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Abstract

Entropy maximization and free energy minimization are general physics principles
for modeling dynamic systems. Notable examples include modeling decision-
making within the brain using the free-energy principle, optimizing the accuracy-
complexity trade-off when accessing hidden variables with the information bottle-
neck principle [Tishby et al., 2000], and navigation in random environments using
information maximization [Vergassola et al., 2007]. Building on this principle,
we propose a new class of bandit algorithms that maximize an approximation to
the information of a key variable within the system. To this end, we develop an
approximated, analytical physics-based representation of the entropy to forecast
the information gain of each action and greedily choose the one with the largest
information gain. This method yields strong performances in classical bandit
settings. Motivated by its empirical success, we prove its asymptotic optimality for
the multi-armed bandit problem with Gaussian rewards. Since it encompasses the
system’s properties in a single, global functional, this approach can be efficiently
adapted to more complex bandit settings. This calls for further investigation of
information maximization approaches for bandit problems.

1 Introduction

Multi-armed bandit problems have attracted wide attention in the past decades. They embody
the challenge of balancing exploration and exploitation and have been applied to various settings
such as online recommendation [Bresler et al., 2014], medical trials [Thompson, 1933], dynamic
pricing [Den Boer, 2015], and reinforcement learning-based decision making [Silver et al., 2016,
Ryzhov et al., 2012]. Besides the classic stochastic version of the multi-armed bandit problem, many
subsequent extensions have been developed, providing richer models for specific applications. These
extensions include linear bandits [Li et al., 2010], many-armed bandits [Bayati et al., 2020], and
pure exploration problems such as thresholding bandits [Locatelli et al., 2016] or top-K bandits
[Kalyanakrishnan et al., 2012, Kaufmann et al., 2016].

In the classic setting, an agent chooses an arm at each time step and observes a stochastic reward.
Since they only observe the payoff of the chosen arm, the agent should regularly explore suboptimal
arms. This is often referred to as the exploration-exploitation trade-off. An agent can exploit its
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current knowledge to optimize gains by drawing the current empirically best arm or exploring other
arms to potentially increase future gains.

Optimal strategies are characterized asymptotically by the Lai and Robbins bound [Lai et al., 1985].
Among them, upper confidence bound [UCB, Auer, 2000, Garivier and Cappé, 2011] methods
greedily pull the arm maximizing some tuned confidence index; Thompson sampling [Kaufmann
et al., 2012a, Agrawal and Goyal, 2013] relies on sampling mean rewards from a posterior distribution
and chooses the arm with the largest random sample; deterministic minimum empirical divergence
[DMED, Honda and Takemura, 2010] builds on a balance between the maximum likelihood of an
arm being the best and the posterior expectation of the regret.

Even if these approaches efficiently utilize current available information, they do not aim directly
to acquire more information. We highlight, however, the information directed sampling approach
(IDS) of Russo and Van Roy [2014], which relies on a measure of the information gain of the
optimal actions. By leveraging an information measure that consistently captures the specific problem
structure, IDS can address general classes of problems, particularly those with a complex information
structure where classic bandit methods fall short. Surprisingly, IDS can even outperform UCB
and Thompson sampling in classic bandit problems. However, like DMED, this method explicitly
balances information gain with expected losses induced by exploration, and the efficiency of pure
information-maximizing strategies thus remains to be proven.

Information-maximization approaches provide a decision-making strategy in which the agent tries to
maximize information about one or more relevant stochastic variables. The information-maximizing
principle has shown to be efficient in a broad range of domains [Helias and Dahmen, 2020, Parr et al.,
2022, Hernández-Lobato et al., 2015, Vergassola et al., 2007] where decisions have to be taken in
fluctuating or unknown environments. These domains include, e.g., robotics applications [Zhang
et al., 2015], where the ability to share approximate information improves collective decisions, and
the search for olfactory sources in turbulent flows [Masson, 2013, Reddy et al., 2022].

In the specific setting of bandit problems, information maximization has shown promising empirical
results, and heuristic arguments support its asymptotic optimality [Reddy et al., 2016, Barbier-
Chebbah et al., 2023]. As IDS, they leverage information structure to provide a versatile decision
framework with the capability to address various bandits settings. However, the efficiency of such
a “pure exploration” strategy in terms of regret minimization has yet to be proven, and it has been
previously argued that it would result in a linear regret [Russo and Van Roy, 2014]. Moreover,
current information-based algorithms often rely on complex numerical integration, leading to high
computational costs, a significant challenge that information-based methods must overcome. In
this context, we aim to leverage new strategies derived from information maximization principles
focusing on global observables, i.e. variables depending on more than one bandit arm, that alleviate
the computational burden of numerical evaluation of complex functionals and to rigorously prove
their efficiency.

Contributions. Our main contribution is introducing a new class of asymptotically optimal algo-
rithms that rely on approximations of a functional representing the current information of interest
about the whole bandit system. This approach is based on the entropy of the posterior mean value of
the best arm, for which we provide an approximate expression to enable robust, easily tunable, and
extendable algorithms with a direct analytical formulation. We focus here on the multi-armed bandit
problem with Gaussian rewards, for which we derive a simple approximate information maximization
algorithm (AIM) and provide an upper bound on its pseudo-regret, ensuring that AIM is asymptoti-
cally optimal. The information from each arm is incorporated in a unique entropy functional, which
shows promise for tackling more complex bandit settings such as linear bandit or many-armed bandits.
Thus, our main motivation is to design an analytical functional-based algorithmic principle, which can
potentially address problems with more correlated information structures in the future. Additionally,
another strength of AIM lies in its short-time behavior, where it shows strong performances as we
illustrate numerically for both Bernoulli and Gaussian rewards.

Organization. In Section 2, we briefly review the K-armed bandit setting. Section 3 presents the
general principle of information maximization approaches, originally inspired by both the information
bottleneck principle and navigation in turbulent plumes. Section 4 upper bounds the regret of AIM,
showing it attains Lai and Robbin’s asymptotic bound. In Section 5, the performance of AIM is
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numerically compared with known baselines on multiple examples. Finally, Section 6 discusses
extensions of AIM to various bandit settings.

2 Setting

We consider the classic K-armed stochastic bandit game. In each round t, the agent selects an arm
at ∈ [K] = {1, . . . ,K} among a set of K choices solely based on the rewards of the previously
pulled arms. The chosen arm k then returns a stochastic reward Xt(k), drawn independently of the
previous rounds, according to a distribution νk of mean µk. We denote by Nk(t) the number of times
the arm k has been pulled. When clear from context, we omit the dependence on t for simplicity.

The goal of the agent is to maximize its cumulative reward, or equivalently, to minimize its pseudo-
regret up to round T , defined as

R(T ) = µ∗T −
T∑

t=1

E[µat ], (1)

where µ∗ = maxi∈[K] µi. Hence, the agent will optimize its choice of at relying on the previous
observations up to t. For a large family of reward distributions, the asymptotic pseudo-regret is
lower-bounded for any uniformly good policy by

lim inf
T→∞

R(T )

ln(T )
≥

∑
k,µk<µ∗

µ∗ − µk

DKL(νk∥νk∗)
, (2)

where k∗ ∈ argmaxi∈[K] µi,, and DKL(νk∥νk∗) denotes the Kullback-Leibler divergence be-
tween the reward distributions of the arms k and k∗ [Lai et al., 1985]. In the particular case of
Gaussian rewards with equal variances, i.e., νi = N (µi, σ

2), the Kullback-Leibler divergence is
DKL(νk∥νk∗) = (µ∗ − µk)

2/(2σ2).

3 Information maximization strategies

Here, we introduce entropy-based, information maximization strategies and their underlying physical
principles. We then detail approximations leading to an analytical and simplified entropy functional,
which is the basis of the AIM algorithm.

3.1 Algorithm design principle: physical intuition

We aim to design a functional encompassing the current available information of the full system.
Inspired by the information maximization principle [Vergassola et al., 2007, Reddy et al., 2016]
which has revealed effective in taxis strategies where the agent needs to find an emitting odour source
[Martinez et al., 2014, Cardé, 2021, Murlis et al., 1992], we rely on an entropic functional for policy
decision. More precisely, we choose Smax, the entropy of the posterior distribution of the value of
the maximal mean reward, denoted pmax.

The algorithm relies on an arbitrary prior distribution on the arm mean rewards. With independent
arm priors, the posterior distribution of the value of the maximal mean reward can be expressed as

pmax(θ)dθ = dP
(
max

k
µk = θ | Ft−1

)
=

K∑
k=1

dP(µk = θ|Ft−1)
∏
j ̸=k

P(µj ≤ θ|Ft−1), (3)

where Ft−1 = σ(X1(a1), . . . , Xt−1(at−1)) denotes the filtration associated to the observations up
to time t− 1. The associated entropy reads

Smax = −
∫
Θ

pmax(θ) ln pmax(θ)dθ, (4)

where Θ = [µinf , µsup] is the support of pmax (which depends on the nature of the game and can
be infinite). Note that, as exemplified by Equation (3), pmax includes the arms’ priors and directly
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depends on the reward distributions.1 The entropy, Smax, is a measure of the information carried by
all arms in a single functional, providing a global state description of the game.

Our policy aims to minimize the entropy of pmax. For that, it greedily chooses the arm providing the
largest expected decrease in entropy, conditioned on the current knowledge of the game,

argmin
k∈[K]

E [Smax(t)− Smax(t− 1) | Ft−1, at = k] . (5)

Similar to Thompson sampling, it relies on a Bayesian representation. Yet, it distinguishes itself by
providing a deterministic decision procedure given past observations. We stress that Smax quantifies
the available information about the average reward of the best arm. This choice contrasts with using
the entropy of the probability of the best arm, which is known to overexplore and is suboptimal for
regret minimization [Reddy et al., 2016]. Because of this suboptimality, approaches based on the
information on the best arm fix this concern by including the expected regret in the functional to
favor exploitation [Russo and Van Roy, 2014]. Furthermore, we argue that by the definition of pmax,
the information carried by the arms’ posteriors is sufficiently mixed to ensure an optimal behaviour,
as proved in Section 4. Since the policy aims to maximize the information about the best arm’s mean,
it mainly pulls the current best arm to learn more about its value. On the contrary, policies aiming to
identify the best arm pull worse empirical arms more often because they are only concerned about
the arms’ order.

The information maximization policy based on Equation (5) has been empirically shown to be
competitive with state-of-the-art algorithms [Reddy et al., 2016] and robust to variations of the
prior [Reddy et al., 2016, Barbier-Chebbah et al., 2023] in classic bandit games. However, while
Equation (5) can be numerically evaluated, it cannot be computed in closed form, preventing the
gradient from being analytically tractable. This makes intricate to theoretically bound the regret
even in the two-armed setting and it also prevents the policy’s extension to more complicated bandit
settings. Additionally, it induces a high computational cost [a trait shared with IDS Russo and
Van Roy, 2014], which becomes disadvantageous when considering a large number of arms and at
large times (when pmax is peaked), where one has to manage vanishing numerical precision, making
the numerical integration even longer. Finally, the integral form of Smax prevents fine-tuning, which
could prove crucial for achieving or surpassing the empirical state-of-the-art performances.

A second simplified and analytical functional mirroring Smax has to be derived to address these
concerns. This analytical result strengthens the information maximization principle, both by providing
novel algorithms that are analytical, tractable and computationally efficient while conserving the main
advantages of the exact entropy [Reddy et al., 2016] and by making theoretical analysis tractable.

3.2 Main elements of the entropy analytical approximation

Here, we devise a set of approximations of pmax and Smax to get a tractable analytical algorithm.
Given that the best empirical arm and the worse empirical arms have notably distinct contributions to
pmax (Figure 1(a)), we approximate pmax while considering the current arms’ order. We sort them
based on their current posterior means, labelling the highest one as Mt (with an empirical reward of
µ̂Mt

) and At = [K] \ {Mt} the set of worse empirical arms. Of course, Mt might differ from the
actual optimal arm k∗ due to the randomness in the observed rewards. We focus on approximating
Equations (3) and (4) when the best empirical arm has already been extensively drawn more often
than the other arms.

The entropy is then decomposed into two tractable terms corresponding to distinct behaviors of
pmax(θ) when θ varies:

S̃max = S̃body + S̃tail, (6)

The first term, S̃body, approximates the contribution around the mode of pmax, while the second
term, S̃tail, quantifies the information carried by the tail of pmax (corresponding to high rewards, see
Figure 1). Each of these terms then corresponds to a part of the entropy where the dominant term of
Equation (3) is distinct (see Appendix A.1 for details).

1In the remainder of the paper, we consider an improper uniform prior over R, as often considered with
Gaussian rewards.
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More precisely, by denoting pi(θ)dθ = dP(µi = θ | Ft) the mean posterior density of the associated
arm i, the tail term is approximated as:

S̃tail = −
∑

m∈At

∫ µsup

µ̃eq,m

pm(θ) ln pm(θ)dθ. (7)

where µ̃eq,m, given in Appendix A.6, approximates µ̄eq,m, the value of θ where the empirical best
arm Mt and the selected worse arm m have the same probability of being the best arm (see red and
orange curves in Figure 1(b)). Here, pm(θ) is the posterior density of the current worse arm evaluated
at θ. Roughly, because the better empirical arm has been predominantly drawn, pMt(θ) decays faster
than pm(θ), resulting in a tail term (see Equation (7)) whose main contribution is the worse empirical
arm. The approximate entropy of the body component is:

S̃body = −
∫
Θ

(
1−

∑
m∈At

[1− Cm(θ)]
)
pMt

(θ) ln pMt
(θ)dθ (8)

where Ci(θ) = P(θ > µi | Ft) is the cumulative posterior probability of the mean of the arm i.
Equation (8) is the leading-order term of the mode of pmax, which is mainly contributed to by the
best empirical arm.

