorphic jets. For this, define the map

Jetk,p : H
0
(2)(X,L

p ⊗ F )/H0
(2)(X,L

p ⊗ F ⊗J k+1
Y )

→ ⊕k
l=0H

0
(2)(Y, Sym

l(N1,0)∗ ⊗ ι∗(Lp ⊗ F )), (1.16)

as follows. We let Jetk,p(f) = (g0, . . . , gk) if and only if for any r ∈ N, r ≤ k, the following holds

f −
r

∑

l=0

El,pgl ∈ H0
(2)(X,L

p ⊗ F ⊗J r+1
Y ). (1.17)

Alternatively, we let g0 = f |Y , and inductively define

gr := Resr,p

(

f −
r−1
∑

l=0

El,pgl

)

. (1.18)

As a direct consequence of the Ohsawa-Takegoshi extension theorem for holomorphic jets,

cf. Theorem 4.4, we obtain that for any k ∈ N, there is p1 ∈ N, such that the map Jetk,p is an

isomorphism for p ≥ p1. As we explain next, this statement can be refined in the metric setting.

More precisely, consider the scalar product 〈·, ·〉Jetk,p on the space ⊕k
l=0H

0
(2)(Y, Sym

l(N1,0)∗ ⊗
ι∗(Lp ⊗ F )), defined as follows

〈·, ·〉Jetk,p :=
k

∑

r=0

1

r! · (2π)r
1

pn−m+r
· 〈·, ·〉r,L2(Y,Lp⊗F ) (1.19)

Let us now consider the scalar product onH0
(2)(X,L

p⊗F )/H0
(2)(X,L

p⊗F⊗J k+1
Y ) induced by the

L2-scalar product onH0
(2)(X,L

p⊗F ), which we denote by an abuse of notation by 〈·, ·〉L2(X,Lp⊗F ).

Theorem 1.3. Under the assumption (1.10), the map Jetk,p is an asymptotic isometry with respect

to the above scalar products. More precisely, for the norms ‖ · ‖L2(X,Lp⊗F ), ‖ · ‖Jetk,p associated to

the scalar products defined above, there are C > 0, p1 ∈ N, such that for any p ≥ p1, we have

1− C

p
≤

‖ · ‖Jetk,p
‖ · ‖L2(X,Lp⊗F )

≤ 1 +
C

p
. (1.20)

Remark 1.4. a) An analogue of Theorem 1.3 in the setting of geometric quantization was estab-

lished by Ma-Zhang [26, Theorem 0.10]. Authors proved that there is a similar asymptotic relation

between theL2-metric on the space of holomorphic sections invariant under the Hamiltonian action

of a compact connected Lie group and the L2-metric on the corresponding symplectic reduction.

b) For k = 0, a refinement of Theorem 1.3 was established in [17, Theorem 1.8].

The proofs of Theorems 1.1, 1.3 are done in Section 5. The core of those results lies in sev-

eral technical statements. Most relevant are Theorem 5.1.a), where we establish the exponential

bound for the Schwartz kernel of the extension operator and Theorems 5.3, where we establish

the asymptotic expansion of this Schwartz kernel. In Theorems 5.1.b) and 5.5, we also prove the

corresponding statements for the related Bergman projector.
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Those more precise results seem to be new even when Y = {x}, where x ∈ X is a fixed point.

In this case, they give some results on the asymptotic expansion of higher order peak sections,

previously studied by Tian [38]. See Section 5.3 for more details.

As the last application of our techniques, we prove the asymptotic expansion of the Schwartz

kernel of the logarithmic Bergman kernel of order k ∈ N. More precisely, let BX,kY
p be the orthog-

onal projection from L2(X,Lp⊗F ) to H0
(2)(X,L

p⊗F ⊗J k
Y ). We call it the logarithmic Bergman

kernel of order k. The following theorem shows that away from Y , BX,kY
p is asymptotically close

to BX
p , and in a tubular neighborhood around Y , it can be expressed as a product of the Bergman

kernel BY
p and the logarithmic Bergman kernel of the model space, as described in Section 3.1.

Theorem 1.5. There are c > 0, p1 ∈ N∗, such that for any k, r, l ∈ N, there is C > 0, such that

for any p ≥ p1, x1, x2 ∈ X , the following estimate holds

∣

∣

∣

(

BX,kY
p − BX

p

)

(x1, x2)
∣

∣

∣

C r

≤ Cpn+
r
2 exp

(

− c
√
p ·

(

dist(x1, x2) + dist(x2, Y ) + dist(x1, Y )
)

)

, (1.21)

where the pointwise C r-norm at a point (x1, x2) ∈ X × X is the sum of the norms induced

by hL, hF and gTX , evaluated at (x1, x2), of the derivatives up to order r with respect to the

connection induced by the Chern connections on L, F and the Levi-Civita connection on TX .

Moreover, in the tubular neighborhood around Y , under the identification as described before

(1.9), the following holds. There are c, ǫ, C,Q > 0, p1 ∈ N∗, such that for any y1, y2 ∈ Y ,

Z1, Z2 ∈ R
2(n−m), |Z1|, |Z2| < ǫ, p ≥ p1, we have

∣

∣

∣

∣

BX,kY
p

(

(y1, Z1), (y2, Z2)
)

− pn−m · BY
p (y1, y2) · κ

− 1
2

N (y1) · κ
− 1

2
N (y2)·

· exp
(

− π

2

√
p
(

|Z1|2 + |Z2|2
)

)

·
∞
∑

r=k+1

πr · pr ·
∑

β∈Nn−m

|β|=r

(z1z2)
β

β!

∣

∣

∣

∣

C r

≤ Cpn+k+
r−1
2 · |Z1Z2|k·

·
(

1 +
√
p|Z1|+

√
p|Z2|

)Q · exp
(

− c
√
p ·

(

distX(y1, y2) + |Z1 − Z2|
)

)

, (1.22)

where the C r-norm is taken with respect to y1, y2, Z1, Z2, and we used the multiindex notation as

we explain in (1.23).

Remark 1.6. The study of the asymptotic expansion of BX,kY
p has recently received considerable

attention for k = [ǫp], where ǫ > 0 is some small constant. See for example Ross-Thomas [36],

Pokorny-Singer [31], Ross-Singer [35], Zelditch-Zhou [41], Coman-Marinescu [9]. We believe

that our methods can be applied in this asymptotic regime as well.

Let us finally say few words about the tools we use in this article. The proofs of Theorems

1.1, 1.3 rely on the exponential estimate for the Bergman kernel, cf. Ma-Marinescu [25], on

the asymptotic expansion of the Bergman kernel due to Dai-Liu-Ma [10], and on some technical

results about the algebras of operators with Taylor-type expansion of the Schwartz kernel, which

are inspired by the work of Ma-Marinescu [24], cf. [22, §7].

As an important intermediate result, we establish the asymptotic version of Ohsawa-Takegoshi

extension theorem for holomorphic jets. For this, we follow our strategy from [16], which treats
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holomorphic sections instead of jets, and which was itself inspired by Bismut-Lebeau [2] and

Demailly [11]. Using this result, we prove the existence of a sequence of operators, which we

call multiplicative defect, relating the extension operator and the adjoint of the restriction operator.

We establish then that this sequence of operators forms a Toeplitz operator with weak exponential

decay, which is a notion introduced in [17] (as a refinement of the notion of Toeplitz operators

in the sense of [22, §7]). The asymptotic criteria for those operators, established in [17], relying

on the analogous result of Ma-Marinescu [23, Theorem 4.9] for compact manifolds and Toeplitz

operators in the sense of [22, §7], plays a foundational role in our approach.

Differently from the approach from [16], the main results of this article are obtained through

the use of the multiplicative defect. We also use the induction on the order of jets, k ∈ N.

The general strategy for dealing with semi-classical limits here is inspired by Bismut [1] and

Bismut-Vasserot [3].

To conclude, we mention that recently there has been a surge of interest in Ohsawa-Takegoshi

extension theorem for holomorphic jets, see for example Hosono [20], McNeal-Varolin [28], Rao-

Zhang [34]. See also Cao-Păun [7] for an application of a version of extension theorem for jets to

a conjecture of deformational invariance of plurigenera for Kähler families.

This article is organized as follows. In Section 2, we recall the bounded geometry assumptions,

and the results about the convergence of the exponential integrals on such manifolds. In Section

3, we recall the kernel calculus which studies the composition rules of basic operators on the

model vector space. We recall a notion of Toeplitz operators with weak exponential decay and

an asymptotic criteria for those operators. In Section 4, we prove the existence of a sequence of

operators, which we call multiplicative defect. Finally, in Section 5, by the use of the above results,

we prove the exponential bounds for the extension operator, orthogonal Bergman kernel of order k,

and study the asymptotic expansion of their Schwartz kernels. As a consequence of those studies,

we establish the main results of this article.

Notations. For α = (α1, . . . , αk) ∈ Nk, B = (B1, . . . , Bk) ∈ Ck, we write by

|α| =
k

∑

i=1

αi, α! =

k
∏

i=1

αi!, Bα =

k
∏

i=1

Bαi

i . (1.23)

Let (V, hV ) be a Hermitian (or Euclidean) vector space. We endow SymkV with a Hermitian

metric induced by the induced metric on V ⊗k and the inclusion SymkV → V ⊗k, defined as

v1 ⊙ . . .⊙ vk 7→
1

k!

∑

vσ(1) ⊗ . . .⊗ vσ(k), (1.24)

where the sum runs over all permutations σ on k indices. Clearly, if v1, · · · , vl form an orthonormal

basis of V , then

√

k!
α!
·v⊙α, α ∈ Nk, |α| = k, forms an orthonormal basis of SymkV . The inclusion

(1.24) gives also a natural isomorphism SymkV ∗ → (SymkV )∗. For a fixed basis v1, . . . , vl of V
and the dual basis u1, . . . , ul of V ∗, we have the following relation

u⊙β(v⊙α) =

{

0, if α 6= β,
α!
k!
, otherwise.

(1.25)

For a (V, hV ) be a Hermitian vector space with a complex structure J , we denote by V 1,0,

V 0,1 the holomorphic and antiholomorphic components of V ⊗ C. We endow V 1,0 and V 0,1 with
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the natural metrics, verifying ‖v ±
√
−1Jv‖ =

√
2‖v‖. In this way, when V = C

l is endowed

with the standard Hermitian product and with the usual linear (complex) coordinates zi, we have

‖dzi‖ =
√
2 and ‖ ∂

∂zi
‖ = 1√

2
.

We use notations X, Y for complex manifolds and M,H for real manifolds. The complex

(resp. real) dimensions of X, Y (resp. M,H) are denoted here by n,m. An operator ι always

means an embedding ι : Y → X (resp. ι : H → M). We denote by ResY (resp. ResH) the

restriction operator from X to Y (resp. M to H).

For a Riemannian manifold (M, gTM), we denote the Levi-Civita connection by ∇TM , by

RTM the curvature of it, and by dvgTM the Riemannian volume form. For a closed subset W ⊂M ,

r ≥ 0, let BM
W (r) be the ball of radius r around W . For a Hermitian vector bundle (E, hE), note

Br(E) := {Z ∈ E : |Z|hE < r}.

For a fixed volume form dvM on M , we denote by L2(dvM , h
E) the space of L2-sections of E

with respect to dvM and hE . When dvM = dvgTM , we also use the notation L2(gTM , hE). When

there is no confusion about the data, we also use the simplified notation L2(M,E) or L2(M).
For n ∈ N∗, we denote by dvCn the standard volume form on Cn. We view Cm (resp. Rm)

embedded in Cn (resp. Rn) by the first m coordinates. For Z ∈ Rk, we denote by Zl, l =
1, . . . , k, the coordinates of Z. If Z ∈ R2n, we denote by zi, i = 1, . . . , n, the induced complex

coordinates zi = Z2i−1 +
√
−1Z2i. We frequently use the decomposition Z = (ZY , ZN), where

ZY = (Z1, . . . , Z2m) and ZN = (Z2m+1, . . . , Z2n). For a fixed frame (e1, . . . , e2n) in TxX , x ∈ X ,

(resp. y ∈ Y ) we implicitly identify Z (resp. ZY , ZN ) to an element in TxX (resp. TyY , Ny) by

Z =
2n
∑

i=1

Ziei, ZY =
2m
∑

i=1

Ziei, ZN =
2n
∑

i=2m+1

Ziei. (1.26)

If the frame ei satisfies the condition

Je2i−1 = e2i, (1.27)

we denote ∂
∂zi

:= 1
2
(e2i−1 −

√
−1e2i),

∂
∂zi

:= 1
2
(e2i−1 +

√
−1e2i), and identify z, z to vectors in

TxX ⊗R C as follows

z =
n

∑

i=1

zi ·
∂

∂zi
, z =

n
∑

i=1

zi ·
∂

∂zi
. (1.28)

Clearly, in this identification, Z = z + z. We define zY , zY ∈ TyY ⊗R C, zN , zN ∈ Ny ⊗R C in a

similar way.

2 Second fundamental form and bounded geometry

The main goal of this section is to recall the basic facts about the geometry of manifolds of bounded

geometry and the second fundamental form. More precisely, in Section 2.1, we recall the definition

and various properties satisfied by the second fundamental form. We also recall the definition of

manifolds (resp. pairs of manifolds, vector bundles) of bounded geometry. In Section 2.2, we recall

the results about the convergence of exponential integrals on manifolds of bounded geometry.

2.1 The second fundamental form and bounded geometry assumption

Here we recall some basic facts about the second fundamental form and its relation with bounded

geometry assumptions. Let H be an embedded submanifold of a Riemannian manifold (M, gTM),
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gTH := gTM |H . We identify the normal bundle NM |H of H in M to an orthogonal complement of

TH in TM as

TM |H → TH ⊕NM |H . (2.1)

We denote by gN
M|H

the metric onNM |H induced by gTM . We denote by P
M |H
N : TM |H → NM |H ,

P
M |H
H : TM |H → TH , the projections induced by (2.1). Clearly, ∇NM|H

:= P
M |H
N ∇TM |H

defines a connection on NM |H . Recall that the definition of the second fundamental form A ∈
C ∞(H, T ∗H ⊗ End(TM |H)) is given by

A := ∇TM |H −∇TH ⊕∇NM|H

. (2.2)

Recall that the mean curvature νM |H ∈ C ∞(H,NM |H) of ι is defined as follows

νM |H :=
1

m

m
∑

i=1

A(ei)ei, (2.3)

where the sum runs over an orthonormal basis of (TH, gTH).

Proposition 2.1 (cf. [17, Proposition 2.3]). The second fundamental form satisfies the following

properties.

1. It takes values in skew-symmetric endomorphisms of TM |H , interchanging TH and NM |H .

2. For any U, V ∈ TH , we have A(U)V = A(V )U .

Assume, moreover, that (M, gTM) is Kähler. Then the following holds.

