
HAL Id: hal-04246903
https://hal.science/hal-04246903

Submitted on 17 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

How to Characterize and Analyze the Computational
Thinking Skills of a Learning Game?

Mathieu Muratet

To cite this version:
Mathieu Muratet. How to Characterize and Analyze the Computational Thinking Skills
of a Learning Game?. European Conference on Technology Enhanced Learning, Sep 2023, Aveiro,
Portugal. pp.263-277, �10.1007/978-3-031-42682-7_18�. �hal-04246903�

https://hal.science/hal-04246903
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

How to characterize and analyze the
computational thinking skills of a learning game?

Mathieu Muratet1,2[0000−0001−6101−5132]

1 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
2 INSEI, 58-60 avenue des Landes 92150 Suresnes, France

mathieu.muratet@lip6.fr

https://webia.lip6.fr/∼muratetm/

Abstract. Computational thinking is a discipline poorly mastered by
elementary school teachers. To help teachers address these skills with
their students, we develop the SPY game. In this paper we conduct a
didactic analysis of the game and we propose a tool to describe the com-
petencies targeted by the game based on game mechanics. The proposed
tool has been applied to describe 21 of the 26 PIAF skills (a skills base
on computational thinking). We show how these descriptions provide to
teachers and designers micro information about the active skills in a level
or macro information about the evolution of a game scenario complexity.

Keywords: Serious Game · Learning Game · Computational Thinking
· Modeling · Competency · Didactic

1 Introduction and positionning

For a few years now, computer science has been teached again in school in
France [2], known as computational thinking [4]. According to Wing [16], com-
putational thinking involves five cognitive abilities: (1) algorithmic thinking, (2)
abstraction, (3) evaluation, (4) decomposition, and (5) generalization. Based on
this definition, Parmentier et al. [13] proposed a fine division of computational
and algorithmic thinking skills for basic education (the PIAF framework). They
also provided pedagogical scenarios helping teachers to teach these skills to their
students. This question of the appropriation of these skills by elementary school
teachers is complex to address. Indeed, teaching this new discipline requires an
important investment on their side [5], notably because of the lack of training
(initial and in-service). For instance, teachers have difficulties in constructing
their pedagogical scenarios or in judging the relevance of tools to train their
students on these skills.

We assume that even if elementary school teachers do not master these skills,
they foresee the interest for their students when they are presented in skills base;
and thus a tool based on these references would be usable for the teachers.

Our proposal: Proposing a skill-driven learning game that will assist teach-
ers in developing computational thinking learning sessions with their students.

https://webia.lip6.fr/~muratetm/

2 M. Muratet

Today, several dozen learning games on the theme of computer science ex-
ist [7,10] but very few explain how the underlying skills are worked on and
even fewer provide tools for teachers to help them adapt the games to their
context [15].

The research problem is: how to help teachers who are not familiar with
computational thinking to identify the skills involved in game situations (which
they could create themselves)? This research problem includes two research ques-
tions:

– How can we formalize the skills base on computational thinking from the
ludic features of a learning game?

– How to exploit this formalization to analyze the levels of the learning game
and extract the skills involved?

In order to answer these research questions we will present the theoretical
foundation in section 2. Then, in section 3, we will present the SPY game we use
in this research and outline its didactic features. In section 4, we will propose
a formalization to describe computational thinking skills depending on game
functionalities. And we will illustrate the application of this formalization on
some computational thinking skills in section 5. At the end, we will present
results on the SPY game in section 6 before concluding.

2 Theoretical foundation

In 1994, Balacheff [1] identified the “computational transposition” process. It
aims at identifying the links between the internal and external3 universe of the
device through an interface. This interface plays a particular role when it be-
comes “a reference for the user in relation to which knowledge is built”4 [1].
Thus, the design choices of an interface influence the knowledge build process.

Designing a learning game with an intrinsic metaphor consists in putting
learnings at the heart of the gameplay [9]. In this context, the designers of learn-
ing games propose gameplay mechanisms in harmony with the content to be
taught, building game features which are mostly didactic. However, the com-
putational transposition of the learnings targeted is not always explicit. Bran-
thiome [3] developed the idea of “adidactical situations” in a learning game on
programming. In this game, the students can program an initial solution that is
not very efficient and, with the feedback from the system, update its solution to
switch to a winning procedure. Then, the game features proposed are didactic
in order to allow the students to progress in their learning path even if they are
not aware of it during the game.