This approximation of Equation (3) is good when the best empirical arm has been extensively drawn
compared to the worse empirical ones, corresponding to the situation encountered asymptotically for
uniformly good algorithms. Surprisingly, the approximation captured by Equation (6) is still accurate
enough outside this asymptotic regime to provide a high-performance decision scheme.
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Figure 1: (a) Posterior distributions of a two-armed bandit with Gaussian rewards. The dotted lines
represent the individual posterior distributions of each arm, pMt

and pm, while the continuous line
represents the posterior of the maximum mean reward of all arms, pmax (Equation (3)). (b) Zoom of
(a) around the point µ̄eq,m where both arms have the same posterior probability of being the best one.
pMt

Cm (pmCMt
) is the probability that the maximal value is given by the better (worse) empirical

arm, and µ̃eq,m is the approximation to µ̄eq,m given in Appendix A.6.

For Gaussian reward distributions, one can derive an analytical expression for µ̃eq (see Appendix A.2
for details), Equations (7) and (8) can be computed exactly (see Appendix A.4). However, at this
stage, even if we have already obtained a closed-form expression for Smax, it remains too involved to
directly compute its exact (discrete) gradient for our decision policy. To finally derive a simplified
gradient, we retain only the asymptotic terms of Equations (7) and (8) and of the obtained gradient
(see Appendix A.5 for derivation details). Finally, the expression of our approximate difference of
gradients of the entropy, whether calculated along a given worse empirical arm k or along the best
empirical arm, reads:

∆Mt,k =
1

2
ln(

NMt

NMt + 1
) +

1

2NMt

min

(
1

2

At∑
m

erfc (δµ̃eq,m) , 1− 1

K

)

+Q(N−1
k , ln(NMt

), δµ̃eq,k)e
−δµ̃2

eq,k +

At∑
m

P (N1/2
m , N−1

Mt
, ln(NMt

), δµ̃eq,m)e−δµ̃2
eq,m

(9)
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where Q and P are polynomials given in Appendix A.6 and δµ̃eq,i =
√
Ni(µ̃eq,i−µ̂i)√

2σ2
are standardized

variables with µ̃eq,i given in Appendix A.6. In words, ∆Mt,k approximates the difference

∆Mt,k ≈ E [Smax(t+ 1) | Ft, at+1 = Mt]− E [Smax(t+ 1) | Ft, at+1 = k] ,

which is directly related to greedily maximizing the entropy decrease, described in Equation (5).
The decision procedure can be summarized as follows: if ∆Mt,k is negative for all k ∈ At, the
better empirical arm is chosen as it reduces the most the expected value of the approximate entropy.
Inversely, if at least one value ∆Mt,k is positive, the arm k maximizing ∆Mt,k is chosen.

In conclusion, we have derived an analytical expression for the information available about the
maximum expected reward of all arms. We isolated an analytically tractable gradient acting as a
decision procedure that eluded previous approximated information derivations [Barbier-Chebbah
et al., 2023]. Our scheme leads to an efficient numerical implementation by eliminating numerical
integrals, substantially improving the computational speed of information maximization, a crucial
challenge for information methods, which is also stressed by Russo and Van Roy [2014] for the IDS
algorithm. We now provide the full implementation of AIM and bound its regret in the next section.

3.3 Approximate information maximization algorithm

The pseudo-code for the AIM algorithm is presented in Alg. 1 below.

Algorithm 1: AIM Algorithm for K Gaussian arms
Draw each arm once, observe reward Xt(t) and update statistics µ̂t

for t = K + 1 to T do // Arm selection
if NMt

≤ Nm then at ←Mt

else
Mt ← argmaxk∈[K] µ̂k

Evaluate m = argmaxk∈At
∆Mt,k following Equation (9)

if ∆Mt,m ≤ 0 then at ←Mt

else at ← m
Pull at and observe Xt(at)

µ̂at
← µ̂atNat+Xt(at)

Nat+1 , Nat
← Nat

+ 1 // Update statistics

The best empirical arm is drawn by default if there exists one empirical arm m that has been drawn
more frequently NMt

≤ Nm. In such a case, both entropy components in Equation (6) are mainly
contributed to by Mt.

4 Regret bound

This section provides theoretical guarantees on the performance of AIM. More precisely, Theorem 1
below states that AIM is asymptotically optimal on the multi-armed bandits problem with Gaussian
rewards.
Theorem 1. For Gaussian reward distributions with variance σ2, the regret of AIM satisfies for any
mean vector µµµ ∈ RK

lim sup
T→∞

R(T )

ln(T )
≤

∑
k,µk<µ∗

2σ2

µ∗ − µk
,

where µ∗ = maxk∈[K] µk.

With Gaussian rewards, the asymptotic regret of AIM thus exactly reaches the lower bound of Lai
et al. [1985] given by Equation (2). A non-asymptotic version of Theorem 1 is given by Theorem 2 in
Appendix B. We briefly sketch the proof idea below and refer to Appendix B for the complete proof.

Sketch of the proof. We assume for sake of clarity in this sketch that µ1 > µk for any k ≥ 2. The
structure of the proof is similar to the one found in Kaufmann et al. [2012a]. In particular, the first
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main step shows that the optimal arm is pulled at least
√
t times with high probability. This result

holds because otherwise, the contribution of arm 1 to the tail of the distribution would dominate the
contribution of other arms in the approximate information. In that case, pulling the first arm would
naturally lead to a larger decrease in entropy, which ensures that the optimal arm is always pulled a
significant amount of times.

Then, we only need to work in the asymptotic regime where arm 1 is pulled at least
√
t times and we

aim at bounding the number of pulls on the arm k ≥ 2. Additionally, we restrict ourselves to a large
number (in log(T )) of pulls on arm k and automatically count the pulls before that point in the regret.
As a consequence, we can show that with high probability:

µ̂Mt
≥ µ∗ −

√
6σ2 ln t√

t
and µ̂k ≤ µk + ε

for some arbitrary ε > 0. An important property of entropy is that it approximates the behaviour of
the bound of Lai et al. [1985]. More precisely, in the asymptotic regime, the difference of the entropy
increments behaves as

∆Mt,k ≈ −
1

2NMt

+Q(Nk)e
−Nk(µ1−µk)2

2σ2 +
∑
i ̸=Mt

P (Ni)e
−Ni(µ1−µi)

2

2σ2 , (10)

where Qk and Pi are polynomials that also depend on extra variables (see Equation 9). Manipulating
these polynomial terms altogether is intricate, but we can still show that if the arm k is pulled, this

means the term e−
Nk(µ1−µk)2

2σ2 somewhat dominates the other exponents in the sum of Equation (10).
This then implies that Nk is of order at most 2σ2 lnT

(µ∗−µk)2
, as arm k is only pulled if ∆Mt,k ≥ 0.

Our policy is deterministic at each time step while displaying a logarithmic regret, showing that
intuitions from Russo and Van Roy [2014] of linear regrets for stationary (in the sense they only
depend on the posterior distribution) deterministic algorithms was inexact. Moreover, our regret
bound is frequentist, in opposition to the Bayesian regret bound obtained for IDS [Russo and Van Roy,
2014]. As a consequence, AIM does not need a well-specified prior: using a uniform prior, as
done in our work, is a well-suited choice. Also, the required form of the entropy for the proof is
general. The algorithm yields an optimal regret as long as we are guaranteed that the optimal arm is
pulled a significant amount of times with high probability and that the asymptotic regime behaves
as Equation (10). Hence, Theorem 1 will hold for a large family of entropy approximations [and
likely for generalizations to free energies too, as in Masson, 2013] as long as the approximation is
accurate enough to not yield trivial behaviors in the short time regime. Additionally, the approximate
framework devised here allows fine-tuning the formulas to improve short-time performance all the
while ensuring asymptotic optimality by keeping the correct asymptotic terms.

5 Experiments

This section investigates the empirical performance of AIM (Alg. 1) on numerical examples. All
details of the numerical experiments are given in Appendix D.

We start by considering two arms with Gaussian rewards [Honda and Takemura, 2010] of unit
variance and means µk drawn uniformly from [0, 1]. Figure 2 compares the Bayesian regret (i.e.,
the regret averaged over all values of (µ1, µ2) in [0, 1] × [0, 1]) of Alg. 1 with the state-of-the-
art algorithms UCB-tuned, Thompson sampling, Thompson sampling+, KLUCB++, and MED
[Kaufmann et al., 2012b, Pilarski et al., 2021, Cappé et al., 2013, Jin et al., 2022, Honda and
Takemura, 2011, Ménard and Garivier, 2017]. We refer to Appendix D.4 for an overview and detailed
descriptions of these bandit algorithms. The Bayesian regret of AIM empirically scales as log (T ).
Its long-time performance matches Thompson sampling, as implied by Theorem 1, while relying on
a (conditionally) deterministic decision process. Additionally, AIM outperforms Thompson sampling
at both short and intermediate times (see Appendix D.5.3 for finer measurements). AIM particularly
outperforms Thompson sampling when the arms are difficult to distinguish due to their mean rewards
being close (see examples in Appendix D.5.1 with single instance regret experiments).

AIM yields strong performance in both two-armed Gaussian and 50-armed Gaussian rewards case,
as predicted by our theoretical analysis. We now aim to extend our method to other bandit settings.
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Figure 2: Evolution of the Bayesian regret for (a) 2-armed and (b) 50-armed bandit with Gaussian
rewards under a uniform mean prior. Regret is averaged over 8000 for (a) and 2000 runs for (b)
Confidence intervals show the standard deviation.

Figure 3 presents the performance of AIM when adapted to Bernoulli rewards [Pilarski et al., 2021]
with arm means drawn uniformly in [0, 1]. This adaptation is described in detail in Section 6 below.
The performance of AIM is comparable to Thompson sampling here. Additionally, AIM performs
comparably to Thompson sampling for close mean rewards (see Appendix D.5.2). Additionally, for
50 arms with Bernoulli rewards AIM’s short-time efficiency is comparable to Thompson sampling,
and it is significantly more efficient at intermediary times while showing the same logarithmic scaling
at long times as Thompson sampling.

Hence, our algorithm shows strong empirical performances compared to state-of-the-art baselines
for both Bernoulli and Gaussian rewards while providing outstanding effectiveness when facing
multiple arms with Bernoulli rewards. Experiments suggest that AIM displays the same typical
worst-case regret as Thompson sampling (which is minimax optimal up to

√
lnK for sub-Gaussian

rewards), but proving a theoretical bound remains challenging and left for future work. Of note,
similar observations are drawn in Appendices D.5.1 and D.5.2 for non-Bayesian versions of the regret,
with fixed bandit instances. These observations support the robustness of AIM and its potential for
extensions to more complex bandit settings.
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Figure 3: Evolution of the Bayesian regret for (a) 2-armed and (b) 50-armed bandit with Bernoulli
rewards under a uniform mean prior. The regret is averaged over 16000 runs for (a) and 2000 runs
for (b). Confidence intervals show the standard deviation.
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6 Extensions

We apply our information maximisation approach to Bernoulli bandits both with two and with many
arms, where it shows strong empirical performances (see Figure 3 above). This section describes the
extensions of AIM to this case and discusses potential extensions to more general bandit settings.

Exponential family bandits. Since Equation (3) explicitly relies on the arms’ posterior distributions,
information maximization methods can be directly extended to various reward distributions. In
particular, when the reward distributions belong to the exponential family [see Korda et al., 2013,
and Appendix C.1 for details on such distributions], an asymptotic and analytical expression of the
entropy can be derived for the case of uniform priors (see Appendix C for more details), yielding

S̃max =
1

2
ln(2πσ̄2

i )

[
1− e−NmKL(θ̂mt ,θ̃eq)

Nm∂2KL(θ̂mt , θ̃eq)
√

2πσ̄2
m

]
+

KL(θ̂mt
, θ̃eq)e

−NmKL(θ̂mt ,θ̃eq)

∂2KL(θ̂mt , θ̃eq)
√

2πσ̄2
m

. (11)

Here KL(θ̂i, θ̃eq) is the Kullback-Leibler divergence between the reward distribution parameterized by
θ̂i and θ̃eq where θ is the family parameter, and ∂2KL denotes its derivative w.r.t. the second variable.
All the steps leading to Equations (7) and (8) in Section 3 are not specific to Gaussian rewards. The
main difference lies in their asymptotic simplifications obtained afterwards with Laplace’s method.
Our implementation of AIM to Bernoulli rewards (a specific case of the exponential family) with
Equation (11) shows comparable performance to state-of-the-art algorithms (see Figure 2), supporting
its adaptability to general settings. We believe that AIM should be optimal for all exponential family
reward distributions and general prior distributions and that similar proof techniques can be used (see
Appendix C for a detailed discussion). However, significant work still remains to ensure that the
asymptotic regime, where all arms have been sufficiently drawn, is reached for any reward distribution
and will be addressed in future work.

