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Abstract

Baker's method, relying on estimates on linear forms in logarithms of algebraic numbers,
allows one to prove in several situations the e�ective �niteness of integral points on varieties.
In this article, we generalise results of Levin regarding Baker's method for varieties, and
explain how, quite surprisingly, it mixes (under additional hypotheses) with Runge's method
to improve some known estimates in the case of curves by bypassing (or more generally
reducing) the need for linear forms in p-adic logarithms. We then use these ideas to improve
known estimates on solutions of S-unit equations. Finally, we explain how a �ner analysis and
formalism can improve upon the conditions given, and give some applications to the Siegel
modular variety A2(2).

1 Introduction

One of the main concerns of number theory is solving polynomial equations in integers, which
amounts to determining the integral points on the variety de�ned by those equations. For a
smooth projective curve over a number �eld, Siegel's theorem says that there are generally only
�nitely many integral points on this curve, but this result is in general deeply ine�ective in that
it does not provide us with any way to actually determine this set of integral points.

We focus here on Baker's method (and to a lesser extent Runge's method), which are both
e�ective: when applicable, they give a bound on the height of the integral points considered. Our
work is based on Bilu's conceptual approach [Bil95] for curves, and its generalisation to higher-
dimensional varieties by [Lev14]. It is also heavily inspired (sometimes implicitly) by a previous
article [LF], dealing with Runge's method. Before stating the main results, let us give some
notations and motivations.

K is a �xed number �eld, L is a �nite extension of K with set of places ML divided into its
archimedean places M∞L and its �nite places Mf

L, and S a �nite set of places of L containing M∞L
(the pair (L, S) will be allowed to change). The ring of S-integers of L is denoted by OL,S and
the regulator of O∗L,S by RS . We also denote by PS the largest norm of an ideal coming from a
�nite place of S (equal to 1 if S = M∞L ).

The notion of integral point on a projective variety X will be precisely de�ned (model-
theoretically) in paragraph 2.1, but the result is compatible with all reasonable de�nitions, e.g. the
one in ([Voj87], section I.4) and the intuition we give below. For Z a closed algebraic subvariety
of X, the set (X\Z)(OL,S) will thus be the set of S-integral points of X\Z. It can be interpreted
in the following way. Every place v of ML de�nes a v-adic topology on X(Kv) where Kv is the
completion of K at v, and in this topology we can say if a point P ∈ X(Kv) is �v-close� to the
subvariety Z or not. The point P is then S-integral with respect to Z if for every place v of ML

except maybe the ones of S, P is v-far from Z.
Furthermore, as X(Kv) is compact, given two algebraic (hence closed) subvarieties Z,Z ′ of X,

a point P is v-close to both Z and Z ′ if and only if it is v-close to Z ∩ Z ′, in particular if this
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intersection is empty, P can be v-close to only one of them. This simple fact is very useful in our
arguments.

The basic context (C) (which will be made more complex later) of our arguments will be the
following:

� X is a smooth projective variety over a number �eld K.

� D1, · · · , Dn are e�ective divisors on X and D =
⋃n
i=1Di.

� The point P belongs to (X\D)(OL,S).

One of the �rst ideas to prove �niteness of integral points is the following: if a point P is v-far
from Di for every place v of ML, the global height hDi

(P ) relative to Di can be bounded, so
under some geometric property called ampleness of Di, P must belong to a �nite set that can be
in principle e�ectively determined. The goal of many �niteness methods is thus to �nd conditions
which ensure automatically that such a situation as above happens for P and one of the Di's,
which would then entail �niteness. Notice that if P ∈ (X\D)(OL,S), this is automatic for places
not in S, so we only need to prove it for the (�nitely many) places of S.

On the other hand, Baker's method proceeds quite di�erently: it relies on the fact (based on
linear forms in logarithms) that a unit x ∈ O∗L,S\{1} cannot be too v-close to 1 (this depending
on the global height of x itself), so if we force it somehow to be v-close, we obtain in return a
bound on the global height of x, which in turn gives e�ective �niteness. For P ∈ (X\D)(OL,S) as
before, the game is then to ensure that there is some place v ∈ S and some point P0 in an explicit
�nite set (independent of P ) such that P is very v-close to P0, and there is a rational function φ
sending P0 to 1 and P in O∗L,S . This approach looks quite orthogonal to the previous paragraph
but it turns out they can complement each other in diverse situations, and this is the topic of the
present paper.

Let us start from (C), and �x mY ≥ 1 an integer and Y the union of intersections of any
mY + 1 divisors amongst D1, · · · , Dn (the notation might seem backwards, but it is because one
can also �rst �x a closed subvariety Y and de�ne mY from it, which is a natural way to proceed in
practical cases). We also de�ne mB ≥ 1 such that any intersection of mB distinct divisors amongst
D1, · · · , Dn is a �nite set. The main point of Theorem 1.1 is proving that, for any �nite sets of
places M∞L ⊂ S′ ⊂ S the set of points of (X\D)(OL,S) ∩ (X\Y )(OL,S′) is e�ectively �nite (up to
an explicit proper closed subset) when

(mB − 1)|S′|+mY |S\S′| < n.

The basic idea (to which the reduction is nevertheless quite technical, and we forget the exceptional
cases for simplicity here) is the following: given a point P ∈ (X\D)(OL,S) ∩ (X\Y )(OL,S′), for
v ∈ S\S′, if P is v-close to more than mY divisors Di, it is v-close to Y , which is ruled out by S′-
integrality with respect to Y . On another hand, if v ∈ S′ and P is v-close to mB divisors, it is close
to some point in their intersection which is �nite, and we can then apply Baker's method. Now,
the inequality above guarantees that if none of these situations happens, then by the pigeonhole
principle there is some Di such that P is v-far away from Di for every place v ∈ML, which proves
e�ective �niteness by the arguments above.

We now state the complete version of this result.

Theorem 1.1. Let X be a smooth projective variety over K and D1, · · · , Dn be ample e�ective
divisors on X, D =

⋃n
i=1Di, and hD a choice of absolute logarithmic height relative to D.

The number mB (assumed to exist) is the smallest integer such that for any set I ⊂ {1, · · · , n}
with |I| = mB, the intersection TI =

⋂
i∈I Supp(Di)(K) is �nite. For any point P in the �nite set

T :=
⋃

|I|=mB

TI ,

assume
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(H)P : �there exists φP ∈ K(X) nonconstant whose support is included in (SuppD)\P (and
φP (P ) = 1 for simplicity)�. Such a function will be �xed in the following.

Let mY ≥ 1 be an integer and

Y =
⋃

|I|>mY

⋂
i∈I

Supp(Di)(K).

Then, there exists an e�ectively computable constant C > 0 and an explicit function C1(d, s)
such that for any triple (L, S, S′) with M∞L ⊂ S′ ⊂ S �nite such that [L : Q] = d, |S| = s and

(mB − 1)|S′|+mY |S\S′| < n, (1.1)

for every Q ∈ (X\D)(OL,S) ∩ (X\Y )(OL,S′),

hD(Q) ≤ C · C1(d, s)hLRSPS′ log∗(hLRS), (1.2)

where log∗(x) = max(log x, 1), unless

Q ∈ Z :=
⋃
P∈T

ZφP
, ZφP

:= {Q ∈ (X\SuppφP )(K), φP (Q) = 1},

this set Z being an e�ective strict closed subset of X independent of (L, S, S′) and the bar denoting
the Zariski closure.