3. A commutes with the action of the complex structure.

4. For any U ∈ TH , V ∈ TM , U = u+ u, V = v + v, u, v ∈ T 1,0M , we have

A(U)v = A(u)v, A(U)v = A(u)v, if V ∈ NM |H ,

A(U)v = A(u)v, A(U)v = A(u)v, if V ∈ TH.
(2.4)

5. We have νM |H = 0.

Let us now recall the definitions of manifolds (resp. pairs of manifolds, vector bundles) of

bounded geometry. For more detailed overview of this part, refer to [15], [37], [18], cf. also [16].

Now, for a Hermitian vector bundle (E, hE) with a fixed connection ∇E over M , we denote

C
∞
b (M,E) :=

{

f ∈ C
∞(M,E) : for any k ∈ N, there is C > 0, so that |∇kf | ≤ C

}

, (2.5)

where ∇ is the connection induced by ∇E and the Levi-Civita connection on TM , and | · | is the

norm induced by the metrics gTM , hE . When M is complex and E is holomorphic, we implicitly

take ∇E to be the associated Chern connection.

Definition 2.2. We say that a Riemannian manifold (M, gTM) is of bounded geometry if the fol-

lowing two conditions are satisfied.

(i) The injectivity radius of (M, gTM) is bounded below by a positive constant rM .

(ii) For the Riemann curvature tensorRTM ofM , we haveRTM ∈ C ∞
b (M,Λ2T ∗M⊗End(TM)).
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Remark 2.3. By Hopf-Rinow theorem, the condition (i) implies that (M, gTM) is complete.

Definition 2.4. We say that the triple (M,H, gTM) of a Riemannian manifold (M, gTM) and a

submanifold H is of bounded geometry if the following conditions are fulfilled.

(i) The manifold (M, gTM) is of bounded geometry.

(ii) The injectivity radius of (H, gTH) is bounded below by a positive constant rH .

(iii) There is a collar around H (a tubular neighborhood of fixed radius), i.e. there is r⊥ > 0
such that for any x, y ∈ H , the normal geodesic balls B⊥

r⊥
(x), B⊥

r⊥
(y), obtained by the application

of the exponential mapping to vectors, orthogonal to H , of norm bounded by r⊥, are disjoint.

(iv) The second fundamental form, A, satisfies A ∈ C ∞
b (H, T ∗M |H ⊗ End(TM |H)).

We will now introduce a local coordinate system in M , which is particularly well-adapted

to the study of triples of bounded geometry. We fix a point y0 ∈ H and an orthonormal frame

(e1, . . . , em) (resp. (em+1, . . . , en)) in (Ty0H, g
TH
y0

) (resp. in (N
M |H
y0 , gN

M|H

y0
)). For Z = (ZH, ZN),

ZH ∈ Rm, ZN ∈ Rn−m, ZH = (Z1, . . . , Zm), ZN = (Zm+1, . . . , Zn), |ZH | ≤ rH , |ZN | ≤ r⊥, we

define a coordinate system ψ
M |H
y0 : BRm

0 (rH)×BRn−m

0 (r⊥) → M by

ψM |H
y0

(ZH , ZN) := expMexpH
y0

(ZH )(ZN(ZH)), (2.6)

where ZN(ZH) is the parallel transport of ZN ∈ N
M |H
y0 along expHy0(tZH), t = [0, 1], with respect

to the connection ∇NM|H
on NM |H . The coordinates ψ

M |H
y0 are called the Fermi coordinates at y0.

In the special case when Y = X and x0 := y0, those coordinates correspond to the exponential

coordinates φXx0 : R
2n → X , x0 ∈ X , defined as follows

φXx0(Z) := expXx0(Z). (2.7)

The importance of Fermi coordinates from the following proposition.

Proposition 2.5 ( [37, Lemma 3.9], [18, Theorem 4.9]). For any triple (M,H, gTM) of bounded

geometry, for any r0 > 0, there is Dk > 0, such that for any y0 ∈ H , l = 0, . . . , k, we have

‖gij‖C l(BRn

0 (r0)) ≤ Dk, ‖gij‖C l(BRn

0 (r0)) ≤ Dk. (2.8)

where gij , i, j = 1, . . . , n, are the coefficients of the metric tensor ψ∗
y0
gTM , and gij are the coeffi-

cients of the inverse matrix.

Remark 2.6. a) In particular, for a triple of bounded geometry (M,H, gTM), the Riemannian man-

ifold (H, gTH) has bounded geometry.

b) Clearly, this result along with the assumption (1.5) imply that in the notations of (1.9), we

have κN ∈ C ∞
b (U).

c) By taking Y = {p}, p ∈M , we see that the analogue of Proposition 2.5 holds for manifolds

of bounded geometry and exponential coordinates φMx0 , introduced in (2.7), accordingly to [15,

Theorem A].

Definition 2.7. Let (E,∇E, hE) be a Hermitian vector bundle with a fixed Hermitian connection

over a manifold (M, gTM) of bounded geometry. We say that (E,∇E, hE) is of bounded geometry

if RE ∈ C ∞
b (M,Λ2T ∗M ⊗ End(E)).

If (E, hE) is a Hermitian vector bundle over a complex manifold, we say that it is of bounded

geometry if (E,∇E, hE) is of bounded geometry for the Chern connection ∇E on (E, hE).
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Finally, for further use, let us introduce the notations for the coordinates of local sections of

(E,∇E) in special frames. Typically, later on E would come from a Hermitian vector bundle

(E, hE) and ∇E will be the Chern connection.

Let us fix y0 ∈ H and an orthonormal frame f1, . . . , fr ∈ Ex0 . Define the local orthonormal

frame f̃1, . . . , f̃r of E around y0 by the parallel transport of f1, . . . , fr with respect to ∇E, done

first along the path ψ(tZH , 0), t ∈ [0, 1], and then along the path ψ(ZH , tZN), t ∈ [0, 1], ZH ∈ R
m,

ZN ∈ Rn−m, |ZH| < rH , |ZN | < r⊥. When Y = X , we denote this frame by f̃ ′
1, . . . , f̃

′
r.

Notation. For g ∈ C ∞(M,F ), by an abuse of notation, we write g(φMy0 (Z)) ∈ Rr, Z ∈ Rn,

|Z| ≤ R, for coordinates of g in the frame (f̃ ′
1
M , . . . , f̃ ′

r
M). We identify g(φMy0 (Z)) with an element

in Fy0 using the frame (f1, . . . , fr). Similarly, we denote by g(ψy0(Z)) ∈ Rr the coordinates in

the frame (f̃1, . . . , f̃r) and identify them with an element from Fy0 . Similar notations are used for

sections of F ∗, F ⊗ Lp, (F ⊗ Lp)∗, F ⊠ F ∗, etc.

As it was explained in [15], [18], cf. [16, Propositions 2.14, 2.15], if (E,∇E, hE) has bounded

geometry over (M,H, gTM) and f ∈ C ∞
b (M,E), then for any y0 ∈ H (resp. x0 ∈ M), the func-

tion Z 7→ g(ψ
M |H
y0 (Z)) (resp. Z 7→ g(φMx0(Z))) is in C ∞

b (BRn

0 (r), Fy0) (resp. C ∞
b (BRn

0 (r), Fx0))
for some constant r > 0, independent of x0 and y0.

2.2 Exponential bounds over manifolds of bounded geometry

The main goal of this section is to recall the results about the convergence of exponential integrals

for triples of bounded geometry from [16], [17]. More precisely, fix a triple (M,H, gTM) of

bounded geometry. Let us recall the exponential bound from [16, Corollary 3.3], established using

Bishop-Gromov inequality.

Proposition 2.8. There are c, C ′ > 0, which depend only on n, m, rM , rN , r⊥ and sup-norm on

RTM , RTH , A, such that for any y0 ∈ H , l ≥ c, we have

∫

H

exp
(

− ldistM(y0, y)
)

dvgTH (y) <
C ′

lm
. (2.9)

Now, in addition to the triple (M,H, gTM) of bounded geometry, we consider a Riemannian

manifold (K, gTK) with an embedding ι1 : M → K, such that ι∗1g
TK = gTM . We assume that

the triple (K,M, gTK) is of bounded geometry. Let (E, hE) be a Hermitian vector bundle over M
and D : L2(H, ι∗E) → L2(M,E) be a fixed linear operator. Assume that there is c > 0 as in

Proposition 2.8 and C > 0, such that for some l ≥ c and any y ∈ H , x ∈ M , the Schwartz kernel

of D, evaluated with respect to dvgTH , satisfies the bound

∣

∣D(x, y)
∣

∣ ≤ Clm exp
(

− ldistK(x, y)
)

. (2.10)

By essentially relying on Heintze-Karcher estimate [19, Corollary 3.3.1] and Young’s inequality

for integral operators, we obtained in [17, Proposition 2.12] the following bound.

Proposition 2.9. There is C ′ > 0, which depends on the same data as C ′ from Proposition 2.8 and

the analogous data on (K,M, gTK), such that

‖D‖ ≤ C ′C

l
n−m

2

. (2.11)
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We will now recall a related result about the bound on the composition of operators with

Schwartz kernels having exponential bounds. More precisely, we fix q ∈ N, q ≥ 2, and oper-

ators Gt, A1
t , . . . ,Aq

t , t ∈ [0, 1], acting on the sections of the trivial vector bundle Cr0 ×Cn over Cn

by the convolutions with smooth kernels Gt(Z,Z ′), A1
t (Z,Z

′), . . . ,Aq
t (Z,Z

′) ∈ End(Cr0) with re-

spect to the volume form dvCn on Cn. We assume that there are c0, q1 > 0, such that for any l ∈ N,

there are C > 0, Qh,1 ≥ 0, h = 1, . . . , q, such that for any t ∈ [0, 1], Z,Z ′ ∈ R
2n, α, α′ ∈ N

2n,

|α|+ |α′| ≤ l, we have

∣

∣

∣

∣

∂|α|+|α′|

∂Zα∂Z ′α′Ah
t (Z,Z

′)

∣

∣

∣

∣

≤ C
(

1 + |Z|+ |Z ′|
)Qh,1+q1l

exp
(

− c0
(

|ZY − Z ′
Y |+ |ZN |+ |Z ′

N |
)

)

,

∣

∣

∣

∣

∂|α|+|α′|

∂Zα∂Z ′α′ Gt(Z,Z ′)

∣

∣

∣

∣

≤ C
(

1 + |Z|+ |Z ′|
)Q1,1+q1l

exp
(

− c0|Z − Z ′|
)

. (2.12)

Lemma 2.10 ( [16, Lemma 3.5]). The operators Dt := A1
t ◦ · · · ◦ Aq

t , D′
t := Gt ◦ A2

t ◦ · · · ◦ Aq
t

are well-defined and have smooth Schwartz kernels Dt(Z,Z
′), D′

t(Z,Z
′) with respect to dvCn .

Moreover, for any l ∈ N, there is C > 0, such that for any t ∈ [0, 1], Z,Z ′ ∈ R2n, α, α′ ∈ N2n,

|α|+ |α′| ≤ l, we have

∣

∣

∣

∣

∂|α|+|α′|

∂Zα∂Z ′α′Rt(Z,Z
′)

∣

∣

∣

∣

≤ C
(

1 + |Z|+ |Z ′|
)Q1,1+···+Qq,1+q1l

·

· exp
(

− c0
8

(

|ZY − Z ′
Y |+ |ZN |+ |Z ′

N |
)

)

, (2.13)

where Rt designates either Dt or D′
t.

3 Kernel calculus and asymptotic criteria of Toeplitz operators

The main goal of this section is to study the basic properties of Schwartz kernels of Toeplitz

operators. More precisely, in Section 3.1, we consider the model situation, for which an explicit

formula for the Schwartz kernels of Bergman projectors, the extension and restriction operators

can be given. We then study the composition rules for the operators with related kernels. Then,

in Section 3.2, we recall a definition and an asymptotic characterization of Toeplitz operators with

weak exponential decay.

3.1 Model operators on the Bargmann space

In this section, we consider the model situation, for which an explicit formula for the Schwartz

kernels of Bergman projectors, the extension and restriction operators can be given. We then use

those explicit formulas to give a description for compositions of operators, the Schwartz kernels

of which can be expressed using the above kernels. This section is motivated in many ways by the

works of Ma-Marinescu [24], [22] and Dai-Liu-Ma [10], cf. also [16, §3.2].

Endow Cn with the standard Riemannian metric and consider a trivialized holomorphic line

bundle L0 on C
n. We endow L0 with the Hermitian metric hL0 , given by

‖1‖hL0 (Z) = exp
(

− π

2
|Z|2

)

, (3.1)
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where Z is the natural real coordinate on C
n, and 1 is the trivializing section of L0. An easy

verification shows that (3.1) implies that (1.2) holds in our setting. From [22, Theorem 4.1.20], we

know that the functions
(π|β|

β!

)
1
2
zβ exp(−π

2

n
∑

i=1

|zi|2), (3.2)

viewed as section of L0 using the orthonormal trivialization by 1 exp(π
2
|Z|2), form an orthonormal

basis of H0
(2)(C

n, L0), endowed with the induced L2-metric. Clearly, this space coincides with the

Bargmann space, cf. [42]. From (3.2), cf. [22, (4.1.84)], the Bergman kernel Pn of Cn is given by

Pn(Z,Z
′) = exp

(

− π

2

n
∑

i=1

(

|zi|2 + |z′i|2 − 2ziz
′
i

)

)

, for Z,Z ′ ∈ C
n. (3.3)

From (3.2), we see easily, cf. [16, (3.28), (3.29)], that the Schwartz kernel of the orthogonal

Bergman kernel of order k ∈ N, P⊥,k
n,m, corresponding to the projection onto the subspace of

H0
(2)(C

n, L0 ⊗J k
Cm), orthogonal to H0

(2)(C
n, L0 ⊗ J k+1

Cm ), is given by

P
⊥,k
n,m(Z,Z

′) = exp
(

− π

2

m
∑

i=1

(

|zi|2 + |z′i|2 − 2ziz
′
i

)

− π

2

n
∑

i=m+1

(

|zi|2 + |z′i|2
)

)

·

· πk ·
∑

β∈Nn−m

|β|=k

zβN · (z′N)β
β!

. (3.4)

Let us now denote V := Cn−m and consider the holomorphic and antiholomorphic parts V 1,0,

V 0,1 of the complexification V ⊗R C. Remark now that ∇|β|zβN ∈ ((V 1,0)∗)⊗|β| satisfies the fol-

lowing identity

∇|β|zβN

( ∂

∂zσ(1)
⊗ · · · ⊗ ∂

∂zσ(|β|)

)

=
∂

∂zσ(1)
· · · ∂

∂zσ(|β|)
zβN =

{

β!, if #σ−1(i) = βi,

0, otherwise,
(3.5)

where σ : [1, N ] → [m+1, n] is any map. From this, we conclude that ∇|β|zβN lies in the image of

the natural map Sym|β|((V 1,0)∗) → ((V 1,0)∗)⊗|β|, and under this map, from (1.25) we have

∇|β|zβN = |β|! · dz⊙βN . (3.6)

From (1.25) and (3.2), we see that the L2-extension operator E k
n,m, extending each element from

H0
(2)(C

m, Symk(V 1,0)∗⊗L0) to an element from H0
(2)(C

n, L0 ⊗J k
Cm) as in (1.6) with the minimal

L2-norm, is given in the the orthonormal trivialization 1 exp(π
2
|Z|2) of L0 by the multiplication by

exp(−π
2

∑n

i=m+1 |zi|2). From this and (3.3), we see that the Schwartz kernel E
k
n,m(Z,Z

′
Y ) of E

k
n,m

is given by

E
k
n,m(Z,Z

′
Y ) = exp

(

− π

2

m
∑

i=1

(

|zi|2 + |z′i|2 − 2ziz
′
i

)

− π

2

n
∑

i=m+1

|zi|2
)

·

·
∑

β∈Nn−m

|β|=k

1

β!
· zβN ·

( ∂

∂zN

)⊙β
, (3.7)
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where we implicitly identified (Symk(V 1,0)∗)∗ and Symk(V 1,0) as in (1.25). Remark that under

our identification, the following identity holds

IdSymk(V 1,0)∗ =
∑

β∈Nn−m

|β|=k

k!

