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Abstract

We introduce the extremal range, a local statistic for studying the spatial extent of
extreme events in random fields on R2. Conditioned on exceedance of a high threshold
at a location s, the extremal range at s is the random variable defined as the smallest
distance from s to a location where there is a non-exceedance. We leverage tools from
excursion-set theory to study distributional properties of the extremal range, propose
parametric models and predict the median extremal range at extreme threshold lev-
els. The extremal range captures the rate at which the spatial extent of conditional
extreme events scales for increasingly high thresholds, and we relate its distributional
properties with the bivariate tail dependence coefficient and the extremal index of
time series in classical Extreme-Value Theory. Consistent estimation of the distri-
bution function of the extremal range for stationary random fields is proven. For
non-stationary random fields, we implement generalized additive median regression
to predict extremal-range maps at very high threshold levels. An application to two
large daily temperature datasets, namely reanalyses and climate-model simulations
for France, highlights decreasing extremal dependence for increasing threshold lev-
els and reveals strong differences in joint tail decay rates between reanalyses and
simulations.
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1 Introduction

Assessing the spatial and temporal correlation of extreme events is an important modeling

step in applications of environmental statistics where extreme risks arise from concurrence

and compounding of extremes (Dombry et al. 2018, AghaKouchak et al. 2020). We here

focus on assessing the spatial contiguity of extreme events based on excursion sets with

the aim to avoid strong parametric assumptions and high numerical cost when inferring

spatial extremal dependence properties from large datasets on regular grids. Analysis of

excursion sets has become valuable in spatial statistics (e.g., Bolin & Lindgren 2015, Som-

merfeld et al. 2018) and computer vision (e.g., Bleau & Leon 2000, Sezgin & Sankur 2004),

especially for data on regular grids, such as climate model output, remote sensing data or

medical images. We use the framework of Extreme-Value Theory (EVT, de Haan & Fer-

reira 2006), useful to formulate general tail-regularity assumptions and enable statistical

extrapolation towards very high and even yet unobserved quantiles. The standard asymp-

totic models in spatial EVT exhibit asymptotic dependence where the limiting dependence

structure of threshold exceedances is characterized by peaks-over-threshold stability (Fer-

reira & de Haan 2014, Dombry & Ribatet 2015, Thibaud & Opitz 2015). However, strong

empirical evidence from many environmental processes advises against this property (Tawn

et al. 2018, Huser & Wadsworth 2022). Often, spatial dependence between threshold ex-

ceedances is lost as thresholds are increased, and it may ultimately vanish in the case of

asymptotic independence. More flexible subasymptotic models have been proposed to ac-

commodate asymptotic independence or even both situations of asymptotic (in)dependence

(Huser et al. 2017, Huser & Wadsworth 2022, Zhang et al. 2022).

Here, we use a setting borrowing from the idea of spatial conditional extremes (Heffernan &

Tawn 2004, Wadsworth & Tawn 2022) to better understand spatial joint tail decay behavior

near a location of interest. The tail dependence coefficient limu→1 P(F2(X2) > u | F1(X1) >

u) of two random variables Xi ∼ Fi, i = 1, 2, is a conditional probability that is a routinely

used exploratory and diagnostic tool to assess the strength of bivariate extremal dependence

(Coles et al. 1999). In spatial statistics, however, one usually has access to observations for

a relatively large number of locations, and so methods of assessing extremal dependence

based only on pairwise observations exclude pertinent information about multivariate, or

spatial dependence structure, and numerical computation may become very costly for data

available on regular grids with a large number of locations. There have been a number

of methods to overcome this issue. Wadsworth & Tawn (2022), Simpson et al. (2023),

for example, propose a parametric inference method based on a spatial extension of the

multivariate conditional extremes model of Heffernan & Tawn (2004), which also relies on

conditioning on an exceedance in one of the variables. Other works based on the conditional

extremes model are limited in their applicability to high-dimensional datasets. As noted by

Wadsworth & Tawn (2022), it is common in environmental data for the spatial dependence
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to weaken as the considered threshold increases. One interpretation of this phenomenon,

the inspiration for the statistics introduced in this paper, is that the spatial extent of

extreme events tends to decrease with an increase in the threshold level. Thus, in this

paper, we focus on the size and other geometric properties of excursion sets of continuous

planar random fields—the regions where the random fields exhibit threshold exceedances.

There is a vast literature concerning the geometric features of excursion sets of random

fields; see Adler & Taylor (2007) for a comprehensive introduction. For smooth ran-

dom fields, geometric summaries of excursion sets, namely their intrinsic volumes, carry

pertinent information about the asymptotic dependence structure at extreme thresholds

(Di Bernardino et al. 2022). In this paper, we introduce a new local statistic, the extremal

range. The extremal range at a site s ∈ R2 is defined as the largest radius r around s such

that all locations within r are extreme, conditioned on a threshold exceedance at s. We

will explore how the extremal range relates to the intrinsic volumes of the excursion set and

to the notion of asymptotic dependence defined by a positive value of the tail dependence

coefficient.

The extremal range can be seen as a spatial analogue to the extremal index (Moloney et al.

2019), a popular asymptotic statistic for time series extremes that allows for interpretation

as the reciprocal of the average number of consecutive time steps over which an extreme

cluster spans. In this sense, both quantities provide a notion of the size of clusters of

extremes. However, several notable distinctions can be made. Firstly, we consider two-

dimensional Euclidean space and not one single time dimension with regular discrete time

steps. In one dimension, the distributional properties of the extremal range and its asymp-

totics at high thresholds can be obtained by studying sojourn times of one dimensional

stochastic processes (Berman 1971, 1982, Kratz 2006, Pham 2013, Dalmao et al. 2019).

Where the classical extremal index is equal to unity in the case of asymptotic indepen-

dence and therefore not informative, the extremal range can be used to quantify the degree

of asymptotic dependence for asymptotically independent random fields. An important

practical difference further stems from the fact that edge effects at the boundary of the

observation window play a more important role in the spatial setting than in the temporal

one. Thus, for spatial environmental datasets, care needs to be taken when computing the

extremal range when the surrounding data is censored or unavailable.

Our results are organized as follows. §2 introduces the extremal range and notations. In

§3, we express the cumulative distribution function of the extremal range through the

intrinsic volumes of the excursion regions. In §4, we study the asymptotic behavior of

the extremal range for common random field models as the threshold at the conditioning

location s is increased, and propose a parametric model for the quantiles of the extremal

range. Inference methods for estimating the extremal range and its quantiles are described

in §5, and are applied to French temperature data by using a generalized additive quantile
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regression framework in §6. Some technical definitions and examples are postponed to

Appendix A. Finally, proofs and supporting lemmas for the theory established in §§3, 4,
and 5 are provided in Appendix B.

2 The extremal range and relevant notations

Let (Ω,F ,P) be a probability space and let X : Ω × R2 → R be a random field defined

on R2, the Euclidean plane, endowed with the Euclidean metric ||·|| and Lebesgue measure

L(·). For a study domain S ⊆ R2, let ∂S denote its topological boundary. For x ∈ R2,

denote the distance between x and a non-empty set S by dist(x, S) := inf{||x− s|| : s ∈ S}.
Throughout this paper, u : R2 → R denotes a deterministic threshold that is allowed to vary

in space, and we focus on the binary random field of excursion indicators {X(t) > u(t)}t∈R2 .

This is expressed in terms of the following definition.

Definition 1 (Excursion set). Let X be a random field on R2 and u : R2 → R be a threshold

function that may vary in space. Define the excursion set of X to be

EX(u) := {t ∈ R2 : X(t) > u(t)}.