Other bandit settings. Here, we provide a quick overview of several other bandit settings for
which approximate information maximization, adapted to the specific bandit problem, should provide
efficient algorithms. First, we emphasize that AIM’s partitioning between body and tail components
remains relevant even when dealing with heavy-tailed [Lee et al., 2023] or non-parametric reward
distributions [Baudry et al., 2020]. It should thus be able to provide strong guarantees in these settings,
similarly to Thompson sampling. Secondly, let us stress that information can also be quantified
for unpulled arms, which may prove crucial when facing large numbers of arms. The agent could
quantify the information of the “reservoir” of unpulled arms to anticipate the information gained from
exploring these unpulled arms. Additionally, if the agent has access to the remaining time, it can not
only evaluate the expected information gain when pulling an arm for a single round but also evaluate
the information gain of multiple pulls of the same arm. We believe that such a consideration might be
pivotal when facing many arms, since the limited amount of time does not allow to pull all the arms
[Bayati et al., 2020] sufficiently. Thirdly, in linear bandits, where arms are correlated with each other
[Li et al., 2010], AIM will be efficient because pulling a specific direction provides information on
correlated directions, the shared information gain could be leveraged by information-based methods
to yield strong performances. Finally, we could consider pure exploration problems [Bubeck et al.,
2011, Locatelli et al., 2016, Kalyanakrishnan et al., 2012] where the agent’s goal is directly linked to
an information gain, thus making the information maximization principle an inherent candidate when
a suitable entropy is derived from the underlying bandit structure and problem objective.

A last advantage of AIM lies in its possible extension to multiple constraints that would be introduced
using Lagrange multipliers (or borrowed from physics reasoning by defining free energy), further
improving its adaptability to various settings and specific requirements.

7 Conclusion

This paper introduces a new algorithm class, Approximate Information Maximization (AIM), which
leverages approximate information maximization of the whole bandit system to achieve optimal
regret performances. This approach builds on the entropy of the posterior of the arms’ maximal
mean, from which we extract a simplified and analytical functional at the core of the decision scheme.
It enables easily tunable and tractable algorithms, which we prove to be optimal for multi-armed
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Gaussian bandits. Numerical experiments for Bernoulli rewards with two or several arms emphasize
the robustness and efficiency of AIM. An additional strength of AIM lies in its efficiency at short times
and when the arms have close mean rewards where it outperforms existing state-of-the art. Further
research should focus on adjusting the information maximization framework to more complex bandit
settings, including many-armed bandits, linear bandits and thresholding bandits, where appropriately
selected information measures can efficiently apprehend the games’ structure and correlations.
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A Towards an analytical approximation of the entropy

In this section, we recapitulate all the steps leading to the analytical expression constitutive of our
AIM algorithm. We stress, that it involves exact derivations but also simplifications to considerably
simplify the final form of AIM. Therefore, alternative approaches could lead to a slightly different
version of AIM. However, our chosen method retains the essential features which emerges in the
asymptotic regime while providing a simple version of AIM.

A.1 The partitioning approximation

We start by commenting on the partition scheme and the approximations leading to the following
body/tail expressions. We first recall the expression for pmax(θ), with the arms ordered along Mt,

pmax(θ) =

pMt(θ)

At∏
m

Cm(θ) +

At∑
m

CMt(θ)pm(θ)

At∏
j ̸=m

Cj(θ)

 . (12)

where we remind that Cm(θ) is the cumulative posterior probability of the mean of arm m

Because of its dependency along all arms, there is no unique dominant term in Equation (12), and
distinct regimes emerge depending on θ and the state of the game. Then, we assume to isolate distinct
regimes contributing asymptotically to the entropy while significantly simplifying them. It will
considerably simplify the derivation of an analytical expression for the body/tail components in the
next section. The next paragraphs will then present heuristic arguments justifying our simplification
scheme.
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We start by rewriting the exact entropy expression isolating Mt:

Smax = −
∫
Θ

pMt
(θ)

At∏
m

Cj(θ) ln

pMt
(θ)

At∏
j

Cj(θ) +

At∑
m

pm(θ)CMt
(θ)

At∏
j ̸=m

Cj(θ)

dθ

−
At∑
m

∫
Θ

pi(θ)CMt
(θ)

At∏
j ̸=m

Cj(θ) ln

pMt
(θ)

At∏
j

Cj(θ) +

At∑
m

pm(θ)CMt
(θ)

At∏
j ̸=m

Cj(θ)

 dθ.

(13)

Let us briefly comment on the different contributions to Equation (13). We aim to keep the leading
orders of pmax(θ) when NMt

≫ Nm ≫ 1 and µ̂Mt
> µ̂m for all m in the set of current worse

empirical arms At. Here, the posterior distributions are assumed uni-modal. The first term is
the leading order in the vicinity of the mode of µ̂Mt

. Also, since NMt
> Nm, pMt

(θ) is more
concentrated than all pm(θ), resulting in the dominance of the second term in the distribution’s tail
(i.e., for high rewards).

We now decompose the entropy in the body/tail components defined in the main text, the first term
of Equation (13) will form the body component, and the sum over all worse empirical arms will
compose the tail. We now define µ̄eq,m the intersection point associated to the arm m verifying
Cm(µ̄eq,m)pMt

(µ̄eq,m) = CMt
(µ̄eq,m)pm(µ̄eq,m). Then, in the asymptotic regime, µ̄eq,m will verify

pm(θ) ≫ pMt
(θ) for θ > µ̄eq,m and pm(θ) ≪ pMt

(θ) for θ < µ̄eq,m. Again, we will assume to
neglect the transition regime where µ̄eq,m ∼ θ where both distributions are of the same order because
it is narrow (in the asymptotic regime) and has very little influence on the total value of the entropy.

To get the body component, we consider the first term of Equation (13). We neglect all the inner terms
inside the logarithm which is then dominated by Mt. Next, by noticing that Ci(θ) ≈ 1 is in the vicinity
of µ̂Mt

, we make a first-order expansion of the remaining product along all the worse empirical arms.
Since the inner term of the body component is negligible for θ > min({µ̄eq,m,m ∈ At}) (because of
its dependency along pMt

), we ignore that our simplification is no more valid in this specific regime
without loss of consistency. Taken together we obtain the body expression of the main text:

S̃body = −
∫
Θ

(
1−

At∑
m

[1− Cm(θ)]
)
pMt

(θ) ln pMt
(θ)dθ. (14)

Then, we consider the additional terms (each denoted as m) in Equation (13). First, each term of the
sum is negligible to the first one for θ < µ̄eq,m, we then only keep the upper part of the integral where
θ > µ̄eq,m. Because Nm ≫ 1 and θ > min({µ̄eq,m, i ̸= Mt}) > µ̂Mt

> µ̂j , we approximate all the
cumulative by one. Finally, to get a simplified expression for the increment, we assume to neglect all
the posterior distributions except for pi(θ) inside the logarithm of the i-th term and approximates
µ̄eq,m (see next section) which leads to the tail expression:

S̃tail = −
At∑
m

∫ µsup

µ̃eq,m

pm(θ) ln pm(θ)dθ. (15)

note that some of these posterior distributions (j ̸= m,Mt) are not negligible compared to pm(θ)
at a given θ. However, this cross-information between current suboptimal arms is asymptotically
negligible regarding the decision procedure (which largely resumes as balancing exploiting the best
empirical solution compared to exploring worse empirical arms) while unnecessarily complicating
the increment evaluation.

Finally, we obtain the full expression of the entropy approximation:

S̃max = −
∫
Θ

(
1−

At∑
m

[1− Cm(θ)]

)
pMt

(θ) ln pMt
(θ)dθ −

At∑
m

∫ µsup

µ̃eq,m

pi(θ) ln pi(θ)dθ. (16)
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A.2 Asymptotics of the intersection point

In this section, we derive the asymptotic expression of the intersection point (defined above as µ̃eq,m)
where the distributions Cm(µ̃eq,m)pMt

(µ̃eq,m) and CMt
(µ̃eq,m)pm(µ̃eq,m) intersect (at their highest

value if they intersect more than once). Here, we consider Gaussian rewards and the intersection
between Mt and a given worse empirical arm denoted m. The exact equation verified by the
intersection point µ̄eq,m is:√

NMte
−NMt

(µ̄eq,m−µ̂Mt
)2

2σ2

√
2πσ2

1

2

[
1 + erf

(√
Nm(µ̄eq,m − µ̂m)√

2σ2

)]
=

√
Nme−

Nm(µ̄eq,m−µ̂m)2

2σ2

√
2πσ2

1

2

[
1 + erf

(√
NMt(µ̄eq,m − µ̂Mt)√

2σ2

)]
.

(17)

Taking the logarithm of Equation (17) and normalizing the last term leads to:

Nm(µ̄eq,m − µ̂m)2

2σ2
− NMt

(µ̄eq,m − µ̂Mt
)2

2σ2
+

1

2
ln

NMt

Nm
+ ln

 1 + erf
(√

Nm(µ̄eq,m−µ̂m)√
2σ2

)
1 + erf

(√
NMt (µ̄eq,m−µ̂Mt )√

2σ2

)
 = 0.

(18)

The distributions are uni-modal, and assuming that µ̂Mt
> µ̂m, NMt

> Nm and recalling that µ̄eq,m

is the highest intersection, we get that µ̄eq,m > µ̂Mt
> µ̂m. Both error functions are then bounded in

[0, 1], making the last term bounded as well. We then approximate µ̄eq,m with µ̃eq,m by neglecting
the last term, which leads to the following solution:

µ̃eq,m = µ̂Mt +
Nm(µ̂Mt

− µ̂m)

NMt −Nm
+

√
NMt

Nm

(NMt −Nm)2
(µ̂Mt

− µ̂m)2 +
σ2

NMt −Nm
ln

(
NMt

Nm

)
.

(19)

Note that Equation (19) relies on both µ̂Mt
> µ̂m and NMt

> Nm. For NMt
≤ Nm, even if the

above µ̃eq,m can be computed, it does not quantify the tail contribution. As a matter of fact, for
NMt

≤ Nm, the tail is always dominated by pMt
, which means that it has already been included in

the main mode S̃body. Then, in this specific configuration, we take the contribution of the arm m to
S̃tail equals to 0 (in other words µ̃eq,m = µsup).

A.3 Closed-form expressions for the main mode’s contribution

Here, we derive the S̃body expression given in the main text for Gaussian rewards distribution.
Inserting the Gaussian form of the posterior into Equation (8) gives:

S̃body =−
∫ +∞

−∞

√
NMte

−NMt
(θ−µ̂Mt

)2

2σ2

√
2πσ2

(
−1

2
ln(

2πσ2

NMt

)− NMt
(θ − µ̂Mt

)2

2σ2

)
×(

1−
At∑
m

1

2

[
1− erf

(√
Nm(θ − µ̂m)√

2σ2

)])
dθ,

(20)

We integrate the constant part of the first term, denoted T1 by the use of the following identity [Ng
and Geller, 1969]:∫ ∞

−∞

[
1 + erf

(
θ − θ1√
2V1

)]
e−

(θ−θ2)2

2V2√
2πV2

dθ =

[
1 + erf

(
θ2 − θ1√
2
√
V2 + V1

)]
, (21)

which leads to
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T1 =
1

2
ln

(
2πσ2

NMt

)∫ +∞

−∞

√
NMt

e−
NMt

(θ−µ̂Mt
)2

2σ2

√
2πσ2

[
1− 1

2

At∑
m

1− erf

(√
Nm(θ − µ̂m)√

2σ2

)]
dθ

=
1

2
ln

(
2πσ2

NMt

)1−
At∑
m

1

2

1− erf

 √Nm(µ̂Mt − µ̂m)√
2σ2( 1

NMt
+ 1

Nm
)


=

1

2
ln

(
2πσ2

NMt

)1−
At∑
m

1

2
erfc

 √Nm(µ̂Mt − µ̂m)√
2σ2( 1

NMt
+ 1

Nm
)


(22)

Next, we separate the second term in two parts T2,1 and T2,2, first :

T2,1 =

∫ +∞

−∞

√
NMt

e−
NMt

(θ−µ̂Mt
)2

2σ2

√
2πσ2

NMt(θ − µ̂Mt)
2

2σ2
dθ =

1

2
. (23)

Then, we integrate by parts the remaining term T2,2 to obtain:

T2,2 = −
At∑
m

∫ ∞

−∞

N
3/2
Mt

(θ − µ̂Mt
)2

4σ2

e−
NMt

(θ−µ̂Mt
)2

2σ2

√
2πσ2

[
1− erf

(√
Nm(θ − µ̂m)√

2σ2

)]
dθ

= −
At∑
m

∫ ∞

−∞

1

4

√
NMt

e−
NMt

(θ−µ̂Mt
)2

2σ2

√
2πσ2

[
1− erf

(√
Nm(θ − µ̂m)√

2σ2

)]

− (θ − µ̂Mt
)

2

√
NMtNme−

NMt
(θ−µ̂Mt

)2

2σ2 −Nm(θ−µ̂m)2

2σ2

2πσ2
dθ

= −
At∑
Mt

1

4
erfc

 µ̂Mt
− µ̂m√

2σ2( 1
NMt

+ 1
Nm

)

− (µ̂Mt
− µ̂m)σ2

2NMt

√
2π( σ2

NMt
+ σ2

Nm
)3/2

e
− (µ̂Mt

−µ̂m)2

2σ2( 1
NMt

+ 1
Nm

)

,

(24)

where we also rely on the identity of Equation (21).