β!
· (dzN)⊙β ·

( ∂

∂zN

)⊙β
. (3.8)

From (3.3), (3.4), (3.7) and (3.8), we can verify that the following natural relation holds

ResCm ◦ ∇k
E
k
n,m = Pn · IdSymk(V 1,0)∗ , (3.9)

where we identified H0
(2)(C

m, Symk(V 1,0)∗ ⊗ L0) with H0
(2)(C

m, L0)⊗ Symk(V 1,0)∗.

For k ∈ N, recall that the logarithmic Bergman kernel corresponding to the pair (Cn, k · Ck),
which we denote PCn,kCm

n,m , is the orthogonal projection from L2(Cn, L0) ontoH0
(2)(C

n, L0⊗J k
Cm).

It clearly satisfies

P
Cn,kCm

n,m := Pn −
k−1
∑

l=0

P
⊥,l
n,m. (3.10)

From (3.2), we can write

P
Cn,kCm

n,m (Z,Z ′) = exp
(

− π

2

m
∑

i=1

(

|zi|2 + |z′i|2 − 2ziz
′
i

)

− π

2

n
∑

i=m+1

(

|zi|2 + |z′i|2
)

)

·

· πk ·
∑

β∈Nn−m

|β|≥k

zβN · (z′N)β
β!

. (3.11)

Hence, by (3.6), the Schwartz kernel of the operator R
k
n,m := ResCm ◦ ∇kPCn,kCm

n,m is given by

R
k
n,m(ZY , Z

′) = exp
(

− π

2

m
∑

i=1

(

|zi|2 + |z′i|2 − 2ziz
′
i

)

− π

2

n
∑

i=m+1

|z′i|2
)

·

· πk ·
∑

β∈Nn−m

|β|=k

k!

β!
· (dzN)⊙β · (z′N)β. (3.12)

Let us consider f ∈ H0
(2)(C

n, L0 ⊗ J k
Cm) (resp. g ∈ H0

(2)(C
m, Symk(V 1,0)∗ ⊗ L0)), given

in the holomorphic trivialization of L0 by f = zβN (resp. g = dz⊙β
′

N ), where β, β ′ ∈ N2(n−m),

|β|, |β ′| = k. By (3.6), we have

R
k
n,mf = k! · dz⊙βN , E

k
n,mg =

1

k!
· zβ′

N . (3.13)

From the discussion after (1.24) and (3.2), we see that

〈Rk
n,mf, g〉L2(Y ) = 2k · β! = (2π)k · k! · 〈f, E k

n,mg〉L2(X), (3.14)

which implies the following identity

(Rk
n,m)

∗ = (2π)k · k! · E k
n,m. (3.15)
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Similarly, we deduce the following equality

P
⊥,k
n,m = E

k
n,m ◦ R

k
n,m. (3.16)

Later we will see that the analogues of (3.16) and (3.16) hold in the approximate sense for any pair

(X, Y ) instead of the model case (Cn,Cm).
Now, a lot of calculations in this article will have something to do with compositions of opera-

tors having Schwartz kernels, given by the product of polynomials with the above kernels. For that

reason, the following lemma will be of utmost importance in what follows.

Lemma 3.1. For any polynomialsA1(Z,Z
′), A2(Z,Z

′), Z,Z ′ ∈ R2n, there is a polynomialA3 :=
Kn,m[A1, A2], the coefficients of which are polynomials of the coefficients of A1, A2, such that

(A1 · P⊥,0
n,m) ◦ (A2 · P⊥,0

n,m) = A3 · P⊥,0
n,m. (3.17)

Moreover, degA3 ≤ degA1 + degA2. Also, if both polynomials A1, A2 are even or odd (resp.

one is even, another is odd), then the polynomial A3 is even (resp. odd).

Also, for any polynomials A(Z,Z ′
Y ), B(ZY , Z

′
Y ), Z ∈ R2n, ZY , Z

′
Y ∈ R2m, there is a polyno-

mial A′′
3 := KEP

n,m[A,B] with the same properties as A3, such that

(A · E 0
n,m) ◦ (B · Pm) = A′′

3 · En,m. (3.18)

Finally, for any polynomials A(Z,Z ′
Y ), C(ZY , Z

′), Z,Z ′ ∈ R2n, ZY , Z
′
Y ∈ R2m, there is a

polynomial A′′′
3 := KER

n,m[A,C] with the same properties as A3, such that

(A · E 0
n,m) ◦ (C · R0

n,m) = A′′′
3 · P⊥,0

n,m. (3.19)

Remark 3.2. The statement (3.17) for n = m is due to Ma-Marinescu [22, Lemma 7.1.1, (7.1.6)].

Proof. Statements (3.17) and (3.19) were proved in [17, Lemma 3.1]. Let us recall the relation

between KEP
n,m and Kn,m, established in [17, (3.20)].

We represent A(Z,Z ′
Y ) :=

∑

Zα
N · Aα(ZY , Z ′

Y ). Then, from (3.3) and (3.4), the following

equation holds

(Aα · E 0
n,m) ◦ (B · Pm) = exp

(

− π

2
|ZN |2

)

· (Aα · Pm) ◦ (B · Pm). (3.20)

By this and (3.17), we clearly have (3.18) for

KEP
n,m[A,D] =

∑

α

Zα
N · Km,m[A

α, D]. (3.21)

To establish (3.19), we decompose polynomials A(Z,Z ′
Y ), C(ZY , Z

′) as follows

A(Z,Z ′
Y ) =

∑

α

Zα
N · Aα(ZY , Z ′

Y ), C(ZY , Z
′) =

∑

α′

Cα′

(ZY , Z
′
Y )Z

′
N
α′

, (3.22)

where α, α′ ∈ N2(n−m) verify |α| ≤ degA, |α′| ≤ degC.

Now, we note that an easy verification, based on (3.3), (3.4) and (3.12), shows that
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(

(Aα · E 0
n,m) ◦ (Cα′ · R0

n,m)
)

(Z,Z ′) = exp
(

− π

2

(

|ZN |2 + |Z ′
N |2

)

)

·

·
(

(Aα · Pm) ◦ (Cα′ · Pm)
)

(ZY , Z
′
Y ). (3.23)

From (3.22) and (3.23), we see that (3.19) holds for

KER
n,m[A,C] =

∑

α,α′

Zα
N · Z ′

N
α′ · Km,m[A

α, Cα′

]. (3.24)

This clearly finishes the proof, as the statements about the degree, the coefficients and the parity

now follow from (3.24).

From the above, we see that to compute the polynomials from Lemma 3.1, it suffices to give

an algorithm for the calculation of Kn,m. Below, we explain how to do this. Directly from the

definitions, we see that Kn,m[1 · P (Z ′), A] = Kn,m[1, P (Z) · A] for any polynomial A. Also, we

trivially have Kn,m[P (Z) ·A(Z,Z ′), A′(Z,Z ′)] = P (Z)Kn,m[A(Z,Z
′), A′(Z,Z ′)] for any polyno-

mials P,A,A′. Hence, it is enough to give an algorithm for the calculation of Kn,m where the first

argument is given by 1. For this, remark that for any i = 1, . . . , n, a, b ∈ N, we have

Kn,m[1, Pi(Z)z
a
i z

b
i ] = Kn,m[1, Pi(Z)] · Kn,m[1, z

a
i z

b
i ], (3.25)

where the polynomial Pi(Z) doesn’t depend on zi and zi. Hence, to understand Kn,m, it suffices to

know how to calculate it for polynomials zai z
b
i . Let us recall the general formulas from [17, (3.28)

and (3.30)]. For i ≤ m, we have

Kn,m[1, z
a
i z

b
i ] =

∑

l+k=b

1

πk
a!b!

(a− k)!l!k!
za−ki z′i

l. (3.26)

For m+ 1 ≤ i ≤ n, we have

Kn,m[1, z
a
i z

b
i ] = δab

a!

πa
. (3.27)

3.2 Toeplitz operators with weak exponential decay and their properties

The main goal of this section is to recall the definition of Toeplitz operators with weak exponential

decay and to recall the asymptotic characterization of them in terms of their Schwartz kernels.

More precisely, for a section f ∈ C ∞
b (X,End(F )), we associate a sequence of linear operators

TXf,p ∈ End(L2(X,Lp ⊗ F )), p ∈ N, called Berezin-Toeplitz operator, by

TXf,p(g) := BX
p (f · BX

p g). (3.28)

We fix some Riemannian manifold (Z, gTZ) and an embedding ι′ : X → Z, such that

(ι′)∗gTZ = gTX , and such that the triple (Z,X, gTZ) is of bounded geometry.

Definition 3.3. A sequence of linear operators TXp ∈ End(L2(X,Lp ⊗ F )), p ∈ N, verifying

BX
p ◦ TXp ◦ BX

p = TXp , is called a Toeplitz operator with weak exponential decay with respect to

Z if there is a sequence fi ∈ C ∞
b (X,End(F )) and c > 0, p1 ∈ N∗, such that for any k, l ∈ N,
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there is C > 0, such that for any p ≥ p1, the Schwartz kernel, evaluated with respect to dvX , for

x1, x2 ∈ X , satisfies

∣

∣

∣
TXp (x1, x2)−

k
∑

r=0

p−rTXfr ,p(x1, x2)
∣

∣

∣

C l
≤ Cpn−k+

l
2 · exp

(

− c
√
p · distZ(x1, x2)

)

, (3.29)

where the pointwise C l-norm at a point (x1, x2) ∈ X ×X is interpreted as in (1.21). The sections

fi will later be denoted by [TXp ]i.

Remark 3.4. a) From Proposition 2.9, we see that (3.29) implies that for any k ∈ N, there is C > 0,

such that for any p ≥ p1, we have ‖TXp −
∑k

r=0 p
−rTXfr,p‖ ≤ Cp−k. In particular, for compactX , the

sequence of operators TXp , p ∈ N, forms a Toeplitz operator in the sense of Ma-Marinescu [22, §7].

b) In [17, Corollary 3.13], we showed that the sections fi, i ∈ N, verifying (3.29), are uniquely

defined. Hence, the notation [·]i, i ∈ N, from Definition 3.3 is well-defined.

For the theorem below, we use the notational convention introduced after Definition 2.7. Let us

fix some further notation. Recall that geodesic coordinates were defined in (2.7). We fix x0 ∈ X .

Define the function κXφ,x0 : B
R2n

0 (rX) → R, by

((φXx0)
∗dvX)(Z) = κXφ,x0dZ1 ∧ · · · ∧ dZ2n. (3.30)

Theorem 3.5. A family of operators TXp ∈ End(L2(X,Lp ⊗ F )), p ∈ N, forms a Toeplitz operator

with weak exponential decay with respect to Z if and only if the following conditions hold

1. For any p ∈ N, TXp = BX
p ◦ TXp ◦BX

p .

2. There is p1 ∈ N, such that for any l ∈ N, there is C > 0, such that for any p ≥ p1, the

Schwartz kernel TXp (x1, x2); x1, x2 ∈ Y , of TXp , evaluated with respect to dvX , satisfies

∣

∣

∣
TXp (x1, x2)

∣

∣

∣

C l
≤ Cpn+

l
2 · exp

(

− c
√
p · distZ(x1, x2)

)

. (3.31)

3. For any x0 ∈ X , r ∈ N, there are IXr (Z,Z ′) ∈ End(Fx0) polynomials in Z,Z ′ ∈ R2n

of the same parity as r, such that the coefficients of IXr lie in C ∞
b (X,End(F )), and for

Fr := IXr · Pn, the following holds. There are ǫ, c > 0, p1 ∈ N∗, such that for any

k, l, l′ ∈ N, there areC,Q > 0, such that for any x0 ∈ X , p ≥ p1, Z,Z ′ ∈ R
2n, |Z|, |Z ′| ≤ ǫ,

α, α′ ∈ N2n, |α|+ |α′| ≤ l, the following bound holds

∣

∣

∣

∣

∂|α|+|α′|

∂Zα∂Z ′α′

(

1

pn
TXp

(

φXx0(Z), φ
X
x0
(Z ′)

)

−
k

∑

r=0

p−
r
2Fr(

√
pZ,

√
pZ ′)κXφ,x0(Z)

− 1
2κXφ,x0(Z

′)−
1
2

)
∣

∣

∣

∣

C l′

≤ Cp−
k+1−l

2

(

1 +
√
p|Z|+√

p|Z ′|
)Q

exp(−c√p|Z − Z ′|), (3.32)

where the C l′-norm is taken with respect to x0.
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Moreover, for any sequence of operators TXp , verifying the above assumptions, the polynomial IX0
is constant and it is related to the expansion from Definition 3.3 by the identity IX0 (0, 0) = [TXp ]0.

Proof. For Toeplitz operators in the sense of Ma-Marinescu [22, §7], cf. Remark 3.4.a), the anal-

ogous result was established by Ma-Marinescu in [23, Theorem 4.9]. The proof for Toeplitz oper-

ators with weak exponential decay, analogous to the one of Ma-Marinescu, was done in [17, The-

orem 3.18].

Proposition 3.6. Assume that a family of linear operators TXp ∈ End(L2(X,Lp ⊗ F )), p ∈ N

satisfies all the three assumptions of Theorem 3.5, with the only exception that the parity of IXr
is equal to the parity of r + 1 instead of r. Then IX0 = 0, IX1 (Z,Z ′) is a constant polynomial,√
pTXp forms a Toeplitz operator with weak exponential decay with respect to Z, and we have

[
√
pTXp ]0 = IX1 (0, 0).

Proof. In the proof of Ma-Marinescu of [23, Theorem 4.9], authors established that regardless of

the parity assumption on IXr , the polynomial IX0 (Z,Z ′) is always constant. This was proved in the

compact setting, but the proof remains verbatim for manifolds of bounded geometry, cf. [17, proof

of Theorem 3.19]. Now, since the parity of IX0 is odd by our assumption, the above result implies

IX0 = 0. Hence all the assumptions of Theorem 3.5 are satisfied for the sequence of operators√
pTXp , p ∈ N∗, which implies our statement.