Definition 2 (Extremal range). For r > 0 and s ∈ R2, let B(s, r) := {t ∈ R2 : ||t− s|| ≤
r} denote the closed ball of radius r centered at s. Let R̃(u) : Ω × R2 → R+ ∪ {0,∞} be a

random field defined by

R̃(u)(t) := sup
{
r ∈ R+ : B(t, r) ⊂ EX(u)

}
= dist

(
t, (EX(u))

c), t ∈ R2.

Let s ∈ R2 satisfy u(s) < x∗(s), with x∗(s) := inf{x ∈ R : P(X(s) > x) = 0} denoting the

upper end-point of the marginal density of X at s. Define the extremal range at s, denoted

R
(u)
s , to be the random variable whose pushforward measure is given by

P(R(u)
s ∈ A) = P

(
R̃(u)(s) ∈ A | X(s) > u(s)

)
, A ∈ B(R).

Remark 1. As discussed in Moloney et al. (2019), the inverse of the so-called extremal

index quantifies the average size of clusters of threshold exceedances for time series, i.e.,

for one-dimensional discrete random processes. Analogously, the extremal range provides a

notion of the size of the clusters of sites that exhibit threshold exceedances for continuous,

two-dimensional random fields.

The definitions below are relevant to establish the main results for the extremal range.

Definition 3 (Erosion and dilation). For two nonempty sets A,B ⊆ R2, let A ⊕ B :=

{x+ y : x ∈ A, y ∈ B} be the Minkowski sum of A and B. For r ∈ R, and S ⊆ R2 let

Sr :=

S ⊕B(0, r), for r ≥ 0,(
Sc ⊕B(0,−r)

)c
, for r < 0,

denote respectively the set dilation and the set erosion, depending on the sign of r.
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Definition 4 (Connected components of the level set). Let T ⊂ R2 be compact and define

N
(u)
T to be the number of connected components of the level curve ∂EX(u) ∩ T .

Definition 5 (Lipschitz-Killing curvature densities). For a set S ⊂ R2, let χ(S) denote

the Euler-Poincaré characteristic of S (equal to the number of connected components of

S minus the number of holes in S) and let ℓ(∂S) denote the perimeter length of S (the

one-dimensional Hausdorff measure of its boundary). Recall that L denotes the Lebesgue

measure. For a compact set T ⊂ R2 with positive Lebesgue measure, assuming the limits

exist, define the curvature densities,

C∗
0(EX(u)) := lim

n→∞

E[χ(EX(u) ∩ nT )]

L(nT )
,

C∗
1(EX(u)) := lim

n→∞

E[ℓ(∂(EX(u) ∩ nT ))]

2L(nT )
,

C∗
2(EX(u)) := lim

n→∞

E[L(EX(u) ∩ nT )]

L(nT )
,

where nT is the result after linearly rescaling T by n.

Note that C∗
i (EX(u)), for i = 0, 1, 2, are the limiting normalized intrinsic volumes of the

excursion set EX(u) seen on large domains (Schneider & Weil 2008, Theorem 9.3.3). They

play an important role in determining the shape of the distribution function of the extremal

range; a topic that we investigate in the following section.

3 Linking the extremal range and intrinsic volumes

Proposition 1. Suppose that the random field X is continuous and stationary, and that u

is constant and less than x∗(0). For any compact set T ⊂ R2 with L(T ) > 0, the distribution

function of R
(u)
0 is given by

P
(
R

(u)
0 ≤ r

)
= 1−

E
[
L
(
EX(u)−r ∩ T

)]
E
[
L
(
EX(u) ∩ T

)] , (1)

for r ≥ 0, and P
(
R

(u)
0 < 0

)
= 0, where the subscript −r denotes set erosion by a radius of

r (see Definition 3, Equation (1)).

The proof of Proposition 1 is provided in Appendix B.1. The extremal range has close

links with the spherical erosion function (Serra 1984, Ripley 1988), which describes the

distribution function of the distance of a uniform random point in a set to the set’s bound-

ary. Proposition 1 states that the eroded excursion set EX(u)−r carries information about

the distribution of R
(u)
s through its area when intersected with a compact set T . Areas

of excursion sets and their erosion can be efficiently estimated with routine algorithms,
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such that Equation (1) can be used for estimating the distribution function of R
(u)
0 in the

stationary setting by replacing expectations with empirical estimates.

Next, we show that under certain regularity conditions, a polynomial expression of the

Lebesgue measure of an eroded set in terms of its Lipschitz-Killing curvatures (see Def-

inition 5) can be obtained as corollary to the well-known Steiner formula (Federer 1959,

Theorem 5.6). The most general case for which this is known to hold is when the comple-

ment of the considered set has positive reach (see Definition 9 in Appendix A.1).

Assumption 1. Suppose that for the random field X paired with the threshold function u,

the excursion set EX(u) is a stationary random set. In addition, for any compact, convex

T ⊂ R2 with positive Lebesgue measure, suppose that

• the densities in Definition 5 exist, are finite, and are independent of T ;

• EX(u)
c ∩ T is almost surely a positive reach set;

• E[N (u)
T ] < ∞ (see Definition 4).

Under Assumption 1, the random fieldX is not necessarily stationary, as u is not necessarily

a constant function in space. What is necessary instead is that the excursion set at the level

u be stationary. An important, easily verifiable consequence of this is that C∗
2(EX(u)) =

P(X(0) > u(0)). The condition that EX(u)
c∩T is positive reach implies a certain regularity

or smoothness of ∂EX(u). Conversely, compact subsets of R2 with a C2 smooth boundary

have positive reach (Thäle 2008, Proposition 14). Assumption 1 also implies that EX(u) is

almost surely open, as its complement must be closed to satisfy the positive reach property.

Examples of random fields that satisfy the last item in Assumption 1 are the Gaussian fields

discussed in Beliaev et al. (2020). However, Gaussianity is not a necessary condition for

our results, except for Proposition 2 focusing on results for such fields. A final remark on

Assumption 1 is that it allows for the random fields X and X −u to be discontinuous with

positive probability.

An important property of the extremal range under Assumption 1 is asserted by the fol-

lowing Lemma, which we prove in Appendix B.1.

Lemma 1. Under Assumption 1, P(R(u)
0 ≤ r) is continuous in r, for r > 0.

The main result of this section is the following first-order approximation of the distribution

function of the extremal range. The proof of Theorem 1 can be found in Appendix B.1.

Theorem 1. Under Assumption 1, for r > 0, it holds that

P(R(u)
0 ≤ r)

r
−−→
r→0

2C∗
1(EX(u))

C∗
2(EX(u))

. (2)
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Theorem 1 shows that the distribution of the extremal range follows a first-order Taylor

expansion for positive values of the radius r near 0. Moreover, the linear coefficient is pro-

vided by the limit on the right-hand side of Equation (2). By studying how this coefficient

behaves for large thresholds, we gain insight about the spatial extent of high threshold

exceedances.

4 The asymptotic behavior of the extremal range

We study the asymptotic behavior of the extremal range as the threshold function u tends to

the location-wise upper endpoint of the distribution of X everywhere in space. By studying

the extremal range, we aim to capture information about the dependence structure of the

random field X. Therefore, we use the threshold function up : R2 → R defined below as a

location-wise quantile, such that it naturally adapts to the margins of the random field X.

Definition 6. For p ∈ (0, 1) and a random variable Y : Ω → R, let qp(Y ) ∈ R denote

the p-quantile of Y , i.e., qp(Y ) := inf{r ∈ R : P(Y ≤ r) ≥ p}. Now, define the adaptive

threshold up by the mapping up(s) := qp(X(s)), for s ∈ R2.

Theorem 1 allows us to study how the extremal range decreases as the considered threshold

increases, i.e., as p → 1. This important result is summarized in the following corollary.