The player interacts with the learning game and develops usage patterns
that transform the game from an artifact to an instrument [6]. The schemas

3 The user is in the external universe of the device
4 translated from french “une référence pour l’utilisateur relativement à laquelle la
connaissance est cons-truite”

Computational thinking skills and game features 3

thus developed depend on the properties of the interactive artifact (in our case,
the game functionalities available in a given situation). The theory of semiotic
mediation develops the idea of the semiotic potential of an artifact [8]. This
potential is defined by a double link “which may occur between i) an artifact,
and the personal meanings emerging from its use to accomplish a task, and ii)
at the same time the mathematical meanings evoked by its use and recognizable
as mathematics by an expert” [8]. We focused on this second link, where we
look for characterizing the links between a learning game (the artifact) and the
signs resulting from its use, recognizable as knowledge, in our case computational
thinking.

3 Analysis of didactic features of the SPY game

SPY5 (see Fig. 1) is a learning game on computational thinking. It has been
designed for high school students (grades 9-12). It is an open-source project6

developed by Sorbonne University. The goal of the game is to program the
actions of an agent to reach a precise position. These actions are represented as
blocks that the player has to arrange in sequences executed by the agent.

Fig. 1. Example of a SPY level.

The mobilization of computational thinking skills relies on a set of game
features. We will detail here the analysis of this artifact to identify all its playful
features and to study the links with the knowledge to be taught: computational
thinking.

5 SPY: https://spy.lip6.fr/, accessed on March 6, 2023
6 SPY source code: https://github.com/Mocahteam/SPY, accessed on March 6, 2023

https://spy.lip6.fr/
https://github.com/Mocahteam/SPY

4 M. Muratet

3.1 Programming blocks

The programming blocks are the fundamental elements of SPY, they constitute
the basic bricks of the programs executed by the agents. The programming blocks
are divided into four categories:

– Action blocks: These blocks allow the player to define the actions executed
by the agents: “Move forward”, “Turn left”, “Turn right”, “Wait”, “Activate
a terminal” and “Turn around”. Note that all these actions are atomic except
for the “Turn around” action which can be broken down in two actions “Turn
right” or “Turn left”.

– Control blocks: These blocks allow the player to control the action blocks
to be executed: “If Then”, “If Then Else”, “Repeat n times”, “While” and
“Forever”.

– Sensors: These blocks give information about the environment around the
agents. The sensors return Boolean values that can be used in the “If Then”,
“If Then Else” and “While” control blocks. The sensors allow the agent to
know whether a wall is in front of it, to its left, or its right; whether a
pathway is in front of it, to its left, or its right; whether a guard, a guarded
area, or a door is in front of it; and whether a terminal or an exit is on its
position.

– Operators: These blocks allow the player to combine sensors. We find the
classic Boolean operators: “No”, “Or” and “And”. Note that some sensors
can be expressed by other sensors using the operators, for example “Wall in
front” is equivalent to “No Pathway in front”.

– Blocks limitation: SPY gives the possibility for each level to define avail-
able resources (quantity of each programming blocks). This feature is useful
to reduce or increase the complexity of a level. For example, an introductory
level could contain only useful blocks for solving the level, thus preventing
the player to choose between useless blocks. On the other hand, restricting
access to (or the quantity of) certain blocks force the player to use other
blocks. For example, we can give only one “Move forward” block to force the
usage of “Repeat n times” control block for moving an agent several squares
forward.

3.2 Programming area

The programming area is the second fundamental functionality of SPY. It hosts
the programming blocks allowing the player to build solutions.

By default, each agent is associated with a programming area. It is however
possible to break this association to ask the player to define it. In this case, the
player has to indicate in the programming area the name of the agent linked.
Thus, on execution, the program will be sent to the linked agent.

A programming area can contain an initial program, which can be optimal,
non-optimal, or buggy. The player will therefore have to complete or correct it
if necessary.

Computational thinking skills and game features 5

Finally, SPY allows to associate several agents to a unique programming
area. This gives the opportunity to designers to build levels where the player
will have to find a solution not only for one agent but for several agents. The
player will have to design generic solutions.

3.3 Drag and drop

Drag and drop is the third fundamental functionality in the SPY game because
it allows the player to edit programming areas. However, it is possible to disable
this feature, in this case, the level has to offer one or more pre-built programs.
This feature allows designers to build levels where the player does not have to
program but has to read several programs, understand them and choose which
one to send to the agent(s) (see Fig. 2).

Fig. 2. Example level where drag an drop is disabled. The player has to replace one of
the Essai1, Essai2 or Essai3 with the name of the robot (Bob). In this example the
right solution is Essai3.

3.4 Obstacles

To solve the different levels of the game, the player must program one or more
agents for them to reach a particular position while avoiding obstacles. These
obstacles have been designed with a didactic intention.

Guards monitor areas of the maze (see red squares on the ground in Fig. 2).
If an agent is detected by a guard, the player loses. Also, as for the agents, the
guards can have pre-built program that makes the monitored areas dynamic. The
player can select each guard in the game, observe the program that composes it,
understand this program, anticipate the guard’s movements, and program the
agent accordingly.