Now, for technical reasons we will need to consider sequences of operators TXp : L2(X,Lp ⊗
F1) → L2(X,Lp ⊗ F2), p ∈ N, where (Fi, h

F
i ), i = 1, 2, are Hermitian vector bundles of bounded

geometry overX . For such sequences of operators, we have a notion of (F1, F2)-Toeplitz operators

with weak exponential decay, analogous to Definition 3.3. The only difference between this defini-

tion and the one for (F1, h
F
1 ) = (F2, h

F
2 ) is that the Berezin-Toeplitz operators are now associated

to f ∈ C ∞
b (X,Hom(F1, F2)) as follows TXf,p(g) := BX

2,p(f · BX
1,pg), where BX

i,p, i = 1, 2, are the

Bergman kernels associated to Lp ⊗ Fi. We similarly use the notation [TXp ]i, i ∈ N, to designate

elements of C ∞
b (X,Hom(F1, F2)), corresponding to the asymptotic expansion of TXp .

Proposition 3.7. A family of linear operators TXp : L2(X,Lp ⊗ F1) → L2(X,Lp ⊗ F2), p ∈ N,

forms a (F1, F2)-Toeplitz operator with weak exponential decay with respect to Z if and only if

the following conditions hold

1. For any p ∈ N, TXp = BX
2,p ◦ TXp ◦BX

1,p.

2. Exponential bound analogous to (3.31) holds.

3. For any x0 ∈ X , r ∈ N, there are polynomials IXr (Z,Z ′) ∈ Hom(F1,x0, F2,x0), satisfying

the same assumptions as in (3.32), and for which an analogue of the expansion (3.32) holds.

Moreover, for any sequence of operators TXp , verifying the above assumptions, the polynomial

IX0 (Z,Z ′) is constant and we have IX0 (0, 0) = [TXp ]0.

Proof. Consider a sequence of operators GX
p ∈ End(L2(X,Lp ⊗ (F1 ⊕ F2))), p ∈ N, which in a

matrix form associated to the decompositionL2(X,Lp⊗(F1⊕F2)) = L2(X,Lp⊗F1)⊕L2(X,Lp⊗
F2) corresponds to

GX
p =

(0 TXp
0 0

)

. (3.33)
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An easy verification shows that the assumptions of Theorem 3.5 are satisfied for GX
p if and only if

the corresponding assumptions from Proposition 3.7 are satisfied for TXp . We finish the proof by

Theorem 3.5.

Remark 3.8. From the above proof and Proposition 3.6, we see that a proposition, analogous to

Proposition 3.6 holds for (F1, F2)-Toeplitz operator with weak exponential decay.

Later on, we will need a precise bound on the degrees of the polynomials from (3.32). For this,

we fix any f ∈ C
∞
b (X,End(F )), and denote by IXf,r the polynomials associated to TXf,p as in (3.32).

Proposition 3.9. For any f ∈ C ∞
b (X,End(F )), we have deg IXf,r ≤ 3r.

This result is definitely well-known to experts, but we were not able to find a precise reference

for it anywhere in the literature. Due to this and to the fact that the preliminary statement, used

in the proof of Proposition 3.9, will later be used in this article several times, we will explain

the proof below. To state the result in the generality we will need later on, we fix some further

notation. Recall that geodesic coordinates were defined in (2.7). We assume as in Introduction that

the triple (X, Y, gTX) has bounded geometry. Similarly to (3.30), for y0 ∈ Y , define the function

κYφ,y0 : B
R2m

0 (rY ) → R, by

((φYy0)
∗dvY )(ZY ) = κYφ,y0dZ1 ∧ · · · ∧ dZ2m. (3.34)

Recall that Fermi coordinates were defined in (2.6). Define the function κ
X|Y
ψ,y0

: BR2m

0 (rY ) ×
BR2(n−m)

0 (r⊥) → R by

((ψX|Y
y0

)∗dvX)(Z) = κ
X|Y
ψ,y0

dZ1 ∧ · · · ∧ dZ2n. (3.35)

Recall that the function κN was defined in (1.9). Clearly, for Z = (ZY , ZN) ∈ R2n, ZY ∈ R2m,

we have the following relation between different κ-functions

κ
X|Y
ψ,y0

(Z) = κN (ψy0(Z)) · κYφ,y0(ZY ). (3.36)

Also, under assumptions (1.10), we have κ
X|Y
ψ,y0

(0) = κYφ,y0(0) = 1.

Theorem 3.10. For any r ∈ N, y0 ∈ Y , there are J
X|Y
r (Z,Z ′) ∈ End(Fy0) polynomials in

Z,Z ′ ∈ R2n, with the same parity as r and deg J
X|Y
r ≤ 3r, whose coefficients are polynomials

in ω, RTX , A, RF , (dvX/dvgTX )±
1
2n , (dvY /dvgTY )±

1
2n , and their derivatives of order ≤ 2r, all

evaluated at y0, such that for the functions F
X|Y
r := J

X|Y
r ·Pn over R2n×R2n, the following holds.

There are ǫ, c > 0, p1 ∈ N∗, such that for any k, l, l′ ∈ N, there exists C > 0, such that for any

y0 ∈ Y , p ≥ p1, Z,Z ′ ∈ R2n, |Z|, |Z ′| ≤ ǫ, α, α′ ∈ N2n, |α|+|α′| ≤ l,Q1
k,l,l′ := 3(n+k+l′+2)+l:

∣

∣

∣

∣

∂|α|+|α′|

∂Zα∂Z ′α′

(

1

pn
BX
p

(

ψy0(Z), ψy0(Z
′)
)

−
k

∑

r=0

p−
r
2FX|Y

r (
√
pZ,

√
pZ ′)κ

X|Y
ψ (Z)−

1
2κ

X|Y
ψ (Z ′)−

1
2

)
∣

∣

∣

∣

C l′

≤ Cp−
k+1−l

2

(

1 +
√
p|Z|+√

p|Z ′|
)Q1

k,l,l′

exp
(

− c
√
p|Z − Z ′|

)

, (3.37)
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where the C
l′-norm is taken with respect to y0. Also, the following identity holds

J
X|Y
0 (Z,Z ′) = IdFy0

. (3.38)

Moreover, under the assumption (1.10), we have

J
X|Y
1 (Z,Z ′) = IdFy0

· π
(

g
(

zN , A(zY − z′Y )(zY − z′Y )
)

+ g
(

z′N , A(zY − z′Y )(zY − z′Y )
)

)

. (3.39)

Proof. For X = Y , the result is due to Dai-Liu-Ma [10] and the calculation of J
X|X
1 is due to Ma-

Marinescu [22, Remark 4.1.26]. Related results were previously obtained by Tian [38], Bouche [5],

Zelditch [40], Catlin [8], Lu [21], Wang [39]. The proof of the general case is done in [16, Theorem

5.5] by relying on the result of [10] and some local calculations.

Proof of Proposition 3.9. In [22, Lemma 7.2.4], Ma-Marinescu proved that for compact manifolds,

the following identity holds

IXf,r :=
∑

a+b+|α|=r

∑

α∈N2m

Km,m

[

JX|X
a ,

∂αf(φXx0(Z))

∂Zα
(0) · Z

α

α!
· JX|X

b

]

, (3.40)

where Km,m was defined in Lemma 3.1. As it was explained in [17, (3.51)], since by the result

of Ma-Marinescu [25], cf. Theorem 4.7, the Bergman kernel decays exponentially away from the

diagonal, the same proof holds for manifolds of bounded geometry. The result now follows from

(3.26), the bound on the degrees of J
X|X
r from Theorem 3.10 and (3.40).

The final result about Toeplitz operators we will need is given below.

Lemma 3.11. For non-zero f ∈ C ∞
b (X,End(F )), as p→ ∞, the following asymptotics holds

‖TXf,p‖ ∼ sup
x∈X

‖f(x)‖. (3.41)

Proof. For compact manifoldsX , this result is due to Bordemann-Meinrenken-Schlichenmaier [4,

Theorem 4.1] (for (F, hF ) trivial) and Ma-Marinescu [24, Theorem 3.19, (3.91)] (for any (F, hF )).
Essentially the same proof works in our more general situation. The details are given in the end of

the proof of [16, Theorem 1.1].

4 Multiplicative defect and optimal extensions

The main goal of this section is to make a comparison between the dual of the restriction operator

and the extension operator. For this, we prove the existence of a sequence of operators, which we

call the multiplicative defect. It will play a central role in most of the proofs of this article, as it

relates the asymptotic expansions of the Schwartz kernels of the Bergman projector, which was

studied previously by other authors in details, and the extension operator, which is the main object

of this paper.
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More precisely, for k ∈ N, let us denote byB⊥,k
p the orthogonal projection from L2(X,Lp⊗F )

to the orthogonal complement ofH0
(2)(X,L

p⊗F ⊗J k+1
Y ) inH0

(2)(X,L
p⊗F ⊗J k

Y ). The operators

B⊥,k
p will later be called the orthogonal Bergman kernel of order k. Clearly, the logarithmic

Bergman kernel of order k, introduced before Theorem 1.5 relates to orthogonal Bergman kernels

as follows

BX,kY
p = BX

p −
k−1
∑

l=0

B⊥,l
p . (4.1)

The main result of this section is as follows.

Theorem 4.1. Assume that (X, Y, gTX) is of bounded geometry. Then for any k ∈ N,

there is p1 ∈ N∗, such that for any p ≥ p1, there is a unique operator Ak,p ∈
End(H0

(2)(Y, Sym
k(N1,0)∗ ⊗ ι∗(Lp ⊗ F ))), verifying

(ResY ◦ ∇kBX,kY
p )∗ = Ek,p ◦ Ak,p. (4.2)

Remark 4.2. The sequence of operators Ak,p, will be later called “multiplicative defect”. For

k = 0, Theorem 4.1 was proved in [17, Theorem 4.3] in its relation with the problem of transitivity

of optimal holomorphic extensions.

To establish this result, we will rely on several statements, which are of independent interest.

The proofs of those statements extend our methods from [16], [17]. The first result we need is

the following semi-classical analogue of the trace theorem from the theory of Sobolev spaces. We

prove it in Section 4.1.

Theorem 4.3. For any k ∈ N, p ∈ N, and f ∈ H0
(2)(X,L

p ⊗ F ⊗ J k
Y ) the section (∇kf)|Y ∈

C ∞(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F )) is holomorphic. Also, for any k ∈ N, there is p1 ∈ N∗, such

that for any f ∈ H0
(2)(X,L

p ⊗ F ⊗ J k
Y ), the L2-norm of the above section is finite, i.e. we have

(∇kf)|Y ∈ H0
(2)(Y, Sym

k(N1,0)∗ ⊗ ι∗(Lp ⊗ F )). Moreover, there is C > 0, such that

∥

∥Resk,p(f)
∥

∥

L2(Y )
≤ Cp

n−m+k
2

∥

∥f
∥

∥

L2(X)
(4.3)

The second result is an asymptotic version of Ohsawa-Takegoshi extension theorem for holo-

morphic jets, which we prove in Section 4.3 by relying on the results from Section 4.2.

Theorem 4.4. For any k ∈ N, there are C > 0, p1 ∈ N
∗, such that for any p ≥ p1 and g ∈

H0
(2)(Y, Sym

k(N1,0)∗ ⊗ ι∗(Lp⊗F )), there is f ∈ H0
(2)(X,L

p⊗F ⊗J k
Y ), such that Resk,p(f) = g

and the following bound holds

‖f‖L2(X) ≤
C

p
n−m+k

2

‖g‖L2(Y ) . (4.4)

Remark 4.5. For k = 0, Theorems 4.3 and 4.4 were proved in [16, §4.1 and Theorem 4.4].

Proof of Theorem 4.1. Clearly, it suffices to prove that the kernels and the images of the operators

(ResY ◦ ∇kBX,kY
p )∗ and Ek,p coincide for p big enough. First of all, we have

ker(ResY ◦ ∇kBX,kY
p )∗ = (Im(ResY ◦ ∇kBX,kY

p ))⊥. (4.5)
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Now, in Theorem 4.3, we proved that there is p1 ∈ N, such that for any p ≥ p1, ResY ◦ ∇kBX,kY
p

has its image inside of H0
(2)(Y, Sym

k(N1,0)∗ ⊗ ι∗(Lp ⊗ F )). In Theorem 4.4, we proved that

there is p1 ∈ N, such that for any p ≥ p1, the image of ResY ◦ ∇kBX,kY
p coincides exactly with

H0
(2)(Y, Sym

k(N1,0)∗ ⊗ ι∗(Lp ⊗ F )). From this, and (4.5), we see that the kernels of (ResY ◦
∇kBX,kY

p )∗ and Ek,p coincide.

Similar reasoning shows that the images of those operators coincide as well. In particular, for

p ≥ p1, there is a unique sequence of operators Ak,p as in (4.2).

Remark 4.6. As we see from the proof, we never used the precise calculations of the constants

on the right-hand side of Theorems 4.3 and 4.4. We nevertheless decided to include the precise

estimates there due to the fact that our proof becomes no easier if one wishes to get simply the

existence.

4.1 Bounds on jets of holomorphic sections

The main goal of this section is to prove Theorem 4.3, i.e. to give an estimate of the L2-norm of a

jet of a holomorphic section in terms of the L2-norm of the section. The following result is crucial

for this proof and later arguments.

Theorem 4.7. For any r ∈ N, there are c, C > 0, p1 ∈ N∗ such that for p ≥ p1, we have

∣

∣

∣
BX
p (x1, x2)

∣

∣

∣

C r(X×X)
≤ Cpn+

r
2 · exp

(

− c
√
p · dist(x1, x2)

)

. (4.6)

Proof of Theorem 4.7. For compact manifolds, Theorem 4.7 was implicit in Dai-Liu-Ma [10, The-

orem 4.18]. For manifolds of bounded geometry it was proved by Ma-Marinescu in [25, Theorem

1]. For the summary of numerous previous works on the off-diagonal estimates of the Bergman

kernel as in (4.6), refer to [25, p. 1328].

Proof of Theorem 4.3. The main idea of our proof is to study the Schwartz kernel of the operator

sending a holomorphic section to its k-jet and to use the exponential bound on the Bergman kernel.