Corollary 1. Suppose that Assumption 1 holds for the threshold function up, for all suffi-

ciently large p ∈ (0, 1). Then a function g : (0, 1) → R satisfies

lim
p→1

g(p)
C∗

2(EX(up))

2C∗
1(EX(up))

=
1

K
, (3)

for some K ∈ R+, if and only if

lim
p→1

lim
r→0

P(g(p)R(up)
0 ≤ r)

r
= K. (4)

Proof. Theorem 1 tells us that for any p,

lim
r→0

P(g(p)R(up)
0 ≤ r)

r
=

2C∗
1(EX(up))

g(p)C∗
2(EX(up))

.

Sending p → 1 yields the desired result.

An interpretation of Corollary 1 is that the probability density function of g(p)R
(up)
0

just to the right of 0 approaches 1 if and only if g(p) is asymptotically equivalent to

2C∗
1(EX(up))/C

∗
2(EX(up)) as p → 1. In this sense, Corollary 1 shows how R

(up)
0 scales as

p → 1. We are not able to use Corollary 1 to establish a non-degenerate limit distribution

of
[
2C∗

1(EX(up))/C
∗
2(EX(up))

]
R

(up)
0 as p → 1; it is not always possible to exchange the

order of the limits in Equation (4). A counterexample is provided in Appendix A.2.

7



4.1 Non-degenerate limit distributions of the extremal range

Here, we study certain cases of widely used spatial random field models where the ex-

tremal range is known to have a non-degenerate limit distribution at high thresholds after

appropriate rescaling. This will serve as basis for defining parametric statistical models for

the extrapolation behavior of the extremal range at extreme conditioning thresholds. The

random fields that we will consider in this section are stationary, so we choose a threshold

function u that is constant throughout space. To ease notation, we write u to denote both

the constant mapping u : R2 → R and its image in R.

4.1.1 Gaussian random fields

For a smooth, stationary Gaussian process Y on R, if one is to condition on the event

{X(0) > u} for some large threshold u ∈ R, one can show using tools developed in Kac

& Slepian (1959) that the connected component of the excursion set containing 0 is a

random interval with expected length asymptotically equivalent to 1/u. By analogy, after

appropriately rescaling in the spatial dimension, one finds that the limit process is a random

parabola with deterministic shape. These insights are formally generalized for the two-

dimensional case in the following proposition formulated for smooth standard Gaussian

fields, for which a proof is given in Appendix B.2.

Proposition 2. Suppose that X is a stationary, isotropic, centered Gaussian random field

on R2 with covariance function

ρ(h) = 1− α

2
||h||2 + o(||h||2), α > 0, (5)

for h in a neighbourhood of 0. Then P(uR(u)
0 ∈ ·) converges to a non-degenerate probability

distribution, as u → ∞.

A stationary, isotropic Gaussian random field with unit variance and C1-smooth sample

paths has the covariance function in (5) with α equal to its second spectral moment; see

Leadbetter et al. (1983, page 151) and Cambanis (1973). The isotropic, Matérn covariance

function

ρ(h) =
21−ν

Γ(ν)

(√
2ν ||h||
l

)ν

Kν

(√
2ν ||h||
l

)
, ν, l > 0,

with Kν denoting the modified Bessel function of the second kind, satisfies (5) for ν > 1

and

α =
ν

l2(ν − 1)
.

For a random field X as described in Proposition 2, the expressions for C∗
1(EX(u)) and

C∗
2(EX(u)) are computed in Biermé et al. (2019) using the Gaussian Kinematic Formula
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(Adler & Taylor 2007, Theorem 15.9.5). By the results of Gordon (1941) concerning the

Mill’s ratio of the Gaussian distribution,

2C∗
1(EX(u))

C∗
2(EX(u))

=

√
αe−u2/2

2(1− Φ(u))
∼
√

πα

2
u,

where Φ denotes the standard Gaussian cumulative distribution function, and α is as in (5).

Therefore, by using Corollary 1 with g(p) = up(0), the probability density of uR
(u)
0 just to

the right of 0 approaches
√

πα/2, as u → ∞. If one were to show in addition the uniform

convergence of the density of the extremal range, one may conclude that
√

πα/2 is the

limiting value as r → 0 of the limiting density, as u → ∞.

In practice, a useful approximation of the distribution function R
(u)
0 for large u and small

r for Gaussian random fields is therefore

P(R(u)
0 ≤ r) ≈

√
πα

2
ur,

where an estimate α̂ of the second spectral moment α based on a parametric covariance

function ρ(h) could be plugged in to obtain an estimate for spatial data corresponding to

relatively smooth spatial surfaces.

4.1.2 Regularly varying fields

Here, we recall the core elements of the theory of regularly varying random fields, and

the related ℓ-Pareto processes from Ferreira & de Haan (2014), Dombry & Ribatet (2015),

commonly used as models for spatial processes conditioned on high threshold exceedances

of a certain cost functional.

Let T be a compact domain satisfying rT := sup{r ∈ R+ : B(0, r) ⊆ T} > 0. Let

X be a continuous, stationary random field defined on R2, and let X|T be the random

field X restricted to the domain T . Let C0 be the set of continuous functions from T

to [0,∞), excluding the constant function 0. Let S = {x ∈ C0 : ||x||T = 1}, where

||x||T := supt∈T x(t).

In Appendix A.3, we recall from Dombry & Ribatet (2015) what it means for a random

field to be regularly varying with exponent α and spectral measure σ on S. The limiting

behaviour of these random fields at high thresholds can be well described by ℓ-Pareto

random fields (see Lemma 5 in Appendix B.3); more recently also called r-Pareto random

fields with r standing for risk (de Fondeville & Davison 2022). These random fields are

characterized by a cost functional ℓ : C0 → [0,∞) that is homogeneous of order 1, i.e.,

ℓ(ux) = uℓ(x) for all x ∈ C0 and u > 0. The precise definition of an ℓ-Pareto random field

is provided in Definition 10 in Appendix B.3. For now, we borrow the notation of Dombry

& Ribatet (2015) and write Pℓ
α,σℓ

for the set of ℓ-Pareto random fields with exponent α and

spectral measure σℓ.

9



For regularly varying X, it is possible to express the limit distribution of the extremal

range in terms of two different constructions of ℓ-Pareto processes.

Proposition 3. Suppose that X|T is regularly varying with exponent α > 0 and spectral

measure σ on S. Define the cost functionals f and g mapping from C0 to [0,∞) by f : x 7→
||x||T and g : x 7→ x(0), and let YT ∈ Pf

α,σf
, and Y0 ∈ Pg

α,σg
. Here, σf (A) := σ(S ∩A)/σ(S)

and σg(A) :=
1
c

∫
S x(0)

α1{x/x(0)∈A}σ(dx) for A ∈ B(C0), with c :=
∫
S x(0)

ασ(dx). Then, for

r ∈ (0, rT ),

lim
u→∞

P(R(u)
0 ≤ r) = 1−

E
[
L
(
(EYT

(1) ∩ T )−r

)]
L(T−r)P(YT (0) > 1)

= P
(
∃t ∈ B(0, r) s.t. Y0(t) ≤ 1

)
. (6)

The proof of Proposition 3 is postponed to Appendix B.3.

4.2 Connections with the tail dependence coefficient

Taking a more non-parametric perspective, we continue using the threshold function up as

defined in Definition 6 that adapts to non-stationary random fields.

Recall that for two sites s1, s2 ∈ R2, the tail dependence coefficient function of a spatial

random field X is defined as χ(s1, s2) := limp→1 χp(s1, s2), where,

χp(s1, s2) :=
P (X(s1) > up(s1), X(s2) > up(s2))

1− p
= P (X(s1) > up(s1) | X(s2) > up(s2)) .

Here, we use the following definition of asymptotic (in)dependence. The random field X

is said to be asymptotically independent if χ(s1, s2) = 0 for all s1 ̸= s2, and asymptotically

dependent if χ(s1, s2) > 0, for all s1, s2 ∈ R2. The asymptotic dependence of X forces the

asymptotic behavior of R
(u)
s as u → ∞. Indeed, if X exhibits asymptotic independence,

then we have immediately that R
(u)
s

P−→ 0, as u → ∞. This simple observation is a corollary

of the following proposition.