6 M. Muratet

Doors can be opened and closed using terminals. This feature was introduced
to initiate a stepwise resolution process. When a door blocks the pathway, the
player must break down his/her solution into steps (objective 1: activate the
terminal to open the door; and objective 2: reach the exit). Doors also allow the
manipulation of objects with changing state (open or closed).

3.5 Control execution

When the player wants to test his/her solution s/he clicks on the start button.
Each programming area sends its program to the target agent if it exists and
each agent/guard executes its actions in parallel. The player can follow the ex-
ecution of the programs by observing the agents/guards moving in the scene.
The ongoing action is highlighted in the program execution panel. The player
can pause the simulation at any time and execute the programs step by step.

3.6 Number of executions

Finding a program, that moves the agent directly from the starting point to the
ending point, in one attempt can be a complex task, especially on levels with
moving guards. SPY authorizes to solve a level in several moves. The player can
define a first sequence of blocks, execute it, observe the new situation, add new
blocks, execute, observe... It is possible to find the solution step by step.

However, it can be relevant to limit this number of executions to force the
player to anticipate several actions in advance. For each level of SPY, it is possible
to define the authorized number of executions to solve it.

3.7 Fog and briefing

In a default SPY level, the player has an omniscient view of the situation which
allows him/her to plan his/her actions to reach the objective described in the
briefing. The fog allows modifying this rule by limiting the view of an agent to
its close environmentIn this case, the briefing plays a fundamental role, as it
should contain clues allowing the player to find the solution. For example, the
algorithm can be given in the briefing in natural language and the player has to
translate it using the formal language of the game.

3.8 Synthesis of the game functionalities

The analysis of the different functionalities of SPY shows us that each of them
is didactic. Some of them are obvious, such as the control blocks that allow to
manipulate the associated programming notions. Others are hidden, such as i)
the associated program of a guard that will require the player to understand it
and to anticipate its execution, or ii) the use of a single programming area to
control two agents that will force the player to generalize his/her solution.

From a macro point of view, the different features of SPY allow covering
the skills of computational thinking as defined by Wing [16]. The player has to

Computational thinking skills and game features 7

observe and model the simulation (abstraction), break down his/her strategy
into steps (decomposition), determine the best solution (evaluation), plan the
actions (algorithmic thinking), and reuse and adapt previous solutions to new
problems (generalization). But how do we identify if a particular skill is involved
in a given level? How combinations of features influence skills involved?

4 Linking skills to game features

Table 1. Main tags description structuring a SPY level.

Tag Description

<dragdropDisabled> If present, disables drag and drop functionality

<blockLimit blockType=“X”
limit=“Y”>

If present, defines the quantity Y of blocks of type X
available in the inventory (if Y = -1 ⇒ block is unlim-
ited).

<player inputLine=“X”> Defines an agent controlled by the player. This agent
listens to the communication channel X.

<enemy inputLine=“X”> Defines a guard. This guard listens to the communica-
tion channel X.

<script outputLine=“X” edit-
Mode=“Y” type=“Z”>

Defines a programming area that will send its content
on communication channel X (see <player> and <en-
emy> tag). The editMode property indicates whether
or not the player can change the communication chan-
nel. The type property indicates whether this program-
ming area contains an optimal, non-optimal, buggy, or
undefined pre-built program.

To describe a skill we define constraints based on game features that we eval-
uate with a Boolean expression. If this rule is true because the set of constraints
is satisfied, then we consider that the skill is involved in the analyzed level. The
rules and constraints defined for each skill are based on the level structure de-
scribed in XML format. Table 1 shows the tags we reference in this article. A
complete and commented level model is given in [11].

The identification of a skill is then based on the evaluation of a set of con-
straints. Table 2 describes the set of parameters that can be applied to a con-
straint. In the following section, we give some examples of constraints that we
have defined to characterize some PIAF skills.

5 Application of the PIAF skills formalization

As we presented in the introduction, we choose to base our work on the PIAF
framework. It is focused on computational thinking and proposes six main skills.
Each of these skills is broken down into a set of sub-skills for a total of 26
sub-skills [14].

8 M. Muratet

Table 2. Description of possible constraints.

TAG ∈ set of XML tags
ATTR ∈ set of valid attributes for TAG

OPP ∈ {=, <,≤, >,≥, ̸=}
V AL ∈ N

Constraint Description

TAG Filters TAG tags.

TAG ATTR OP V AL Filters TAG tags that have an attribute ATTR
equal/different... to an integer value.

TAG ATTR include
SET

Filters TAG tags that have an attribute ATTR whose value
is included in a set of values (SET).

TAG ATTR sameV alue
TAG2 ATTR2

Filters TAG tags that have an attribute ATTR whose value
is equal to the value of the attribute ATTR2 of tag TAG2.

TAG hasChild Filters TAG tags that contain at least one child tag.

