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A B S T R A C T 

We build a model to predict from first principles the properties of major mergers. We predict these from the coalescence of peaks 
and saddle points in the vicinity of a given larger peak, as one increases the smoothing scale in the initial linear density field as a 
proxy for cosmic time. To refine our results, we also ensure, using a suite of ∼400 power-law Gaussian random fields smoothed 

at ∼30 different scales, that the rele v ant peaks and saddles are topologically connected: they should belong to a persistent pair 
before coalescence. Our model allows us to (a) compute the probability distribution function of the satellite-merger separation 

in Lagrangian space: they peak at three times the smoothing scale; (b) predict the distribution of the number of mergers as a 
function of peak rarity: haloes typically undergo two major mergers ( > 1:10) per decade of mass growth; (c) reco v er that the 
typical spin brought by mergers: it is of the order of a few tens of per cent. 

Key words: large-scale structure of Universe – cosmology: theory. 
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 I N T RO D U C T I O N  

n large scales, the galaxy distribution adopts a netw ork-lik e 
tructure, composed of walls, filaments, and superclusters (Geller & 

uchra 1989 ; Sohn et al. 2023 ). This network is inherently tied to the
osmic microwave background, the relic of the density distribution in 
he primordial Universe. The non-uniformity of this initially quasi- 
aussian field evolved under the influence of gravity into the so-

alled cosmic web (Bond, Kofman & Pogosyan 1996 ) we now 

bserve. One can therefore hope to predict the evolution of the cosmic 
eb by studying the topological properties of the initial density field. 
rom its evolution, one should be able to predict the rate of mergers
f dark haloes and their geometry hence their contribution to halo 
pin. 

The classical method to study mergers is to run cosmological 
imulations (e.g. Bertschinger 1998 ; Vogelsberger et al. 2020 ), 
ompute where haloes are located at each time increment and 
onstruct that way their merger tree (e.g. Lacey & Cole 1993 ; Moster,
aab & White 2013 ). 
The theory of merger trees for dark haloes has a long-standing 

istory starting from the original Press–Schechter theory (Press & 

chechter 1974 ), excursion set (Bardeen et al. 1986 ; Peacock &
eavens 1990 ; Bond et al. 1991 ), and peak patch theory (Bond &
yers 1996 ) or related formalisms (Manrique & Salvador-Sole 1995 ,

996 ; Hanami 2001 ; Monaco, Theuns & Taffoni 2002 ; Salvador-
ol ́e, Manrique & Botella 2022 ). One notable recent variation is

he suggestion to use peaks of ‘energy’ field as such progenitors 
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Musso & Sheth 2021 ). One of the pre v ailing theoretical ideas is to
onsider peaks of the initial density field in initial Lagrangian space,
moothed at scales related to halo masses, to be halo progenitors
Bardeen et al. 1986 ). The statistical properties of mergers can then be
redicted analytically through extensions of the excursion set theories 
Lacey & Cole 1993 ; Neistein & Dekel 2008 ), or, alternatively,
t can be measured in peak-patch simulations (Stein, Alvarez & 

ond 2019 ). In the first approach, all the information is local,
reventing us from computing the geometry of mergers. In the second 
pproach, the geometry of mergers is accessible as a Monte Carlo 
verage. 

In this paper, we provide an alternati ve frame work that specifically
akes into account the geometry of mergers while remaining as 
nalytical as possible. The goal is not for accuracy, but rather
o provide a simple framework to access information such as the
tatistics of the number of mergers or the spin brought by mergers. 

The paper is organised as follows: in Section 2 , we present our
odel together with analytical estimates of the number of direct 
ergers with a given halo In Section 3 , we extend our model to

ake into account the topology of the density field using persistence
airing via DisPerse. This allows us to draw mock merger trees and to
redict the probability density function (PDF) of the spin parameter 
hat each merger contributes as a function of rarity. Section 4 wraps
p. 
Section A introduces the rele v ant spectral parameters. Section B

e visits e vent statistics while relying on the clustering properties of
eaks and events computed from first principles. Section D recalls 
he critical event PDF and provides a fit to it. Section E discusses the
volution of peak rarity with Gaussian smoothing. 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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Figure 1. Typical density field around a critical event in 1D. From left 
to right: (1) We see two distinct objects (two peaks in red), separated by 
a minimum (in blue) in the density field. (2) The critical event occurs 
(inflection point in green), but the density profile still shows two different 
objects (highlighted with dashed lines). (3) The merger has completed and 
there remains only one object (peak in red). 