Proposition 4. Let X be any random field on R2. For all s ∈ R2 and all p ∈ (0, 1),

P
(
R

(up)
0 ≤ ||s||

)
≥ 1− χp(s, 0).

Proof. The event {R̃(up)(0) > ||s|| , X(0) > up} is contained in the event {X(s) > up, X(0) >

up}. Therefore, P
(
R̃(up)(0) > ||s|| , X(0) > up

)
≤ P

(
X(s) > up, X(0) > up

)
. A division

by P(X(0) > up) (equal to 1 − p if X(0) has a continuous distribution function) implies

P
(
R̃(up)(0) > ||s|| | X(0) > up

)
≤ P

(
X(s) > up | X(0) > up

)
, and the result holds by

taking compliments.

Therefore, asymptotic dependence is a necessary condition forR
(up)
0 to have a non-degenerate

limit distribution as p → 1. However, it is not sufficient. In Appendix A.2, we study a ran-

dom field for which R
(up)
0

P−−→
p→1

0; the following theorem makes an important link between

the extremal range and the tail dependence coefficient, and establishes that in this specific

case, χ(0, s) = 1 for all s ∈ R2.
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Theorem 2. Let X be an isotropic random field, and suppose that for p ∈ (0, 1), Assump-

tion 1 is satisfied for the threshold function up. Let h be a real function of p ∈ (0, 1) such

that

h(p)
C∗

2(EX(up))

C∗
1(EX(up))

−−→
p→1

∞.

Then, for any fixed s ∈ R2, χp(s/h(p), 0) −−→
p→1

1.

Proof. Assumption 1 provides an alternative set of hypotheses to support the result of

Cotsakis et al. (2022, Theorem 2.1) which states that for p ∈ (0, 1) and s ∈ R2,

1

q
P
(
X(qs) ≤ up(qs), X(0) > up(0)

)
−−→
q→0

C∗
1(EX(up))

π
||s|| ,

and the limit is approached from below. Thus, for any q ∈ R+, a division by 1− p yields

1− χp(qs, 0)

q
≤ C∗

1(EX(up))

C∗
2(EX(up))π

||s|| .

By setting q = 1/h(p), we find that

1− χp(s/h(p), 0) ≤
C∗

1(EX(up))

h(p)C∗
2(EX(up))π

||s|| −−→
p→1

0.

The desired result holds since χp ∈ [0, 1] for all p ∈ (0, 1).

Remark 2. Recall that 2C∗
1(EX(up))/C

∗
2(EX(up)) is the limit value in Theorem 1, giving

the first-order approximation of the cumulative distribution function of the extremal range.

For many random fields, this is seemingly the rate at which space should be rescaled as

p → 1 if one is to expect the tail dependence coefficient and the distribution function of

the extremal range to stabilize to values strictly between 0 and 1.

4.3 A parametric model for the extremal range

We have seen that tail dependence coefficient determines whether a random field is asymp-

totically dependent or independent according to our definition. While it is natural to study

pairwise exceedances in discrete data, an attractive alternative is to describe the spatial

dependence of continuous data using the extremal range. The extremal range tends to 0

in probability as higher thresholds are considered for asymptotically independent random

fields; see Proposition 4. The rate of this convergence provides an alternative, more pre-

cise notion of extremal independence. To formalize this idea, we propose the following

assumption on the random field X.

Assumption 2. For each s ∈ R2, the distribution of R
(up)
s is non-degenerate for p ∈ (0, 1),

and there exists θs ∈ [0,∞) such that for all a > 0 and α ∈ (0, 1),

qα(R
(up′ )
s )

qα(R
(up)
s )

−−→
p→1

a−θs ,

11



where p′ = 1− (1− p)a.

Assumption 2 is equivalent to demanding that the quantile functions qα(R
(u)
0 ), for α ∈

(0, 1), u ∈ R+, are regularly varying in u after X is transformed to have standard expo-

nential margins. The indices of regular variation are allowed to vary throughout space. For

asymptotically independent models, the quantile function qα(R
(up)
s ) tends to decrease as

p → 1, and so one expects θs to be large. However, for asymptotically dependent models,

the same quantile function approaches a positive constant as p → 1, in which case, one can

expect θs = 0. Contrary to other popular measures of asymptotic dependence, θs distin-

guishes between varying degrees of asymptotic independence. A consistent, local estimator

for θs is defined in §5.2, thus providing a measure of the spatial asymptotic independence

at high thresholds.

In addition, §5.3 outlines how linear quantile regression can be used to extrapolate or

interpolate the quantiles of the extremal range when the excursion sets are observed at

multiple levels.

Remark 3. The Gaussian (resp. regularly varying) random fields studied in §4.1 satisfy

Assumption 2 with θs = 1/2 (resp. θs = 0) for all s ∈ R2. Therefore, Assumption 2 can be

applied to both asymptotically dependent and asymptotically independent models.

5 Inference

5.1 Empirical CDF of the extremal range for stationary fields

The results developed in §§3 and 4 lead to natural statistical procedures for estimating the

extremal range. We begin by describing a simple procedure for strongly mixing sequences

of random fields that are assumed to be stationary and identically distributed. Independent

replications of the random field are trivially strongly mixing.

Proposition 5. Let T ⊂ R2 be compact, and suppose that r̄T := sup{r ∈ R+ : L(T−r) >

0} > 0. Let X1, . . . , Xn be a strongly mixing sequence of random fields defined on T , each

equal in distribution to the stationary random field X (Rosenblatt 1956). Define

R̃
(u)
i (t) := dist

(
t, (EXi

(u))c), (7)

for some threshold u ∈ R satisfying P(X(0) > u) > 0, and

F̂n(r) :=



∑n
i=1 L({t ∈ T−r : 0 < R̃

(u)
i (t) ≤ r})∑n

i=1 L(EXi
(u) ∩ T−r)

, if
n∑

i=1

L(EXi
(u) ∩ T−r) > 0

0 , if
n∑

i=1

L(EXi
(u) ∩ T−r) = 0,

for r ∈ (0, r̄T ). It follows that F̂n(r)
P−−−→

n→∞
P(R(u)

0 ≤ r), uniformly for r ∈ (0, r̄T ).
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Proof. Fix r ∈ (0, r̄T ) and u ∈ R. By the strongly mixing assumption, the sequences(
L({t ∈ T−r : 0 < R̃

(u)
i (t) ≤ r})

)
i≥1

and
(
L(EXi

(u)∩ T−r)
)
i≥1

are mean-ergodic, and so we

write

F̂n(r) =
1
n

∑n
i=1 L({t ∈ T−r : 0 < R̃

(u)
i (t) ≤ r})

1
n

∑n
i=1 L(EXi

(u) ∩ T−r)

P−−−→
n→∞

E
[
L({t ∈ T−r : 0 < R̃(u)(t) ≤ r})

]
E
[
L(EX(u) ∩ T−r)

]
=

∫
T−r

P
(
0 < R̃(u)(t) ≤ r

)
dt∫

T−r
P
(
X(t) > u

)
dt

=
P
(
R̃(u)(0) ≤ r, X(0) > u

)
P
(
X(0) > u

) = P
(
R

(u)
0 ≤ r

)
.

Uniform convergence follows from the continuity of the limiting distribution function (see

Lemma 1) and Dini’s theorem (Friedman 2007, p.199).

Proposition 5 therefore provides a convenient way to estimate the empirical distribution

function of the extremal range under the assumption of stationarity for a series of time-

replicated spatial fields.

5.2 Consistent estimation of the tail decay rate of the extremal

range

Recall that under Assumption 2, the quantiles of the extremal range are parameterized

by an index of regular variation θs for each site s in the study domain, which we call tail

decay rate. We propose a local estimator for this quantity and show that it is consistent,

providing the corresponding rate of convergence.