First of all, let us verify that for any f as above, (∇kf)|Y is a holomorphic section of the vector

bundle Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F ). As this is a local statement, let us fix a point y0 ∈ Y with

holomorphic coordinates t1, . . . , tm, z1, . . . , zn−m, around y0 in X in such way that z1, . . . , zn−m
vanish along Y . From Weierstrass division theorem, cf. [13, Theorem II.2.3], we see that in a local

holomorphic trivialization of L and F around y0, we may represent f in the following way

f =
∑

β∈Nn−m

|β|=k

zβ · gβ(t, z), (4.7)

where gβ are some local holomorphic functions. Using this representation and (3.6), we see that in

the induced local frame over Y , the following identity holds

(∇kf)|Y = k! ·
∑

β∈Nn−m

|β|=k

(dz)⊙β · gβ(t, 0). (4.8)

Since gβ are holomorphic, we see that (∇kf)|Y is a holomorphic section.
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Let us now verify that the restriction satisfies the stated L2-bound. Consider the operator Tp :
L2(X,Lp ⊗ F ) → C ∞(Y, Symk(ι∗TX1,0)∗ ⊗ ι∗(Lp ⊗ F )), defined as follows

Tp = ResY ◦ ((∇1,0)kBX
p ), (4.9)

where ∇1,0 represents above the holomorphic component of the covariant derivative, induced by

the Chern connection on L, F and TX . Let us now calculate the norm of Tp.
For this, we remark that the Schwartz kernel Tp(y, x), y ∈ Y , x ∈ X , evaluated with respect to

the volume form dvX , of Tp is given by

Tp(y, x) = (∇1,0)kBX
p (y, x). (4.10)

Consider now the operator Up := Tp ◦ T ∗
p . Directly from (4.10) and the fact that BX

p ◦ BX
p = BX

p ,

we conclude that the Schwartz kernel Up(y, y
′), y, y′ ∈ Y , of Up, evaluated with respect to the

volume form dvY , satisfies

Up(y, y
′) = ((∇1,0)kBX

p (∇1,0;∗)k)(y, y′), (4.11)

where ∇1,0;∗ is the induced connection on the duals of Lp ⊗ F and T 1,0X . Directly from Theorem

4.7, Proposition 2.9 and (4.11), we deduce that there are C > 0 and p1 ∈ N, such that for p ≥ p1,
we have ‖Up‖ ≤ Cpn−m+k. We deduce the bound (4.3) by this, the trivial remark ‖Up‖ = ‖Tp‖2
and the fact that for any f ∈ H0

(2)(X,L
p ⊗ F ⊗J k

Y ), we have Tp(f) = Resk,p(f).

4.2 Taylor expansion of the holomorphic differential near a submanifold

The main goal of this section is to recall the calculation of the first two terms of the Taylor expan-

sion of ∂
Lp⊗F

-operator, considered in a shrinking neighborhood of Y of size 1√
p
, as p → ∞. This

section is taken almost entirely from [16, §4.1].

We consider a triple (X, Y, gTX) of bounded geometry. By means of the exponential map as

in (1.9), we identify a neighborhood of the zero section Br⊥(N) in the normal bundle N , to a

neighborhood U := BX
Y (r⊥) of Y in X .

Recall that the projection π : U → Y and the identifications of L, F to π∗(L|Y ), π∗(F |Y ) in

BX
Y (r⊥) were defined before (1.13). We similarly identify TX to π∗(TX|Y ) overBX

Y (r⊥) using the

parallel transport with respect to the Levi-Civita connection ∇TX . Remark that since gTX is Kähler

by (1.2), the decomposition TX ⊗R C = T 1,0X ⊕ T 0,1X is preserved by ∇TX , cf. [22, Theorem

1.2.8]. In other words, the identification of TX with π∗(TX|Y ) induces the identifications

τ : π∗(T 1,0X|Y ) → T 1,0X|U , τ : π∗(T 0,1X|Y ) → T 0,1X|U . (4.12)

We define the 1-form ΓF with values in End(π∗(F |Y ))

ΓE = ∇E − π∗(∇E |Y ), (4.13)

where we implicitly used the above isomorphism. Similarly, we define ΓL. Recall also that the

connection ∇N on N was introduced before (2.2). The connection ∇N induces the splitting

TN = N ⊕ THN (4.14)
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of the tangent space of the total space of N . Here THN is the horizontal part of N with respect to

the connection N . If U ∈ TY , we denote by UH ∈ THN the horizontal lift of U in THN .

For ǫ > 0, we denote by E(ǫ) (resp. E) the set of smooth sections of π∗(Lp|Y ⊗F |Y ) on Bǫ(N)
(resp. on the total space of N). We also denote by E(0,1)(ǫ) (resp. E(0,1)) the set of smooth sections

of π∗(T ∗(0,1)X|Y )⊗ π∗(Lp|Y ⊗ F |Y ) on Bǫ(N) (resp. on the total space of N).

Clearly, the above isomorphisms allow us to see ∂
Lp⊗F

as an operator

∂
Lp⊗F

: E(r⊥) → E
(0,1)(r⊥). (4.15)

We fix a point y0 ∈ Y and an orthonormal frame (e1, . . . , e2m) (resp. (e2m+1, . . . , e2n)) in

(Ty0Y, g
TY ) (resp. in (Ny0, g

N
y0
)) such that (1.27) is satisfied. Using the exponential coordinates on

Y and the parallel transport of (e2m+1, . . . , e2n) along the geodesics on Y , as in Fermi coordinates

ψy0 in (2.6), we introduce complex coordinates z1, . . . , zm on Y and linear “vertical” coordinates

zm+1, . . . , zn on N . Using those coordinates, we define the operators

∂
Lp⊗F
H ,LLp⊗F

N : E → E
(0,1), (4.16)

by prescribing their action at a point (y0, ZN), ZN ∈ R2(n−m), as follows

∂
Lp⊗F
H =

m
∑

i=1

dzi|y0 ·
( ∂

∂zi

∣

∣

y0

)H

, LLp⊗F
N =

n
∑

i=m+1

dzi|y0 ·
( ∂

∂zi
+
πzi
2

)

. (4.17)

The first differentiation in (4.17) is well-defined because π∗(
∂
∂zi

|y0)H = ∂
∂zi

|y0 is of type (0, 1), and

the second derivation is well-defined because the vector bundles are trivialized along fibers of π.

Below a variable t ∈ R is related to p ∈ N by

t =
1√
p
. (4.18)

For any ǫ > 0 define the rescaling operator Ft : E(ǫ) → E( ǫ
t
) for f ∈ E(ǫ) as follows

(Ftf)(y, ZN) := f
(

y, tZN
)

, (y, ZN) ∈ B ǫ
t
(N). (4.19)

The operator Ft : E
(0,1)(ǫ) → E(0,1)( ǫ

t
) is defined in an analogous way.

Theorem 4.8 ( [16, Theorem 4.3]). As p→ ∞, we have

Ft ◦ ∂
Lp⊗F ◦ F−1

t =
1

t
LLp⊗F
N + ∂

Lp⊗F
H +O

(

t|ZN |2∂N + t|ZN |∂H + t|ZN |
)

, (4.20)

where O(t|ZN |2∂N + t|ZN |∂H + t|ZN |) is an operator of the form
∑m

i=1 ai(t, y, ZN) · dzi|y0 ·
( ∂
∂zi

|y0)H ,+
∑n

j=m+1 bj(t, y, ZN) · dzj|y0 · ∂
∂zj
,+c(t, y, ZN), such that there is a constant C > 0,

for which |ai(t, y, ZN)| ≤ Ct|ZN |2, |bj(t, y, ZN)| ≤ Ct|ZN |, |c(t, y, ZN)| ≤ Ct|ZN | holds for any

y ∈ Y , |ZN | < r⊥, i = 1, . . . , m, and j = m+ 1, . . . , n.

Remark 4.9. Bismut-Lebeau in [2, Theorem 8.18] established an analogue of Theorem 4.8, which

corresponds to trivial (L, hL) in our setting. In this case the operator LLp⊗F
N from (4.17) doesn’t

have an additional πzi
2

term. Another closely related Taylor expansion is due to Dai-Liu-Ma [10,

Theorem 4.6], and it corresponds to Y equal to a point in our setting.
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4.3 Asymptotic Ohsawa-Takegoshi extension theorem for holomorphic jets

The main goal of this section is to establish the asymptotic analogue of Ohsawa-Takegoshi exten-

sion theorem for holomorphic jets. In other words, we show that Theorem 4.4 holds.

The main idea of the proof of Theorem 4.4, which follows rather closely our proof from [16,

Theorem 4.4], corresponding to the case k = 0, is to pass through the general framework of the

proof of Ohsawa-Takegoshi extension theorem. We choose a smooth extension of g over X , and

then obtain the holomorphic extension by modifying the smooth one using a solution of ∂-equation

with singular weight, which forces the solution to annihilate along Y . For holomorphic jets, such

a strategy was applied in many places before, e.g. [32].

The novelty here as well as in [16] is that instead of choosing an arbitrary smooth extension,

we choose a specific one, given by the operator (1.13). This allows us to significantly simplify the

original proof of Ohsawa-Takegoshi extension theorem (in our asymptotic setting). In particular,

instead of considering a double sequence of singular weights (depending on p and on additional

parameter ǫ) which would dampen the fact that we do not know much of an arbitrary smooth

extension, it would suffice to consider a single sequence of weights (only depending on p).

Recall that the function ρwas defined in (1.11). Let us now consider the functions δY : X\Y →
R, αY : X → R, defined as

δY (x) := log
(

distX(x, Y )
)

· ρ
(distX(x, Y )

r⊥

)

,

αY (x) := distX(x, Y )2 · ρ
(distX(x, Y )

r⊥

)

+
(

1− ρ
(distX(x, Y )

r⊥

))

.

(4.21)

Now, recall that a function f : X → [−∞,+∞[ on a complex Hermitian manifold (X,ω) is

called quasi-plurisubharmonic if it is upper-semicontinuous, and there is a constant C ∈ R, such

that the following inequality holds in the distributional sense
√
−1∂∂f ≥ −Cω. (4.22)

We denote by PSH(X,Cω) the set of quasi-plurisubharmonic functions f , verifying (4.22).

Theorem 4.10 ( [16, Theorem 2.31]). There is C > 0, such that δY , αY ,−αY ∈ PSH(X,Cω).

Another result we will use concerns the L2-bounds of derivatives of holomorphic sections.

Proposition 4.11 ( [16, Proposition 4.5]). For any k ∈ N, there are C > 0, p1 ∈ N∗, such that for

any p ≥ p1 and f ∈ H0
(2)(X,L

p ⊗ F ), we have

∥

∥∇kf
∥

∥

L2(X)
≤ Cp

k
2

∥

∥f
∥

∥

L2(X)
, (4.23)

where ∇ is the covariant derivative with respect to the induced Chern and Levi-Civita connections.

Proof of Theorem 4.4. Recall that the operator E0
k,p was defined in (1.13). We would like to verify

that for any g ∈ H0
(2)(Y, Sym

k(N1,0)∗⊗ ι∗(Lp⊗F )), the form α := ∂
Lp⊗F

(E0
k,pg) vanishes at least

up to order k + 1 over Y .

Indeed, let us work in a neighborhood V := BX
Y (

r⊥
4
) of Y in X . Recall that t ∈ R+ and Ft

were defined in (4.19). Then in the notations of (1.13), on V , we have

E0
k,pg =

F−1
t g̃
√
pk
, g̃(y, ZN) = g(y) · z⊗kN · exp

(

− π

2
|ZN |2

)

. (4.24)
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Recall that ∂
Lp⊗F
H ,LLp⊗F

N were defined in (4.17). A trivial calculation shows that on V , we have

LLp⊗F
N g̃ = 0. (4.25)

Also, since ∇N preserves gN , in the notations of (4.17), similarly to [2, (8.97)], we have

(( ∂

∂zi

∣

∣

y0

)H

g̃
)

(y0, ZN) =
( ∂

∂zi

(

g · z⊗kN
)

)

(y0) exp
(

− π

2
|ZN |2

)

. (4.26)

As a consequence of (4.26) and the fact that g is holomorphic, we obtain

∂
Lp⊗F
H g̃ = 0. (4.27)

From (4.24), (4.25), (4.27) and the fact that all the residue terms in Theorem 4.8 contain |ZN |, we

deduce that α vanishes at least up to order k + 1 along Y .

Now, using the L2-estimates, let us construct a holomorphic perturbation of E0
k,pg, satisfying

the assumptions of Theorem 4.4. Recall that δY : X \ Y → R, αY : X → R, were defined in

(4.21). For ǫ > 0, let us now define the weight δp : X \ Y → R as follows

δp := 2(n−m+ k)δY − ǫpαY . (4.28)

By taking ǫ small, by Theorem 4.10, we see that there exists p1 ∈ N∗, such that for any p ≥ p1,
over X , the following inequality holds in the distributional sense

pω +

√
−1

2π
∂∂δp >

p

2
ω. (4.29)

Let us fix ǫ small enough, so that it verifies the above inequality and for any |ZN | < r⊥, we have

π

2
|ZN |2 − ǫαY (y, ZN) ≥

π

4
|ZN |2. (4.30)

We will now prove that there are C > 0, p1 ∈ N
∗, such that for any p ≥ p1, g ∈

H0
(2)(Y, Sym

k(N1,0)∗ ⊗ ι∗(Lp ⊗ F )) and α := ∂
Lp⊗F

(E0
k,pg), we have

∫

X\Y
|α|2e−δpdvX ≤ C‖g‖2L2(Y ). (4.31)

By Proposition 2.5, cf. [16, proof of (4.33)], we see that there are c, C > 0, p1 ∈ N∗, such that

for any p ≥ p1, we have

∫

X\BX
Y
(
r⊥
4
)

|α|2e−δpdvX ≤ C exp(−cp)
(

‖g‖2L2(Y ) + ‖∇g‖2L2(Y )

)

. (4.32)

Now, as α has support in BX
Y (

r⊥
2
), it is enough to work in (y, ZN), y ∈ Y , ZN ∈ Ny coordinates.

To estimate the integral over BX
Y (

r⊥
4
), we use (4.24) and make the change of variables by Ft to get

∫

BX
Y
(
r⊥
4
)

|α|2e−δpdvY ∧ dvN
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=

∫

B r⊥
4t

(N)

∣

∣

∣

(

Ft ◦ ∂
Lp⊗F ◦ F−1

t

)

g̃
∣

∣

∣

2

(y, ZN)
eǫpαY (y,tZN )

|ZN |2(n−m+k)
dvY ∧ dvN . (4.33)

We see that to estimate the right-hand side of (4.33), we may apply Theorem 4.8. From (4.25),

(4.27), we see that the first two terms of the asymptotic expansion of (Ft ◦ ∂
Lp⊗F ◦ F−1

t )g̃ vanish.

From this and the trivial fact that there is C > 0, such that for j = 1, 2, we have

∫

R2(n−m)

|ZN |2k+j exp(−π
4
|ZN |2)dvR2(n−m)(ZN)

|ZN |2(n−m+k)
< C, (4.34)

we conclude that there are C > 0, p1 ∈ N, such that for any p ≥ p1, g ∈ H0
(2)(Y, Sym

k(N1,0)∗ ⊗
ι∗(Lp ⊗ F )) and α := ∂

Lp⊗F
(E0

k,pg), we have

∫

BX
Y
(
r⊥
4
)

|α|2e−δpdvX ≤ C√
p

(

‖g‖2L2(Y ) + ‖∇g‖2L2(Y )

)

. (4.35)

From Proposition 4.11, (4.32) and (4.35), we deduce (4.31).

By [11, Theorem 1.5], X \Y is a complete Kähler manifold. Hence, by (4.29), we may resolve

the ∂-equation onX \Y , see [12, Proposition 13.4]. From this, the trivial fact that ∂
Lp⊗F

α = 0 and

(4.31), we see that there are C > 0, p1 ∈ N∗, such that for any p ≥ p1, g ∈ H0
(2)(Y, Sym

k(N1,0)∗⊗
ι∗(Lp ⊗ F )), there is a section f0 ∈ C ∞(X \ Y, Lp ⊗ F ), such that

∂
Lp⊗F

f0 = α,

∫

X\Y
|f0|2e−δpdvX ≤ C

p
‖g‖2L2(Y ). (4.36)

Let us prove that f := E0
k,pg − f0 verifies the assumptions of Theorem 4.4.