Figure 2. Representation of the smoothing of a 1D Gaussian random field 
representing density fluctuations in the primordial universe. Red lines are 
maxima of the field, blue lines are the minima. Green points are critical 
events, where a minimum/maximum pair meets and annihilates itself. By 
counting how many critical events there are in the vicinity of a peak line, one 
can count the number of subhaloes merging into the corresponding halo. 
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 A NA LY T I C A L  M O D E L  O F  M E R G E R S  PER  

A L O  

.1 Model of halo mergers: cone of influence of a halo 

he starting point of our approach is the peak picture (Bardeen
t al. 1986 ). In this framework, peaks in the linear density field are
he seeds for the formation of haloes. We rely on the proposition
hat the o v erdensity δ( R ) of a given peak smoothed at scale R can
e mapped to a formation redshift z, using the spherical collapse
odel, δ( R TH ) D ( z) = δc , where δc = 1.686 is the critical density,
 ( z) is the growing mode of perturbations, and R TH is the top-hat

cale. The mass of the halo formed at this time is inferred from the
op-hat window scale, M = ρ̄m 

4 
3 πR 

3 
TH . 

While the peak-patch theory provides useful insight into the origin
f haloes of a given mass at a given time, it becomes singular
uring mergers. Indeed, by construction, the merging halo disappears
nto the larger one together with its corresponding peak. Here, we
nstead rely on the analysis of the geometry of the initial linear
ensity field in ( N + 1)D, where N is the dimension of the initial
agrangian space and the extra dimension is the smoothing scale. At
ach smoothing scale, we can formally define critical points (peaks,
addles, and minima) following Bardeen et al. ( 1986 ). As smoothing
ncreases, some of these critical points eventually disappear when
heir corresponding halo (for peaks) merge together. This approach
llows to capture mergers in space–time from an analysis of the
nitial conditions in position-smoothing scale employing the critical
vent theory (Hanami 2001 ; Cadiou et al. 2020 ), where critical
vents of coalescence between peaks and saddle points serve as
roxies for merger events. The process is sketched in Fig. 1 and
llustrated in (1 + 1)D in Fig. 2 . In the following, we will rely
n the use of Gaussian filters, which allow us to advance further
he analytical description. First, this choice allows us to obtain
nalytical results with the critical event theory. Second, it yields
eaks whose density decreases monotonically with smoothing scale
and hence the collapse time of the associated haloes grows under

he spherical collapse model. While exploring the effect of different
lters is beyond the scope of this paper, we note that using any
lter that is positive with sufficiently smoothly tapered boundaries
oes not pose any fundamental challenge to the numerical analysis
e perform later on. Tophat filter by itself is not of this class,
aving sharp boundaries leading to ill-defined second- and third-
eri v ati ves of the smoothed field with cold dark matter-like power 
pectrum. 

Let us track the Lagrangian history with decreasing smoothing of
ne peak first identified at a smoothing scale R 0 and position x pk ( R 0 ).
ince we employ Gaussian filters, we need to match the Gaussian
nd Top-Hat smoothing scales, R and R TH to assign mass to haloes.
he criteria of equal mass encompassed by the filter 1 gives R TH ≈
.56 R in 3D. At R 0 the peak describes a halo that has collected its
ass from a spherical cross-section of ( N + 1)D space of volume
 R 

N 
0 ; we can call this sphere a Lagrangian patch of the halo. At

maller R , the Lagrangian position of a peak changed to x pk ( R ) and
he volume of its Lagrangian patch decreased to ∝ R 

N . The history of
he peak in the ( N + 1)D space, including mass accumulation, now
onsists of its trajectory x pk ( R ) and a cone of cross-section volume
R 