Definition 7. Let X1, . . . , Xn be n realizations of the random field X. For p ∈ (0, 1),

define the empirical median of R
(up)
s to be

q̂50%
(n)(R(up)

s ) := argmin
x∈R+

{
n∑

i=1

∣∣x− R̃
(up)
i (s)

∣∣1{R̃(up)

i (s)>0}

}
,

with R̃
(up)
i (s) as in (7). For p1, p2 ∈ (0, 1), p1 ̸= p2, define

θ̂s
(n)

(p1, p2) =
log
(
q̂50%

(n)(R
(up2 )
s )

)
− log

(
q̂50%

(n)(R
(up1 )
s )

)
log(− log(1− p1))− log(− log(1− p2))

. (8)

If R̃
(up)
i (s) = 0, ∀i = 1, . . . , n, for either p = p1 or p = p2, then both θ̂s

(n)
(p1, p2) and the

empirical median q̂50%
(n)(R

(up)
s ) are understood to be 0.

Proposition 6. Let X1, . . . , Xn be n independent realizations of the random field X, sat-

isfying Assumption 2. Fix p0 ∈ (0, 1), and let (pn)n≥1 be a sequence in (0, 1) tending to 1

such that n(1− pn) → ∞ as n → ∞. Then, for each s ∈ R2, the estimator defined in (8)

satisfies

θ̂s
(n)

(p0, pn)
P−−−→

n→∞
θs,
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where θ̂s
(n)

(p0, pn) is defined in Definition 7, and θs is defined in Assumption 2.

The proof of Proposition 6 can be found in Appendix B.4. The estimator in (8) can be

viewed as the slope of a median regression with response log
(
q̂50%

(n)(R
(up2 )
s )

)
and covariate

log(− log(1− p1)). This motivates the following median regression approach for predicting

the median extremal range at very extreme probability levels p close to 1.

5.3 Extrapolation for non-stationary data using median regres-

sion

As we have seen previously, under Assumption 1, the random excursion set EX(u) is sta-

tionary. This implies that the distribution of R
(u)
s is invariant in the spatial location s,

allowing one to extract information from the entire spatial domain to gain insights on

the behavior of the extremal range at s. When EX(u) is non-stationary, it is likely that

there is insufficient information to infer the entire distribution of R
(u)
s (especially when

P(X(s) > u(s)) is small). Thus, it is reasonable to instead estimate a summary statistic of

R
(u)
s . The median, q50%(R

(u)
s ), is an appropriate statistic to estimate for several reasons: it

is robust to censorship of large observations and to strongly discretized small values arising

with data available on pixel grids; the median commutes with monotonic rescalings; one

does not require the existence of moments of the distribution of the extremal range; the

behavior of the median is controlled under Assumption 2 with α = 1/2.

Definition 8. The Median Extremal Range (MER) at a site s ∈ R2 at the threshold up(s),

for p ∈ (0, 1), is defined as

MER(s; p) := q50%(R
(up)
s ).

Suppose that for several realizations X1, . . . , Xn of X, the excursion set is observed at

several high thresholds u(1), . . . , u(k). That is, we observe the sets EXi
(u(j)) for (i, j) ∈

{1, . . . , n} × {1, . . . , k}. Under Assumption 2,

log
(
MER(s; p′)

)
− log

(
MER(s; p)

)
log
(
− log(1− p′)

)
− log

(
− log(1− p)

) −−→
p→1

−θs, (9)

for any a ∈ (0, 1) (see Assumption 2). Thus, plotted on a log-log plot, the slope of the

graph of the MER(s; p) against − log(1 − p) tends to a constant −θs, as p → 1. This

justifies the use of quantile regression to estimate the median of our empirical observations

of log R̃(up)(s) against log
(
− log(1 − p)

)
for several p ∈ (0, 1) moderately close to 1. In

this way, the height of the resulting regression line provides a model for the median of

logR(up)(s). Exponentiating the regression line provides a model for the MER(s; p) for

arbitrarily large p ∈ (0, 1) and therefore allows us to extrapolate extremal-range properties

at very high quantile levels for which only few or no exceedances at all are available in
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the data. Another important benefit of median regression that we can include covariates,

such as the spatial coordinates, into the intercept and slope, and we can estimate nonlinear

covariate effects thanks to generalized additive quantile regression, as highlighted in the

following data application.

6 Application to gridded temperature data

We use the estimation methods introduced in §5 to identify the local spatial extent of

extremes of daily average temperatures in climate model outputs and provide insights into

their spatial patterns. Temperature is a weather variable that is known to vary relatively

smoothly in space (Perkins et al. 2012). We study two datasets available for mainland

France for a regular pixel grid at 8km resolution in the metric Lambert-II projection.

The primary dataset is based on the SAFRAN reanalysis (Vidal et al. 2010) and spans

the 1991–2020 period excluding 1997 and 1998. Reanalysis is climate model simulation

conditioned on observational data, and is routinely used in climate-change impact studies

as a proxy for real weather and climate. We compare our results for the reanalysis model

to those obtained for temperatures simulated for the historical period 1951–2005 using

a couple of Global-Circulation-Model and Regional-Climate-Model (IPSL-WRF ), one of

the reference models provided by the French weather service for studying climate change

impacts (http://www.drias-climat.fr/), with data available on the same spatial grid as

the SAFRAN reanalysis. We perform the same analyses for each of the two datasets, so

that any differences in the results are due to statistical uncertainties (that we assess), and

to fundamental differences in the distributional properties of the datasets.

We consider only data for summer months (June 1 to August 31) and assume temporal

stationarity. We first estimate up(s), the p-quantile of X(s), for p ∈ {0.85, 0.86, . . . , 0.98},
using standard methods, for each location s separately. As we have preselected the summer

months, during which the majority of temperature extremes typically manifest, it is justifi-

able to use a set of quantile levels including values that are relatively low for extreme-value

analysis. This provides an estimate of the excursion set EX(up) for each day; see Fig-

ure 2. For each p and each pixel inside an excursion set, we estimate R̃(up) using the fast

marching method (Sethian 1996) implemented in the R package fastmaRching (Silva &

Steele 2014). To manage the absence of temperature data outside of France, we define our

estimate of R̃(up)(s) to be the smallest distance from s to a site s′ in mainland France with

X(s′) ≤ up(s
′). In terms of boundary effects, this is equivalent to considering the modified

excursion set EX(up)∪T c with T corresponding to mainland France. The histograms of the

empirical distribution of extremal ranges R̃(up)(s)—provided that R̃(up)(s) > 0—is shown

in Figure 1 for the quantile levels p = 0.85 and p = 0.98, for all locations pooled together.

We see a clear shift towards generally smaller extremal ranges at the higher threshold,
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Figure 1: Histograms of estimated extremal ranges at two quantile levels for SAFRAN

reanalysis (left) and IPSL-WRF simulations (right).

which means that dependence strength seems to decrease with the quantile level. More-

over, reanalysis data tend to have clearly larger extremal ranges than simulation data at

both quantile levels, which hints at structural differences in the geometries of extremes

among these two types of data, with generally smaller spatial clusters of extremes in the

simulation data.

Next, we more precisely estimate the tail decay behavior of the extremal range and its

spatial variability. Operating under Assumption 2, we estimate the parameters of a model

for the MER(s; p); see Definition 8. The model, as suggested by (9), is given by

log
(
MER(s; p)

)
= βs − θs log(− log(1− p)), (10)

where the model parameters βs and θs are allowed to vary over space. Using the set

of estimates of R̃(up) for all p and all pixel-days in an excursion set, we use log R̃(up)(s)—

provided that R̃(up)(s) > 0—as the response variable in a generalized additive median

regression with covariates s and x := log
(
−log(1−p)

)
. We implement a generalized additive

model with spline tensor products defined over spatial coordinates for the parameters βs

and θs, such that the their estimates vary smoothly in space (Wood 2017), i.e., we perform

a quantile regression with space-varying intercept and slope parameters. This modeling

strategy would further allow for incorporating other covariates, such as altitude, or time to

account for temporal trends.