A remark developed below is that the dependence on S′ in (1.2) is the factor PS′ , so an ideal
choice for S′ is for it to be as large as possible to satisfy (1.1) but with its �nite places as small
as possible. This leeway in the choice of S′ allows for improved bounds even on the well-trodden
ground of curves, for which one obtains the following corollary.

Corollary 1.2. Let C be a smooth projective curve over K and φ ∈ K(C) nonconstant.
Assume that every pole P of φ satis�es (H)P (and to simplify, is de�ned over K). Then, there

are a constant C > 0 and an explicit function C1(d, s) such that for any triple (L, S, S′) satisfying

|S\S′| < n, (1.3)

any point Q ∈ C(L) such that φ(Q) ∈ OL,S satis�es

h(φ(Q)) ≤ C · C1(d, s)hLRS log∗(hLRS)PS′ .

Remark 1.3. Let us make some comments about these results.

� For S′ = M∞L , under the assumption (1.1) that |S\M∞L | is small (exactly translated by (1.3)
for curves), one obtains a bound on the height which only grows in R1+ε

S . In particular,
there is no linear dependence on PS (which would come from estimates of linear forms in
p-adic logarithms in a straightforward application of Baker's method), but rather in logPS
(implicitly contained in RS), which might prove useful for some applications.

� The set Z of Theorem 1.1 can actually be made smaller: as done in [Lev14], we can replace
each ZφP

by the intersection of all ZφP
where φP runs through all functions satisfying the

hypotheses of (H)P .

� Theorem 1.1 applied for mY = 0 and S = S′ retrieves Levin's result ([Lev14], Theorem
1), and for smaller S′ (hence more hypotheses) improves upon the quantitative estimates it
implicitly gave.

� For general mY , Theorem 1.1 improves qualitatively (when the hypotheses (H)P hold) upon
a previous result based on Runge's method ([LF], Theorem 5.1 and Remark 5.2(b)), as
condition (1.1) is generally weaker than the tubular Runge condition de�ned there (the
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choice of set (X\Y )(OL,S′) is inspired by the notion of tubular neighborhood de�ned in that
article, see section 3 there). Indeed, the m = m∅ in the statement of ([LF], Remark 5.2)
is not mB, and in general one only knows that mB ≤ m + 1. If mB = m + 1, the original
Runge's method can be applied as in [Lev08] and gives better (and uniform) estimates than
[Lev14] (and the same holds for the tubular variants we propose), but if mB ≤ m which is
the most likely situation, the condition (1.1) is indeed more easily satis�ed than for Runge's
method.

� The words �e�ectively computable� for the constant C deserve to be made more precise.
One requires to know an embedding of X in a projective space PNK , explicit equations and
formulas for X, the Di, D, hD, the points of T and expressions of φP relative to this
embedding. With this data, the e�ectivity boils down to an e�ective Nullstellensatz such
as e.g. ([MW83], Theorem IV). Now, the functions C1(d, s) (as well as RS log∗(RS)) are
coming from the theory of linear forms in logarithms, and are as such completely explicit.
The addition of hL is a technicality due to the necessity of slightly increasing the ring of units
O∗L,S upon which to apply Baker's estimates, and can often be removed in special cases.

� Unless we are in the case of curves, mB > 1 and then (1.1) bounds d and s in terms of n,
which allows us to replace C1(d, s) by an explicit function C1(n).

� As will be discussed in section 5, in some situations one can apply the same methods as in
the proof of Theorem 1.1 without having (1.1), and one can also devise some more uniform
variants of this result in intermediary cases.

As an illustration of the e�ectivity of the method, we prove the following result on the S-unit
equation: �x L to be a number �eld of degree d, S ⊃M∞L a set of places of L of cardinality s and
α, β ∈ L∗. We consider the S-unit equation

αx+ βy = 1, x, y ∈ O∗L,S . (1.4)

Theorem 1.4. Let L, S, α, β as above.

� If S contains at most two �nite places, all solutions of (1.4) satisfy

max(h(x), h(y)) ≤ 2c(d, s)RS log∗(RS)H,

where H = max(h(α), h(β), 1, π/d) and c(d, s) is the constant de�ned as c26(s, d) in formula
(30) of [GY06].

� For any set of places S, all solutions of (1.4) satisfy

max(h(x), h(y)) ≤ 2c′(d, s)P ′SRS(1 + log∗(RS)/ log∗ P ′S)H,

where c′(d, s) = c1(s, d) from Theorem 1 of [GY06], and P ′S the third largest value of the
norms of ideals coming from �nite places of S.

This result provides an improvement on known bounds for solutions of the S-unit equations.
More precisely, its dependence on P ′S (instead of PS , the largest norm of an ideal coming from
a place of S) becomes particularly interesting when there are at most two places of S of large
relative norm, and by construction it improves Theorem 1 of [GY06]. One can also remark that
such an estimate is likely to be close to optimal in terms of dependence on the primes in S, as
replacing RS log∗(RS) by o(RS) in the �rst bound would imply that there are only �nitely many
Mersenne primes. Notice that there is an additional factor 2 in the inequalities of Theorem 1.4
when compared to the reference [GY06], which is due to a special case in the proof.

On another hand, Theorem 4.1.7 of [EG15], based on slightly di�erent Baker-type estimates,
has a better dependence on s and d. It is possible to combine the strategy of proof of the latter
theorem with our own to obtain an improvement of both results, essentially replacing again PS by
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P ′S . This is achieved in a recent preprint of Györy [Gyö] (which also takes into account and deals
with the factor 2 discussed above).

After proving Theorem 1.1 and Corollary 1.2 in section 3 (section 2 gathering the necessary
reminders and tools for the proof), we prove Theorem 1.4 in section 4. This application is heavily
based on computations undertaken in [GY06], hence we have chosen to refer to it whenever possible,
and focus on pointing out where the improvements come from our approach.

In the last part of this paper (section 5), inspired by comments from the referees, we discuss a
rewording of the elementary ideas behind Runge and Baker's method in terms of a graph de�ned
by the divisors Di, which leads in some situations to hypotheses of application weaker than e.g.
(1.1). In the spirit of [LF] and as an example of the potential for improvement it reveals, we
apply these ideas to the Siegel modular variety A2(2)S and obtain �niteness of abelian surfaces
over quadratic �elds with full 2-torsion and satisfying conditions on their places of bad reduction
(Propositions 5.5 and 5.7).
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2 Reminders on Baker's theory and local heights

For any place w of L, the norm | · |w associated to w is normalised to extend the norm on Q de�ned
by v0 below w, where | · |∞ is the usual norm on Q and for every prime p and nonzero fraction
a/b, ∣∣∣a

b

∣∣∣
p

= pordp b−ordp a.

We also de�ne nw = [Lw : Qv0 ] the local degree of L at w.
In all discussions below, X is a �xed projective smooth algebraic variety over the number �eld

K and closed subset of X will mean a closed algebraic K-subvariety of X.
Regarding the integrality, we choose a model-theoretic de�nition as follows. Assume X is a

proper model of X over OK , �xed until the end of this article. For every closed subset Y of X,
denote by Y the Zariski closure of Y in X . The set of integral points (X\Y )(OL,S) will then
implicitly denote the set of points P ∈ X(L) whose reduction in Xv(κ(w)) for a place w of ML\S
above v ∈MK (well-de�ned by the valuative criterion of properness) never belongs to Y.