N around it as shown in Fig. 3 for (2 + 1)D example. 
NRAS 531, 1385–1397 (2024) 

 Different criteria modify the relation between Gaussian and Top-Hat filters, 
or instance matching the variance of the perturbations leads to R TH ≈ 2.1 R . 
ere, we instead rely on matching masses within the filtering window W , 
hich implies 

∫ 
W TH ( r, R TH ) d N r = 

∫ 
W G ( r, R G ) d N r . 

s  

c  

p  

2  

c  

t  
A critical event marks the end of a trajectory of a peak that
isappeared when its scale reached R ce and is absorbed into a
urviving peak. Counting all critical events within a ( N + 1)D straight
ylinder with a spatial cross-section of radius R 0 around the final
urviving peak position x pk ( R 0 ) will give the number of all mergers
hat ever happened within this peak Lagrangian patch. For instance, if
wo small haloes have merged together before merging with a larger
alo, that would count as two e vents. Ho we ver, we are interested in
ounting only the last direct merger event that brought the combined
ass of the two small haloes into the main one. Physical intuition

ells us that to count only those, we need to count critical events
ithin the history cone of the peak mass accumulation. Indeed, the
agrangian patch of the peak grows in size by absorbing the layers
long its boundary, and if that layer contains a critical event, it is a
irect merger. 
In (1 + 1)D, as illustrated in Fig. 4 , direct mergers correspond to

ritical events (green points) that are not separated by any intervening
inimum (blue line) from the surviving peak. In ( N + 1)D, this is

eneralized by only counting a critical event as a direct merger if,
t fixed smoothing R = R ce , it is connected to the main peak in N D
pace by a filamentary ridge with no other saddles in-between. Fig. 4
onfirms that, indeed, one can find a ‘cone of influence’ around a
eak line which spatial cross-section radius is αR , where α is between
 and 4, that contains most and, vice versa, almost e xclusiv ely the
ritical events that are directly connected to this peak. The very fact
hat such a cone can be defined, at a statistical precision, even in
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Figure 3. Visualization of the action of Gaussian smoothing on the critical 
events of a 2D field. The vertical axis is the smoothing scale, increasing 
upwards. The horizontal cross-section is a 2D space. The various vertical 
lines represent the tracks of extrema positions (maxima in pink, minima in 
blue, saddles in green) as one changes the field smoothing. The red and 
blue squares represent the corresponding critical events (in red are points of 
peak-saddle and in blue that of minima-saddle coalescence). The grey cones 
show the volume within some fraction of the smoothing scale (here chosen 
arbitrarily to be 1.2 times the smoothing scale) around each maxima track, 
which contain all the past physical history of a given peak. This paper aims to 
characterize these cones and the properties of the critical events within them 

so as to compute major merger rates as a function of final halo mass. 
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rinciple, is non-trivial. The reason for that is, as Fig. 4 demonstrates
gain, the presence of the exclusion zone around the main peak 
evoid of any other critical events. This causes direct merger events 
o be most likely located in the first layer of critical events from
he main peak. This exclusion effect is expected from peak–peak 
orrelation studies (e.g. Baldauf et al. 2021 ) and can be used as a
uantitative way to determine the boundary of the ‘cone of influence’ 
hat we develop in Sections 2.3.2 and B . 
igure 4. Our model associates peaks (in red) to haloes, and critical events (in 
 volution. Critical e vents correspond to the coalescence of a peak with a minimu
eak ( i.e. not separated by another minimum) as a merger. Here, this definition w
lternatively, we can estimate this number by counting the number of critical eve
.3 is chosen so that the cone includes only directly connected events capturing fiv e
ies at large smoothing R where the sample variance is large. The second arrow giv
nstead merging with the peak on its left. The cone boundary separates this event fr
Counting critical events within the ‘influence cone’ of the peak 
hat contribute to the mass and spin growth of this surviving halo is
he main analytical tool of this paper. 