We provide several diagnostic plots to illustrate the quantile regression fit. Figure 3 shows

a satisfactory fit of the regression line for the SAFRAN data at two pixels s1, s2 with

quite different intercept β̂s and slope θ̂s. Figure 4 provides maps of the estimates of the

MER(s; p) based on model (10) for two values of p. Standard deviations of estimates are

computed using a block jackknife based on blocks given by years, where the whole chain of

estimation is repeated for each jackknife sample. The resulting estimates of the MER(s; p)

correspond well with certain topographical features, even though this information was not
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Figure 2: Realizations of nested excursion sets EX(up) for p ∈ {0.85, 0.86, . . . , 0.98}, for
each of the four indicated dates in the SAFRAN reanalysis.
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Figure 3: Illustration of median regression of the extremal range for SAFRAN reanalysis

data. Fitted regression lines (red) of the model (10) for the log-median of the extremal

range at the two sites s shown in the map on the right. For p ∈ {0.85, 0.86, . . . , 0.98}, we
record a small blue point for all days where R̃(up)(s) > 0, i.e., where X(s) > up(s). For

each p, the empirical median of log R̃(up)(s) is plotted as a larger green point to aid with

visual diagnostic of the model fit. Multiplicity of points at discrete values is not shown.

provided to the model. The extremal range tends to be larger in planar regions, while it

tends to be smaller in mountainous regions, and near the Atlantic coast to the East.

Moreover, all jackknife-based estimates of the negative slopes θs, i.e., of the tail decay rate,

were positive, such that the signal against asymptotic dependence is significant around

all pixels s. Figure 5 depicts the estimates of θs for the model (10), and their standard

deviations. This parameter quantifies the joint tail decay rate near each location; see §4.3.
As discussed previously, θs ≤ 0 implies asymptotic dependence, whereas θs > 0 is a strong

indicator of asymptotic independence, as the implication is in the reverse direction (see

Proposition 4).

The results obtained for IPSL-WRF simulated temperatures differ quite drastically from

those obtained for the SAFRAN reanalysis data. Estimated extremal ranges are substan-

tially smaller for simulated temperatures and show less spatial variability and also differ-

ences in spatial patterns. Unless these differences arise from non-stationarity in time, our

study demonstrates that the IPSL-WRF climate model has strong biases in the extremal

range of temperatures when compared to the observation-based SAFRAN reanalysis.

7 Conclusion

The extremal range, particularly the evolution of the MER(s; p) as p ∈ (0, 1) tends to

1, quantifies the degree of asymptotic independence locally at the site s. It aids flexible
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Figure 4: Estimates of the MER(s; p) with relative standard errors (in %) for the SAFRAN

reanalysis dataset for p = 0.95 (first row) and p = 1 − 1/92 ≈ 0.989 (second row, corre-

sponding to a one-year return level). The same quantities are computed for the IPSL-WRF

simulated temperatures for p = 0.95 (third row) and p = 1 − 1/92 ≈ 0.989 (fourth row).

Color scales are the same across datasets and quantile levels.
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Figure 5: Estimates of the tail decay rate θs and its standard error for the SAFRAN

reanalysis data (first row) and the IPSL-WRF simulated data (second row). The estimate

is the negative slope of the model line in Figure 3. The larger θs, the less asymptotic

dependence there is at the site s; see §4.3. Color scales are the same for the two datasets.
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exploratory analysis of dependence in spatial extremes beyond the mathematically elegant

but rigid framework of asymptotically stable dependence in max-stable processes and other

regularly varying processes. We have opted for the median as a summary parameter that

allows for simple interpretation as a level that is on average exceeded in half of all cases of

marginal exceedance at the reference location. It further allows for relatively robust esti-

mation since it is less influenced by pixellization biases arising for small extremal ranges at

lower quantiles and by boundary effects arising for large extremal ranges at higher quan-

tiles. The proposed quantile regression approach further offers the possibility to include

other covariates to model and explain non-stationary extremal dependence, such as tempo-

ral trends due to climate change. Our estimation methods scale well even for large gridded

datasets with hundreds of thousands of pixels. By contrast with the common bivariate

statistics defined as a function of spatial distance, our approach avoids the rather arbitrary

and heuristic selection of location pairs to be considered for inferential purposes.

Data on regular grids at relatively high resolution, such as climate model output, provide

a good approximation of the framework of continuous geographic space underpinning the

concept of the extremal range. If data are not in this form, interpolation techniques such

as kriging, piecewise linear interpolation based on Delaunay triangulation, or more sophis-

ticated basis-function methods, could be applied first before conducting estimation of the

extremal range.

While our focus was on descriptive statistics here, the extremal range could also be useful

for generative modeling based on spatial random fields, for example by using MER(s; p) as

a goodness-of-fit diagnostics or as a covariate in the dependence structure.

The extremal range is a tool at the intersection of spatial EVT, stochastic geometry and

topological data analysis. Further research in this area could help foster a high-dimensional

statistical learning toolbox for studying complex structures in large volumes of climate data.

Appendix

A Technical definitions and examples

A.1 Positive reach

Definition 9. (Federer 1959) The reach of a set S ⊆ R2 is given by sup{r ∈ R : ∀x ∈
Sr, ∃!s ∈ S nearest to x}. A subset of R2 is termed positive reach if its reach is positive.

Recall from Federer (1959) that a closed set is convex if and only if its reach is infinite.

Therefore, the empty set is trivially a positive reach set.
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A.2 A case where asymptotic dependence is not captured by the

extremal range

Let E ∼ Exp(1), θ ∈ Unif([0, 2π]), and U ∼ Unif([0, 1]2) be independent, and consider the

stationary, isotropic random field {X(t)}t∈R2 defined by

X(t) = E

(
1−

∑
s∈Z2

1{||s+U−ERθ(t)||<3−E}

)
,

where Rθ(t) is the image of t rotated by an angle θ about the origin. Notice that X satisfies

Assumption 1, for if the excursion set is not empty, it is the complement of the union of

disks of radius 3−E with centers on a randomly oriented square grid with spacing E−1. If

for some p ∈ (0, 1) we have X(0) > up, then E > up and X(R−θ(U)/E) = 0 ≤ up. Thus,

R̃(up)(0) < ||U || /E <
√
2/up which tends to 0 as p → 1. Thus, R

(up)
0

P−−→
p→1

0. It is not hard

to check that
C∗

2(EX(up))

C∗
1(EX(up))

−−→
p→1

∞,

contrary to the behaviour of R
(up)
0 .

A.3 Regularly varying random fields

The process X|T is said to be regularly varying with exponent α and spectral measure σ

on S if there exists a function a : R+ → R+ such that a(u) → ∞ and

uP
(

1

||X||T
X|T ∈ A, ||X||T > ra(u)

)
−→ r−ασ(A)

as u → ∞, for all r > 0 and A ∈ B(S) satisfying σ(∂A) = 0 (see Definition 1 in Dombry &

Ribatet (2015)). If X|T is regularly varying with exponent α and spectral measure σ, we

write X|T ∈ RVα,σ(C0).