The six main skills are: C1 - Abstracting away / generalizing; C2 - Compose
/ decompose a sequence of actions; C3 - Control a sequence of actions; C4 -
Evaluate objects or sequences of actions; C5 - Translate between representations;
and C6 - Build a sequence of actions iteratively. In the rest of the article we refer
to the PIAF skills as follows: CX.Y means that sub-skill Y of skill X is involved,
e.g. C2.4 refers to the fourth sub-skill of C2.

The description of all PIAF skills is not exhaustively developed here. The
set of rules and constraints used to characterize the PIAF skills according to the
game features is available in [12]. Here, we describe with precision three PIAF
skills and we summarize the others.

5.1 C1.1 - Name objects and (sequences of) actions

Skill C1.1 is defined as follow: “Being able to give names to objects, actions and
sequences of actions” [14, p. 2].

In SPY we consider that this skill is involved when the player can link a
programming area with an agent. Indeed, in this case, he has to name his/her
program so that it is executed by the right agent.

We describe this skill using the constraint “TAG ATTR OP VAL” which
is instantiated as follow: “script editMode = 2”. This constraint means: “fil-
ters ’script’ tags that have an ’editMode’ attribute ’equal’ to the value 2”. The
boolean expression that defines the complete rule is then C1.1 = Card(script
editMode = 2) ≥ 1 which means: “Skill C1.1 is involved in the level if the car-
dinal of the constraint is greater than 0”, in other words “if the level contains
at least one nameable programming area”.

5.2 C1.5 - Predict the outcome of a sequence of actions

Skill C1.5 is defined as: “Being able to tell, from a sequence of actions, what will
happen if it is executed. In contrast to competency 1.4, this competency is about

Computational thinking skills and game features 9

providing a prediction without actually executing the sequence of actions” [14,
p. 5].

In SPY, this skill is involved when a level contains a guard with a pre-built
program. In this case, the player has to anticipate the movements of the guard.
The player will have to propose a first solution to see the guard movements and
check his/her predictions.

To describe this skill, it is necessary to check that a programming area is
linked with a guard and contains at least one action.

The rule is described using a double parameter: (P1) “TAG ATTR sameValue
TAG2 ATTR2” on one hand and (P2) “TAG hasChild” on the other hand.

The first parameter ensures that a guard (“enemy” tag) listens to the same
communication line (“inputLine” attribute) as a programming area (“script” tag
and “outputLine” attribute). P1 is instantiated as follow: “enemy inputLine
sameValue script outputLine”.

The second parameter ensures that the programming area (“script” tag)
contains at least one action. P2 is instantiated as follow: “script hasChild”.

The Boolean expression that defines the complete rule is the intersection of
the two parameters: C1.5 = Card(P1 ∩ P2) ≥ 1.

5.3 C2.1 - Order a sequence of actions to reach a goal

Skill C2.1 is defined as: “Given an unordered list of actions and a goal, being
able to combine these actions in a valid order to build a sequence that achieves
the goal. [...] So, the learner does not need to identify all the parts needed to
achieve the goal, but only their correct order” [14, p. 7].

In SPY, this is a situation where the player has only useful blocks available
to solve the problem. The player has to simply arrange them in the right order
to solve the level.

To describe this skill, it is necessary to fulfil the following constraints: (R1)
drag and drop is activated to allow the player to combine actions; (R2) no
unlimited block is available; and (R3) there is at least one action available in
the inventory.

Rule R1 is described using the constraint “TAG” which is instantiated with
the tag “dragdropDisabled”. We want to check that drag and drop is active
and therefore that the “dragdropDisabled” tag is not in the level description.
R1 is defined as Card(dragdropDisabled) = 0.

Rule R2 is described using the constraint “TAG ATTR OP VAL” which
is instantiated as follow: “blockLimit limit = -1”. This constraint means:
“filters ’blockLimit’ tags that have a ’limit’ attribute ’equal’ to the value -1”.
We want to check that there is no unlimited amount of blocks, so R2 is defined
as Card(blockLimit limit = −1) = 0.

The rule R3 is described using a double parameter: (P1) “TAG ATTR
OP VAL” on one hand and (P2) “TAG ATTR include SET” on the other
hand. The first parameter identifies whether a block is available in the inventory
(“blockLimit limit ≥ 1”) and the second whether this block is an action
block (“blockLimit blockType include {Forward, TurnLeft, TurnRight,

10 M. Muratet

Wait, Activate, TurnBack}”). The cardinal of the intersection of these two
parameters counts the number of action blocks available in the inventory. R3 is
defined as follow: Card(P1 ∩ P2) ≥ 1.

The Boolean expression that defines the complete rule is then: C2.1 =
R1 && R2 && R3.