From (4.36), we see that over X \ Y , ∂
Lp⊗F

f = 0. Also, by (4.36), we easily get that f ∈
L2(X,Lp ⊗ F ). By the standard regularity result, [11, Lemme 6.9], f extends smoothly and the

equation ∂
Lp⊗F

f = 0 holds on X . In particular, f0 extends smoothly as well. However, since

exp(−2(n−m+ k)δY ) is not integrable, the L2-bound (4.36) implies that f0 has to vanish at least

up to order k + 1 along Y . Hence, we conclude that (∇kf)|Y = g. It is only left to verify that f
satisfies the needed L2-bound (4.4).

An easy calculation, using Proposition 2.5 and (1.5), cf. [16, (4.38)], shows that there are

c, C > 0, such that we have

c

p
n−m+k

2

‖g‖L2(Y ) ≤
∥

∥E0
k,pg

∥

∥

L2(X)
≤ C

p
n−m+k

2

‖g‖L2(Y ) . (4.37)

Let us now prove the following bound

∫

X

|f0|2e−δpdvX ≥ Cpn−m+k

∫

X

|f0|2dvX . (4.38)

This will be clearly enough for our needs, as from the L2-bound in (4.36), (4.37) and (4.38), we

would deduce the L2-bound (4.4).
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First of all, since αY ≥ min{1
2
( r⊥

4
)2, 1

2
} on X \BX

Y (
r⊥
4
), there are c, C > 0, such that

∫

X\BX
Y
(
r⊥
4
)

|f0|2e−δpdvX ≥ C exp(ǫcp)

∫

X\BX
Y
(
r⊥
4
)

|f0|2dvX (4.39)

It is now only left to give the lower bound for the integrand on the left-hand side of (4.38),

where the integration is done over BX
Y (

r⊥
4
). But remark that from (4.21) and (4.28), over BX

Y (
r⊥
4
),

there is C > 0, such that for any p ∈ N∗, we have e−δp ≥ Cpn−m+k. From this, we deduce

∫

BX
Y
(
r⊥
4
)

|f0|2e−δpdvX ≥ Cpn−m+k

∫

BX
Y
(
r⊥
4
)

|f0|2dvX . (4.40)

From (4.39) and (4.40), we obtain (4.38).

Remark 4.12. Our proof shows that there is E1
k,p : H0

(2)(Y, Sym
k(N1,0)∗ ⊗ ι∗(Lp ⊗ F )) →

H0
(2)(X,L

p ⊗ F ⊗ J k
Y ), verifying (∇kE1

k,pg)|Y = g for g ∈ H0
(2)(Y, Sym

k(N1,0)∗ ⊗ ι∗(Lp ⊗ F )),

and such that (1.14) holds for E1
k,p instead of E0

k,p.

5 Asymptotics of the extension operator for holomorphic jets

The main goal of this section is to study the asymptotic expansion of the extension operator for

holomorphic jets. For this, in Section 5.1, we prove the exponential bounds for the Schwartz ker-

nels of the extension operator and orthogonal Bergman kernel of order k, and study their asymp-

totics. We also deduce from those statements Theorems 1.1 and 1.5. Then, in Section 5.2, we

establish the announced exponential bounds and asymptotics, and deduce Theorem 1.3 from our

methods. Finally, in Section 5.3, we apply the results from Section 5.1 to the case when the sub-

manifold corresponds to a fixed point and deduce the asymptotics of higher order peak sections.

5.1 Schwartz kernels of the extension and orthogonal Bergman projectors

The main goal of this section is to study the Schwartz kernels of the extension operator and orthog-

onal Bergman kernels of order k ∈ N. In particular, we prove the exponential estimates for the

Schwartz kernels of those operators, and show that those Schwartz kernels admit a full asymptotic

expansion, as powers of the line bundle tend to infinity.

We use notations from Section 1 and assume that the triple (X, Y, gTX) is of bounded geometry.

Let us fix k ∈ N once and for all. Our first main result goes as follows.

Theorem 5.1. There are c > 0, p1 ∈ N
∗, such that for any r, l ∈ N, there is C > 0, such that for

any p ≥ p1, x1, x2 ∈ X , y ∈ Y , the following estimates hold

a)
∣

∣Ek,p(x1, y)
∣

∣

C r ≤ Cpm+ r−k
2 exp

(

− c
√
p · dist(x1, y)

)

,

b)
∣

∣B⊥
k,p(x1, x2)

∣

∣

C r ≤ Cpn+
r
2 exp

(

− c
√
p · (dist(x1, x2) + dist(x1, Y ) + dist(x2, Y ))

)

.
(5.1)

Remark 5.2. For k = 0, the corresponding result was proved in [16, Theorems 1.5, 1.8]. Our proof

here is different even in the case k = 0.
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Theorem 5.1 implies that to understand fully the asymptotics of the Schwartz kernel of the

extension operator and orthogonal Bergman kernels of order k, it suffices to do so in a neighbor-

hood of a fixed point (y0, y0) ∈ Y × Y in X × Y and X × X . Our next result shows that after a

reparametrization by a homothety with factor
√
p in Fermi coordinates around (y0, y0), the kernel

of those operators admit a complete asymptotic expansion in integer powers of
√
p, as p→ ∞.

Theorem 5.3. For any r ∈ N, y0 ∈ Y , there are polynomials JEk,r(Z,Z
′
Y ) ∈ Symk(N1,0

y0
) ⊗

End(Fy0) in Z ∈ R2n, Z ′
Y ∈ R2m, of parity k + r, deg JEk,r ≤ k2 + k2r + 3r, whose coefficients

have the same properties as the coefficients of the polynomials from Theorem 3.10, and which

vanish at least up to order k along R2m ×R2m ⊂ R2n ×R2m, such that for FE
k,r := JEk,r · E 0

n,m, the

following holds.

There are ǫ, c > 0, p1 ∈ N∗, such that for any r, l, l′ ∈ N, there are C,Q > 0, such that for

any y0 ∈ Y , p ≥ p1, Z = (ZY , ZN), ZY , Z
′
Y ∈ R2m, ZN ∈ R2(n−m), |Z|, |Z ′

Y | ≤ ǫ, α ∈ N2n,

α′ ∈ N
2m, |α|+ |α′| ≤ l, we have

∣

∣

∣

∣

∂|α|+|α′|

∂Zα∂Z ′
Y
α′

(

1

pm− k
2

Ek,p
(

ψX|Y
y0

(Z), φYy0(Z
′
Y )
)

−
r

∑

j=0

p−
j

2FE
k,j(

√
pZ,

√
pZ ′

Y )κ
X|Y
ψ (Z)−

1
2κYφ (Z

′
Y )

− 1
2

)
∣

∣

∣

∣

C l′

≤ Cp−
r+1−l

2 ·
(

1 +
√
p|Z|+√

p|Z ′
Y |
)Q

exp
(

− c
√
p
(

|ZY − Z ′
Y |+ |ZN |

)

)

, (5.2)

where the C l′-norm is taken with respect to y0. Also, the following identity holds

JEk,0(Z,Z
′
Y ) = κ

1
2
N (y0) ·

∑

β∈Nn−m

|β|=k

1

β!
· zβN ·

( ∂

∂z′N

)⊙β
. (5.3)

Moreover, under the assumption (1.10), we have

JEk,1(Z,Z
′
Y ) = IdFy0

· g
(

zN , A(zY − z′Y )(zY − z′Y )
)

·
∑

β∈Nn−m

|β|=k

1

β!
· zβN ·

( ∂

∂z′N

)⊙β
, (5.4)

where A is the second fundamental form of ι, introduced in (2.2).

Remark 5.4. In particular, from (3.7), we have FE
k,0(Z,Z

′
Y ) = E k

n,m and

FE
k,1(Z,Z

′
Y ) = IdFy0

· g
(

zN , A(zY − z′Y )(zY − z′Y )
)

· E k
n,m. (5.5)

Theorem 5.5. For any r ∈ N, y0 ∈ Y , there are polynomials J⊥
k,r(Z,Z

′) ∈ End(Fy0), Z,Z
′ ∈

R2n, of parity k, deg J⊥
k,r ≤ 2k2 + k2r + 3r, whose coefficients have the same properties as the

coefficients of the polynomials from Theorem 3.10, and which vanish at least up to order k along

R2m × R2n ⊂ R2n × R2n and R2n × R2m ⊂ R2n × R2n, such that for F⊥
k,r := J⊥

k,r · P⊥,0
n,m, the

following holds.
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There are ǫ, c > 0, p1 ∈ N
∗, such that for any r, l, l′ ∈ N, there are C,Q > 0, such that

for any y0 ∈ Y , p ≥ p1, Z = (ZY , ZN), Z
′ = (Z ′

Y , Z
′
N), ZY , Z

′
Y ∈ R2m, ZN , Z

′
N ∈ R2(n−m),

|Z|, |Z ′| ≤ ǫ, α, α′ ∈ N2n, |α|+ |α′| ≤ l, we have

∣

∣

∣

∣

∂|α|+|α′|

∂Zα∂Z ′α′

(

1

pn
B⊥
k,p

(

ψy0(Z), ψy0(Z
′)
)

−
r

∑

j=0

p−
j

2F⊥
k,j(

√
pZ,

√
pZ ′)κ

X|Y
ψ (Z)−

1
2κ

X|Y
ψ (Z ′)−

1
2

)
∣

∣

∣

∣

C l′

≤ Cp−
r+1−l

2 ·
(

1 +
√
p|Z|+√

p|Z ′|
)Q

exp
(

− c
√
p
(

|ZY − Z ′
Y |+ |ZN |+ |Z ′

N |
)

)

, (5.6)

where the C l′-norm is taken with respect to y0. Also, we have

J⊥
k,0(Z,Z

′) = πk ·
∑

β∈Nn−m

|β|=k

zβN · (z′N)β
β!

. (5.7)

Moreover, under the assumption (1.10), we have

J⊥
k,1(Z,Z

′) = πk+1 · IdFy0
·
(

g
(

zN , A(zY − z′Y )(zY − z′Y )
)

+ g
(

z′N , A(zY − z′Y )(zY − z′Y )
)

)

·
∑

β∈Nn−m

|β|=k

zβN · (z′N)β
β!

. (5.8)

Remark 5.6. a) In particular, from (3.4), we have F⊥
k,0(Z,Z

′) = P⊥,k
n,m and

F⊥
k,1(Z,Z

′) = πk+1 · IdFy0
·
(

g
(

zN , A(zY − z′Y )(zY − z′Y )
)

+ g
(

z′N , A(zY − z′Y )(zY − z′Y )
)

)

· P⊥,k
n,m. (5.9)

b) Theorems 5.3 and 5.5 were established for k = 0 in [16, Theorems 1.6, 1.8]. Our proof here

is different from the one from [16], even for k = 0.

c) Our methods allow to give a precise estimate for Q from Theorems 5.3 and 5.5, but as the

derivation is quite lengthy and cumbersome, and we never use those estimates, we leave their

derivation to the interested reader.

d) By Taylor expansion due to the obvious vanishing properties of the Schwartz kernels, instead

of the estimate p−
r+1−l

2 on the right-hand side of (5.2) (resp. of (5.6)) one can put p−
r+1−l−k

2 |ZN |k
(resp. p−

r+1−l−2k
2 |ZN · Z ′

N |k).

Proof of Theorem 1.1 assuming Theorems 5.1.a) and 5.3. The main idea of the proof is to compare

the Schwartz kernels of Ek,p and E0
k,p. For this, we introduce Kp := Ek,p − E0

k,p. From Theorems

4.7, 5.1.a) and (1.13), we conclude that there are c > 0, p1 ∈ N∗, such that for any r ∈ N, there is

C > 0, such that for any p ≥ p1, x ∈ X , y ∈ Y , the following estimate holds

∣

∣

∣
Kp(x, y)

∣

∣

∣
≤ Cpm− k

2 exp
(

− c
√
pdist(x, y)

)

. (5.10)
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Now, by studying the asymptotic expansion of the Schwartz kernel Kp(x, y), we will improve

the estimate (5.10) by lowering the degree of p. For r ∈ N, let us expand κN(ψ(Z))
1
2 in a neigh-

borhood of Z = 0 as follows

κN(ψ(Z))
1
2 =

r
∑

i=0

κ
1
2

N,[i](Z) +O(|Z|r+1), (5.11)

where κ
1
2

N,[i](Z) are homogeneous polynomials of degree i. We denote by J
Y |Y
k,r the polynomials

from Theorem 3.10 associated to X = Y and F = Symk(N1,0)∗ ⊗ ι∗F . From Theorems 3.10, 5.3

and (3.7), we deduce that for polynomials JEr,K(Z,Z
′
Y ), defined for r ∈ N as follows

JEr,K(Z,Z
′
Y ) := JEk,r(Z,Z

′
Y )−

∑

β∈Nn−m

|β|=r

1

β!
· zβN ·

( ∂

∂z′N

)⊙β·

·
∑

a+b=r

κ
1
2

N,[a](Z) · J
Y |Y
k,b (ZY , Z

′
Y ), (5.12)

and the functions FE
r,K := JEr,K · E 0

n,m over R2n × R2m, the following holds. There are ǫ, c > 0,

p1 ∈ N
∗, such that for any r ∈ N, there are C,Q > 0, such that for any y0 ∈ Y , p ≥ p1,

Z = (ZY , ZN), ZY , Z
′
Y ∈ R2m, ZN ∈ R2(n−m), |Z|, |Z ′

Y | ≤ ǫ, we have

∣

∣

∣

∣

1

pm− k
2

Kp

(

ψy0(Z), φ
Y
y0
(Z ′

Y )
)

−
r

∑

j=0

p−
j

2FE
j,K(

√
pZ,

√
pZ ′

Y )κ
X|Y
ψ (Z)−

1
2κYφ (Z

′
Y )

− 1
2

∣

∣

∣

∣

≤ Cp−
r+1
2

(

1 +
√
p|Z|+√

p|Z ′
Y |
)Q

exp
(

− c
√
p
(

|ZY − Z ′
Y |+ |ZN |

)

)

. (5.13)

From (3.38), (5.3) and (5.12), we deduce

JE0,K(Z,Z
′
Y ) = 0. (5.14)

In particular, from (5.13) and (5.14), we see that we can improve (5.10) as follows

∣

∣

∣
Kp(x, y)

∣

∣

∣
≤ Cpm− 1+k

2 exp
(

− c
√
pdist(x, y)

)

. (5.15)

From Proposition 2.9 and (5.15), we deduce that there are C > 0, p1 ∈ N∗, such that for any

p ≥ p1, we have ‖Kp‖ ≤ C

p
n−m+k+1

2
, which is exactly (1.14) by the definition of Kp.