2.1 MK-constants and MK-bounded functions

The arguments below will be much simpler to present with the formalism of MK-constants and
MK-functions brie�y recalled here.

De�nition 2.1.

• An MK-constant is a family (cv)v∈MK
of nonnegative real numbers, all but �nitely many of

them being zero.
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• An MK-function f (on X) is a function de�ned on a subset E of X(K) ×MK with real
values (typically, a local height function as below). Equivalently, it is de�ned as a function
on a subset of

⊔
K⊂L⊂K X(L)×ML, consistently in the sense that if f is de�ned at (P,w)

with P ∈ X(L) and w ∈ML, then it is de�ned at (P,w′) with w′|w ∈ML′ for any extension
L′ of L, and f(P,w) = f(P,w′).

• An MK-function f : E → R is MK-bounded if there exists an MK-constant (cv)v∈MK
for

which for all (P,w) ∈ E,
|f(P,w)| ≤ cv (w|v).

The notation OMK
(1) will be used for an MK-bounded function depending on the context

(in particular, its domain E will often be implicit but obvious).

• Two MK-functions f, g : E → R are MK-proportional when there is an absolute constant
C > 0 and a MK-constant (cv)v∈MK

for which for all (P,w) ∈ E,

1

C
|f(P,w)| − cv ≤ |g(P,w)| ≤ C|f(P,w)|+ cv (w|v).

• Two functions f, g de�ned on an open subset O of X(K) (typically, global height functions)
are proportional if there are absolute constants C1, C2 > 0 such that for every P ∈ O :

1

C1
f(P )− C2 ≤ g(P ) ≤ C1f(P ) + C2.

2.2 Local heights associated to closed subsets

We will now de�ne explicitly local height functions relative to closed subsets of a projective variety
X.

• For any point P ∈ PN (L), one denotes by xP = (xP,0, · · · , xP,n) ∈ Ln+1 a choice of coordi-
nates representing P and ‖xP ‖w = maxi |xP,i|w.

• For a polynomial g ∈ L[X0, · · · , XN ] and w ∈ML, the norm ‖g‖w is the maximum norm of
its coe�cients for | · |w.

• Given a closed subset Y of PNK and homogeneous polynomials g1, · · · , gm ∈ K[X0, · · · , XN ]
generating the ideal of de�nition of Y , for any w ∈ML and any P ∈ (PN\Y )(L), one de�nes
explicitly a choice of local height of P at Y for w by

hY,w(P ) := −min
i

log
|gi(xP )|w

‖gi‖w‖xP ‖deg giw

, (2.1)

and the global height by

hY (P ) :=
1

[L : P]

∑
w∈ML

nw · hY,w(P ).

With this normalisation, for any w ∈Mf
L and P ∈ (PN\Y )(L), hY,w(P ) ≥ 0 and it is positive

if and only if P reduces in Y modulo w.

Let us now sum up the main properties of those functions that we will need.

Proposition 2.2 (Local heights).
Let X be a smooth projective variety over K, with an implicit embedding in a PnK and �xed

choices of local heights as in (2.1) for all closed subsets considered below.
(a) For any closed subsets Y, Y ′ of X the functions hY ∩Y ′,w and min(hY,w, hY,w′) are MK-

proportional on (X\(Y ∪ Y ′))(K)×MK .
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(b) For a disjoint union Y t Y ′ of closed subsets of X, one has

hY,w(P ) + hY ′,w(P ) = hY tY ′,w(P ) +OMK
(1)

on (X\(Y ∪ Y ′))(K)×MK .
(c) For Y ⊂ Y ′ closed subsets, one has

hY,w(P ) ≤ hY ′,w(P ) +OMK
(1)

on (X\Y ′)(K)×MK .
(d) If φ : X ′ → X is a morphism of projective varieties, the functions (P,w) 7→ hY,w(φ(P ))

(resp. hφ−1(Y ),w(P )) are MK-proportional on (X ′\φ−1((Y ))(K)×MK .
(e) For any closed subset Y of X, the function (P,w) 7→ hY,w(P ) is MK-bounded on the set of

pairs satisfying P ∈ (X\Y )(OL,w) (independently of the number �eld L).
(f) For any e�ective divisor D on X and any function φ ∈ K(X) with support of poles included

in SuppD, the function (P,w) 7→ |φ(P )|w is MK-bounded on the set of pairs (P,w) ∈ X(L)×Mf
L

satisfying P ∈ (X\D)(OL,w) (independently of the number �eld L).
(g) If D and D′ are two ample divisors on X, for any two choices of global heights hD and

hD′ , they are proportional on (X\ Supp(D ∪D′))(K).
Furthermore, all the implied MK-constants and constants are e�ective .

Proof. This proposition is mostly a reformulation of results of [Sil87] already quoted in [Lev14].
First, (2.1) indeed de�nes local heights associated to closed subsets by ([Sil87], Proposition 2.4) so
most of the proposition is contained in ([Sil87], Theorem 2.1). Let us point out the slight di�erences
and explain how it is e�ective. In that article, local height functions are more precisely de�ned by
their ideal sheaves, whereas we consider closed subsets hence reduced closed subschemes. Now, if
two ideal sheaves I and I ′ have the same support, their local height functions areMK-proportional.
More concretely, let us �x Y ⊂ Y ′ closed subsets of X ⊂ PNK and two systems of homogeneous
generators g1, · · · , gm ∈ K[X0, · · · , XN ] and h1, · · · , hp of ideal sheaves with respective supports
Y and Y ′ in PNK . After multiplying by a suitable n ≥ 1, one can assume all those polynomials'
coe�cients belong to OK , and such an n can be made e�ective in terms of the ‖gi‖v and ‖hj‖v for
v ∈Mf

K . Now, an e�ective Nullstellensatz (e.g. [MW83] applied to multiples of those generators),
translated in the projective case, will give relations

agki =

p∑
j=1

fi,jhj

with a ∈ OK nonzero, all the fi,j with coe�cients in OK and bounded ‖fi,j‖v and |a|v in terms of
the norms of the polynomials for all v ∈M∞K . Furthermore, the power k is e�ectively bounded in
terms of [K : Q],N and the degrees of the polynomials. This will clearly give an e�ective inequality

hY,w(P ) ≤ k · hY ′,w(P ) +OMK
(1).

for all (P,w) ∈ (X\Y ′)(K)×MK , and this argument works for parts (a) to (d) of the Proposition
(the inequality in (c) without a factor k coming from the fact that we can extend generators of an
ideal sheaf for Y ′ to an ideal sheaf for Y ).

The only parts remaining to be proven are now (e), (f) and (g). Part (e), essentially saying
that local height functions detect integral points up to some MK-bounded error, is classical (see
[Voj87], Proposition 1.4.7) and in fact automatic for the exact de�nition given in (2.1). Part (f)
then comes from (e) and Lemma 11 of [Lev14]. Finally, part (g) is a classical result on heights
(e.g. [Lan83], Chapter IV, Proposition 5.4), and there also, the constants implied can be made
e�ective.
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2.3 Baker's theory of linear forms in logarithms

Let us now give our second main tool: estimates from Baker's theory in a special form su�cient
for our purposes.

For any place w of ML, N(w) is de�ned to be 2 if w is archimedean and the norm of the
associated prime ideal otherwise.