B Proofs and auxiliary results

B.1 Proofs for §3

Proof of Proposition 1. Since R
(u)
0 is almost surely non-negative, it suffices to check that

(1) holds for r ≥ 0. Note that by the continuity of X, the excursion set EX(u) is open,
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and so the events {R̃(u)
0 > r} and {B(0, r) ⊂ EX(u)} are equal. Furthermore,

P
(
R

(u)
0 > r

)
= P

(
B(0, r) ⊂ EX(u) | X(0) > u(0)

)
=

L(T )P
(
B(0, r) ⊂ EX(u)

)
L(T )P

(
X(0) > u(0)

)
=

E
[ ∫

T
1{B(t,r)⊂EX(u)}dt

]
E
[ ∫

T
1{X(t)>u(t)}dt

] =
E
[
L
(
{t ∈ T : B(t, r) ⊂ EX(u)}

)]
E
[
L
(
EX(u) ∩ T

)]
=

E
[
L
(
EX(u)−r ∩ T

)]
E
[
L
(
EX(u) ∩ T

)] .

Lemma 2. Suppose that X and the corresponding threshold function up for some p ∈ (0, 1)

satisfy Assumption 1. Then Equation (1) holds with up in place of u for any compact

T ⊂ R2 with positive Lebesgue measure, and any r ≥ 0.

Proof. The proof corresponds exactly with that of Proposition 1.

Proof of Lemma 1. Let r > 0 and let T ⊂ R2 be compact with positive Lebesgue mea-

sure. Define A := {s ∈ R2 : dist(s, EX(u)
c) = r}, and let x ∈ A. For each ϵ ∈ (0, r),

the ball B(x, ϵ) contains an open ball B̃ of radius ϵ/2 such that for all y ∈ B̃, one has

dist(y, EX(u)
c) < r. In particular, B̃ ∩ A = ∅, and so the Lebesgue density of A at x

cannot exceed 3/4. By the Lebesgue differentiation theorem, the Lebesgue density of A

at s is 1 for almost every s ∈ A. Since there are no elements of A for which this holds,

L(A) = 0.

Suppose the statement of the Lemma is false. Then, there exists an r > 0 such that

P(R̃(u)(0) = r | X(0) > u) > 0, or equivalently, P(R̃(u)(0) = r) > 0. By stationarity and

Fubini’s theorem,

0 < P(R̃(u)(0) = r) = E
[ ∫

T

1{R̃(u)(s)=r} ds

]
= E

[
L(A)

]
.

Hence, we have arrived at a contradiction, as P(L(A) > 0) = 0.

The following lemmas are useful in the proof of Theorem 1 given below.

Lemma 3. Let A ⊆ R2 and let T ⊂ R2 be compact, and let r > 0. The following identities

hold.

• L(Ac ∩ T ) = L(T )− L(A ∩ T ),

• (A ∩ T )−r = A−r ∩ T−r =
(
(Ac ∩ T )r

)c ∩ T−r.

23



Proof. The first item holds by the additivity of the Lebesgue measure, and the two facts

(Ac ∩ T ) ∩ (A ∩ T ) = ∅ and (Ac ∩ T ) ∪ (A ∩ T ) = T .

Now to prove the second item, note that (Sc)r = (S−r)
c for any set S ⊆ R2 (Cotsakis 2023,

Lemma 1). Now, by De Morgan’s laws,

(
(A ∩ T )−r

)c
= (Ac ∪ T c)r =

⋃
x∈Ac∪T c

B(x, r) =

( ⋃
x∈Ac

B(x, r)

)
∪
( ⋃

y∪T c

B(y, r)

)
= (Ac)r ∪ (T c)r = (A−r)

c ∪ (T−r)
c = (A−r ∩ T−r)

c.

This proves the first equality by taking complements. For the second equality, write(
(Ac ∩ T )r

)c ∩ T−r = (A ∪ T c)−r ∩ T−r =
(
(A ∪ T c) ∩ T

)
−r

= (A ∩ T )−r.

Lemma 4. Let T ⊂ R2 be compact. It holds for r > 0 that

L(EX(u) ∩ T−r)− L((EX(u) ∩ T )−r) ≤
9πr

4

(
ℓ(∂EX(u) ∩ T ) +N

(u)
T r
)
, (11)

where N
(u)
T is as defined in Definition 4.

Proof. By Lemma 3, the LHS of Equation (11) is equal to the Lebesgue measure of (EX(u)∩
T−r) \ EX(u)−r. Remark that for r > 0,

(EX(u) ∩ T−r) \ EX(u)−r ⊆ (∂EX(u))r ∩ T−r ⊆ (∂EX(u) ∩ T )r.

By following the construction in (Cotsakis et al. 2023, Lemma 1), let γ(i) be the ith con-

nected component of ∂EX(u) ∩ T . It is possible to write

γ(i) =

⌊ℓ(γ(i))/r⌋+1⋃
j=1

β(i,j),

with ℓ(β(i,j)) ≤ r for j ∈ {1, . . . , ⌊ℓ(γ(i))/r⌋+ 1}. Now,

∂EX(u) ∩ T =

N
(u)
T⋃

i=1

⌊ℓ(γ(i))/r⌋+1⋃
j=1

β(i,j),

and so

(∂EX(u) ∩ T )r ⊆
N

(u)
T⋃

i=1

⌊ℓ(γ(i))/r⌋+1⋃
j=1

β(i,j)
r .
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With the length of each β(i,j) is bounded by r, it follows that each β
(i,j)
r is contained in a

ball of radius 3r/2. Therefore,

L
(N

(u)
T⋃

i=1

⌊ℓ(γ(i))/r⌋+1⋃
j=1

β(i,j)
r

)
≤
(
ℓ
(
∂EX(u) ∩ T

)
r

+N
(u)
T

)
π(3r/2)2

=
9πr

4

(
ℓ(∂EX(u) ∩ T ) +N

(u)
T r
)
.

Proof of Theorem 1. Let T ⊂ R2 be a compact, convex set, and fix r > 0. By Lemma 3,

for all r > 0,

L
(
(EX(u) ∩ T )−r

)
= L(T−r)− L

(
(EX(u)

c ∩ T )r ∩ T−r

)
= L(T−r)− L

(
(EX(u)

c ∩ T )r
)
+ L

(
(∂T )r ∩ A(r,T )

)
,

for some A(r,T ) ⊂ R2. Now, EX(u)
c ∩ T has positive reach almost surely, and for each

positive r smaller than the reach of EX(u)
c ∩ T , there is a corresponding set A(r,T ) such

that

L
(
(EX(u) ∩ T )−r

)
= L(T−r)−

(
L(EX(u)

c ∩ T ) + ℓ
(
∂(EX(u)

c ∩ T )
)
r + χ(EX(u)

c ∩ T )πr2
)

+ L
(
(∂T )r ∩ A(r,T )

)
= L(T−r)− L(T ) + L(EX(u) ∩ T )− L(EX(u) ∩ T−r) + L(EX(u) ∩ T−r)

− ℓ
(
∂(EX(u) ∩ T )

)
r − χ(EX(u)

c ∩ T )πr2 + L
(
(∂T )r ∩ A(r,T )

)
,

almost surely. Therefore,

lim sup
r→0

∣∣∣∣L(EX(u) ∩ T−r)− L
(
(EX(u) ∩ T )−r

)
r

− ℓ
(
∂(EX(u) ∩ T )

)∣∣∣∣ ≤ 2ℓ(∂T ), (12)

almost surely. Together, Assumption 1 and Lemma 4 verify the hypotheses of the reverse

Fatou lemma applied to (12), and so one achieves

lim sup
r→0

∣∣∣∣E
[
L(EX(u) ∩ T−r)

]
− E

[
L
(
(EX(u) ∩ T )−r

)]
r

− E
[
ℓ
(
∂(EX(u) ∩ T )

)]∣∣∣∣ ≤ 2ℓ(∂T ),

and by Lemma 2,

lim sup
r→0

∣∣∣∣E
[
L(EX(u) ∩ T−r)

]
P(R(u)

0 ≤ r)

E
[
L(EX(u) ∩ T )

]
r

−
E
[
ℓ
(
∂(EX(u) ∩ T )

)]
E
[
L(EX(u) ∩ T )

] ∣∣∣∣ ≤ 2ℓ(∂T )

L(T )P(X(0) > u)
,

by a division of E
[
L(EX(u)∩T )

]
. Recall that T is arbitrary and so can be taken arbitrarily

large such that its perimeter length is negligible to its area. This implies

lim
T↗R2

lim
r→0

E
[
L(EX(u) ∩ T−r)

]
P(R(u)

0 ≤ r)

E
[
L(EX(u) ∩ T )

]
r

=
2C∗

1(EX(u))

C∗
2(EX(u))

. (13)
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The result holds since, for any T ,

E
[
L(EX(u) ∩ T−r)

]
E
[
L(EX(u) ∩ T )

] =
L(T−r)

L(T )
−−→
r→0

1.