The evolution of a halo in smoothing direction tells us directly
ts history in terms of mass accumulation, as M ∝ R 

N . That is, we
an describe what happened with the halo as its mass increased, say,
0-fold. In the next section, we apply this picture to count merger
vents. We shall limit ourselves to the (3 + 1)D case as it bears the
ost rele v ance to dark matter halo formation. We ho we ver note that

here is no additional theoretical difficulty in deriving the general ( N
 1)D case. 

.2 Number of major merger events within a mass range 

ere and in the following, we are interested in counting the number
f objects that directly merged into an object of final mass M 0 as
ts mass grew from f 3 M 0 to M 0 , where f < 1. Since smoothing scale
aps directly on to mass, this amounts to counting the number of

ritical events between two scales R 0 ∝ 

3 
√ 

M 0 and R 1 ∝ f 3 
√ 

M 0 . 
Let us now count direct major mergers that we define as mergers

ith satellites that bring at least f 3 M 0 mass in the merger event. First,
ote that we define here the mass ratio with respect to the final mass
f the peak at a fixed time, rather than at the time of the merger. The
umber of such mergers, as halo grew from f 3 M 0 to M 0 , is given by
he number of critical events in the section of the cone of influence
f the halo contained between fR 0 and R 0 . It can be obtained with the
ollowing integral 

 merger = 

∫ R 0 

f R 0 

d R 

∫ αR 

0 
d 3 rn ce ( R, r ) , (1) 

here n ce ( R, r ) is the number density of critical events at the point
 R, r ) in the extended (3 + 1)D space of positions–smoothing scale
nd the adjustable parameter α, introduced in the previous section, 
ets the radial extent of the R = const cross-section of the influence
one. Note that in the abo v e formula, we are able to a v oid the
ependence on the past trajectory x pk ( R ) of the halo, by treating
ach slab of constant R independently, and by e v aluating the radial
istance r to the critical event found of at R from the main peak
osition, x pk ( R ), defined at the same smoothing. 
As a first estimate, let us approximate N merger by taking the density

f the critical events inside the cone of influence to be equal to its
MNRAS 531, 1385–1397 (2024) 

green) to mergers as a function of smoothing scale R which encodes mass 
m (in blue). We count an y critical ev ent directly connected to the central 

ould give six mergers (shown with grey dashed lines) into the central peak. 
nts within the shaded grey ‘influence cone’ of spatial width αR . Here, α = 

 ev ents. Note that the left-most event indicated by an arrow is missed, but it 
es an example of an event that is not directly connected to the central peak, 
om the directly connected one above it. 

n 26 Septem
ber 2024
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Figure 5. Panel (a) shows the tracks of two peaks (solid line, red) and a saddle 
point (dashed line, blue) of the density field as a function of smoothing scale 
R in 1 + 1D space. Panel (b) shows the field profile at three smoothing scales. 
At smoothing scale R 0 , the peaks and saddle points are distinct. At smoothing 
R ce , one peak and a saddle point create a critical event C, after each only one 
peak survives to larger smoothing scales. The merging of peaks is completed 
at the scale R pk when the o v erdensity of the surviving peak, now at point A, 
is equal to the o v erdensity of the critical event δC and thus can be viewed as 
reaching the threshold δc for halo formation at the same time. We can then 
interpret the critical event as a merger with mass ratio M A / M C = ( R ce / R pk ) 3 

at a redshift corresponding to D ( z) = δc / δA . 
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ean value. Thus, we first neglect any spatial correlation between
he existence of a peak (corresponding to the surviving object in a

erger) and the critical event (corresponding to the absorbed object
n a merger). In Cadiou et al. ( 2020 ), we determined that the average
ensity of critical events in (3 + 1)D that correspond to peak mergers
s given by 

¯ ce = 

R 

R 

5 ∗

1 − ˜ γ 2 

˜ γ 2 

29 
√ 

15 − 18 
√ 

10 

600 π2 
, (2) 

here the spectral scale R ∗ and parameter ˜ γ are given in Section A ,
ogether with other parameters that characterize the statistics of a
ensity field. Note that R ∗ ∝ R , so the number density of critical
vents scales as n ce ∝ R 

−4 . The cubic part of this dependence,
 

−3 , reflects the decrease of spatial density of critical points with
ncreasing smoothing scale; the additional scaling, R 

−1 , reflects that
he frequency of critical events is uniform in log R . 