Proposition 2.3. De�ne log∗(x) = max(log(x), 1) for x > 0.
Let d = [L : Q] and s = |S|. There is an e�ectively computable function C(d, s) such that for

any pair (L, S), any α ∈ O∗L,S\{1} and any w ∈ML,

log |α− 1|w ≥ −C(d, s)
N(w)

logN(w)
RS log∗(N(w)h(α)). (2.2)

In terms of local heights, one can choose the local height h1,w(α) to be max(− log |α− 1|w, 0),
which gives us

h1,w(α) ≤ C(d, s)
N(w)

logN(w)
RS log∗(N(w)h(α)).

Proof. This result, although natural when one knows estimates for linear forms in logarithms,
is not often presented in this form, so the following proof will explain how one can get to such
an expression with known results. First, let us assume s ≥ 2 (for s = 1, the result is trivial).
By Lemma 1 of [BG96] (log h there is our logarithmic height here), one can choose a family of
fundamental units ε1, · · · , εs−1 of O∗L,S such that

s−1∏
i=1

h(εi) ≤ c1(s)RS ,

where c1(s) = ((s− 1)!)2/(2s−1ds−2).
Now, by Theorem 4.2.1 of [EG15] applied to Γ = O∗L,S gives us the bound (taking into account

our normalisation of | · |w) with C(d, s) = c1(s)c8 where c8 is de�ned as in the reference.

3 Proof of the main theorem

We now have all the tools to prove the theorem. We keep the notations from its statement, and
assume that we have an embedding X ⊂ PNK from which all local heights considered below are
de�ned. Recall that s = |S|, d = [L : Q] and nw is the local degree of L at w. The constants ci
below are absolute and can be made e�ective.

First, let us notice that for every point P ∈ T , as the support of φP is in D, by Proposition
2.2 (f) applied to φP and φ−1P , there is an absolute positive integer m (independent on the
choice of (L, S) and P ∈ T ) such that for every Q ∈ (X\D)(OL,S), one has mφP (Q) ∈ OL,S and
mφP (Q)−1 ∈ OL,S . De�ning Sm the set of primes of L dividingm, one thus has φP (Q) ∈ O∗L,S∪Sm

for all Q ∈ (X\D)(OL,S).
By Proposition 2.2 (e), the map (Q,w) 7→ hDi,w(Q) is MK-bounded on pairs (Q,w) with

w ∈ ML\S and Q ∈ (X\D)(OL,S), and (Q,w) 7→ hY,w(Q) is MK-bounded on pairs (Q,w) with
w ∈ML\S′ and Q ∈ (X\Y )(OL,S′).

Let us assume now that Q ∈ (X\D)(OL,S) ∩ (X\Y )(OL,S′). The previous paragraphs imply
that for every i ∈ {1, · · · , n}

hDi
(Q) =

1

[L : Q]

∑
w∈S

nwhDi,w(Q) +O(1)

where O(1) is absolutely (and e�ectively bounded) on the set of such points Q (even if (L, S) is
allowed to change).
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Thus, for all i ∈ {1, · · · , n}, there is w ∈ S such that

hDi,w(Q) ≥ nw
[L : Q]

hDi,w(Q) ≥ 1

s
hDi

(Q) +O(1).

After choosing for every i ∈ {1, · · · , n} such a w ∈ S, we obtain a function {1, · · · , n} → S.
Now, if the �ber above a place w ∈ S\S′ was a set J with |J | > mY , by Proposition 2.2 (a), one
would obtain an absolute e�ective (computable) upper bound on the minimum of such hDj ,w(Q),
therefore on hDi(Q)/s and hD(Q)/s by Proposition 2.2 (g).

We can thus assume from now on that this is not the case. Therefore, the �bers of this function
are of cardinality at most mY above S\S′. Consequently, by hypothesis (1.1), one of the �bers
above S′, de�ned as I, has to be of cardinality at least mB (if it's more, we extract a subset of
cardinality mB), which gives w ∈ S′ such that

min
i∈I

hDi,w(Q) ≥ 1

s
min
i∈I

hDi
(Q) ≥ c1

s
hD(Q) +O(1).

Now, by Proposition 2.2 (a) again and construction of T (if T = ∅, we directly obtain an absolute
MK-constant bound), there exists P ∈ T such that

hP,w(Q) ≥ c2
s
hD(Q) +OMK

(1) ≥ c3
s
h(φP (Q)) +OMK

(1), (3.1)

using Proposition 2.2 (g), with absolute e�ective constants c1, c2, c3 > 0. Moreover, by Proposition
2.2 (d), as φP (P ) = 1, if φP can be evaluated at Q and φP (Q) 6= 1,

h1,w(φP (Q)) ≥ c4 · hP,w(Q) +OMK
(1) ≥ c3c4

s
h(φP (Q)) +OMK

(1), (3.2)

for c4 > 0 absolute e�ective and OMK
(1) computable in terms of the initial data of embeddings

and equations (but bounding it crudely by an absolute constant would su�ce in the following
argument).

On another hand, applying Proposition 2.3 to O∗L,S∪Sm
, we get

h1,w(φP (Q)) ≤ C(d, s+ |Sm|) ·RS∪Sm

N(w)

logN(w)
· log∗(N(w)h(φP (Q))). (3.3)

By formula (1.8.3) of [EG15], one has

RS∪Sm
≤ hLRS

∏
P∈Sm\S

logN(P)) ≤ hLRS
∏
p|m

ed/e log p ≤ hLRSmd/e (3.4)

after optimising the products of logarithms.
Combining (3.2), (3.3) and (3.4) and with some care about the logarithmic terms, we obtain

an a�ne bound of the shape (1.2) for h(φP (Q)), hence on hP,v(Q) by Proposition 2.2 (d) applied
the other way, which �nally gives a bound on hD(Q) by (3.1) (there is a constant term which we
can absorb in the linear one as it is e�ectively boundable).

4 Applications to the S-unit equation in the case of curves

In this section, we realise our method in the practical case of the S-unit equation (1.4), to prove
Theorem 1.4.

This problem is related to �nding the integral points of (P1\{0, 1,∞})(OL,S) (up to taking into
account the factors α, β), and this is the interpretation we will follow below to illustrate the main
theorem. We follow closely the de�nitions and lemmas of [GY06] (except their normalisations of
norms), as our improvements intervene only at the beginning of the proof. As in that article,
de�ne

d = [L : Q], H = max(h(α), h(β), 1, π/d), s = |S|.

9



For any t ∈ L, de�ne hw(t) := h0,w(t) = log+(1/|t|w).
For sake of symmetry of the exposition, we will do most computations with αx and βy, before

coming back to H. This means we deal with hw(P ) for

P ∈ E =

{
αx, βy,

1

αx

}
.

Lemma 4.1. For any x, y ∈ L with αx+ βy = 1:

� For any place w ∈ ML, at most one value of hw(P ) for P ∈ E can exceed δw log 2, where
δw = 1 if w is in�nite, 0 otherwise.

� The maximum modulus of the di�erence of logarithmic heights of any two of them amongst
h(x), h(y), h(αx), h(βy) is at most 3H, and even 2H except for |h(x)− h(y)|.

� If x, y ∈ O∗L,S and h = max(h(x), h(y)), we always have, for P ∈ E:∑
w∈S

nw
[L : Q]

hw(P ) ≥ h(P )−H ≥ h− 3H.

Proof. The �rst item is the translation of the fact that if z + z′ = 1 one of z, z′ has to have norm
at least 1 if the norm is ultrametric, and at least 1/2 if it is archimedean.