5.4 Summary of skills encoded

To simplify the description of skills in this section, we name recurring rules
and parameters as follows: NPA(): number of Nameable Programming Area
→ Card(script editMode = 2); CPA(): number of Correct Programming Areas
→ Card(script type = 0); NOPA(): number of Non Optimal Programming
Areas → Card(script type = 1); BPA(): number of Bugged Programming
Areas → Card(script type = 2); IBQ(B,Q): true if level Includes at least
one Block B in Quantity Q, false otherwise → Card((blockLimit blockType =
B)∩ (blockLimit limit ≥ Q)) ≥ 1; ISQ(S,Q): true if level Includes at least one
item of the Set S in Quantity Q, false otherwise → Card((blockLimit blockType
include S)∩(blockLimit limit ≥ Q)) ≥ 1; DD(): true if Drag&Drop is enabled,
false otherwise → Card(dragdropDisabled) = 0.

C1.1 Name objects and (sequences of) actions: if a level contains at
least one nameable programming area; C1.1 = NPA() ≥ 1.

C1.2 Differentiate (i) object and action, and (ii) atomic actions and
non-atomic actions: if a level contains non-atomic actions (“Turn back” action
(IBQ1)) which can be decomposed into two atomic actions (“Turn left” actions
(IBQ2) or “Turn right” actions (IBQ3)) or if a level contains actions (ISQ1)
and captors (ISQ2) that illustrate the concept of expressions and instructions;
C1.2 = (IBQ1(TurnBack, 1) && (IBQ2(TurnLeft, 2) || IBQ3(TurnRight, 2)))
|| (ISQ1({AllActions}, 1) && ISQ2({AllCaptors}, 1)).

C1.3 Identify the input parameters of a sequence of actions: No
game mechanics for this skill; C1.3 = ∅.

C1.4 Describe the outcome of a sequence of actions: No game me-
chanics for this skill; C1.4 = ∅.

C1.5 Predict the outcome of a sequence of actions: if a level contains
a guard with a pre-built program; C1.5 = Card(enemy inputLine sameV alue
script outputLine ∩ script hasChild) ≥ 1.

C1.6 Using objects whose value can change: if a level contains condi-
tional control structure (ISQ1) and captors (ISQ2) whose value varies accord-
ing to the context or if a level makes it possible to control (IBQ) the state
of a door (R1); Rule: R1 → Card(door slotId sameV alue slot slotId) ≥ 1;
C1.6 = (ISQ1({While, IfThen, IfElse}, 1) && ISQ2({AllCaptors}, 1)) ||
(IBQ(Activate, 1) && R1).

C1.7 Recognize existing objects and (sequences of) actions that
can be used to reach a similar goal: if a level only provides nameable
programming areas (R1) of which at least one is a correct pre-filled solution
(R2) that the payer must recognize and cannot modify (DD); Rules: R1 →

Computational thinking skills and game features 11

NPA() = Card(script); R2 → CPA() ∩ (script hasChild)) ≥ 1; C1.7 =
R1 && R2 && !DD.

C2.1 Order a sequence of actions to reach a goal: if a level allows the
player to combine actions (DD) without unlimited blocks (R1) and with at least
one action available in the inventory (ISQ); Rule: R1 → Card (blockLimit
limit = −1) = 0; C2.1 = DD && R1 && ISQ({AllActions}, 1).

C2.2 Complete a sequence of actions to reach a simple goal: if a
level allows the player to combine (DD) only actions (ISQ1) without control
structures (ISQ2) and only provides bugged pre-filled solutions (R1) for the
player to complete; Rule: R1 → BPA() ∩ (script hasChild)) = Card(script);
C2.2 = DD && ISQ1({AllActions}, 1) && !ISQ2({ControlList}, 1) && R1.

C2.3 Create a sequence of actions to reach a simple goal: if a level al-
lows the player to combine (DD) only actions (ISQ1) without control structures
(ISQ2); C2.3 = DD && ISQ1({AllActions}, 1) && !ISQ2({ControlList}, 1).

C2.4 Create a sequence of actions to reach a complex goal: if a
level allows the player to combine (DD) actions (ISQ1) and control structures
(ISQ2); C2.4 = DD && ISQ1({AllActions}, 1) && ISQ2({ControlList}, 1).

C2.5 Combine sequences of actions to reach a goal: No game mechan-
ics for this skill; C2.5 = ∅.

C2.6 Decompose goals into simpler subgoals: if a level does not limit
the number of execution to 1; C2.6 = Card(executionLimit amount = 1) = 0.

C3.1 Repeat a sequence of actions a given number of times: if a level
allows the player to combine (DD) For loops (IBQ); C3.1 = DD &&
IBQ(ForLoop, 1).

C3.2 Repeat a sequence of actions until a goal has been reached: if a
level allows the player to combine (DD) While loops (IBQ) with captors (ISQ1)
and without operators (ISQ2); C3.2 = DD && IBQ(WhileLoop, 1) &&
ISQ1({AllCaptors}, 1) && !ISQ2({OperatorList}, 1).