Now, similarly to the derivation of (5.14), we see that under assumption (1.10), from (3.39),

(5.12) and the fact from [16, (5.35)], stating

∂

∂ZN
κN = 0, (5.16)

we deduce that we have

JE1,K(Z,Z
′
Y ) = JEk,1(Z,Z

′
Y ). (5.17)
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Let us now prove (1.15). Recall the following calculation: for β ∈ N
n−m, |β| = k, we have

∫

R2(n−m)

|z2βN | · exp(−π|ZN |2) · dZ2m+1 ∧ · · · ∧ dZ2n =
β!

πk
. (5.18)

Remark also from (1.24) and the description below (1.25) that

‖dz⊙βN ‖2 = 2k · β!
k!
. (5.19)

In particular, we have

∫

R2(n−m)

κN(y,
√
pZN) ·

|z2βN |
k!2

· exp(−pπ|ZN |2)ρ
( |ZN |
r⊥

)2

dZ2m+1 ∧ · · · ∧ dZ2n

=
κN(y)

pn−m+k
· 1

k! · (2π)k · ‖dz⊙βN ‖2 +O
( 1

pn−m+k+ 1
2

)

. (5.20)

An easy calculation, using (1.9) and (5.20), cf. [16, (4.38)] for the case k = 0, shows that for

any g ∈ L2(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F )), we have

∥

∥E0
k,pg

∥

∥

2

L2(dvX )
=

1

pn−m+k
· 1

k! · (2π)k ·
∥

∥

∥
κN(y)

1
2 ·BY

k,pg
∥

∥

∥

2

L2(Y )
+O

( ‖g‖2
L2(Y )

pn−m+k+ 1
2

)

. (5.21)

Consider the Toeplitz operator T YκN ,p ∈ End(L2(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F ))), given by

T YκN ,pg := BY
k,p(κN · BY

k,pg). (5.22)

Then, we clearly have
〈

T YκN ,pg, g
〉

L2(Y )
=

〈

κN · BY
k,pg, B

Y
k,pg

〉

L2(Y )
. (5.23)

Thus, by (5.21) and (5.23), we have

∥

∥E0
k,p

∥

∥ =
1

p
n−m+k

2

· 1
√

k! · (2π)k
·
∥

∥T YκN ,p
∥

∥

1
2 +O

( 1

p
n−m+k+1

2

)

. (5.24)

From Lemma 3.11 and (5.24), we deduce (1.15).

Now it is only left to prove that if A 6= 0, then under additional assumption (1.10), one

can not replace p−
n−m+k+1

2 by an asymptotically better estimate. For this, remark that as long

as A 6= 0, by (5.5), the operator, acting on Cn with the kernel FE
k,1(Z,Z

′
Y ), has non-zero norm.

Then, by the calculations, similar to (5.21), we see that the operator, acting on Cn with the kernel

FE
k,1(

√
pZ,

√
pZ ′

Y ), has norm of order p−
n−m+k

2 , as p→ ∞. We deduce from this and Theorem 5.3

the needed result.

Proof of Theorem 1.5 assuming Theorems 5.1.b) and 5.5. First of all, remark that by definition

BX
p −BX,kY

p =
k−1
∑

l=0

B⊥
l,p. (5.25)

Clearly, now the estimate (1.21) follows from Theorems 4.7, 5.1.b) and (5.25). The statement

(1.22) follows from Theorems 3.10, 5.5, the use of Remark 5.6.d) and (5.25) by using considera-

tions similar to the ones from (5.12) and (5.14).
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5.2 Multiplicative defect as a bridge from Bergman projections to extension

operators

The main goal of this section is to prove Theorems 5.1, 5.3 and 5.5. As a consequence of our

method of the proof, we also establish Theorem 1.3. To do so, we rely heavily on the existence

of the multiplicative defect operator, Ak,p ∈ End(H0
(2)(Y, Sym

k(N1,0)∗ ⊗ ι∗(Lp ⊗ F ))), p ≥ p1,
established in Theorem 4.1. More precisely, the following statement plays a crucial role in our

approach.

Theorem 5.7. The sequence of operators 1
pn−m+kAk,p, p ≥ p1, viewed as a sequence of elements

from End(L2(Y, Symk(N1,0)∗ ⊗ ι∗(Lp ⊗ F ))) by precomposing with the Bergman projector BY
k,p,

forms a Toeplitz operator with weak exponential decay with respect to X . Moreover, the first term

of this asymptotic expansion can be calculated as follows

[ 1

pn−m+k
Ak,p

]

0
= (2π)k · k! · κ−1

N |Y · IdSymkN
1,0
y0

⊗ IdFy0
. (5.26)

Remark 5.8. For k = 0, Theorem 5.7 was established in [17, Theorem 4.3].

The core of our argument in the proofs of Theorems 5.1, 5.3 and 5.5 lies in the following

inductive step. We fix k0 ∈ N.

Lemma 5.9. Assume that for any k < k0, Theorems 5.1.b) and 5.5 hold. Then for k := k0,

Theorem 5.7 holds,a) Theorems 5.1.a) and 5.3 hold,b)

Theorems 5.1.b) and 5.5 hold.c)

The following statement will be useful in our proof of Lemma 5.9.

Lemma 5.10. Assume that for any k < k0, Theorems 5.1.b) and 5.5 hold. Then for k := k0,
and any r ∈ N, y0 ∈ Y , there are polynomials JR,0k,r (ZY , Z

′) ∈ Symk(N1,0
y0

)∗ ⊗ End(Fy0) in Z ′ ∈
R2n, ZY ∈ R2m, with the same properties as those from Theorem 5.3 (including the analogous

vanishing, degree and parity requirements), such that for FR,0
k,r := JR,0k,r ·R0

n,m, the following holds.

There are ǫ, c > 0, p1 ∈ N∗, such that for any r, l, l′ ∈ N, there are C,Q > 0, such that for

any y0 ∈ Y , p ≥ p1, Z = (ZY , ZN), ZY , Z
′
Y ∈ R

2m, ZN ∈ R
2(n−m), |Z|, |Z ′

Y | ≤ ǫ, α ∈ N
2n,

α′ ∈ N2m, |α|+ |α′| ≤ l, the following bound holds

∣

∣

∣

∣

∂|α|+|α′|

∂Zα∂Z ′
Y
α′

(

1

pn+
k
2

· (ResY ◦ ∇kBX,kY
p )

(

φYy0(ZY ), ψy0(Z
′)
)

−
r

∑

i=0

p−
i
2FR,0

k,i (
√
pZY ,

√
pZ ′)κYφ (ZY )

− 1
2κ

X|Y
ψ (Z ′)−

1
2

)
∣

∣

∣

∣

C l′

≤ Cp−
k+1−l

2

(

1 +
√
p|ZY |+

√
p|Z ′|

)Q

exp
(

− c
√
p
(

|ZY − Z ′
Y |+ |Z ′

N |
)

)

, (5.27)

where the C l′-norm is taken with respect to y0. Also, the following identity holds

JR,0k,0 (ZY , Z
′) = πk · κ−

1
2

N (y0) ·
∑

β∈Nn−m

|β|=k

k!

β!
· (dzN)⊙β · (z′N)β. (5.28)
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In particular, from (3.12), we have FR,0
k,0 (ZY , Z

′) = R
k
n,m. Moreover, under the assumption (1.10)

JR,0k,1 (ZY , Z
′) = IdFy0

· πk+1g
(

z′N , A(zY − z′Y )(zY − z′Y )
)

·

·
∑

β∈Nn−m

|β|=k

k!

β!
· (dzN)⊙β · (z′N)β. (5.29)

Proof. We define the ZY -polynomials ∇lκ
− 1

2

N,[i](Z)|ZN=0 for l ∈ N similarly to (5.11). From Sec-

tion 3.1, remark that the trivial identities

Pn(Z,Z
′) = Pm(ZY , Z

′
Y ) · Pn−m(ZN , Z

′
N),

P
⊥,0
n,m(Z,Z

′) = Pm(ZY , Z
′
Y ) · P⊥,0

n−m,0(ZN , Z
′
N).

(5.30)

From the fact that in the notations introduced in the end of Section 2.1, we have

ResY (f̃
X|Y
1 , . . . , f̃

X|Y
r ) = f̃ ′

1
Y , . . . , f̃ ′

r
Y , the fact that ∂ψ

∂Zj
|ZN=0, j = 2m + 1, . . . , 2n, are paral-

lel alongBR2m

0 (rY ) ⊂ R2n, (3.36), (3.37), (5.6), (5.25) and (5.30), we see that the expansion (5.27)

holds for the polynomials JR,0k,r (ZY , Z
′), ZY ∈ R2m, Z ′ ∈ R2n, defined as follows

JR,0k,r (ZY , Z
′) :=

∑

a+b+d=r

∑

c+d=k

∇c
(

JX|Y
a (Z,Z ′) · Pn−m(ZN , Z

′
N)

P
⊥,0
n−m(0, Z

′
N)

−
k−1
∑

i=0

J⊥
i,a(Z,Z

′) · P⊥,0
n−m(ZN , 0)

)

· (∇dκ
− 1

2

N,[b])(Z)
− 1

2

∣

∣

∣

ZN=0
. (5.31)

In particular, from (5.31), we obtain that

JR,0k,0 (ZY , Z
′) = κ

− 1
2

N (y0)∇k
(

J
X|Y
0 (Z,Z ′) · Pn−m(ZN , Z

′
N)

P
⊥,0
n−m(0, Z

′
N)

−
k−1
∑

i=0

J⊥
i,0(Z,Z

′) · P⊥,0
n−m(ZN , 0)

)
∣

∣

∣

ZN=0
. (5.32)

From this, (3.38), (5.7) and the calculation similar to the one used in (3.12), we deduce (5.28).

Moreover, under the assumption (1.10), from (5.16) and (5.31), we also obtain that

JR,0k,1 (ZY , Z
′) = κ

− 1
2

N (y0)∇k
(

J
X|Y
1 (Z,Z ′) · Pn−m(ZN , Z

′
N)

P
⊥,0
n−m(0, Z

′
N)

−
k−1
∑

i=0

J⊥
i,1(Z,Z

′) · P⊥,0
n−m(ZN , 0)

)
∣

∣

∣

ZN=0
. (5.33)

From this, as in the proof of (5.28), but now using (3.39) and (5.8), we deduce (5.29).

The fact that the parity of JR,0k,r coincides with the parity of k + r follows from the analogous

statements from Theorems 3.10, 5.5 and (5.31). From the bounded geometry assumption and the

boundness properties of the coefficients of J
X|Y
a , J⊥

i,a from Theorems 3.10, 5.5, we see that the

coefficients of JR,0k,r are bounded with all their derivatives. From (5.31), we see that

deg(JR,0k,r ) ≤ max
{

deg(JX|Y
a ) + k, deg(J⊥

i,a) + k
}

, (5.34)
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where the maximum is taken over a = 0, . . . , k and i = 0, . . . , k − 1. From (5.34) and the

corresponding bounds on the degrees of J
X|Y
a and J⊥

i,a from Theorems 3.10 and 5.5, we deduce the

needed bound on the degree of JR,0k,r .

It is only left to establish the vanishing of JR,0k,r at least up to order k along R2m × R2m ⊂
R

2m × R
2n. For this, let us define the polynomials JE,0k,r (Z,Z

′
Y ) ∈ SymkN1,0

y0
⊗ End(Fy0) in

Z ∈ R2n, Z ′
Y ∈ R2m as follows

JE,0k,r (Z,Z
′
Y ) := (JR,0k,r (Z

′
Y , Z))

∗. (5.35)

Clearly, it is enough to establish the analogous vanishing property for the polynomials JE,0k,r . As-

sume that r0 ∈ N is the first index, for which this vanishing property doesn’t hold. We denote by

k′ < k the order of vanishing of JE,0k,r0
along R2m × R2m ⊂ R2n × R2m.

Let us consider the operator T Yp : L2(Y, Symk(N1,0)∗⊗ ι∗(Lp⊗F )) → L2(Y, Symk′(N1,0)∗⊗
ι∗(Lp ⊗ F )), given by the following formula

T Yp := pm−n− k+k′

2 · ResY ◦ ∇k′(ResY ◦ ∇kBX,kY
p )∗. (5.36)

We will now establish that the sequence of operators T Yp satisfies the assumptions of Propo-

sition 3.7 or Remark 3.8, depending on the parity of k + k′. Clearly, the first property from

Proposition 3.7 follows from Theorem 4.3 and (5.36).

From Theorem 4.7 and Theorem 5.1.b), applied for k ≤ k0−1, we deduce that there are c > 0,

p1 ∈ N∗, such that for any r ∈ N, there is C > 0, such that for any p ≥ p1, x1, x2 ∈ X , the

following estimate holds
∣

∣

∣
BX,kY
p (x1, x2)

∣

∣

∣

C r
≤ Cpn+

r
2 exp

(

− c
√
p · dist(x1, x2)

)

. (5.37)

From (5.37), we deduce that there are c > 0, p1 ∈ N∗, such that for any r ∈ N, there is C > 0,

such that for any p ≥ p1, y1, y2 ∈ Y , the following estimate holds
∣

∣

∣
T Yp (y1, y2)

∣

∣

∣

C r
≤ Cpm+ r

2 exp
(

− c
√
p · distX(y1, y2)

)

. (5.38)

This implies the second property from Proposition 3.7 with respect to X .

We will now show that the third property is a direct consequence of Theorems 3.10 and 5.5 for

k ≤ k0−1. From the reasoning similar to (5.31), we see that the expansion (3.32) for T Yp as above

holds for the polynomials IYr (ZY , Z
′
Y ), ZY , Z

′
Y ∈ R2m, defined as follows

IYr (ZY , Z
′
Y ) =

∑

a+b+d=r

∑

c+d=k′

∇c
(

JE,0k,a (Z,Z
′
Y ) · Pn−m(ZN , 0)

)

·

· (∇dκ
− 1

2

N,[b])(Z)
− 1

2

∣

∣

∣

ZN=0
. (5.39)

From the parity statements on JR,0k,r from above (implying the corresponding statements for JE,0k,r ),

we see that the parity of IYr is equal to the parity of r + k + k′. From (5.39), by our choice of r0,
we also see that IYr (ZY , Z

′
Y ) = 0 for r < r0 and IYr0(ZY , Z

′
Y ) = ∇k′

zN
JE,0k,r0

(Z,Z ′
Y )|ZN=0. Hence the

sequence of operators p
r0
2 · T Yp still satisfies the assumptions of either Proposition 3.7 or Remark

3.8, and the first term of the associated asymptotic expansion (3.32) holds with nonzero term by

our choice of k′ and r0. This, however, goes in contradiction with the last part of Proposition 3.7

or Remark 3.8 and the trivial fact that T Yp = 0.
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Proof of Lemma 5.9.a). Let us verify that the sequence of operators 1
pn−m+kAk,p, p ≥ p1, for k :=

k0, satisfies all the properties of Theorem 3.5 once we know the validity of Theorems 5.1.b) and

5.5 for any k < k0.
In fact, from (4.2) and the fact that for p ≥ p1, we have ResY ◦ ∇kEk,p = BY

k,p, we obtain the

explicit formula

Ak,p = ResY ◦ ∇k(ResY ◦ ∇kBX,kY
p )∗. (5.40)

From the above identity, we see that 1
pn−m+kAk,p coincides with the operator T Yp , considered in

(5.36) for k′ = k. By the proof of Lemma 5.10, we see that the sequence of operators 1
pn−m+kAk,p,

p ≥ p1, for k = k0, forms a Toeplitz operator with weak exponential decay with respect to X .