The second item uses that for any nonzero algebraic numbers z, z′, h(zz′) ≤ h(z) + h(z′) and
h(z+z′) ≤ h(z)+h(z′)+ log 2. For example, we obtain |h(x)−h(αx)| ≤ H and |h(αx)−h(βy)| ≤
log 2, and by symmetric role this leads to all other bounds on di�erence of heights, as log 2 ≤ H.

For the third item, in each of the three cases,∑
w∈S

nw
[L : Q]

hw(P ) = h(P )−
∑
w/∈S

nw
[L : Q]

log+(1/|P |w)

but for w /∈ S and each of our three P 's, the contribution of x or y to 1/|P |w is by a factor 1 so
this sum is bounded by H. The second inequality follows directly from the second item.

Proof of Theorem 1.4. First, notice that if s ≤ 2, Lemma 4.1 alone gives immediately that there is
P ∈ E such that hw(P ) ≤ δw log 2 for all w ∈ S, and elsewhere we have hw(P ) = hw(α), hw(β) or
h(β/α) depending on the value of P , because x and y are S-units. Consequently, h(P ) ≤ 2H+log 2,
hence h ≤ 4H + log 2 in this case. We can now assume that s ≥ 3.

For the �rst part of Theorem 1.4, the assumption amounts to saying that (1.1) holds in this
case for S′ = M∞L . By Lemma 4.1, for any choice of P ∈ E, there is w ∈ S such that

nw
[L : Q]

hw(P ) ≥ 1

|S|
(max(h(x), h(y))− 3H). (4.1)

We want to fall back on a case where for one of the three choices of P , one can impose that
w ∈M∞L . If that is not possible, by pigeonhole principle and our hypothesis on S, there is a �nite
place w and two points P,Q ∈ {E} distinct with

nw
[L : Q]

min(hw(P ), hw(Q)) ≥ 1

|S|
(max(h(x), h(y))− 3H).

By the same lemma, we get max(h(x), h(y)) ≤ 3H. This bound will be readily checked to be
smaller than the other case.

One can thus assume from now on that for some w ∈M∞L and P ∈ E, (4.1) holds.
The only thing to do is then to get back to the situation of ([GY06], page 24) in all three cases,

after which we will obtain the exact same bounds. We �x a fundamental system ε1, · · · , εs−1 of
units of O∗L,S with the properties of ([GY06], Lemma 2).
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• Assume �rst P = αx, and write

y = ζεb11 · · · ε
bs−1

s−1 , (4.2)

with ζ a root of unity in L and bi ∈ Z for all i. By the arguments of [BG96] (p. 76), we obtain
that

B = max(|b1|, · · · , |bs−1|) ≤ c1(d, s)h(y)

with

c1(d, s) =

{
((s− 1)!)2/(2s−3 log 2) if d = 1
((s− 1)!)2/2s−2) log(3d)3 if d ≥ 2.

We set αs = ζβ and bs = 1 so that

|αx|w = |1− εb11 · · · ε
bs−1

s−1 α
bs
s |w.

We set the Ai and As as in ([GY06], equation (31)) and can make the same assumption (otherwise,
we obtain a smaller bound). By ([GY06], Proposition 4 and Lemma 5), we thus obtain

hw(P ) = − log |αx|w < c2(d, s)c3(d, s)RSH log

(
c1(d, s)h(y)√

2H

)
(4.3)

(as we always have s ≥ 3 here), with

c2(d, s) = d3 log(ed) min(1.451(30
√

2)s+4(s+ 1)5.5, π26.5s+27),

c3(d, s) = e
√
s− 2(((s− 1)!)2/(2s−2))πs−2 ·

{
8.5 if d = 1
29d log d if d ≥ 2,

Let us now de�ne h = max(h(x), h(y)). We use inequality (4.1), and replace h(y) by h in the
right-hand side of (4.3) to obtain

h

s
−H ≤ h− 3H

s
≤ nw

[L : Q]
c2(d, s)c3(d, s)RSH log

(
c1(d, s)h√

2H

)
(4.4)

and these are equivalent to the two inequalities used on page 24 to obtain the result.
• Assume P = βy. We apply the same argument by symmetry, replacing α by β and x by y

everywhere, to �nally obtain the same bound.
• Assume P = 1

αx . We thus write

hw(P ) = − log

∣∣∣∣ 1

αx

∣∣∣∣
w

= − log

∣∣∣∣1− βy

αx

∣∣∣∣
w

.

Let us �x then
y

x
= ζεb11 · · · ε

bs−1

s−1 , αs =
β

α
,

and proceed in the same fashion as before, with a loss of precision because h(αs) ≤ 2H and
not H. This is the reason for the factor 2 in the �nal result of Theorem 1.4, and has been taken
into account in ([Gyö], end of proof of Theorem 1).

For the second part of Theorem 1.4, we can play the same game, by de�ning S′ the set of
places S deprived of its two prime ideals with largest norm. The same elimination work as before
will then give w ∈ S′ and P ∈ E satisfying (4.1), and from there we can apply for P = αx the
exact method of ([GY06], page 25) with a prime ideal p from S′. This �nally leads to the same
estimates with P ′S instead of PS , using again Lemma 4.1.
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5 A general framework for integrality methods

This section is motivated by comments from the referees asking for comparisons with other results,
which inspired the author to present an attempt at conceptualising more closely the current
approaches.

The formalism presented here does not bring anything completely new in this regard but allows
to understand many versions of Runge's or Baker's method simultaneously, and sheds some light
on how they can possibly be combined. There is also some degree of equivalence with preexisting
statements in the literature, which we will try to emphasize.

5.1 Graph-theoretic de�nitions

The context (C) is still the same as before:

� X is a (smooth, to simplify) projective variety over the number �eld K.

� D1, · · · , Dn are reduced e�ective pairwise distinct divisors on X.

We will interpret everything in terms of a directed graph, which motivates the following de�-
nitions.

De�nition 5.1.

• A descending directed graph is a directed graph G with �nitely many vertices and edges such
that:

� Every vertex v ∈ V is given a depth dv ∈ N.

� If there is an edge v′ 7→ v, dv′ < dv (and we then say that v is a child of v′). If v′ has no
children, it is called extremal.

• For a given vertex v, the cone of ancestors of (we will also say originating in) v is de�ned as

Cv = {v} ∪ {v′, ∃ path v′ 7→ · · · 7→ v},

and its depth is also de�ned as dv.
• A family of cones of ancestors (Cv)v spans the graph in depth 1 when the union of those cones

contains all vertices of depth 1. If it does not, its remainder R is the set of unspanned vertices of
depth 1.

Such a graph is particulary easy to draw and arrange by rows with �xed depth, hence its name.

De�nition 5.2 (Intersection graph).
The intersection graph G of X,D1, · · · , Dn is the descending directed graph de�ned as such:
- For every subset I ⊂ {1, · · · , n}, we de�ne

ZI :=
⋂
i∈I

Supp(Di)

and say that I is optimal if ZI 6= ∅ and there is no I ′ ) I such that ZI′ = ZI , in other words
no i /∈ I such that ZI ⊂ Supp(Di). In this way, every nonempty set-theoretic intersection of the
divisors corresponds to a unique optimal set of indices

- The vertices v of G are indexed by the optimal sets of indices. We thus can associate to each
v its optimal set Iv and Zv := ZIv . The depth of v is de�ned as |Iv|, in other words the maximal
number of divisors whose intersection de�nes Zv. In particular, the unique vertex of depth 0
corresponds to X and the vertices of depth 1 correspond bijectively to the divisors D1, · · · , Dn

(unless one divisor contains another which we can assume to never hold).
- There is a directed arrow from v′ to v if and only if Zv′ ) Zv with no intermediary set Zv′′ ,

which by our construction is equivalent to saying that Iv′ ( Iv with no intermediary optimal set
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of indices (this is mainly to reduce the number of arrows in the graph). Considering a vertex v,
the ancestors of depth 1 of v correspond to the divisors Di containing Zv.