Combining Equations (22) to (24) leads to the analytical expression of the body component.

S̃body =
1

2
ln(

2πσ2e

NMt

)

[
1− 1

2

At∑
m

erfc

(√
NmNMt

(µ̂Mt
− µ̂m)√

2σ2(Nm +NMt
)

)]

−
At∑
m

√
NMt

N
3/2
m (µ̂Mt

− µ̂m)

2σ
√
2π(NMt

+Nm)3/2
e
−NmNMt

(µ̂Mt
−µ̂m)2

2σ2(Nm+NMt
) .

(25)

To finally get an asymptotic and simplified expression of the body component, we neglect the second
term. Then, since µ̃eq,m −→

NMt→∞
µ̂Mt and Nm ≪ NMt asymptotically, we approximate the first

term as:

S̃b =
1

2
ln(

2πσ2e

NMt

)

[
1− 1

2

At∑
m

erfc

(√
Nm(µ̃eq,m − µ̂m)√

2σ2

)]
. (26)

This last approximation will enable to provide an analytically tractable gradient without altering the
asymptotic behavior expected at large times for the entropy measure.
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A.4 Closed form and asymptotic expression for the tail’s entropy

The contribution from the tail can be derived exactly and reads:

S̃tail =

At∑
m

∫ ∞

µ̃eq,m

√
Nme−

Nm(θ−µ̂m)2

2σ2

√
2πσ2

[
1

2
ln(

2πσ2

Nm
) +

Nm(θ − µ̂m)2

2σ2

]
dθ

=

At∑
m

1

4
ln

(
2πσ2e

Nm

)
erfc

(√
Nm(µ̃eq,m − µ̂m)√

2σ2

)
+

√
Nm(µ̃eq,m − µ̂m)

2
√
2πσ2

e−
Nm(µ̃eq,m−µ̂m)2

2σ2 .

(27)

To get a simplified analytical expression of the tail component, we only keep the second term since it
dominates the others asymptotically,

S̃t =

At∑
m

√
Nm(µ̃eq,m − µ̂m)

2
√
2πσ2

e−
Nm(µ̃eq,m−µ̂m)2

2σ2 . (28)

Taken altogether, Equations (26) and (28) lead to the desired simplified approximation of the entropy:

S̃m = S̃b + S̃t. (29)

A.5 Derivation of the increment for the closed-form expression of entropy

Since Equations (26) and (28) exhibit simple closed-form expressions, it becomes possible to derive
an explicit expression of its expected increment. Here, we again consider continuous Gaussian reward
distributions.

We start by deriving the increment along the better empirical arm, ∆Mt
S̃m. The posterior of the

reward obtained at time t+ 1 is approximated as a Gaussian of variance σ2 and centred around µ̂Mt
,

leading to:

∆Mt
S̃m =

∫ ∞

−∞

e−
µ2

2σ2

√
2πσ2

[
S̃m(µ̂Mt

+
µ

NMt + 1
, NMt

+ 1, ...)− S̃m(µ̂Mt
, NMt

, ...)

]
dµ. (30)

where the dots runs over all the worse empirical arms variables remaining constant when the best
empirical arm is drawn at time t+ 1.

For the sake of simplicity, we neglect the variations of all the subdominant terms inside
all µ̃eq,m meaning we approximate them as µ̃eq,m(µ̂Mt

+ µ
NMt+1 , NMt

+ 1, µ̂m, Nm) ≈
µ̃eq,m(µ̂Mt

, NMt
, µ̂m, Nm) + µ

NMt+1 , after observing a reward µ when pulling the arm Mt for
the (NMt+1)th time.

By use of the identity Equation (21), the gradient of the body component ∆Mt
S̃b can be rewritten as:

∆Mt S̃b =
1

2
ln(

2πσ2e

NMt
+ 1

)

1− 1

2

At∑
m

erfc

 √Nm(µ̃eq,m − µ̂m)
√
2σ2
√
1 + Nm

(NMt+1)2


− 1

2
ln(

2πσ2e

NMt

)

[
1− 1

2

At∑
m

erfc

(√
Nm(µ̃eq,m − µ̂m)√

2σ2

)]
.

(31)
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The increment of the tail component along the better empirical arm can be calculated as:

∆Mt S̃t =

At∑
m

∫ ∞

−∞

e−
µ2

2σ2

√
2πσ2

√
Nm( µ

NMt+1 + µ̃eq,m − µ̂m)

2
√
2πσ2

e−
Nm(µ̃eq,m+

µ
NMt

+1
−µ̂m)2

2σ2 dµ

−
At∑
m

√
Nm(µ̃eq,m − µ̂m)

2
√
2πσ2

e−
Nm(µ̃eq,m−µ̂m)2

2σ2

=

At∑
m

e

−Nm
(µ̃eq,m−µ̂m)2

2σ2

(
1+

Nm
(1+NMt

)2

)√
Nm

8πσ2

(µ̃eq,m − µ̂m)

(1 + Nm

(NMt+1)2 )
3/2

−
At∑
m

√
Nm(µ̃eq,m − µ̂m)

2
√
2πσ2

e−
Nm(µ̃eq,m−µ̂m)2

2σ2 .

(32)

Next, we consider the increment evaluation along a given worse empirical arm denoted by k,

∆kS̃m =

∫ ∞

−∞

e−
µ2

2σ2

√
2πσ2

[
S̃m(..., µ̂k +

µ

Nk + 1
, Nk + 1, ...)− S̃m(..., µ̂k, Nk, ...)

]
dµ. (33)

We here also neglect the variations of the subdominant term inside µ̃eq,m. We start by considering
the increment of the body component:

∆kS̃b =
1

2
ln(

2πσ2e

NMt

)

[
1− 1

2
erfc

(
(Nk + 1)(µ̃eq,k − µ̂k)√

2σ2(Nk + 2)

)]

− 1

2
ln(

2πσ2e

NMt

)

[
1− 1

2
erfc

(√
Nk(µ̃eq,k − µ̂k)√

2σ2

)]
.

(34)

Of note, all other terms in the sum independent of index k remain constant, showing no increment.
Finally, we consider the associated tail component of the increment along k:

∆kS̃t =

∫ ∞

−∞

e−
µ2

2σ2

√
2πσ2

√
Nk + 1( µ

Nk+1 + µ̃eq,k − µ̂k)

2
√
2πσ2

e−
(Nk+1)(µ̃eq,k+

µ
Nk+1

−µ̂k)2

2σ2 dµ

−
√
Nk(µ̃eq,k − µ̂k)

2
√
2πσ2

e−
Nk(µ̃eq,k−µ̂k)2

2σ2

= e
− (Nk+1)2

(Nk+2)

(µ̃eq,k−µ̂k)2

2σ2
(1 +Nk)

2 (µ̃eq,k − µ̂k)√
8πσ2(2 +Nk)3/2

−
√
Nk(µ̃eq,k − µ̂k)

2
√
2πσ2

e−
Nk(µ̃eq,k−µ̂k)2

2σ2

(35)

As for the body increment, all other terms in the sum independent of index k remain constant, showing
no increment.

Taken altogether, Equations (31), (32), (34) and (35) lead to the final analytical expression of the
increment:
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∆Mt,k =
1

2
ln(

NMt

NMt
+ 1

)− 1

4
ln(

2πσ2e

NMt
+ 1

)

At∑
m

erfc

 √Nm(µ̃eq,m − µ̂m)√
2σ2(1 + Nm

(NMt+1)2 )


+

1

4
ln(

2πσ2

NMt

)

At∑
m

erfc

[√
Nm

µ̃eq,m − µ̂m√
2σ2

]

+

At∑
m

e

−Nm
(µ̃eq,m−µ̂m)2

2σ2(1+
Nm

(1+NMt
)2

)

√
Nm

8πσ2

(µ̃eq,m − µ̂m)

(1 + Nm

(NMt+1)2 )
3/2

−
At∑
m

√
Nm(µ̃eq,m − µ̂m)√

8πσ2
e−

Nm(µ̃eq,m−µ̂m)2

2σ2

+
1

4
ln(

2πσ2e

NMt

)

[
erfc

(
(Nk + 1)(µ̃eq,k − µ̂k)√

2σ2(2 +Nk)

)
− erfc

(√
Nk

µ̃eq,k − µ̂k√
2σ2

)]

− e
− (Nk+1)2

(Nk+2)

(µ̃eq,k−µ̂k)2

2σ2
(1 +Nk)

2 (µ̃eq,k − µ̂k)√
8πσ2(2 +Nk)3/2

+

√
Nk(µ̃eq,k − µ̂k)

2
√
2πσ2

e−
Nk(µ̃eq,k−µ̂k)2

2σ2

(36)

To obtain a simplified expression, we expand to the first order each component of the different
components of Equation (36) denoted T1, T2, T3, T4. The former is given by:

T1 = −1

4
ln(

2πσ2e

NMt + 1
)

At∑
m

erfc

 √Nm(µ̃eq,m − µ̂m)√
2σ2(1 + Nm

(NMt+1)2 )


+

1

4
ln(

2πσ2e

NMt

)

K∑
m̸=Mt

erfc

[√
Nm

µ̃eq,m − µ̂m√
2σ2

]

≈
At∑
m

1

4NMt

erfc

(√
Nm(µ̃eq,m − µ̂m)√

2σ2

)
− 1

4
ln(

2πσ2e

NMt

)
Nm

N2
Mt

√
Nm(µ̃eq,m − µ̂m)√

2πσ2
e−

Nm(µ̃eq,m−µ̂m)2

2σ2 .

(37)

Next we consider the second component, which reads:

T2 =

At∑
m

e

−Nm
(µ̃eq,m−µ̂m)2

2σ2(1+
Nm

(1+NMt
)2

)

√
Nm

8πσ2

(µ̃eq,m − µ̂m)

(1 + Nm

(NMt+1)2 )
3/2

−
At∑
m

√
Nm(µ̃eq,m − µ̂m)

2
√
2πσ2

e−
Nm(µ̃eq,m−µ̂m)2

2σ2

≈
At∑
m

e−Nm
(µ̃eq,m−µ̂m)2

2σ2

√
Nm

8πσ2
(µ̃eq,m − µ̂m)

[
−3

2

Nm

N2
Mt

+
(µ̃eq,m − µ̂m)2

2σ2

N2
m

N2
Mt

]
.

(38)

Next we consider the third term, denoted T3, which reads:

T3 =
1

4
ln(

2πσ2e

NMt

)

[
erfc

(
(Nk + 1)(µ̃eq,k − µ̂k)√

2σ2(2 +Nk)

)
− erfc

(√
Nk

µ̃eq,k − µ̂k√
2σ2

)]

≈ −1

4
ln(

2πσ2e

NMt

)
1

N2
k

(√
Nk(µ̃eq,k − µ̂k)√

2πσ2

)
e−

Nk(µ̃eq,k−µ̂k)2

2σ2

(39)
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Finally, the last term T4 reads

T4 = −e−
(Nk+1)2

(Nk+2)

(µ̃eq,k−µ̂k)2

2σ2
(1 +Nk)

2 (µ̃eq,k − µ̂k)√
8πσ2(2 +Nk)3/2

+

√
Nk(µ̃eq,k − µ̂k)

2
√
2πσ2

e−
Nk(µ̃eq−µ̂k)2

2σ2

≈ e−Nk
(µ̃eq,k−µ̂k)2

2σ2

√
Nk

8πσ2
(µ̃eq,k − µ̂k)

[
1

Nk
+

1

Nk

(µ̃eq,k − µ̂k)
2

2σ2

]
.

(40)

Taken altogether, we finally obtain the following simplified increment :

∼
∆Mt,k =

1

2
ln(

NMt

NMt + 1
) +

1

2NMt

At∑
m

1

2
erfc

(√
Nm(µ̃eq,m − µ̂m)√

2σ2

)

+

At∑
m

N
3/2
m (µ̃eq,m − µ̂m)√

2πσ2N2
Mt

e−Nm
(µ̃eq,m−µ̂m)2

2σ2

[
1

4
ln(

NMt

2πσ2e
)− 3

4
+

Nm(µ̃eq,m − µ̂m)2

4σ2

]
+

µ̃eq,k − µ̂k√
2πσ2Nk

e−Nk
(µ̃eq,k−µ̂k)2

2σ2

[
1

4Nk
ln(

NMt

2πσ2e
) +

1

2
+

(µ̃eq,k − µ̂k)
2

4σ2

]
(41)

By noticing that the sum of second term should account for the tail contribution along the body
increment, it shouldn’t be allowed to be superior to one. Then we assume to bound it by taking the
minimum compared to 1− 1/K.

A.6 Final expression for the increment comparison

Taken altogether, it leads to expression used for AIM for multiple gaussian arms:

∆Mt,k =
1

2
ln(

NMt

NMt + 1
) +

1

2NMt

min

( At∑
m

1

2
erfc

(√
Nm(µ̃eq,m − µ̂m)√

2σ2

)
, 1− 1

K

)

+

At∑
m

N
3/2
m (µ̃eq,m − µ̂m)√

2πσ2N2
Mt

e−Nm
(µ̃eq,m−µ̂m)2

2σ2

[
1

4
ln(

NMt

2πσ2e
)− 3

4
+

Nm(µ̃eq,m − µ̂m)2

4σ2

]
+

µ̃eq,k − µ̂k√
2πσ2Nk

e−Nk
(µ̃eq,k−µ̂k)2

2σ2

[
1

4Nk
ln(

NMt

2πσ2e
) +

1

2
+

(µ̃eq,k − µ̂k)
2

4σ2

]
(42)

with

µ̃eq,i = µ̂Mt +
Ni(µ̂Mt

− µ̂i)

NMt −Ni
+

√√√√NMt
Ni(µ̂Mt

− µ̂i)2

(NMt −Ni)2
+

σ2 ln
(

NMt

Ni

)
NMt −Ni

. (43)

B Proof of Theorem 1

This section provides the complete proof of Theorem 1. More precisely, it proves the more refined
Theorem 2 below.