Assuming a power-law density spectrum with index n s and
aussian filter, equation ( 2 ) gives 

¯ ce ≈ 0 . 0094 

(
5 + n s 

2 

)3 / 2 

R 

−4 . (3) 

sing this mean value n̄ ce for critical density in equation ( 1 ) gives us
 first rough, but telling estimate of the merger number that a typical
alo experiences 

 merger ≈ 0 . 039( − ln f ) 

(
5 + n s 

2 

)3 / 2 

α3 . (4) 

he final results depend on the specific values of f and α. The value
f the fraction f controls down to which mass ratio mergers should be
ncluded and has thus a straightforward physical interpretation. The
arameter α controls the opening of the cone of influence around
he peak from which critical events should be considered as direct

ergers and is to be determined. 
Using equation ( 4 ) with n s = −2, which corresponds to the

ypical slope of a � cold dark matter ( � CDM) power-spectrum
t scales ranging from Milky-Way-like systems to clusters, we can
ount the number of direct mergers with mass ratio larger than 1:10
 f = 1 / 3 

√ 

10 ). For the choice of α, a natural idea would be to count
nly critical events within the halo Top-Hat Lagrangian radius, then
= R TH / R ≈ 1.56 and we find N merger ≈ 0.2. Ho we ver, this is clearly

n underestimation for α, as it corresponds to the situation where
he centre of the merging halo has already been incorporated into
he main one when the latter was of equal mass. A more sensible
hoice, as will bear out in the analysis presented in the next section is
o extend the opening of the cone to twice that ratio α = 2 R TH / R ≈
.1 which corresponds to the two mass spheres of the surviving and
erging peaks touching at the scale of the critical event, signifying

he merger onset. We then find N merger ≈ 1.7. Overall, we see that
he number of direct major mergers that a halo experiences while
ncreasing its mass tenfold is small, of the order of one or two. For
cale invariant history, each decade of mass accumulation contributes
 similar number of mergers, so a cluster that grew from a galactic-
cale protocluster thousand-fold in mass ( f = 1 / 3 

√ 

1000 ), did it
aving experienced N merger ≈ 5 major mergers. These conclusions
ollow directly from first principles while studying the structure of
he initial density field. 

.3 Accounting for rarity and clustering 

et us now refine our model so as to define α more rigorously by (i)
equiring the merging object to have gravitationally collapsed before
NRAS 531, 1385–1397 (2024) 
t merges and by (ii) taking into account the correlations between the
entral halo peak and the merger critical events. 

Let us therefore consider the number density of critical events of
iven height ν as a function of their distance r to a central peak, both
efined at the same smoothing scale R 

 ce | pk ( ν, R, r) = n̄ ce ( R) C( ν, γ ) 
(
1 + ξce , pk ( ν, R, r) 

)
, (5) 

here C is the distribution function, 
∫ ∞ 

−∞ 

C( ν, γ ) d ν = 1, of critical
v ents in o v erdensity and is giv en by the analytical formula in Sec-
ion D along with a useful Gaussian approximation. The clustering of
ritical events in the peak neighbourhood is described by the peak–
ritical event correlation function on a slice of fixed R , ξ ce, pk ( ν, R ,
 ). The composite index pk refers to any peak parameters that may
e specified as a condition. Our goal is to determine what range of ν
nd what extent of r one needs to consider to count haloes merging
nto a surviving halo with a particular νpk . 