- Extremal vertices correspond to minimal nonempty intersections of the divisors (and optimal
sets of indices which are maximal for the inclusion).

Remark 5.3. The number m in Runge's method ([Lev08], Theorem 4) is exactly the maximal
depth of a vertex in G. When the divisors Di are ample and in general position and X is of

dimension d, the graph is particularly simple: for every i ≤ d, it has

(
n
i

)
edges of depth i, and

the maximal depth is d. Notice also that the �nite sets are exactly the ones of depth d in this
case. This ideal situation would not need the formalism of the graph above, but our purpose is
precisely to deal with the situations where m is larger than it should be.

5.2 Runge and Baker methods for integrality and their variations

To proceed with integrality, the intuition is that for a point P ∈ (X\D)(OL,S), for every place
v ∈ S, one considers the set of closed subsets ZI which are v-close to S. If the notion of closeness is
de�ned rigorously and consistently (which we postpone until later), the following property holds:

(P) For every place v and every point P ∈ X(Kv), the set of vertices v such that P is v-close
to Zv is the cone of ancestors of a vertex v0.

Notice that we can also do the same with a point P in X(Kv) and look at the v for which
Zv contains P (instead of merely being close to it), and we again get cones of ancestors. More
precisely, approximating P v-adically by points Pv ∈ X(Kv), we can obtain by compactness (when
Pv is close enough) this same cone as the set of vertices v such that Zv is v-close to Pv.

Let us now, as before, �x (L, S) and P ∈ (X\D)(OL,S). To each v ∈ S we thus associate a
cone of ancestors C(P, v) corresponding to P seen in X(Kv).

It now turns out that Runge and Baker's method can each be applied under conditions on
those cones of ancestors (and a geometric condition on their remainder) in a very straightforward
way, which we call terminal conditions (because if they apply, we can �nish the analysis via
computations quite independent from the graph then).

For each case, we provide an hypothesis which would make termination conditions automati-
cally realised.

We start with the classical versions of Runge and Baker's method.

1. a) Termination for Runge: The cones of ancestors C(P, v), v ∈ S do not span the inter-
section graph in depth 1 and the remainder R satis�es the geometric condition (G)R:

The sum DR of the divisors Dv, v ∈ R is ample (resp. big, of positive Kodaira-Iitaka
dimension).

By construction, every divisor Dv with v ∈ R is v-far from P for every place v ∈ S, and
the global height hDR(P ) is thus su�ciently controlled to ensure �niteness (resp. �niteness
outside of an explicit proper algebraic subset independent of (L, S), non Zariski density) by
(G)R.

b) Automatic guarantee for Runge: |S| = s, and a family of s cones of ancestors (of
extremal vertices) cannot span the graph in depth 1, and every divisor Di is ample (resp.
big, of positive dimension)

It is su�cient here (and more convenient for computations) to prove this for cones of extremal
vertices because otherwise one might take a strictly larger cone, which would thus span at
least the same depth 1 vertices.

Remark 5.4. Let us �rst compare it with the original higher-dimensional version of Runge's
method, found in Theorem 4 of [Lev08]. In this context, recall that the number m is the
maximal depth of the graph, and by de�nition of the intersection graph, a vertex v of the
intersection graph has exactly dv ancestors of depth 1. If ms < n, then any given s cones of
ancestors cannot span the graph in depth 1, which means that ms < n implies the automatic
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guarantee for Runge (in the three cases ample, big, positive Kodaira-Iitaka dimension of that
theorem).

Now, this statement (for the case of positive Kodaira-Iitaka dimension) is in fact equivalent
to Proposition 4.2 of [CSTZ15], which formulates it in terms of the maximal number s of
points P1, · · · , Ps such that the sum of divisors Di avoiding all of them make up a positive-
dimensional divisor. This is exactly what DR is meant to be above, hence the equivalence.
One can also see with this graph-theoretic interpretation that the worst-case scenario is
when each Pi belongs to a Zv where v is an extremal vertex. One di�culty regarding
the divisors dealt with in [CSTZ15] is that they are not one by one of positive Kodaira
dimension, and there is no obvious way to choose positive-dimensional sums of those divisors
for which a classical Runge condition ms < n can be applied, which is another reason why
the improvement brought there by Proposition 4.2 is needed for the end result of that paper.

We give below a concrete example of application of this weaker Runge condition for a Siegel
modular variety, following [LF].

Proposition 5.5. There is an absolute e�ectively computable constant C > 0 such that the
following holds for any pair (K,S) with K quadratic and S ⊃M∞K with |S| = 2:

Let A be a principally polarised abelian surface over K with A[2] ⊂ A(K) and such that the
semistable reduction of A is always the jacobian of a smooth curve of genus 2 except at the
�nite places of S. Then, the stable Faltings height of A satis�es hF (A) ≤ C. In particular,
the set of all such abelian surfaces A up to isomorphism is e�ectively �nite .

Proof. This amounts to a problem of OK,S-integral points on A2(2)Sa\D when |S| ≤ 2,
where A2(2)Sa is the Satake compacti�cation of the Siegel modular variety A2(2) of degree
2 and level 2 and D is the union of the ten divisors of moduli of products of elliptic curves.
For all details, we refer to the author's previous work in ([LF], section 8) with only some
reminders here (every claimed fact with no reference can be found there). On this variety,
the ten even theta constants de�ne (as divisors of zeroes) ten divisors D1, · · · , D10 whose
union D is exactly the boundary ∂A2(2) := A2(2)Sa\A2(2) of the compacti�cation together
with the locus of products of elliptic curves. Furthermore, the fourth powers of these theta
constants de�ne an embedding

ψ : A2(2)Sa → P9,

for which the equations of the image are, with canonical ordering of the coordinates in P9:

x1 − x2 − x6 − x9 = 0 (5.1)

x1 − x4 − x5 − x8 = 0 (5.2)

x2 − x3 + x5 − x7 = 0 (5.3)

x3 − x4 − x6 + x10 = 0 (5.4)

x7 − x8 − x9 + x10 = 0 (5.5)(
10∑
i=1

x2i

)2

− 4

10∑
i=1

x4i = 0, (5.6)

which can also be seen as a quartic in P4 ([Igu64a], p. 397). The inverse image of the
coordinate hyperplanes in A2(2) is thus the locus of moduli of products of elliptic curves.
This description also holds for the semistable reduction modulo a prime P of OK of a point
P ∈ A2(2)(K), in the sense that the reduction of the image by ψ of the modulus of a point
given by A lands inside a coordinate hyperplane if and only if the semistable reduction
of A is multiplicative, or a product of elliptic curves. This is true only up to some MQ-
constant error, in particular the case of primes above 2 adds a lot of technical subtleties
(see [LF], paragraphs 8B to 8D) so we do not try to obtain the constant C explicitly here
as new computations would be needed (depending on the type of reduction of a curve in
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Théorème 1 of [Liu93]). By moduli arguments and the given equations for Imψ, one sees
that a point Q in Imψ has at most one zero coordinate if ψ−1(Q) ∈ A2(2), and at most 6 if
ψ−1(Q) ∈ ∂A2(2). This gave the strong Runge condition 6|S| < 10, hence in turn S had to
be reduced to the unique archimedean place.