Theorem 2. For any multi-armed bandits with Gaussian rewards of variance σ2 and mean vector
µµµ ∈ RK , for any ε ∈ (0, 1

2 ), there exists a constant C(µµµ, ε) ∈ R depending solely on µµµ and ε such
that for any T ∈ N

R(T ) ≤
∑

k,µk<µ∗

[
2σ2 lnT

(1− ε)(µ∗ − µk)
+

2σ2 ln lnT

(1− ε)(µ∗ − µk)

]
+ C(µµµ, ε).
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Proof. We denote in the whole proofM∗ = {k ∈ [K] | µk = µ∗}. For ∆k = µ∗ − µk, the regret
can then be written as

R(T ) =
∑

k,∆k>0

∆kE [Nk(T )] .

We decompose this expectation in 4 terms as follows

E [Nk(T )] ≤
T∑

t=1

P
(
∀i ∈M∗, Ni(t) ≤

√
t
)
+

T∑
t=1

P

(
µ̂k(t) ≥ µ∗ −

√
6σ2 ln t√

t
, at = k

)

+

T∑
t=1

P

(
∃i ∈M∗, µ̂i(t) ≤ µi −

√
6σ2 ln t

Ni(t)

)
+

T∑
t=1

P (Ek(t)) ,

where

Ek(t) :=
{
∃i ∈M∗, Ni(t) ≥

√
t and µ̂i(t) ≥ µ∗ −

√
6σ2 ln t

Ni(t)
≥ µ̂k(t), at = k

}
.

This inequality comes simply by noticing the event {at = k} is included in the union of the 4 other
events. Lemmas 1, 3 and 4 allow to respectively bound the first, second and third sums by a constant
C(µµµ) depending solely on µµµ, so that

E [Nk(T )] ≤
T∑

t=1

P (Ek(t)) + C(µµµ).

Thanks to Lemma 5, there exist constants t(µµµ), n(µµµ) depending solely on K and ∆k such that
T∑

t=1

P (Ek(t)) ≤ t(µµµ) +

T∑
t=1

P (G1(t)) + P (G2(t)) ,

where

G1(t) = {µk − µ̂k(t) ≤ −ε∆k, at = k},

G2(t) = {Nk(t) ≤
2σ2

(1− 2ε)2∆2
k

(
ln t+ ln ln t

)
+ n(µµµ), at = k}.

Now, we bound individually the sum corresponding to each of these 2 events. The first one can
be bounded using Hoeffding’s inequality. Indeed, for independent random variables Zk(n) ∼
N (µk, σ

2), it reads as:
T∑

t=1

P (µk − µ̂k(t) ≤ −ε∆k, at = k) ≤
T∑

n=1

P

(
1

n

n∑
i=1

Zk(i)− µk ≥ ε∆k

)

≤
T∑

n=1

e−
nε2∆2

k
2σ2

≤ 1

e
ε2∆2

k
2σ2 −1

.

The bound of the second term is bounded as
T∑

t=1

P(Ek(t)) ≤ E

[
T∑

t=1

1{Nk(t) ≤
2σ2

(1− 2ε)2∆2
k

(
ln t+ ln ln t

)
+ n(µµµ), at = k}

]

≤ 2σ2

(1− 2ε)2∆2
k

(
lnT + ln lnT

)
+ n(µµµ) + 1.

Wrapping up everything finally yields that for some constant C(µµµ, ε) depending solely on µµµ, ε,

R(T ) ≤ 2σ2

(1− 2ε)2∆k
(lnT + ln lnT ) + C(µµµ, ε).

This concludes the proof of Theorem 2 with the reparameterization ε← 1− (1− 2ε)2.
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B.1 Auxiliary Lemmas

Similarly to the proof of Thompson sampling, the first part of the proof shows that the optimal arm is
at least pulled a polynomial number of times with high probability. We recall that we denote in this
whole sectionM∗ = argmaxk µk.
Lemma 1. There exists a constant C0(µµµ) depending solely on the mean vector µµµ such that

∞∑
t=1

P(∀i ∈M∗, Ni(t) ≤
√
t) ≤ C0(µµµ).

Proof. Let t0(µµµ) be a large constant that depends solely on µµµ. In the remaining of the proof, we
assume at some points that t0(µµµ) is chosen large enough (but only larger than a threshold depending
on µµµ) such that some inequalities hold. We also assume in the following, without loss of generality,
that µ1 = µ∗, i.e., 1 ∈M∗.

Assume that for t ≥ t0(µµµ), Ni(t) ≤
√
t for all i ∈M∗. Let then k be the most pulled arm at time t,

i.e., k ∈ argmaxj Nj(t) (if multiple arms maximise the number of pulls, we select the one such that
its last pull happened the earliest). Necessarily Nk(t) ≥ t

K . We can choose t0(µµµ) large enough so
that t

K >
√
t and thus ∆k > 0. Let t′ ≤ t be the last time k was pulled. By design, k also maximised

the number of pulls then, so that k ∈ argmaxj µ̂j(t
′). Moreover, Ni(t

′) ≤
√
t for all i ∈ M∗ and

Nk(t
′) ≥ t

K − 1. For t0(µµµ) large enough, this yields Nk(t
′) ≥ Ni(t

′) for all i ∈ M∗ and at′ = k.
The arm k is thus pulled at time t′, in particular because Sk ≥ S1 (i.e., ∆k,1S ≤ 0), where

Sk =
1

2
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(
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1

Nk(t′)

)
− 1

2Nk(t′)
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2σ2
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S1 =
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i ̸=k
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2πσ2
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(µ̃eq,i−µ̂i)

2

2σ2

[
1

4
ln(

Nk(t
′)

2πσ2e
)
Ni(t

′)
N2

k (t
′)
− 3

4

Ni(t
′)

N2
k (t

′)
+

(µ̃eq,i − µ̂i)
2

4σ2

N2
i (t

′)
N2

k (t
′)

]

+ e−N1(t
′)

(µ̃eq,1−µ̂1)2

2σ2

√
N1(t′)
2πσ2

(µ̃eq,1 − µ̂1)

[
1

4
ln(

Nk(t
′)

2πσ2e
)

1

N2
1 (t

′)
+

1

2N1(t′)
+

1

N1(t′)
(µ̃eq,1 − µ̂1)

2

4σ2

]
.

To simplify, note that Sk ≤ 1
2Nk(t′)

. Moreover since Nk(t
′) ≥ t

K − 1 ≥ 2πe4σ2 for a large enough
choice of t0(µµµ), S1 can be easily lower bounded as

S1 ≥
1

2

(µ̃eq,1 − µ̂1)√
2πσ2N1(t′)

e−
N1(t′)(µ̃eq,1−µ̂1)2

2σ2 .

So we finally have the following inequality at time t′:

1

N2(t′)
≥ (µ̃eq − µ̂1)√

2πσ2N1(t′)
e−

N1(t′)(µ̃eq−µ̂1)2

2σ2 . (44)

Recall that N2(t
′) ≥ t

K − 1, so that Equation (44) can be rewritten as

N1(t
′) ≥ (

t

K
− 1)

x̃√
π
e−x̃2

, (45)

where x̃ =

√
N1(t′)(µ̃eq−µ̂1)√

2σ2
. In the following, we will show that x̃ ∈ [x̃min, x̃max] ⊂ R+. By

analysing the variations of x 7→ xe−x2

, this will imply that

N1(t
′) ≥

t
K − 1√

π
min{x̃mine

−x̃2
min , x̃maxe

−x̃2
max}. (46)

For the lower bound, the definition of µ̃eq,1 and the fact that N1(t
′) ≥ 1 directly implies that

x̃ ≥

√√√√ ln(Nk(t′)
N1(t′)

)

2(Nk(t′)
N1(t′)

− 1)
= Ω

(√
ln(t)

t

)
.
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Moreover, by subadditivity of the square root:

x̃ ≤
√

N1(t′)
2σ2

(µ̂2 − µ̂1)

(
1 +

N1(t
′) +

√
N1(t′)Nk(t′)

Nk(t′)−N1(t′)

)
+

√√√√ N1(t′) ln(
Nk(t′)
N1(t′)

)

2(Nk(t′)−N1(t′))
(47)

≤
√

N1(t′)
2σ2

(µ̂k − µ̂1)
(
1 +Kt−

1
4

)
+O

(√
K ln(t)

t
1
4

)
. (48)

Let us now consider the events, for ∆min = minj,∆j>0 ∆j ,

H∗(t) :=

{
∃i ∈M∗,∃s ≤ t, µ̂i(s)− µi ≤ −

√
2σ2(ln(t)− ln ln(t))

Ni(s)
− ∆min

3

}
, (49)

Hk(t) :=

{
∃s ≤ t,

t

K
− 1 ≤ Nk(s) ≤ t and µ̂k(s)− µk ≥

∆k

3

}
. (50)

Assume in the following that ¬H∗(t) ∩ ¬Hk(t). This implies that

µ̂k − µ̂1 ≤ −
∆k

3
+

√
2σ2(ln(t)− ln ln(t))

N1(s)
. (51)

In particular, √
N1(t′)
2σ2

(µ̂2 − µ̂1) ≤
√

ln(t)− ln ln(t),

which implies that x̃ ≤
√
ln(t)− ln ln(t) +O

(
K
√
ln(t)t−

1
4

)
. Using the lower and upper bounds

on x̃, we have thanks to Equation (46) that under ¬H∗(t) ∩ ¬Hk(t),

N1(t
′) = Ω(

ln
3
2 (t)

K
).

For a large enough choice of t0(µµµ), this last equality along with Equation (51) actually yield
µ̂k − µ̂1 < 0, which contradicts the beginning of the proof (k being best empirical arm at time t′).
By contradiction, we thus showed the following event inclusion for t ≥ t0(µµµ):{

∀i ∈M∗, Ni(t) ≤
√
t
}
⊂ H∗(t) ∪Hk(t). (52)

Lemma 1 then follows, thanks to Lemma 2 below,
∞∑
t=1

P(∀i ∈M∗, Ni(t) ≤
√
t) ≤ t0(µµµ) +

∞∑
t=t0(µµµ)+1

P(H∗(t)) + P(Hk(t)).

Lemma 2. For any b ∈ (0, 1) and the eventsH∗(t),Hk(t) defined in Equations (49) and (50), there
exist constants c1 and c2 depending solely on µµµ such that

∞∑
t=1

P(H∗(t)) ≤ c1 and

∞∑
t=1

P(Hk(t)) ≤ c2 for any k ̸∈ M∗.

Proof. The two bounds directly result from Hoeffding’s inequality. Consider independent random
variables (Zj(n))n∈N,j∈[K] where Zj(n) ∼ N (µj , σ

2). Let us first bound the probability ofHk(t),
which is simpler.

P(Hk(t)) ≤
t∑

n=⌈t−tb−1⌉
P

(
n∑

i=1

(Zk(i)− µk) ≥
n∆k

3

)

≤
t∑

n=⌈ t
K −1⌉

e−
n∆2

k
18σ2

≤ e−
⌈ t
K

−1⌉∆2
k

18σ2

1− e−
∆2

k
18σ2

.
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The second inequality of Lemma 2 then follows by noting that the last term is summable over t. For
the second bound, we also have by Hoeffding’s inequality

P(H∗(t)) ≤
∑

j∈M∗

∞∑
n=1

P

(
n∑

i=1

(Zj(i)− µj) ≤ −
√
2nσ2(ln(t)− ln ln(t))− n∆min

3

)

≤
∑

j∈M∗

∞∑
n=1

exp

(
− ln(t) + ln ln(t)−

√
2nσ2(ln(t)− ln ln(t))

∆min

3σ2
− n∆2

min

18σ2

)

≤ |M∗| ln(t)
t

exp

(
−
√

2(ln(t)− ln ln(t))
∆min

3
√
σ2

) ∞∑
n=1

e−
n∆2

min
18σ2 .

The last sum is obviously finite. Moreover,
√

2(ln(t)− ln ln(t)) = ω(ln ln(t)), so that

exp
(
−
√
2(ln(t)− ln ln(t))∆min

3
√
σ2

)
= O

(
1

lnα(t)

)
for any α > 0. By comparison with series

of the form 1
n lnα(n) , the term ln(t)

t exp
(
−
√
2(ln(t)− ln ln(t)) ∆2

3
√
σ2

)
is summable over t, which

leads to the first bound of Lemma 2.

Lemma 3. For any k ̸∈ M∗, there exists a constant C1(µµµ) depending solely on µµµ such that

∞∑
t=1

P

(
µ̂k(t) ≥ µ∗ −

√
6σ2 ln t√

t
, at = k

)
≤ C1(µµµ).