.3.1 Heights of critical events 

o establish the range of critical event heights that describe mergers
f real haloes, we rely on the spherical collapse approximation to map
he peak o v erdensity to its gravitational collapse time. We consider
 physical halo at redshift z to be described by a peak at the Top-
at scale R pk such that δpk ( R pk ) = δc / D ( z), where δc is the critical
 v erdensity for collapse model and D ( z) is the linear growing mode
alue at redshift z. Thus, a critical event found at smoothing R ce 

escribes the merger of a satellite halo of scale R ce into the main
eak at scale R pk that corresponds to the same redshift, i.e. such
hat δce ( R ce ) = δpk ( R pk ) = δc / D ( z). The situation is demonstrated in
ig. 5 . The ratio of scales and, correspondingly, masses of the two
erging haloes is therefore determined by the condition of equal
 v erdensities at the time of the merger. 
Let us now consider a peak that has reached a scale R 0 and that

xperienced a merger in its past when its scale was R pk , R pk ≤ R 0 .
equiring that, at the time of the merger, the surviving peak’s scale

mass) is larger than that of the satellite sets the relation R 0 ≥ R pk ≥
 ce or , con versely, σ 0 ( R 0 ) ≤ σ 0 ( R pk ) ≤ σ 0 ( R ce ), where σ 0 is the root
ean square (RMS) of the density field and is defined in Section A .
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integrated from 0.681 νpk to νpk , with power spectrum n = −2 and smoothing 
ratio R pk / R ce = 0.95. We detail the method used to compute this graph in 
Section C1 . Rarer peaks have a stronger excess of events in their vicinity, 
which mirrors the known Kaiser bias (Kaiser 1984 ). 
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rom which it follows that the rarity of the rele v ant critical e vents at
cale R ce , 

= 

δce ( R ce ) 

σ0 ( R ce ) 
= 

δpk ( R pk ) 

σ0 ( R ce ) 
= νpk 

σ0 ( R pk ) 

σ0 ( R ce ) 
(6) 

s within the range 

pk 
σ0 ( R 0 ) 

σ0 ( R ce ) 
≤ ν ≤ νpk . (7) 

he lower bound corresponds to mergers that have been completed 
t the very last moment, R pk = R 0 . The upper bound is achieved for
ergers of two equal mass objects, R pk = R ce . 
To obtain the total number of merger events in a halo history we

ow integrate the conditional event density in equation ( 5 ) over the
hysically rele v ant range of heights from equation ( 7 ), i.e. 

 merger ( νpk ) = 

∫ R 0 

f R 0 

d R 

∫ ∞ 

0 
4 πr 2 d r 

×
∫ νpk 

νpk 
σ0 ( R 0 ) 
σ0 ( R) 

d νn ce | pk ( ν, R, r) . (8) 

.3.2 Clustering of critical events around peaks 

ltimately, the conditional event density n ce | pk should include only 
ritical events that will directly merge with the peak; this would 
ake the density of critical events go to zero n ce | pk ( ν, R , r ) → 0 far

rom the peak, i.e. when r → ∞ . While we cannot implement this
ondition analytically (as it is non-local), we can measure n ce | pk ( ν,
 , r ) numerically, as will be done in the upcoming Section 3 . We can
o we ver approximate the conditional density ab initio by relaxing 
he conditions that the peak is linked to the critical event to obtain
 

 ce | pk given by 

 

 ce | pk ( ν, R, r) ≡ 〈 Peak ( x ) Event ( y ) 〉 
〈 Peak ( x ) 〉 , (9) 

sing formally straightforward analytical calculations of critical 
vent–peak correlations, as described in Section B . Here, brackets 
enote an ensemble average, where x and y are the random vectors 
ontaining the density and its successi ve deri v ati ves at the location of
he peak and the critical e vent, respecti vely and ‘ Peak ’ and ‘ Event ’
nforce the peak and critical e vent conditions, respecti vely. We 
an expect ˜ n ce | pk to track the exact n ce | pk up to several smoothing 
ength distances from the peak, but further away from the peak 
t just describes the mean unconstrained density of critical events: 
 

 ce | pk ( ν, R, r) → n̄ ce ( R) C ( ν) as r → ∞ . Therefore, in this approx-
mation, the question of where to truncate the inte gration o v er the
eak neighbourhood remains and we have 

 merger ( νpk ) ≈ ∫ R 0 

f R 0 

d R 

∫ αR 

0 
4 πr 2 d r 

∫ νpk 

νpk 
σ0 ( R 0 ) 
σ0 ( R) 

d ν˜ n ce | pk ( ν, R, r) . 