The termination condition for Runge written above will allow us to do a bit better: indeed,
every Di is ample and thus it is enough to ensure that the remainder is nonempty. To do this,
it is possible to describe completely the intersection graph of the divisors Di by �rst looking
for the optimal sets of indices and then study the graph itself. Everytime we �compute with
equations� below, it means we proceed manually with the equations for Imψ given above
(and it will always be straightforward).

We recall ([Igu64b], p. 227 or [Str10]) that the canonical action of Sp4(Z) on A2(2)Sa is
transitive on their divisors Di because the action on the ten fourth powers of theta constants
is up to mulitplication factors. Even better, this action is actually 2-transitive, which allows
us to say that all 45 sets of indices I ⊂ {1, · · · , 10} with |I| = 2 are optimal (it is enough
to check it for one of them). Notice that as for all arguments below, it amounts to say that
assuming that if two of the xi are zero, the equations above do not imply that another one
is. Now, the 120 sets of indices with |I| = 3 are of two di�erent types: they can be syzygous
or azygous ([Igu64a], p. 403), each case happening 60 times, and the action of Sp4(Z) is
transitive on syzygous (resp. azygous) unordered triples so again it is enough to see what
happens for one of each type. The syzygous triples are optimal by computing the equations
(and de�ne a non irreducible curve), whereas for any azygous triple I, there is a unique j /∈ I
such that ZI ⊂ Dj and then Ĩ = I ∪ {j} completes I and is optimal, and ZĨ is irreducible.

Now, for each syzygous triple I, there is a unique j /∈ I completing it into a �Göpel quadruple�
(quadruple such that every triple in it is syzygous), and it de�nes an empty intersection (again
using the equations and transitivity). For any other j, the set of indices is not optimal and
one needs to add two more indices. In other words, the vertex associated to a syzygous triple
v′ is the starting point of two arrows corresponding to a unique partition in triples of the
remaining 6 indices, and for each child v, the set Zv is reduced to a point.

For each completion of an azygous triple, the 6 remaining indices split into three pairs who
each de�ne an extremal vertex, and a point again.

To sum up the situation for the intersection graph, there are:

- 10 vertices of depth 1, de�ning divisors, each with 9 children of depth 2.

- 45 vertices of depth 2, de�ning nonirreducible curves in the boundary of A2(2), each with
4 children of depth 3 and 2 children of depth 4.

- 60 vertices of depth 3, corresponding to the syzygous triples, de�ning curves with two
components in the boundary, and each having 2 children of depth 6.

- 15 vertices of depth 4 corresponding to azygous quadruples ([vdG82], p. 337), de�ning
irreducible curves in the boundary, and each having 3 children of depth 6.

- 15 vertices of depth 6, the extremal ones, corresponding to complements of Göpel quadru-
ples, each de�ning a unique point in the boundary.

Now, given the explicit list of the Göpel quadruples, it is easy to see that two of them always
have nonempty intersection. This means that the cones of ancestors of any two extremal
vertices cannot span the graph in depth 1. Therefore, if we �x |S| = 2, there is a remaining
divisor Di which is v-far away from our integral point P at every place by our hypotheses,
hence giving an absolute bound on the height.

2. a) Termination for Baker: Either the condition of termination for Runge holds, or one of
the cones of ancestors C(P, v) comes from a Zv which is �nite and its remainder Rv (with
respect to only this cone) satis�es the following condition (G)B :
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There is a nonconstant rational function φ on K(X) with support in Rv (which is thus
disjoint from Zv).

We then obtain a bound on the height of points of (X\D)(OL,S) depending on (L, S) and
outside a �xed e�ectively computable proper subvariety of X.

b) Automatic guarantee for Baker: With the same notations, s cones of ancestors (none
of them giving a �nite Zv) cannot span the graph in depth 1, the Di are all ample and
(B)rank the rank of the group of principal divisors with support in

⋃n
i=1Di is larger than

the depth of any vertex v with Zv �nite.

Remark 5.6. Again, the condition (mB − 1)s < n in ([Lev14], Theorem 1) together with
(G)B imply the automatic guarantee: indeed, for every edge v of depth at least mB, the
set Zv is �nite by de�nition, so if we restrict to the other cones of ancestors, each vertex is
below at most mB − 1 divisors and a pigeonhole principle applies again.

Another remark that might deserve to be pointed out is that (G)B is made to be able to
send any point of Zv to 1 via one of �nitely many rational functions φ, and thus go back
to the 1-dimension situation of Baker's method. It turns out, following the proof of Levin
(especially [Lev14], Lemma 10) that one can do the same process with non�nite Zv assuming
that for each of the irreducible components of Zv, there is nonconstant φ with support in
Rv sending it to a single point. This hypothesis is of course very strong (even more so than
(G)B itself), but it can sometimes be satis�ed. Indeed, if X is embedded in Pn in such a
way that the Di's become the coordinate hyperplanes and IX is the homogeneous ideal of
de�nition of X in Pn, this hypothesis is true for a given Iv if there are disjoint sets of indices
I, J (disjoint with Iv) such that there is a nonzero homogenous polynomial

PI − PJ ∈ (IX , xi (i ∈ Iv))

where PI (resp. PJ) is a monomial in the xi, i ∈ I (resp. i ∈ J). If we go back to the
case of A2(2) as in Proposition 5.5, using again the equations, we prove easily that for any
optimal set Iv with |Iv| ≥ 2, one can �nd such j, k /∈ Iv such that xj − xk or xj + xk
belong to (IX , xi (i ∈ Iv)): for example, taking Iv = {1, 2}, the �rst equation gives x6 − x9.
For the syzygous triple {1, 2, 3}, the di�erence x6−x8 works, and for the azygous quadruple
{1, 2, 6, 9}, the sum x4+x8 works. All this implies that one can in fact apply the termination
condition for Baker's method as soon as one cone of ancestors is of depth at least 2! This
allows us to modify this condition which in practice amounts to considering that mB = 2,
to obtain the following statement:

Proposition 5.7. For any pair (L, S), with M∞L ⊂ S and |S| < 10, there is an e�ectively
computable bound C(L, S) such that the following holds:

For a principally polarised abelian surface A de�ned over L with A[2] ⊂ A(L), if the
semistable reduction of A is the jacobian of a smooth curve at every prime except maybe
the ones in S, then hF (A) ≤ C(L, S) unless some two theta coordinates of a point of A2(2)
(seen in P9) representing A are equal or opposite.

The equality up to sign of those theta coordinates comes from the need to take out an
exceptional subset (where the auxiliary rational functions, which are exactly the functions
(xj/xi) ◦ ψ here, can be equal to 1) already appearing in [Lev14] for the same reasons.

We will now consider variants of those methods, the tubular ones devised by the author and
then the �reductions� devised by Levin in [Lev18], and compare them.