C3.3 Integrate a simple condition into a sequence of actions: if a level
allows the player to combine (DD) If statements (ISQ1) with captors (ISQ2)
and without operators (ISQ3); C3.3 = DD && ISQ1({IfThen, IfElse}, 1) &&
ISQ2({AllCaptors}, 1) && !ISQ3({OperatorList}, 1).

C3.4 Integrate a complex condition into a a sequence of actions: if
a level allows the player to combine (DD) conditionnal statements (ISQ1) with
captors (ISQ2) and operators (ISQ3); C3.3 = DD && ISQ1({While, IfThen,
IfElse}, 1) && ISQ2({AllCaptors}, 1) && ISQ3({OperatorList}, 1).

C4.1 Compare two objects according to a given criterion: No game
mechanics for this skill; C4.1 = ∅.

C4.2 Compare two sequences of actions according to a given crite-
rion: if a level only provides nameable pre-filled solutions (R1) with at least one
correct solution and non-optimal solutions (R2) that the player cannot modify
(DD); Rules: R1 → NPA() = Card(script); R2 → CPA() ≥ 1 && (CPA() +
NOPA()) = Card(script); C4.2 = R1 && R2 && !DD.

C4.3 Improve a sequence of actions according to a given criterion:
if a level only provides pre-filled non-optimal solutions (R1) that the player

12 M. Muratet

must fix (DD); Rule: R1 → NOPA() ≥ 1 && NOPA() = Card(script);
C4.3 = R1 && DD.

C5.1 Represent objects or sequences of actions through one formal
representation: if a level asks the player to combine (DD) action blocks (ISQ);
C5.1 = DD && ISQ({AllActions}, 1).

C5.2 Translate objects or sequences of actions between formal rep-
resentations: if a level hides the exit position; C5.2 = Card(fog) ≥ 1 ||
Card(hideExits) ≥ 1.

C6.1 Verify if a sequence of actions reaches a given goal: if a level
contains a robot to be programmed; C6.1 = Card(player) ≥ 1.

C6.2 Notice errors in a sequence of actions: No game mechanics for
this skill; C6.2 = ∅.

C6.3 Fix a sequence of actions for reaching a given goal: if a level
only provides pre-filled bugged solutions (R1) that the player must fix (DD);
Rule: R1 → BPA() ≥ 1 && BPA() = Card(script); C6.3 = R1 && DD.

C6.4 Extend or modify a sequence of actions to reach a new goal: if
a level requires the player to combine (DD) action blocks (ISQ) to control mul-
tiple robots with the same program (R1); Rule: R1 → Card(player inputLine
sameV alue player inputLine) ≥ 2; C6.4 = DD && ISQ({AllActions}, 1) &&R2.

6 Results

We have summarized the description of PIAF skills with the proposed formal-
ization and we have illustrated in detail the description of three of them. In
addition to the PIAF skills, we have tested our formalization with another skills
base. We have described the 5 levels of the “3.4 Programming” skill from the
CRCN domain 3 “Content creation”7. Finally, we have used the formalization
to describe the set of playful functionalities of SPY (called SPY functionalities
base). All these descriptions are available in [12].

Thus we can analyze each level with respect to the different skills bases.
Table 3 illustrates the analysis of one level with the 3 skills bases. This visu-
alization gives to the teacher the skills involved according to the skills base. In
this example, the level 1 of CRCN skill 3.4 has been identified. It is defined as
“Read and construct an algorithm with simple instructions”8. CRCN skills base
is less precise than the PIAF ones but gives a overall view of skills involved.
With these different levels of information, the teacher will determine if the level
is an interesting candidate to integrate his/her pedagogical scenario.

We can also use these descriptions to analyze the complexity of a game
scenario. SPY contains two scenarios: an original SPY called “Infiltration” con-

7 CRCN (Cadre de Référence des Compétences Numériques) is a french skills
base inspired by the DigComp 2.1: https://eduscol.education.fr/document/20389/
download, accessed April 7, 2023

8 translated from french “Lire et construire un algorithme qui comprend des instruc-
tions simples”

https://eduscol.education.fr/document/20389/download
https://eduscol.education.fr/document/20389/download

Computational thinking skills and game features 13

Table 3. Analysis of one level with the different skills bases

PIAF skills base:
C2.1 - Order a sequence of actions to reach
a goal
C2.3 - Create a sequence of actions to reach
a simple goal
C2.6 - Decompose goals into simpler sub-
goals
C5.1 - Represent objects or sequences of
actions through one formal representation
C6.1 - Verify if a sequence of actions
reaches a given goal