Proof. A union bound on the sum yields for any T ∈ N

T∑
t=1

P

(
µ̂2(t) ≥ µ∗ −

√
6σ2 ln t√

t
, at = k

)

≤
T∑

t=1

t∑
n=0

P

(
µ̂k(t) ≥ µ∗ −

√
6σ2 ln t√

t
,Nk(t) = n,Nk(t+ 1) = n+ 1

)

≤
T∑

n=0

T∑
t=n

P

µ̂k(t) ≥ µ∗ −
√

6σ2 mins≥n ln s√
s

,Nk(t) = n,Nk(t+ 1) = n+ 1︸ ︷︷ ︸
:=G1(t,n)

 .

Now note that the G1(t, n) are disjoint for different t. In particular,
T∑

t=n

P(G1(t, n)) = P

(
∃t ∈ [n, T ], µ̂k(t) ≥ µ∗ −

√
6σ2 mins≥n ln s

sb
, N2(t) = n

)
.

For independent random variables Zk(n) ∼ N (µk, σ
2), we have by independence of the Xt and at,

and then by Hoeffding inequality:

T∑
t=1

P

(
µ̂k(t) ≥ µ∗ −

√
6σ2 ln t√

t
, at = k

)
≤ 1 +

T∑
n=1

P

(
1

n

n∑
i=1

(Zk(i)− µk) ≥ ∆k −
√

6σ2 mins≥n ln s√
s

)
,

≤ 1 +

T∑
n=1

exp

−n
(
∆k −

√
6σ2 mins≥n ln s√

s
)
)2

2σ2

 .

Obviously, this sum can be bounded for any T ∈ N by a constant solely depending on ∆k.

Lemma 4. For any i ∈ [K], there exists a universal constant C2 such that

∞∑
t=0

P

(
µ̂i(t) ≤ µi −

√
6σ2 ln t

Ni(t)
)

)
≤ C2.

25



Proof. This is a direct consequence of Garivier [2013], which states that for Gaussian rewards with
variance σ2:

P(Ni(t)
(µ̂i(t)− µi)

2

2σ2
≥ (1+α) ln t) ≤ 2

⌈
ln t

ln(1 + η)

⌉
t−(1− η2

16 )(1+α) for any t ∈ N∗ and α, η > 0.

In particular with α = 2 = η, this implies

P

(
µ̂i(t) ≤ µi −

√
6σ2 ln t

Ni(t)

)
≤ 2

ln(t) + 1

ln(3)
t−

9
4 .

This term is obviously summable so that there exists a constant C2 such that
∞∑
t=1

P

(
µ̂1(t) ≤ µ1 −

√
6σ2 ln t

N1(t)

)
≤ C2.

Lemma 4 directly follows by the inclusion of the considered events.

For any k ̸∈ M∗, Lemma 5 below gives an event inclusion for the event Ek(t) that we recall here,

Ek(t) :=
{
∃i ∈M∗, Ni(t) ≥

√
t and µ̂i(t) ≥ µ∗ −

√
6σ2 ln t

Ni(t)
≥ µ̂k(t), at = k,

}
.

Lemma 5. There exist constants t(µµµ) and n(µµµ) depending solely onµµµ such that for any k ̸∈ M∗, t ≥
t(µµµ) and ε ∈ (0, 1

3 ),

Ek(t) ⊂ {µk − µ̂k(t) ≤ −ε∆k, at = k} ∪ {Nk(t) ≤
2σ2

(1− 2ε)2∆2
k

(
ln t+ ln ln t

)
+ n(µµµ), at = k}.

Proof. Assume in the following that Ek(t) holds for some t ≥ t(µµµ). Let i ∈ [K] be an arm

maximising the empirical mean at time t. Necessarily µ̂i(t) ≥ µ∗ −
√

6σ2 ln t
Ni(t)

. Moreover, at = k so

that i also maximises the number of pulls, in particular Ni(t) ≥ t
K . Moreover, as we pull the arm k,

Sk ≥ Si where

Si =
1

2
ln

(
1 +

1

Ni(t)

)
− 1

2Ni(t)
min

1

2

∑
j ̸=i

erfc

(√
Nj(t)(µ̃eq,j − µ̂j)√

2σ2

)
, 1− 1

K

 ,

Sk = gk(t)Qk(t) +
∑
j ̸=i

gj(t)Pj(t),

(53)

where for all j ̸= i

gj(t) =

√
Nj(t)

2πσ2
(µ̃eq,j − µ̂j) e

−Nj(t)
(µ̃eq,j−µ̂j)

2

2σ2 ,

Pj(t) =

[
1

4
ln(

Ni(t)

2πσ2e
)
Nj(t)

N2
i (t)

− 3

4

Nj(t)

N2
i (t)

+
(µ̃eq,j − µ̂j)

2

4σ2

N2
j (t)

N2
i (t)

]

and Qj(t) =

[
1

4
ln(

Ni(t)

2πσ2e
)

1

N2
j (t)

+
1

2Nj(t)
+

1

Nj(t)

(µ̃eq,j − µ̂j)
2

4σ2

]
.

Also note that as we pull the arm k, we have for any j ≤ i,

gj(t)Qj(t) ≤ gk(t)Qk(t). (54)

As a consequence, we can write for any δ > 0 and x̃j =
√

Nj(t)
2σ2 (µ̃eq,j − µ̂j):

gj(t)Pj(t) ≤ gj(t)

(
ln(t)

Nj(t)

4N2
i (t)

)
+ x̃3

je
−x̃2

j
Nj(t)

2N2
i (t)

≤ gj(t)

(
2 ln(t) +

1

δ

)
Nj(t)

2N2
i (t)

+
Nj(t)

2N2
i (t)

δ,
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where we used the fact that x̃3
je

−x̃2
j ≤ x̃je

−x̃2
j

δ + δ. Moreover, note that for t(µµµ) large enough,
Qj(t) ≥ 1

2Nj(t)
. As a consequence,

gj(t)Pj(t) = gj(t)

(
2 ln(t) +

1

δ

)
Nj(t)

2N2
i (t)Qj(t)

Qj(t) +
Nj(t)

2N2
i (t)

δ

≤ Qj(t)gj(t)

(
2 ln(t) +

1

δ

)
+

Kδ

2t

≤ Qk(t)gk(t)

(
2 ln(t) +

1

δ

)
+

Kδ

2t
,

where the last inequality comes from Equation (54). In particular,

Sk ≤ K

(
2 ln(t) +

1

δ

)
Qk(t)gk(t) +

K2δ

2t
. (55)

Also, Si ≥ 1
2t − K2

4t2 since Ni(t) ≥ t
K and ln(1 + x) ≥ x− x2

2 for x ∈ [0, 1].

Now assume that µk − µ̂k(t) ≥ −ε∆k. It then holds
µ̃eq,k − µ̂k(t) ≥ µ̂i(t)− µ̂k(t)

≥ ∆k + µk − µ̂k(t)−
√

6σ2 ln t√
t

≥ (1− ε)∆k −
√

6σ2 ln t√
t

.

Again, we can choose t(µµµ) large enough so that µ̃eq,k − µ̂k(t) ≥ (1− 2ε)∆k. Moreover, note that

the functions x 7→ e−x2

x , x 7→ xe−x2

, x 7→ x3e−x2

are all decreasing on an interval of the form

[M,+∞]. As a consequence, we can choose n(µµµ) large enough so that
√

n(µµµ)((1−2ε)∆k)2√
2σ2

≥M . If
Nk(t) ≥ n(µµµ), we then have from Equation (55), for a constant c(K,∆k) solely depending on K
and ∆k:

Sk ≤ c(K,∆k)e
−Nk(t)(1−2ε)2∆2

k
2σ2

[
ln t+

1

δ

]
+

K2δ

2t
.

The inequality Sk ≥ Si then implies, thanks to the above bounds:

c(K,∆k)e
−Nk(t)(1−2ε)2∆2

k
2σ2

[
ln t+

1

δ

]
≥ 1−K2δ

2t
− K2

4t2
.

In particular, for δ = 1
2K2 ,

Nk(t) ≤
2σ2

(1− 2ε)2∆2
k

(ln t+ ln ln t+O (1)) ,

where the O hides constants depending in K and ∆k. This concludes the proof of Lemma 5 as we
just shown that if Ek(t) holds, at least one of the two following events holds when Nk(t) ≥ n(µµµ):

• µk − µ̂k(t) ≤ −ε∆k

• Nk(t) ≤ 2σ2

(1−2ε)2∆2
k
(ln t+ ln ln t+O (1)).

C Generalization of the information maximization approximation

In this section, we will generalize the approach derived in Appendix A to bandit settings with a
reward distribution belonging to the exponential family. We will retrace all the previous steps made in
Appendix A, insisting on the differences with the Gaussian reward case. We will also discuss bandit
settings with non-uniform priors and with more than two arms.
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C.1 Asymptotic expression for exponential family rewards

We derive an asymptotic expression for the one-dimensional canonical exponential family from which
we will derive an analytical approximation of the entropy. We thus focus on a reward distribution
density f with respect to some reference measure ν belonging to some one-dimensional canonical
exponential family, i.e.,

f(x|θ) = A(x) exp
(
T (x)θ − F (θ)

)
, (56)

where F is twice differentiable and strictly convex. Additionally, let us recall that the Kullback-Leibler
divergence verifies: [Korda et al., 2013]:

KL(θ, θ′) = F (θ′)− F (θ)− F ′(θ)(θ′ − θ), (57)
where KL(θ, θ′) is the Kullback-Leibler divergence between the reward distribution parameterized
by θ and the one parameterized by θ′.

Given a prior π(θ) and the reward realizations (x1, . . . , xn), the associated posterior distribution on
θ, denoted p, reads:

p(θ|x1, .., xn) =
1

C
π(θ) exp

(
θ

n∑
k=1

T (xk)− nF (θ)

)
, (58)

where C =
∫
π(θ) exp (θ

∑
T (xk)− nF (θ)) dθ is a normalization constant. Next, we derive the

maximum a posteriori for the parameter θ, denoted θ̂l, which verifies:
n∑

i=1

T (xi) = nF ′(θ̂l)−
π′(θ̂l)

π(θ̂l)
. (59)

At this stage, we assume that there exits such θ̂l verifying Equation (59). In practice, for a reward
distribution that does not meet this criteria, one can replace θ̂l by a series θ̂n,l which, for sufficiently
large values of n, asymptotically conforms to the aforementioned definition. For example, a Bernoulli
arm that consistently fails under a uniform prior, will result in an undefined θ̂l. To address this, one
may redefine θ̂l such that (1 +

∑
i = 1nT (xi)) = (n+2)F ′(θ̂l), effectively replacing the empirical

mean in Equation (59) with the posterior mean.

Replacing the sum in Equation (58) leads to

p(θ|x1, .., xn) =
1

C
π(θ) exp

(
θnF ′(θ̂l)− θ

π′(θ̂l)

π(θ̂l)
− nF (θ)

)

=
enθ̂lF

′(θ̂l)−nF (θ̂l)

C
π(θ)e

−θ
π′(θ̂l)
π(θ̂l) e−nKL(θ̂l,θ)

=
1

C2
π(θ)e

−θ
π′(θ̂l)
π(θ̂l) e−nKL(θ̂l,θ),

(60)

where C2 also acts as a normalization constant of Equation (60). For n ≫ 1, the distribution
concentrates in the vicinity of θ̂l from which we will derive the asymptotic scaling of C2. We then
integrate Equation (60) after a change of variable θ(u) = θ̂l +

u√
n

,

1 =

∫
Θ

p(θ|x1, .., xn)dθ =

∫ (θb−θ̂l)
√
n

−(θb−θ̂l)
√
n

1

C2
√
n
π(θ̂l +

u√
n
)e

−(θ̂l+
u√
n
)
π′(θ̂l)
π(θ̂l) e

−nKL(θ̂l,θ̂l+
u√
n
)
du

+

∫ −θb

µinf

p(θ|x1, .., xn)dθ +

∫ µsup

θb

p(θ|x1, .., xn).dθ

(61)

Taking (θb − θ̂l) ∼ n−b with b < 1/2, we get rid of the tail components in the asymptotic limit.
Secondly, by noticing that F ′′(θ̂l)

2 = lim
θ→θ̂l

K(θ̂l, θ)/|θ − θ̂l|2 from Equation (57), we make an

expansion to the lowest order of the Kullback-Leibler divergence, which gives:

1 = lim
θ→θ̂l

∫ (θb−θ̂l)
√
n

−(θb−θ̂l)
√
n

1

C2
√
n
π(θ̂l)e

−θ̂l
π′(θ̂l)
π(θ̂l) e

−F ′′(θ̂l)u
2

2 θ̂l+O
(

1√
n

)
du. (62)
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Thus, we obtain:

C2 ∼
√
2π√

nF ′′(θ̂l)
π(θ̂l)e

−θ̂l
π′(θ̂l)
π(θ̂l) . (63)

Of note, the gaussian limit also gives that σ̄2
i ∼ F ′′(θ̂l)−1N−1

i .

Thus, we assume to develop an approximation scheme for a posterior distribution pi asymptotically
verifying:

pi(θ) ∼
Ni→∞

√
1

2πσ̄2
i

H(θ, θ̂l)e
−NiKL(θ̂l,θ), (64)

where H is a function accounting for the prior distribution. For the following, we take a uniform
prior on Θ, which leads to H(θ, θ̂l) = 1.