Let us add to the context (C) an integermY ≥ 1 and the corresponding closed subset Y as in
Theorem 1.1: notice that it amounts to drawing an horizontal line between depths mY and
mY +1. We denote by GY the part of the graph below this line, and consider triples (L, S, S′)
with M∞L ⊂ S′ ⊂ S �nite, s = |S|, s′ = |S′|, and points P ∈ (X\D)(OL,S) ∩ (X\Y )(OL,S′).
Of course, when Y = ∅, this intersection is the set (X\D)(OL,S) again.
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3. a) Termination for tubular Runge ([LF], Theorem 5.1): either one of the s − s′ cones
of ancestors C(P, v), v ∈ S\S′ originates in GY or the s cones do not span G in depth 1 and
the termination condition for Runge holds.

b) Automatic guarantee for tubular Runge: When we consider s cones of ancestors
with at most s′ of them of depth > mY , they do not span the graph in depth 1 and each
divisor is ample (resp. big, of positive dimension).

Remark 5.8. Following the now usual ideas, this guarantee holds whenm·s′+mY (s−s′) < n,
which is exactly equation (4) of [LF]. Notice also that in this context, as a byproduct of
Runge's strategy and the tools used here, the bound on the height is still uniform.

Notice that one cannot improve upon Proposition 5.5 in this tubular context, because when
s = s′ = 2, there can be only one divisor in the remainder (see the proof) and so no room
for increasing s.

4. a) Termination for tubular Baker: Either the termination condition for tubular Runge
with mY and GY holds, or one of the s′ cones of ancestors coming from S′ originates in a
�nite Zv and the remainder of this cone satis�es (G)B .

b) Automatic guarantee for tubular Baker: one cannot span the graph in depth 1 with
s cones of ancestors when s− s′ of them originate outside GY and the s′ other ones do not
originate at a �nite Zv, and the condition (B)rank holds.

Remark 5.9. Again, this guarantee is ensured whenever (mB − 1)s′ +mY (s− s′) < n under
the hypothesis (H)P of Theorem 1.1, where we recall that mB is the depth starting from
which every Zv is �nite. As a byproduct of the proof made here, each case of the termina-
tion condition is uniform in the choice of (L, S, S′) except the one where one cone from S′

originates from a �nite Zv.

In the case Y = ∅, which amounts to mY = m as in Runge's method, Baker's method
applies when s, s′ are such that s − s′ cones of ancestors (of any possible depth) together
with s′ ones not originating from �nite Zv's cannot span the graph in depth 1. If we de�ne
for s − s′, ns−s′ the minimal cardinality of the remainder of s − s′ cones of ancestors, this
automatically holds then when (mB − 1)s′ < ns−s′ .

For results from [Lev18] (especially Theorem 5.15), we are yet in another context (we mod-
i�ed slightly the notations there for consistency here): S0 is a �xed set of places of K, SL,0
the set of places above S0 in L of cardinality s′ and we consider (L, S) and s such that
s = |S| this time.

5. a) Levin's reduction The s − s′ cones of ancestors coming from S\SL,0 do not span the
graph in depth 1, and the remainder R is such that a further method could be applied to
its intersection graph, i. e. to a set of SL,0-integral points on (X\DR).

b) a) Automatic guarantee for Levin's reduction Any union of s−s′ cones of ancestors
leave a remainder large enough to apply another method to its graph.

Remark 5.10. The big gain in this reduction is uniformity in the choice of S\SL,0. Of course,
when S0 is empty, one retrieves exactly Runge's method in higher dimension.

Notice the link with the case Y = ∅ of tubular Baker above: on the graph-theoretic side, the
condition of reduction of Levin (and then the ability to apply Baker's condition) are very
close, in particular (mB − 1)s′ +m(s− s′) implies both. The statements are not completely
equivalent though: when Levin's reduction applies, it provides, as stated, uniformity in the
choice of S\SL,0, which in practical estimates will give a bound only depending on the
primes of S0, hLRL and [L : Q]. By comparison, one can see in (1.2) that our tubular Baker
estimates do depend on the primes of S and of the regulator of S in particular.

On the other hand, there are cases where Levin's reduction cannot be applied for e�ective
results, starting with the S-unit equation: one cannot eliminate even one point and still
satisfy the hypothesis (G)B .
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It thus seems that the best way to proceed (in the case Y = ∅, i.e. when one does not
want to add another hypothesis of integrality) is to �gure out the maximal number of cones
of ancestors one can choose so that their remainder contains the support of a nonconstant
rational function (which is, as we repeat, a uniform process of reduction) and then apply
our tubular Baker method.

Notice that in the case of curves, Theorems 7.19 and 7.20 in [Lev18] use Levin's reduction
to respectively Siegel's theorem for g ≥ 1 (thus ine�ective) and Thue-Mahler equations for
P1. As for Theorem 7.22, the number s is exactly the number s − s′ mentioned above for
which one can take this many cones of ancestors and still ensure there is a rational function
with support in DR.

Finally, Levin's reduction and our tubular Baker approach can naturally be combined, mak-
ing full use of the notion of tubular neighbourhoods in [LF]. In other words, start with
P ∈ (X\D)(OL,S) which is v-far away from Y at every v /∈ S′. We then reproduce Levin's
reduction for the places v ∈ S\S′, which generate cone of ancestors of depth at most mY by
hypothesis on P , and we are allowed to consider |S\S′| of them as long as for the remainder
of their union, the associated graph satis�es (G)B with s′ cones of ancestors. The end result
will then be, as Levin's reduction, only depending on s, S′ and L.

An example of application, not undertaken here, would be our pet example A2(2)Sa with
Y being the boundary. We would obtain more uniformity than in Proposition 5.7 but at
the cost of an hypothesis of potentially good reduction of the abelian surface at every prime
except a bounded number of them.

5.3 Formalising the closeness condition

To prove rigorously all previous statements, one needs, as explained in the previous subsection,
a rigorous de�nition of v-closeness that satis�es P. Let us start with the divisors (i.e. depth 1
vertices). A �rst look gives us two rather di�erent possibilities:

1. For Runge's method, one wants to end up with one of the divisorsDi such that hDi,v(P ) ≥ cv
for all v ∈MK , for an explicit MK-constant (cv)v.

It is thus natural to de�ne the v-closeness of P to Zv as hZv,v(P ) ≥ cv,v for an MK-constant
deduced from the one above, such that the v-closeness is stable by intersection. Such MK-
constants exists by Proposition 2.2 (a), and all arguments hold in this case.

2. For Baker's method, given that we want a bound of the type h � log∗ h for some global
height at the end (see section 3), we want to de�ne v-closeness rather as something of the
shape

hDi,v(P ) > λi · hDi
(P ).

(in fact any function of the height against which the logarithm would be dominated would
su�ce, but we always choose it linear here).

Again, we can make this v-closeness property inheritable thanks to Proposition 2.2 (a), and
v-closeness is then given by

hZv,v(P ) > λv · min
i∈C(v)

hDi
(P ),

where i goes through all ancestors of v of depth 1 and λv > 0 is a well-chosen value in terms
of the λi. Notice also that to apply Baker's method (and not fall back to the Runge case),
one needs to ensure that every v does create a cone of ancestors, hopefully deep enough.
The best way to guarantee that is �xing λi < 1/|S| because the sum of hDi,v(P ) for v ∈ S
is almost hDi

(P ) for our integral points.
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To combine the principles behind the proofs above, one needs a consistent de�nition of closeness
that �ts both de�nitions. The most natural way to do this is

hDi,v(P ) > λi · hDi
(P ) + cv

and deduced estimates for the hZv,v(P ). In passing, one can remark that the classical Runge
condition of closeness is in fact too strong: a linear condition as above would also be amenable to
the (classical) Runge method as long as |S|λi = 1− ε, ε > 0, and the obtained bounds would then
depend on 1/ε.
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