CRCN skills base:
Level 1

SPY skills base:
F1 - Solve a problem in several steps
F10 - unlimited blocks
F11 - action block “Move forward”

sisting of 20 levels and a copy of the BlocklyMaze game9 consisting of 10 levels.
Teachers can also build their own scenarios by composing them from the existing
level library. We used the PIAF skills base to characterize the didactic dimension
of the different scenarios and the SPY functionalities base to characterize their
playful dimension. The combination of skills and playful features in each level
gives an indicator of its complexity (see Fig. 3). We observe the progressive evo-
lution of the complexity and the appearance of the different skills during the two
scenarios. This visualization allows to compare the complexity of scenarios based
on common criteria. We can see that Infiltration starts lower and ends higher
than BlocklyMaze but the progression is smoother on BlocklyMaze. This visual-
ization is also useful for designers to detect uncovered skills or unbalanced levels.
For instance we can see that C4 is only covered in Infiltration level 7. It would be
interesting to create levels focused on PIAF skills C4.2 and C4.3. This analysis
also reveals some complexity peaks (levels 12 and 14 of Infiltration). These are
interesting indicators to study these levels and considering adjustments.

7 Conclusion and perspectives

In this paper we performed a didactic analysis of SPY by exploring the main
features of the game in relation to computational thinking. Then, we proposed
a formalization to describe skills from game features. We used this formalization
to propose a description of i) the 21 PIAF skills involved in SPY, ii) the 5 levels
of CRCN skills base and iii) the 35 game features of SPY. All the results are
presented in [12]. We have shown that the proposed formalization is independent

9 BlocklyMaze: https://blockly.games/maze, accessed April 10, 2023

https://blockly.games/maze

14 M. Muratet

Fig. 3. Analysis of two scenarios.

of skills bases. We have detailed in this article an extract of these results using
the C1.1, C1.5 and C2.1 skills of the PIAF base.

Finally, we have shown how these descriptions can be used to build metadata
on existing levels. These descriptions provide to teachers and designers micro
information about the active skills in a level or macro information about the
evolution of the game scenario complexity.

Currently the SPY game does not contain a level editor. The creation or
modification of levels is not very accessible (editing XML files by hand). One
perspective for this work is to propose an editor allowing teachers to create
their own game levels. This will give autonomy to teachers as they will get an
automatic skill analysis of their own levels.

Acknowledgements The author acknowledges the support of the French Agence
Nationale de la Recherche (ANR), under grant ANR-18-CE38-0008 (project
IECARE) and Stéphanie Chane Chick Te for her proofreading of this article.

References

1. Balacheff, N.: La transposition informatique, un nouveau problème pour la didac-
tique. In: Artigue M. and Gras R. and Laborde C. and Tavignot P. and Balacheff
N. (ed.) colloque “Vingt ans de didactique des mathématiques en France”, 15-17
juin 1993. pp. 364–370. Recherches en didactique des mathématiques, La Pensée
Sauvage, Paris, France (1993), https://telearn.archives-ouvertes.fr/hal-00190646

2. Baron, G.L., Drot-Delange, B., Grandbastien, M., Tort, F.: Computer science
education in french secondary schools: Historical and didactical perspectives.
ACM Trans. Comput. Educ. 14(2) (jun 2014). https://doi.org/10.1145/2602486,
https://doi.org/10.1145/2602486

3. Branthôme, M.: Pyrates: A Serious Game Designed to Support the Transition from
Block-Based to Text-Based Programming. In: European Conference on Technol-
ogy Enhanced Learning (EC-TEL 2022). Lecture Notes in Computer Science, vol.
13450, pp. 31–44 (2022)

4. Chiprianov, V., Gallon, L.: Introducing Computational Thinking to K-5 in
a French Context. In: 21st Annual Conference on Innovation and Technol-
ogy in Computer Science Education (ITiCSE 2016). ACM Press, Arequipa,

https://telearn.archives-ouvertes.fr/hal-00190646
https://doi.org/10.1145/2602486
https://doi.org/10.1145/2602486

Computational thinking skills and game features 15

Peru (Jul 2016). https://doi.org/10.1145/2899415.2899439, https://hal-univ-pau.
archives-ouvertes.fr/hal-01908224

5. Kradolfer, S., Dubois, S., Riedo, F., Mondada, F., Fassa, F.: A sociological contri-
bution to understanding the use of robots in schools: The thymio robot. In: Beetz,
M., Johnston, B., Williams, M.A. (eds.) Social Robotics. pp. 217–228. Springer
International Publishing, Cham (2014)

6. Laisney, P., Chatoney, M.: Instrumented activity and theory of instrument of Pierre
Rabardel. In: Philosophy of technology for technology education to Sense/Brill
(2018), https://hal-amu.archives-ouvertes.fr/hal-01903109