In the following, we will denote µ̂Mt and µ̂m as the maximum a posteriori estimates associated to
their respective arms (instead of the empirical means).

C.2 The partitioning approximation

Since all the steps leading to the partitioning approximation are independent of the type of reward
distribution, S̃tail and S̃body have the same general form as given in Appendix A.1. Here, we consider
all the distributions under θ parameter for which we replace µ̂Mt , µ̂m and µ̃eq by there equivalents
θ̂mt

, θ̂Mt
and θ̃eq.

C.3 Asymptotic intersection point

By use of Equation (64), the equation verified by the intersection point θ̄eq asymptotically reads:

e−NMtKL(θ̂Mt ,θ̄eq)√
2πσ̄2

Mt

∫ θ̄eq

µinf

e−NmKL(θ̂mt ,θ
′)√

2πσ̄2
m

dθ′ =
e−NmKL(θ̂mt ,θ̄eq)√

2πσ̄2
m

∫ θ̄eq

µinf

e−NMtKL(θ̂Mt ,θ
′)√

2πσ̄2
Mt

dθ′.

(65)

Taking the logarithm of Equation (65) leads to

NmKL(θ̂mt , θ̄eq)−NMtKL(θ̂Mt , θ̄eq) +
1

2
ln

σ̄2
m

σ̄2
Mt

+ ln

∫ θ̄eq
µinf

√
σ̄2
Mt

e−NmKL(θ̂mt ,θ
′)dθ′∫ θ̄eq

µinf

√
σ̄2
me−NMtKL(θ̂Mt ,θ

′)dθ′
= 0.

(66)

Employing the same arguments as the ones exposed in Appendix A.2, we approximate θ̄eq by
neglecting the last term. Furthermore, in the considered asymptotic scaling regime (NMt

≫ Nm),
θ̄eq will be in the vicinity of θ̂Mt where a Gaussian expansion of the Kullback-Leibler divergence
is relevant (see Equation (61)). Thus, we approximate KL(θ̂mt , θ̃eq) by KL(θ̂mt , θ̂Mt) and expand
KL(θ̂Mt

, θ̄eq) to lowest order in θ̃eq (with σ̄2
i ∼ F ′′(θ̂l)−1N−1

i ), leading to:

θ̃eq = θ̂Mt
+

√
2σ̄2

Mt

[
NmKL(θ̂mt

, θ̂Mt
) +

1

2
ln

σ̄2
m

σ̄2
Mt

]
. (67)

C.4 Generalization of the main mode’s contribution

We start by recalling the expression for the body component of the entropy:

S̃body = −
∫
Θ

pMt
(θ)Cm(θ) ln pMt

(θ)dθ. (68)

Without any additional information on the expression for KL, Equation (68) cannot be computed in a
closed form. Thus, we will rely on the asymptotic scaling NMt

≫ Nm ≫ 1 to provide a tractable
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expression. First, we neglect variations of Cm(θ) in Equation (68) integral by evaluating it at µ̃eq.
Then, by noticing that the resulting integral is the entropy of the better empirical arm’s mean, we
approximate it by its leading order, proportional to ln(2πσ̄2

Mt
)/2:

S̃body ≈
1

2
ln(2πσ̄2

Mt
)

[
1−

∫ µsup

θ̄eq

e−NmKL(θ̂mt ,θ
′)√

2πσ̄2
m

dθ′
]
. (69)

We finally consider the last integral in Equation (69). By noticing that it is concentrated in the vicinity
of µ̃eq for Nm ≫ 1, we Taylor expand KL(θ̂mt , θ

′) at µ̃eq to obtain:∫ µsup

θ̄eq

e−NmKL(θ̂mt ,θ
′)√

2πσ̄2
m

dθ ≈ e−NmKL(θ̂mt ,µ̃eq)√
2πσ̄2

m

∫ µsup

θ̄eq

e−Nm(θ′−µ̃eq)∂2KL(θ̂mt ,µ̃eq)dθ′

≈ e−NmKL(θ̂mt ,µ̃eq)√
2πσ̄2

mNm∂2KL(θ̂mt , µ̃eq)
.

(70)

Inserting Equation (70) into Equation (69) leads to the body component:

S̃b =
1

2
ln(2πσ̄2

Mt
)

[
1− e−NmKL(θ̂mt ,θ̃eq)√

2πσ̄2
mNm∂2KL(θ̂mt

, θ̃eq)

]
. (71)

C.5 Generalized expression for the entropy tail

We start by recalling the expression for the tail component:

S̃tail = −
∫ µsup

θ̃eq

pm(θ) ln pm(θ)dθ. (72)

As for Equation (70), we Taylor expand KL(θ̂mt
, θ′) at θ̃eq in the exponential term to obtain:

S̃t = − ln pm(θ̃eq)
e−NmKL(θ̂mt ,θ̃eq)√

2πσ̄2
mNm∂2KL(θ̂mt , θ̃eq)

. (73)

Keeping the leading order of − ln pm(θ̃eq) ∼ NmKL(θ̂mt , θ̃eq) leads to the expected tail expression
used in the main text.

C.6 Generalized form of the entropy approximation

To summarize, by combining Equations (71) and (73) we obtain an asymptotic expression for
exponential family bandits with a uniform prior:

S̃max =
1

2
ln(2πσ̄2

Mt
)

[
1− e−NmKL(θ̂mt ,θ̃eq)

Nm∂2KL(θ̂mt
, θ̃eq)

√
2πσ̄2

m

]
+

KL(θ̂mt
, θ̃eq)e

−NmKL(θ̂mt ,θ̃eq)

∂2KL(θ̂mt
, θ̃eq)

√
2πσ̄2

m

.

(74)

Finally, depending implementation, we propose for convenience to replace in S̃max the maximum a
posteriori estimates of each arm by either their empirical mean, their mean posterior values or the
maximum of the log-likelihood. This does not alter the algorithm’s efficiency in practice, while it
may simplify the implementation procedure for specific reward distributions.

Note that all these steps can be adapted to non-uniform priors (in particular by multiplying the tail
by the prior effects evaluated in θ̃eq). Finally, let us underline that our approximation scheme holds
for any posterior distributions verifying Equation (64), a property we believe to be shared for more
general reward distributions.
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C.7 Derivation of the increment for the closed-form expression of entropy

First, we stress there is no unique guideline to compute the expected increment of Equation (74), and
multiple solutions emerge depending on the type of the reward distribution. In particular, if the reward
distribution is continuous, one could integrate the increment as it has been done for Gaussian rewards
above. But, if the integration cannot be solved analytically, one could approximate the increments by
taking discrete reward values of the order of ±σ. Similarly, if the reward takes discrete values, the
increments are already discrete, but asymptotic simplifications or taking the continuous limit can also
be considered.

Finally, if the increment evaluation is discrete or approximated, one could encounter rare cases where
the algorithm gets trapped. It could occur when the algorithm observes a worse suboptimal arm close
to the best empirical arm when it has already extensively been drawn. Because the entropy could
increase drastically if an arm inversion occurs, the gradient signs may occasionally switch, leading to
the failure of the minimization procedure. To prevent such cases, we change the decision procedure
by maximizing the entropy variation rather than its direct minimization. An example is given for the
implementation of Bernoulli rewards in the next section.

Lastly, depending on the reward distribution it may be straightforward to express the increments
along the usual empirical or posterior mean as opposed to the family parameter θ̂. Often, this can be
achieved through a basic variable transformation. The Bernoulli distribution example provided below
serves as an illustration of this approach.

D Numerical experiments

Here, we provide all the information regarding numerical experiments. This includes details on
the numerical settings, implementation details for AIM in the investigated settings, an overview of
investigated classical bandit algorithms, and additional experiments focusing on close-arm means.

D.1 Numerical settings

In Figure 1, the posterior distributions are drawn with µ̂Mt
≈ 0.65, N1(t) = 374, µ̂m ≈ 0.29,

Nm = 26, where µi and Ni(t) are, respectively, the empirical mean and number of draws of arm i
and have been obtained with the AIM algorithm.

For the Gaussian two-armed cases in Figure 2 the arm means are chosen from a uniform grid in
(0, 1)× (0, 1) using a Sobol sequence (we have avoided the values 0 and 1 but it has no impact on
the obtained results). The regret is averaged over 8192 games and observed during 108 steps to attest
the logarithmic scaling. For Bernoulli rewards with two-armed Figure 3, the regret is averaged over
16384 games and observed during 108 steps. It is worth noting that for Gaussian rewards, the prior
information of arm means being only between 0 and 1 is not given to AIM nor to the Thompson
sampling algorithm to allow a direct comparison.

For the fifty-armed case in Figures 2 and 3, the arm means are drawn from a uniform prior, and the
regret is averaged over 2000 games and observed during 106 steps in Figure 2 and 107 in Figure 3.

For close arm means in Figures 4 and 5, the mean values are fixed with µ1 = 0.79 and µ2 = 0.8, but
this prior information is not given to the investigated algorithms. The regret is averaged over 105
games and observed during 106 steps.

For the two-armed cases in Figures 6 and 7, the arm means are chosen from a uniform grid in
(0, 1)× (0, 1) using a Sobol sequence. The regret is averaged over more than 105 games and observed
during 106 steps to enhance measurement accuracy.

Finally, in the fifty-armed case in Figure 8, the arm means are drawn from a uniform prior, and
the regret is averaged over 4.104 games and observed during 5.104 steps to enhance measurement
accuracy.

Of note, for all the experiments, seed values are not shared throughout the algorithms. To obtain a
sufficient number of runs, the code was parallelized on a cluster (asynchronously), with each run
operating independently while ensuring that seed values are not common between runs. Because it
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relies on an analytical expression, AIM shows an execution time of the same order of Thompson
sampling (measured three times slower for two-armed Bernoulli rewards).

For completeness, an implementation of AIM for both Bernoulli and Gaussian rewards and more than
two arms are given in the supplementary material (AIM Bernoulli bandits and AIM Gaussian
folders).

D.2 AIM implementation details

Here, we recap below AIM setups for the different settings evoked in the main text.

D.2.1 Approximate information maximization for the two arm Gaussian rewards

Specifically for the two-armed case, one can simplifies the expressions given in the main text. µ̃eq

defined the value of θ where both arms have the same probability of being the maximal one and reads

µ̃eq = µ̂Mt +
Nm(µ̂Mt

− µ̂m)

NMt −Nm
+

√
NMtNm(µ̂Mt − µ̂m)2

(NMt −Nm)2
+

σ2

NMt −Nm
ln

(
NMt

Nm

)
. (75)

Hence, following identical approximations of the ones derived in Appendix A.1for Gaussian reward
distributions, the tail component given by Equation (7) simplifies into:

S̃tail =
1

4
ln(

2πσ2e

Nm
)erfc

(√
Nm(µ̃eq − µ̂m)√

2σ2

)
+

√
Nm(µ̃eq − µ̂m)

2
√
2πσ2

e−
−Nm(µ̃eq−µ̂m)2

2σ2 . (76)

Similarly for S̃body, we obtain:

S̃body =
1

2
ln

(
2πσ2e

NMt

)
×
[
1− 1

2
erfc

(√
NmNMt

(µ̂Mt
− µ̂m)√

2σ2(Nm +NMt)

)]

−
√

NMt
N

3/2
m (µ̂Mt

− µ̂m)

2σ
√
2π(NMt +Nm)3/2

e
−NmNMt

(µ̂Mt
−µ̂m)2

2σ2(Nm+NMt
) .

(77)

Finally, it allows us to derive the approximation of the gradient difference of the entropy for the
two-armed case:

∆ =
1

2
ln(

Nm

Nm + 1
) +

1

4NMt

erfc

(√
Nm(µ̃eq − µ̂m)√

2σ2

)
+

√
Nm(µ̃eq − µ̂m)√

2πσ2
×

e−
Nm(µ̃eq−µ̂m)2

2σ2

[
2N2

Mt
− 3N2

m

4NmN2
Mt

+
1

4
ln

(
NMt

2πσ2e

)
N3

m +N2
Mt

N2
mN2

Mt

+
(N3

m +N2
Mt

)(µ̃eq − µ̂m)2

4σ2NmN2
Mt

]
,

(78)

and the associated pseudo-code used for Figures 2, 4 and 6 is presented in Alg. 2 below.

D.2.2 Approximate information maximization for Bernoulli rewards

We denote by µ̄i the posterior mean, given by:

E
[
XB(ri+1,Ni−ri+1)

]
=

ri + 1

Ni + 2
= µ̄i, (79)

where ri is the cumulative reward at time t , Ni the number of draws and XB(a,b) follows a Beta
distribution with parameters (a, b). The variance verifies:

Var
[
XB(ri+1,Ni−ri+1)

]
=

ri + 1

Ni + 2

Ni − ri + 1

Ni + 2

1

Ni + 3

=
µ̄i(1− µ̄i)

N̄i
,

(80)
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Algorithm 2: AIM Algorithm for 2 Gaussian arm
Draw each arm once; observe reward Xt(t) and update statistics
µ̂t ← Xt(t), Nt ← 1 ∀t ∈ {1, 2}

for t = 3 to T do
/* Arm selection */
Mt ← argmaxk=1,2 µ̂k, m← argmink=1,2 µ̂k;
if NMt

≤ Nm then
at ←Mt

else
Evaluate ∆ following Equation (9) ;
if ∆ < 0 then

at ←Mt

else
at ← m

Pull at and observe Xt(at)
/* Update statistics */

µ̂at
← µ̂atNat+Xt(at)

Nat+1 , Nat
← Nat

+ 1

where N̄i = Ni + 3.