(10) 

For scale-free spectra, introducing the dimensionless ratios u = 

 / R and w = R / R 0 and changing the order of integration, equation ( 8 )
an be written as 

 merger ( νpk ) = 

∫ 1 

f 

d w 

w 

∫ ∞ 

0 
d u 

d 2 N ce | pk 

d u d ln w 

, 

d 2 N ce | pk 

d u d ln w 

≡ 4 πu 

2 
∫ νpk 

νpk w 
( n + 3) / 2 

d νw 

4 n ce | pk ( ν, w, u ) , (11) 
here we note that the differential event count per logarithm of
moothing scales has only a dependence on the smoothing scale w 

ia the bounds of the height integration, since for power-law spectra
 

4 n ce | pk ( w) is w-independent. 
In Fig. 6 , we plot the differential version of equation ( 11 ) per radial

patial shell, integrated over ν in the range 0.681 νpk ≤ ν ≤ νpk which 
orresponds to ( R / R 0 ) 3 = 1/10 for n = −2 power-law spectrum.
ig. 6 shows that critical events are indeed preferentially clustered 
t distances ∼3 R from a peak. It is natural to interpret this distance
s the boundary of the cone influence of the peak, with more distant
ritical events constituting ‘the field’ of events that are not directly
erging into the peak. Thus, the computation of the correlation 

unction supports choosing α ≈ 3 in the estimate of equation ( 4 ), i.e.
ualitatively double the value of R TH . Note also that the probability
f a critical event to be found close to a peak is suppressed, which
orresponds to an exclusion from the interior of the peak’s cone of
nfluence, as was qualitatively observed in Fig. 4 . 

 N U M E R I C A L  I N T E G R AT I O N  O F  M E R G E R S  

e will now rely on a numerical approach to study the properties of
he mergers a given halo undergoes through the properties of critical
vents that are absorbed by the peak representing the halo. The
ain numerical step is the identification of critical event–peak pairs 

hat mark specific mergers. This in turn involves the identification 
n the initial field at a sequence of smoothing scales of connected
eak–saddle–peak triplets that describe filamentary links between 
he merging peaks. At a particular smoothing scale, the saddle and
ne of the peaks of a given triplet merge into a critical event, while
he remaining peak is a surviving halo. Such triplets are identified
ith DisPerse (Sousbie, Colombi & Pichon 2009 ) that performs 
orse complex analysis of the random density field. We perform the

nalysis on an ensemble of scale-free Gaussian realizations of initial 
ensity fields. 

.1 Number of mergers per peak line 

e identify proto-events as close-to-zero persistence-pairs of peaks 
nd filament-saddles, and we study here their clustering relative 
MNRAS 531, 1385–1397 (2024) 
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Figure 7. The radial number density of topologically linked critical event 
per peak as a function of distance to the peak on a slice of constant R 

and per logarithmic bin in smoothing scale (see the text for details of how 

critical events are identified and paired to a peak). We represent the mean 
separation with vertical lines. Critical events are preferentially clustered at r 
∼ 2.5 − 3.5 R , depending on rarity. When compared to Fig. 6 , the rarer peaks 
hav e relativ ely fe wer connected e vents, suggesting that their satellites would 
have merged together before merging into the central object. 
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Table 1. Number of critical events per peak, both being measured at the 
same scale, per logarithmic bin of smoothing scale, as a function of the rarity 
of the peak. 
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o a given peak. We proceed as follows: we generate 430 scale-
nvariant gaussian random fields of size 256 3 with a power-law
ower spectrum with spectral index n = −2. We smooth each
eld with a Gaussian filter o v er multiples of a given smoothing
cale. Here we choose R = 1.1 k pixel with k running from 15 to
9. Each smoothing step corresponds to 33 per cent increase in the
ass associated with the smoothing scale, and eight steps give the
ass increasing approximately 10-fold. The skeleton is identified at