From (5.28), (5.35) and the calculation similar to (3.16), we obtain that

JE,0k,0 (Z,Z
′
Y ) = (2π)k · κ−

1
2

N (y0) ·
∑

β∈Nn−m

|β|=k

1

β!
· zβN ·

( ∂

∂zN

)⊙β
. (5.41)

From this, (3.8), (3.38) and (5.39), similarly to (3.9), we deduce that

IY0 (ZY , Z
′
Y ) = (2π)k · k! · κ−1

N (y0) · IdSymk(N1,0
y0

)∗ ⊗ IdFy0
. (5.42)

From the last statement of Theorem 3.5, we deduce (5.26), which finishes our proof.

In the proof of Lemma 5.9.b), we will need to express the extension operator in terms of the

orthogonal Bergman projector. For this, we need to invert the operators Ak,p. The following result

gives a sufficient condition for inverting Toeplitz operators with weak exponential decay.

Lemma 5.11 ( [17, Lemma 4.5]). Assume that a sequence of operators Gp, p ∈ N, forms a

Toeplitz operator with weak exponential decay with respect to a manifold Z in the notations from

Definition 3.3. Assume that for f := [Gp]0, and any y ∈ Y , the element f(y) is invertible and

f−1 ∈ C
∞
b (Y,End(ι∗F )). Then there is p1 ∈ N, such that for p ≥ p1, the operators Gp are

invertible. Moreover, the sequence of operators G−1
p , p ≥ p1, forms a Toeplitz operator with weak

exponential decay with respect to the same manifold Z and we have [(Gp)
−1]0 = f−1.

Proof of Lemma 5.9.b). Remark that by Lemma 5.9.a) and Lemma 5.11, for any k ∈ N, there is

p1 ∈ N, such that the operator Ak,p is invertible for p ≥ p1. The main idea of our proof is to use

the following formula

1

pm− k
2

Ek,p =
1

pn+
k
2

· (ResY ◦ ∇kBX,kY
p )∗ ◦

( 1

pn−m+k
Ak,p

)−1

, (5.43)

which follows from (4.2). On the level of Schwartz kernels, the identity (5.43) means

1

pm− k
2

Ek,p(x, y) =

∫

y1∈Y

1

pn+
k
2

· (ResY ◦ ∇kBX,kY
p )∗(x, y1)·

·
( 1

pn−m+k
Ak,p

)−1

(y1, y)dvY (y1). (5.44)
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From Theorem 5.7, Proposition 2.9, Lemma 5.11 and (5.37), we see already that there are

c > 0, p1 ∈ N∗, such that for any r, l ∈ N, there is C > 0, such that for any p ≥ p1, x ∈ X , y ∈ Y ,

the following estimate holds

∣

∣Ek,p(x, y)
∣

∣

C r ≤ Cpm+ r
2 exp

(

− c
√
p · dist(x, y)

)

. (5.45)

To improve (5.45) to (5.1), we will need to study the Schwartz kernel of Ek,p more precisely.

Now, let ǫ > 0 be the minimum of the corresponding values from Theorems 3.10 and 5.5 for

k ≤ k0 − 1. We put ǫ0 := ǫ
2
. Let y0 ∈ Y and y1, y2 ∈ BY

y0
(ǫ0). We decompose the integral in

(5.44) into two parts: the first one over BY
y0
(ǫ), and the second one is over its complement, which

we denote by Q. Clearly, for y3 ∈ Q, we get

dist(y1, y3) + dist(y3, y2) ≥ ǫ. (5.46)

Hence, from Theorems 4.7, 5.1.b), 5.7, Proposition 2.8 and (1.5), we see that the contribution

from the integration over Q is smaller than exp(−c√p(1 + dist(y1, y2))) for some constant c > 0.

Consequently, only the integration over y1 ∈ BY
y0
(ǫ) is non-negligible. To evaluate it, we apply

Theorem 4.7. We calculate the integral over the pull-back with respect to the exponential map of

our differential forms. We use the notations introduced before Theorem 3.10. After the change of

variables Z 7→ √
pZ, an estimate, similar to the one which bounded the integral over Q, Lemma

2.10 and the second part of Lemma 3.1, applied for n := m, we see that (5.2) holds for

JEk,r(Z,Z
′
Y ) :=

∑

a+b=r

KEP
n,m

[

JE,0k,a , I
Y

A−1
k,p
,b

]

, (5.47)

where IY
A−1

k,p
,b

are the polynomials associated to ( 1
pn−m+kAk,p)

−1 as in Theorem 3.5. From the cor-

responding statements about the parity of JE,0k,r , IY
A−1

k,p
,r

from Theorem 3.5 and Lemmas 3.1, 5.10,

we deduce that the parity of JEk,r coincides with k+ r. From Proposition 3.9 and (5.47), we deduce

that

deg(JEk,r) ≤ max
{

deg(JE,0k,a ) + deg(IY
A−1

k,p
,b
)
}

, (5.48)

where the maximum is taken over a + b = r. From Proposition 3.9, Lemma 5.10, (5.35), (5.48)

and the bound on the degree of JR,0k,a from Lemma 5.10, we deduce the needed bound on the degree

of JEk,r.
Directly from (3.7), (3.11), (3.12), (5.41) and (5.47), we see that the formula (5.3) holds for

JEk,0. Moreover, under assumption (1.10), by Theorem 5.7, for i = 0, 1, we have

IY
A−1

k,p
,i
=

1

(2π)k · k! · J
Y |Y
k,i , (5.49)

where J
Y |Y
k,i are the polynomials from Theorem 3.10, associated to X, Y := Y and F :=

Symk(N1,0)∗ ⊗ ι∗(F ). From this, (3.38), (3.39), we conclude that

JEk,1(Z,Z
′
Y ) =

1

(2π)k · k!K
EP
n,m

[

JE,0k,1 , 1
]

. (5.50)

We deduce (5.4) from this, Lemma 5.10, (3.21) and (5.35).
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The proof of the fact that JEk,r vanishes at least up to order k along R
2m × R

2m ⊂ R
2n × R

2m

proceeds along the same lines as the corresponding result from Lemma 5.10. In total, this finishes

the proof of Theorem 5.3 for k := k0.
From the expansion (5.2), we see that we can improve (5.45) to (5.1). This finishes completely

the proof of Theorem 5.1.a) for k := k0.

Proof of Lemma 5.9.c). First of all, an easy verification shows the following identity

1

pn
B⊥,k
p =

1

pm− k
2

Ek,p ◦
1

pn−m+ k
2

(ResY ◦ ∇kBX,kY
p ). (5.51)

On the level of Schwartz kernels, the identity (5.51) basically means that

1

pn
B⊥,k
p (x1, x2) =

∫

y∈Y

1

pm− k
2

Ek,p(x1, y) ·
1

pn−m+ k
2

(ResY ◦ ∇kBX,kY
p )(y, x2)dvY (y). (5.52)

From Theorems 3.10 and 5.1, for k ≤ k0 − 1, Proposition 2.8 and (5.52), we see that Theorem

5.1.b) holds for k = k0.

From (5.52), the expansion (5.5) follows from the same reasoning as we used in (5.47), except

that we need to rely on the third part of Lemma 3.1 and J⊥
k,r are defined as follows

J⊥
k,r(Z,Z

′) :=
∑

a+b=r

KER
n,m

[

JEk,a, J
R,0
k,b

]

. (5.53)

From (3.24), (3.26), (5.3), (5.4), (5.28), (5.29) and (5.53), we deduce (5.7) and (5.8). The parity

statement about the polynomials J⊥
k,r follows from Lemma 3.1 and the corresponding statements

for JEk,a and JR,0k,b , proved in Theorem 5.3 and Lemma 5.10. The vanishing up to order k of the

polynomials J⊥
k,r follows from (3.24), (5.53) and the corresponding statements for JEk,a and JR,0k,b ,

proved in Theorem 5.3 and Lemma 5.10. From Proposition 3.9 and (5.53), we deduce that

deg(J⊥
k,r) ≤ max

{

deg(JEk,a) + deg(JR,0k,b )
}

, (5.54)

where the maximum is taken over a + b = r. From Lemma 5.10, (5.54) and the bound on the

degree of JR,0k,a (resp. JEk,a) from Lemma 5.10 (resp. Theorem 5.3), we deduce the needed bound

on the degree of J⊥
k,r.

Proof of Theorems 5.1, 5.3, 5.5, 5.7. It follows directly from Lemma 5.9 by induction and the fact

that for k < 0, the statements of Theorems 5.1.b) and 5.5 are void.

Proof of Theorem 1.3 . First of all, let us establish that under the assumption (1.10), there isC > 0,

such that as p→ ∞, we have

∣

∣

∣

∥

∥Ek,p
∥

∥− 1

p
n−m+k

2

· 1
√

k! · (2π)k
∣

∣

∣
≤ C

p
n−m+k+2

2

,

∣

∣

∣

∥

∥Resk,p
∥

∥− p
n−m+k

2 ·
√

k! · (2π)k
∣

∣

∣
≤ Cp

n−m+k−2
2 .

(5.55)
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Indeed, remark that from Theorem 5.7 and Proposition 2.9 that for any k ∈ N, there are p1 ∈ N,

C > 0, such that for any p ≥ p1, we have

∥

∥

∥

1

pn−m+k
Ak,p − k! · (2π)k · BY

k,p

∥

∥

∥
≤ C

p
. (5.56)

In particular, we conclude that

∣

∣

∣

∥

∥Ak,p
∥

∥− pn−m+k · k! · (2π)k
∣

∣

∣
≤ Cpn−m+k−1. (5.57)

Using Lemma 5.11 and similar arguments, we see that

∣

∣

∣

∥

∥A−1
k,p

∥

∥− 1

pn−m+k
· 1

k! · (2π)k
∣

∣

∣
≤ C

pn−m+k+1
. (5.58)

From (4.2) and the fact that Resk,p ◦ Ek,p = BY
k,p, we have the following identities

(Ek,p)
∗ ◦ Ek,p =

(

(Ak,p)
∗)−1

, Resk,p ◦ (Resk,p)∗ = Ak,p. (5.59)

Clearly, we have ‖(Ek,p)∗ ◦ Ek,p‖ = ‖Ek,p‖2 and ‖Resk,p ◦ (Resk,p)
∗‖ = ‖Resk,p‖2. The bounds

(5.55) now follows from this observation, (5.57), (5.58) and (5.59).

Now, from (5.55) and the fact that Resk,p ◦ Ek,p = BY
k,p, we conclude that there are p1 ∈ N,

C > 0, such that for any k ∈ N, p ≥ p1, g ∈ H0
(2)(Y, Sym

k(N1,0)∗ ⊗ ι∗(Lp ⊗ F )), g 6= 0, we have

∣

∣

∣

∣

‖Ek,p(g)‖L2(X,Lp⊗F )

‖g‖k,L2(Y,Lp⊗F )

− 1

p
n−m+k

2

· 1
√

k! · (2π)k

∣

∣

∣

∣

≤ C

p
n−m+k+2

2

. (5.60)

Now, let us fix f ∈ H0
(2)(X,L

p⊗F ), and denote by [f ] the element it represents in the quotient

space H0
(2)(X,L

p ⊗ F )/H0
(2)(X,L

p ⊗ F ⊗ J k+1
Y ). Directly from the definition, we have

∥

∥[f ]
∥

∥

2

L2(X,Lp⊗F )
=

k
∑

l=0

‖B⊥
l,pf‖2L2(X,Lp⊗F ). (5.61)

We let Jetk,p(f) = (g0, . . . , gk), where gi ∈ H0
(2)(Y, Sym

i(N1,0)∗ ⊗ ι∗(Lp ⊗ F )). From the

definition of the map Jetk,p from (1.16) and the characterization of gi from (1.17), we see that

gi = Resi,p(B
⊥
i,pf). (5.62)

We conclude from (5.55) and (5.62) that

∥

∥gi
∥

∥

k,L2(Y,Lp⊗F )
=

(

p
n−m+k

2 ·
√

k! · (2π)k +O(p
n−m+k−2

2 )
)

·
∥

∥B⊥
i,pf

∥

∥

L2(X,Lp⊗F )
. (5.63)

The result now follows from (5.60), (5.61), (5.63) and the definition of the scalar product 〈·, ·〉Jetk,p
from (1.19).
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5.3 Higher order peak sections as a special case of extension theorem

The main goal of this section is to illustrate Theorems 5.1, 5.3 on a simple example when the

submanifold corresponds to a fixed point.

Let us denote the extension operator in this case by E
{x}
k,p . It corresponds to

E
{x}
k,p

: SymkT 1,0X∗
x ⊗ (Lp ⊗ F )x → H0

(2)(X,L
p ⊗ F ⊗ J k

x ). (5.64)

Clearly, for any v ∈ Symk(N1,0
x )∗⊗(Lp⊗F )x, the section sx,vk,p := E

{x}
k,p (v) minimizes the L2-norm

among all sections from H0
(2)(X,L

p ⊗ F ⊗ J k
x ), having k-th jet equal to v.

The sections sx,vk,p were defined in complex geometry by Tian [38]. For k = 0, they bear the

name “peak sections”. Due to this reason, for k ≥ 1, we call sx,vk,p the higher order peak sections.

Theorem 5.12. There are c, C > 0, such that for any x, y ∈ X , p ∈ N, p ≥ p1, v ∈ Symk(N1,0
x )∗⊗

(Lp ⊗ F )x, we have
∣

∣sx,vk,p(y)
∣

∣

C r ≤ Cp
r−k
2 exp(−c√pdist(x, y)). (5.65)

Moreover, there are ǫ > 0, c, C > 0, such that for any x ∈ X , for any Z ∈ R2n, |Z| < ǫ, p ∈ N,

p ≥ p1, v ∈ Symk(N1,0
x )∗ ⊗ (Lp ⊗ F )x, we have

∣

∣

∣
sx,vk,p(φ

X
x (Z))− (v · Z⊗k) · exp

(

− π

2
p|Z|2

)

∣

∣

∣

C r
≤ C · |v| · p r

2
−1 · |Z|k · exp(−c√p|Z|), (5.66)

where the C r-norm is taken with respect to x, Z.

Remark 5.13. For r ≤ 2, similar results were obtained by Tian [38, Lemma 1.2]. For k = 0, this

statement follows directly from Dai-Liu-Ma [10].

Proof. The first statement follows directly by applying Theorem 5.1.a) for Y := {y0}. Remark

that for Y as above, the second fundamental form vanishes, so the second term of the asymptotic

expansion from Theorem 5.3 vanishes according to (5.4). The second statement of Theorem 5.12

then follows from this remark, the application of Theorem 5.3 for Y := {y0} and r = 1 and the

use of Remark 5.6.d).
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