7. Lindberg, R.S.N., Laine, T.H., Haaranen, L.: Gamifying programming ed-
ucation in k-12: A review of programming curricula in seven countries
and programming games. British Journal of Educational Technology 50(4),
1979–1995 (2019). https://doi.org/https://doi.org/10.1111/bjet.12685, https://
bera-journals.onlinelibrary.wiley.com/doi/abs/10.1111/bjet.12685

8. Mariotti, M.A., Maracci, M.: Resources for the Teacher from a Semiotic Mediation
Perspective, pp. 59–75. Springer Netherlands, Dordrecht (2012)

9. Marne, B., Wisdom, J., Huynh-Kim-Bang, B., Labat, J.M.: The Six Facets of
Serious Game Design: a Methodology Enhanced by our Design Pattern Library.
In: Seventh European Conference on Technology Enhanced Learning (EC-TEL
2012). Lecture Notes in Computer Science, vol. 7563, pp. 208–221. Springer Berlin
/ Heidelberg, Saarbrücken, Germany (Sep 2012). https://doi.org/10.1007/978-3-
642-33263-0 17, https://hal.sorbonne-universite.fr/hal-00739124

10. Miljanovic, M.A., Bradbury, J.S.: A review of serious games for programming. In:
Göbel, S., Garcia-Agundez, A., Tregel, T., Ma, M., Baalsrud Hauge, J., Oliveira,
M., Marsh, T., Caserman, P. (eds.) Serious Games. pp. 204–216. Springer Interna-
tional Publishing, Cham (2018)

11. Muratet, M.: Complete and commented level model in XML format (2023), https:
//github.com/Mocahteam/SPY/blob/master/Doc/LevelModel.xml, [Online; ac-
cessed June 19, 2023]

12. Muratet, M.: Description of PIAF skills using the SPY game features (2023),
https://github.com/Mocahteam/SPY/blob/master/Assets/StreamingAssets/
Competencies/competenciesReferential.json, [Online; accessed June 19, 2023]

13. Parmentier, Y., Reuter, R., Higuet, S., Kataja, L., Kreis, Y., Duflot-Kremer, M.,
Laduron, C., Meyers, C., Busana, G., Weinberger, A., Denis, B.: PIAF: Devel-
oping Computational and Algorithmic Thinking in Fundamental Education. In:
EdMedia+ Innovate Learning, Association for the Advancement of Computing in
Education (AACE). pp. 315–322 (06 2020)

14. PIAF Project: The complete list of the 26 PIAF skills and their
description (2021), https://piaf.loria.fr/wp-content/uploads/2021/09/
PIAF-Referential-of-Competencies-Description-and-Examples.pdf, [Online;
accessed June 19, 2023]

15. Saddoug, H., Rahimian, A., Marne, B., Muratet, M., Sehaba, K., Jolivet, S.: Re-
view of the Adaptability of a Set of Learning Games Meant for Teaching Com-
putational Thinking or Programming in France. In: Special Session on Gamifi-
cation on Computer Programming Learning. vol. 1, pp. 562–569. SCITEPRESS
- Science and Technology Publications, Prague, Czech Republic (Apr 2022).
https://doi.org/10.5220/0011126400003182, https://hal.science/hal-03668918

16. Wing, J.M.: Computational thinking. Communications of the ACM 49(3), 33–35
(2006)

https://doi.org/10.1145/2899415.2899439
https://hal-univ-pau.archives-ouvertes.fr/hal-01908224
https://hal-univ-pau.archives-ouvertes.fr/hal-01908224
https://hal-amu.archives-ouvertes.fr/hal-01903109
https://doi.org/https://doi.org/10.1111/bjet.12685
https://bera-journals.onlinelibrary.wiley.com/doi/abs/10.1111/bjet.12685
https://bera-journals.onlinelibrary.wiley.com/doi/abs/10.1111/bjet.12685
https://doi.org/10.1007/978-3-642-33263-0_17
https://doi.org/10.1007/978-3-642-33263-0_17
https://hal.sorbonne-universite.fr/hal-00739124
https://github.com/Mocahteam/SPY/blob/master/Doc/LevelModel.xml
https://github.com/Mocahteam/SPY/blob/master/Doc/LevelModel.xml
https://github.com/Mocahteam/SPY/blob/master/Assets/StreamingAssets/Competencies/competenciesReferential.json
https://github.com/Mocahteam/SPY/blob/master/Assets/StreamingAssets/Competencies/competenciesReferential.json
https://piaf.loria.fr/wp-content/uploads/2021/09/PIAF-Referential-of-Competencies-Description-and-Examples.pdf
https://piaf.loria.fr/wp-content/uploads/2021/09/PIAF-Referential-of-Competencies-Description-and-Examples.pdf
https://doi.org/10.5220/0011126400003182
https://hal.science/hal-03668918

	How to characterize and analyze the computational thinking skills of a learning game?