B.2 Proof of Propostition 2

In Kac & Slepian (1959), it is shown that for a one-dimensional centered Gaussian process

{Y (t)}t∈R having the stationary covariance function in (5), it holds that

u
(
Y (t/u)− u

)
| {Y (0) = u, Y ′(0) > 0} d−−−→

u→∞
−α

2
t2 + ξαt,

where the convergence holds for the finite dimensional distributions of the process (in t),

and ξα is some random variable that depends on α and the sense of the conditioning on the

event Y (0) = u, but not on t. Therefore, u
(
Y (t/u)− u

)
| Y (0) > u converges in the same

sense to −α
2
t2 + ξ1t+ ξ2, where ξ1 and ξ2 are random variables, and ξ2 > 0 almost surely.

Now, focusing on the two-dimensional random field X, we see that X evaluated on any

one-dimensional affine linear subspace of R2 is a Gaussian process, and so the analysis in

the preceding paragraph applies to these processes. Therefore, seen as a process in t,

u
(
X(t/u)− u

)
| X(0) > u

d−−−→
u→∞

−α

2
||t||2 + ⟨ξ̃α, t⟩+ ξ, (14)

for some random vector ξ̃α that depends on α but not on t, and for some almost surely

positive random variable ξ. One can show that ξ ∼ Exp(1) independently of α and t.

Now,

uR
(u)
0

d
= sup

{
r ∈ R+ : B(0, r/u) ⊂ EX(u)

}
| X(0) > u

d
= sup

{
r ∈ R+ : B(0, r) ⊂ uEX(u)

}
| X(0) > u

d
= sup

{
r ∈ R+ : B(0, r) ⊂ EX(·/u)(u)

}
| X(0) > u.

Equation (14) implies that EX(·/u)(u) | X(0) > u converges to a random disk containing

the origin as u → ∞, which finishes the proof.

□

B.3 Proofs and definitions for §4.1.2

Definition 10 (Definition 4 in Dombry & Ribatet (2015)). The random field W : Ω×T →
R is an ℓ-Pareto random field with exponent α ∈ R+ and spectral measure σℓ if
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• P(W ∈ C0) = 1,

• P(ℓ(W ) > u) = u−α, for all u > 1,

• W/ℓ(W ) and ℓ(W ) are independent, and

• σℓ(A) = P(W/ℓ(W ) ∈ A) for A ∈ B(C0).

In this case, we write W ∼ Pℓ
α,σℓ

The link between regularly varying random fields and ℓ-Pareto random fields is made by

the following lemma.

Lemma 5 (Theorem 3 in Dombry & Ribatet (2015)). Let X|T ∈ RVα,σ(C0) with exponent

α > 0 and spectral measure σ on S. Let ℓ : C0 → [0,∞) be a homogeneous cost functional

that is continuous at the origin, and is nonzero on a subset of S with positive σ measure.

Let W ∼ Pℓ
α,σℓ

where

σℓ(A) :=
1

c

∫
S
ℓ(x)α1{x/ℓ(x)∈A}σ(dx), A ∈ B(C0),

with c :=
∫
S ℓ(x)

ασ(dx). Then,

P(u−1X|T ∈ A | ℓ(X|T ) > u) −−−→
u→∞

P(W ∈ A), A ∈ B(C0).

Proof of Proposition 3. We begin by showing the second equality in (6). By the continuity

of X, the excursion set EX(u) is open, and so the events {R̃(u)
0 > r} and {B(0, r) ⊂ EX(u)}

are equal. Also, EX(u) = EX/u(1), and so for r < rT ,

P(R(u)
0 > r) = P(B(0, r) ⊂ EX(u) | X(0) > u) = P(B(0, r) ⊂ EX/u(1) | X(0) > u) (15)

−−−→
u→∞

P(B(0, r) ⊂ EY0(1)) = 1− P
(
∃t ∈ B(0, r) : Y0(t) ≤ 1

)
.

The convergence in (15) holds by Lemma 5. To show the first equality in (6), remark that

(EYT
(u) ∩ T )−r = EYT

(u)−r ∩ T−r. Also, recall from Proposition 1 that

P(R(u)
0 > r) =

E
[
L
(
EX(u)−r ∩ T−r

)]
E
[
L
(
EX(u) ∩ T−r

)] =
E
[
L
(
(EX/u(1) ∩ T )−r

)
| ||X||T > u

]
E
[
L
(
EX/u(1) ∩ T−r

)
| ||X||T > u

]
−−−→
u→∞

E
[
L
(
(EYT

(1) ∩ T )−r

)]
E
[
L
(
EYT

(1) ∩ T−r

)] =
E
[
L
(
(EYT

(1) ∩ T )−r

)]
L(T−r)P(YT (0) > 1)

.
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B.4 Proof of Propostion 6

We start by decomposing

θ̂s
(n)

(p0, pn) =
An −Bn

C −Dn

,

where

An = log
(
q̂50%

(n)(R(upn )
s )

)
, Bn = log

(
q̂50%

(n)(R
(up0 )
s )

)
C = log(− log(1− p0)), Dn = log(− log(1− pn)).

We begin by showing

−An

Dn

P−−−→
n→∞

θs. (16)

Under Assumption 2, for any α ∈ (0, 1), the function hα(x) := qα(R
(up(x))
s ) with x > 0 and

p(x) = 1−e−x is regularly varying with index −θs. Thus, by the Karamata characterization

theorem, xθshα(x) is slowly varying. For ϵ > 0, and α ∈ (0, 1), there exists xα,ϵ ∈ R+ such

that

−ϵ log x < θs log x+ log hα(x) < ϵ log x,

for all x > xα,ϵ. Equivalently,

log hα(x)

log x
∈ (−θs − ϵ,−θs + ϵ),

for all x > xα,ϵ. Let n ∈ N, and let An denote the event {R̃(upn )
i (s) > 0, for at least one i =

1, . . . , n}. By the assumption that n(1− pn) → ∞ as n → ∞, we have P(An) → 1. Choose

α ∈ (0, 1/2) and α ∈ (1/2, 1). Notice that for x = − log(1 − pn) = exp(Dn), one has

p(x) = pn, and

α− α = P
(
hα(x) < R(upn )

s < hα(x)
)

≤ P
(
hα(x) < q̂50%

(n)(R(upn )
s ) < hα(x) | An

)
≤

P
(
hα(x) < q̂50%

(n)(R
(upn )
s ) < hα(x)

)
P(An)

=
P
(

log hα(x)

log(x)
< An

Dn
< log hα(x)

log(x)

)
P(An)

.

As seen previously, for n (or equivalently x) large enough, one has

P
(
log hα(x)

log(x)
<

An

Dn

<
log hα(x)

log(x)

)
≤ P

(
An

Dn

∈ (−θs − ϵ,−θs + ϵ)

)
.

The left-hand side is bounded below by P(An)(α− α) which can be made arbitrarily close

to 1 by choice of α, α, and n. This proves (16).

Since Dn → ∞ as n → ∞, the statement of the proposition holds since Bn converges to a

constant log
(
q50%(R

(up0 )
s )

)
in probability as n → ∞. □
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