For Bernoulli rewards, we approximate the gradient as follows:

|∆iS̃max| =
∣∣∣∣ µ̄i(N̄i − 1)− 1

N̄i − 3
S̃max(

µ̄iN̄i + 1− µ̄i

N̄i
, N̄i + 1, µ̄j , N̄j)

+
N̄i − 2− µ̄i(N̄i − 1)

N̄i − 3
S̃max(

µ̄i(N̄i − 1)

N̄i
, N̄i + 1, µ̄j , N̄j)− S̃max(µ̄i, N̄i, µ̄j , N̄j)

∣∣∣∣,
(81)

with S̃max given by Equation (74) expressed along µ with µ = eθ

1+eθ
. For Bernoulli rewards the

equation reads:

S̃max(µ̄Mt
, N̄Mt

, µ̄m, N̄m) =

(
1− e−N̄mKL(µ̄m,µ̃eq)

√
Nm∂2KL(µ̄m, µ̃eq)

√
2πµ̄m(1− µ̄m)

)
1

2
ln

(
2πµ̄Mt

(1− µ̄Mt
)

N̄Mt

)

+

√
N̄mKL(µ̄m, µ̃eq)e

−N̄mKL(µ̄m,µ̃eq)

∂2KL(µ̄m, µ̃eq)
√

2πµ̄m(1− µ̄m)
,

(82)

with KL(θ, θ′) = θ ln(θ/θ′) + (1− θ) ln([1− θ]/[1− θ′]) and σ2
i = µ̄i(1−µ̄i)

N̄i
.

Briefly, the expected gradient is evaluated along arm i with a returned reward equal to 1 with
probability µ̄i(N̄i−1)−1

N̄i−3
(which is the empirical mean) or equal to 0 with probability 1− µ̄i(N̄i−1)−1

N̄i−3
.

Of note, by adding absolute values, we seek to maximize the entropy variation rather than its direct
minimization to avoid falling into an entrapment scenario (see Appendix C.7 for further discussion).

We draw some additional observations on the practical implementation of the code. First, in the
gradient evaluation of ∆i following Equation (81) we may find a µ̃eq value to be undefined (because
Nm > NMt or µ̃eq,i > 1), which is unusable for Bernoulli rewards. In this case, µ̃eq,i is taken to be

equal to 1, resulting in Smax = 1
2 ln

(
2πµ̄Mt (1−µ̄Mt )

N̄Mt

)
.

Second, at large times, noticing that the better empirical arm is drawn extensively, one can increment
the algorithm by multiple steps at a time to speed up AIM . Indeed, let us assume that the better
empirical arm is drawn T times successively while always returning a null reward, which is the worst
scenario for the returned reward of the better empirical arm. Then, if the increment evaluation at
t+ T of Alg. 3 still returns Mt, then it ensures that all increment evaluations between [t, t+ T ] of
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Algorithm 3: AIM Algorithm for 2 Bernoulli arm
Draw each arm once; observe reward Xt(t) and update statistics
µ̄t ← Xt(t)+1

3 , N̄t ← 4 ∀t ∈ {1, 2}
for t = 3 to T do

/* Arm selection */
Mt ← argmaxk=1,2 µ̄k, m← argmink=1,2 µ̄k;
if NMt

≤ Nm then
at ←Mt

else
Evaluate ∆ = |∆Mt

S̃max| − |∆mS̃max| following Equation (81) ;
if ∆ > 0 then

at ←Mt

else
at ← m

Pull at and observe Xt(at)
/* Update statistics */

µ̄at
← µ̄at (N̄at−1)+Xt

N̄at
, N̄at

← N̄at
+ 1

Alg. 3 will always return Mt independently of its returned rewards. Then, using a dichotomy search
on the variable T , we can diminish the number of increment evaluations of AIM at large times, thus
improving AIM’s performance.

D.3 Information maximization approximation for Bernoulli rewards with more than two
arms

We start by reminding the obtained entropy approximation for more than two arms:

S̃max = −
∫
Θ

(
1−

K∑
i ̸=Mt

[1− Ci(θ)]
)
pMt(θ) ln pMt(θ)dθ −

K∑
i̸=Mt

∫ µsup

µ̃eq,i

pi(θ) ln pi(θ)dθ. (83)

We first consider the increment along a worse empirical arm, which simplifies :

|∆iS̃max| = ∆i

[
−
∫
Θ

Ci(θ)pMt(θ) ln pMt(θ)dθ −
∫ µsup

µ̃eq,i

pi(θ) ln pi(θ)dθ

]
, (84)

which is exactly the increment evaluated in the two-armed case given in Equation (82).

Finally, we consider the increment along the better empirical arm. For simplicity, we neglect µ̃eq,i

variations for the increments evaluation. By use of Equation (82) we obtain

|∆MtSmax| =
∣∣∣∣1− K∑

i̸=Mt

e−N̄mKL(µ̄i,µ̃eq)

√
Nm∂2KL(µ̄i, µ̃eq)

√
2πµ̄i(1− µ̄i)

∣∣∣∣∣∣∣∣∆MtH(µ̄Mt , N̄Mt)

∣∣∣∣, (85)

where

∣∣∣∣∆Mt
H(µ̄i, N̄i)

∣∣∣∣ = ∣∣∣∣ µ̄i(N̄i − 1)− 1

N̄i − 3
H(

µ̄iN̄i + 1− µ̄i

N̄i
, N̄i + 1, µ̄j , N̄j)

+
N̄i − 2− µ̄i(N̄i − 1)

N̄i − 3
H(

µ̄i(N̄i − 1)

N̄i
, N̄i + 1, µ̄j , N̄j)−H(µ̄i, N̄i, µ̄j , N̄j)

∣∣∣∣,
(86)

34



with H(µ̄Mt
, N̄Mt

) = 1
2 ln

(
2πµ̄Mt (1−µ̄Mt )

N̄Mt

)
.

Algorithm 4: AIM Algorithm for K > 2 Bernoulli arm
Draw each arm once; observe reward Xt(t) and update statistics
µ̄t ← Xt(t)+1

3 , N̄t ← 4 ∀t ∈ {1, ..K}
for t = K + 1 to T do

/* Arm selection */
Mt ← argmaxk={1,..,K} µ̄k; Evaluate ∆Mt

S̃max following Equation (85) ;
Evaluate m = argmax(∆i|S̃max|, i ̸= Mt) with ∆i|S̃max| following Equation (81) ;
if ∆Mt

|S̃max| > ∆m|S̃max| then
at ←Mt

else
at ← m

Pull at and observe Xt(at)
/* Update statistics */

µ̄at
← µ̄at (N̄at−1)+Xt

N̄at
, N̄at

← N̄at
+ 1

Of note in the gradient evaluation of ∆i following Equation (81), if ones finds a µ̃eq,i value undefined
(because Nm > NMt or µ̃eq,i > 1 which is unusable for Bernoulli reward), then, µ̃eq,i is taken to be

equal to 1 resulting in Smax = 1
2 ln

(
2πµ̄Mt (1−µ̄Mt )

N̄Mt

)
. Finally, if Mt ← argmaxk={1,..,K} µ̄k has

multiple solutions, we suggest choosing the one displaying the lowest number of draws.

D.4 Overview of baseline bandit algorithms

Here, we briefly review several baseline algorithms and their chosen parameters to provide a bench-
mark of our information maximization method.

D.4.1 UCB-Tuned

This algorithm falls under the category of upper confidence bound (UCB) algorithms, which select
the arm maximizing a proxy function typically defined as Fi = µ̂i +Bi. For UCB-tuned, Bi is given
by:

Ri = c(µ1, µ2)

√
ln(t)

Ni(t)
min

(
1

4
, si(t)

)
, si(t) = σ̂i

2 +

√
2 ln(t)

Ni(t)
, (87)

where σ̂i
2 is the reward variance and c a hyperparameter. For Gaussian rewards, by testing various c

values for uniform priors in Equation (87), we end up with c = 2.1 and σ̂i
2 = σ2

Ni(t)
.

D.4.2 KL-UCB

This algorithm is another variant of the upper confidence bound (UCB) class specifically designed for
bounded rewards. In particular, it is known to be optimal for Bernoulli distributed rewards [Garivier
and Cappé, 2011, Cappé et al., 2013]. For KL-UCB, Fi is expressed as follows:

Fi = max
{
θ ∈ Θ : Ni(t)KL

(
ri(t)

Ni(t)
, θ

)
≤ ln(t) + c(µ1, µ2) ln(ln(t))

}
, (88)

where Θ denotes the definition interval of the posterior distribution. By testing various c values for
uniform priors, we end up with c(µ1, µ2) = 0.00001 (c = 0 for the 50-armed Gaussian setting and
c = 10−6 for the 2-armed Bernoulli setting). Of note, the maximum is found using a dichotomy
method using a precision of 10−5 and a maximum number of iterations of 50.
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For KL-UCB++ [Ménard and Garivier, 2017], the function Fi is expressed as follows

Fi = max
{
θ ∈ Θ : Ni(t)KL

(
ri(t)

Ni(t)
, θ

)
≤ ln+

(
T

KNi(t)(t)
ln2+

(
T

KNi(t)(t)

)
+ 1

)}
, (89)

where ln+(x) = max(ln(x), 0), and T is the stopping time of the bandit game. Therefore, KLUCB++
is not an anytime algorithm, but it still underperforms when compared to AIM and Thompson
sampling.

D.4.3 Thompson sampling

At each step, Thompson sampling [Thompson, 1933, Kaufmann et al., 2012a,b] selects an arm at
random, based on the posterior probability that is maximizes the expected reward. In practice, it
draws K random values according to each arm’s mean posterior distribution and selects the arm with
the highest sampled value as:

at = argmax
i=1..K

(
Zi (µ̂i(t), Ni(t))

)
, (90)

where Zi(t) is drawn according to the posterior distribution of the ith arm’s mean. Here, we used
a uniform prior on [0, 1] for Bernoulli rewards and a uniform prior on R for Gaussian rewards to
provide a direct comparison with AIM.

Finally, for Thompson sampling plus [Jin et al., 2022], denoted TS+, each sampled value for the
comparison is drawn according to Zi (µ̂i(t), Ni(t)) with a probability 1/K or taken equal to µ̂i(t),
otherwise.

D.4.4 MED

At each step, the minimal empirical divergence (MED) algorithm [Honda and Takemura, 2011],
selects an arm at random, based on a tailored distribution building on the Kullback-Leibler distance
to the better empirical arm. In practice, the arm at = i is be drawn with a probability:

pi =
exp

[
−Ni(t)KL

(
ri(t)
Ni(t)

, µ̄Mt

)]
∑K

j=0 exp
[
−Nj(t)KL

(
rj(t)
Nj(t)

, µ̄Mt

)] . (91)

D.5 Additional experiments

D.5.1 Approximate information maximization for Gaussian rewards and close arms

For completeness, we provide in Figure 4 below regret performances in which the arms’ mean values
are close (∆µ = 0.01), and are thus difficult to distinguish, for Gaussian reward distributions. Here,
AIM shows state-of-the-art performance comparable to Thompson sampling, even outperforming it
at longer times.

D.5.2 Approximate information maximization for Bernoulli rewards and close arms

For completeness, we provide in Figure 5 below regret performances in which the arms mean value
are close (∆µ = 0.01) for Bernoulli reward distributions. As for Gaussian rewards, AIM shows
state-of-the-art performance comparable to Thompson sampling even when arms mean rewards are
difficult to distinguish.

D.5.3 Investigating approximate information maximization for large simulation volumes

To refine the numerical investigation of AIM’s regret performance, we replicate the experiments of
the main text using a larger volume of simulations (but on shorter timescales). For the 2-armed bandit
with Gaussian and Bernoulli rewards, the regret performance under a uniform prior is averaged over
more than 105 runs. Similarly, for the 50-armed bandit with Bernoulli rewards, the regret is averaged
over 4× 104. This leads to the results shown in Figures 6 to 8, confirming the results of Figures 2
to 3.
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Figure 4: Temporal evolution of the regret for 2-armed bandit with Gaussian rewards (σ = 1) for
close mean parameters. In blue AIM, in red Thompson sampling. Arm mean reward values are fixed
with µ1 = 0.8 and µ2 = 0.79, the regret is obtained by averaging over 105 realizations.
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Figure 5: Temporal evolution of the regret for 2-armed bandit with Bernoulli rewards for close
mean parameters. In blue AIM, in red Thompson sampling. Arm mean reward values are fixed
with µ1 = 0.8 and µ2 = 0.79, the regret is obtained by averaging over 105 realizations. Confidence
intervals shows the standard deviation.
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Figure 6: Evolution of the Bayesian regret for 2-armed bandit with Gaussian rewards under a uniform
mean prior. The regret is averaged over more than 105 runs. Confidence intervals shows the standard
deviation. Confidence intervals show the standard deviation.
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Figure 7: Evolution of the Bayesian regret for 2-armed bandit with Bernoulli rewards under a uniform
mean prior. The regret is averaged over more than 105 runs. Confidence intervals show the standard
deviation.
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Figure 8: Evolution of the Bayesian regret for 50-armed bandit with Bernoulli rewards under a
uniform mean prior. The regret is averaged over 4× 104 runs. Confidence intervals show the standard
deviation.
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