ach scale using DisPerse (Sousbie et al. 2009 ) with a persistence
hreshold of 1 per cent of the RMS of the smoothed fields. We
lso measure at each critical point the value of the gravitational
cceleration. Since we rely on Gaussian filters, the o v erwhelming
ajority of critical events encode the destruction of a peak with a

addle with increasing smoothing, rather than the creation of such a
air (the latter is 30 × less likely, see Cadiou et al. 2020 , fig. F1). In the
ollowing, we ignore the latter rare case as it has no straightforward
hysical interpretation and is subdominant. We thus detect events by
ollowing each pair of peak and saddle from one smoothing scale to
he next one. Each pair either survives at the next smoothing scale or
isappears at a critical event. In the latter case, we define the position
f the critical event as the middle point of the pair at the largest
moothing scale where it survi ved. Gi ven that DisPerse (Sousbie
011 ) stores for each saddle the two maxima it is paired with, we
an therefore associate the critical event to the one peak that is not
nvolved in the event. 

Using this data, we can now study the clustering of critical events
round peaks. In Fig. 7 , we show the ratio of the number of critical
vents per logarithmic smoothing scale bin per unit distance to the
umber of peaks at the same scale and at the same rarity. 2 Critical
vents are counted in the interval of rarity 0.681 νpk ≤ νce ≤ νpk . This
ange corresponds to the smallest scale cross-section of the influence
one if we count major mergers of a peak that grows ten times in the
rocess, i.e. R ce = 1 / 3 

√ 

10 R 0 in equation ( 8 ). Note that our quantity
iffers from two-point correlation functions in which one would
ompute the distance between any critical event and any peak, as was
NRAS 531, 1385–1397 (2024) 

 Note that some peaks will not be associated to any critical event in the fixed 
nterval of smoothing scales. 

h  

1  

c
p

one in the previous section (Fig. 6 ). Here, each critical event only
ontributes to the density at a single distance to its associated peak,
nd we thus expect the signal to drop to zero at infinite separation
ince the probability for a critical event to be associated with a peak
 ar aw ay vanishes. 

Should the critical events be randomly distributed, their number
er linear d r would grow as r 2 . Instead, in Fig. 7 we find an exclusion
one at small separations, an excess probability at r / R ∼ 2–3, and a
utoff at large separations as a consequence of our requirement for
he critical event to be paired to a peak. 

We integrate the curves in Fig. 7 and report the mean number of
ritical events per peak per logarithmic smoothing bin in Table 1 .
ll the effects accounted for in our numerical analysis give just
40 per cent lo wer v alues in Table 1 relative to equation ( 4 ) (per

n f ) with α = 3.1. This shows that the two main corrections to the
aive uniform density estimate – the restriction to only collapsed
atellite haloes (Section 2.3.1 ) on the one hand, and an attraction
f critical events of similar heights towards the peak influence zone
Section 2.3.2 ) on the other hand – compensate each other to a large
xtent. 

As a function of peak rarity νpk , the mean number of critical
vents per peak in a constant R slab first increases up to νpk ≈ 3
efore decreasing. It is fairly flat in the range νpk = 2.5–3.5, where
ost of the physical haloes are, which argues for taking α parameter

ndependent on νpk if one uses the rough estimate as the global
ean density of events times effective volume as in equation ( 4 ),
ection 2.2 . 
So far, we have only studied properties of peaks and critical events

t the same scale, using the defining equation ( 7 ) to implicitly perform
 multiscale analysis. We can ho we ver track peaks from one slab of
moothing scale to another to build peak lines and associate them to
ritical events. This generalizes the procedure sketched on Fig. 4 in
 + 1D. For each peak with mass M pk , we follow its peak line
o find all associated critical events with a mass M pk ≥ M ce ≥
 pk /10 that have δce ( R ce ) ≥ δpk ( R pk ) where R ce and R pk are now

ifferent. We only retain peaks that exist at scales R pk ≥ R min 
3 
√ 

10
o ensure that we do not miss critical e vents belo w our smallest 
cale. 

Given our numerical sample, we are now in a position to study the
istribution of the number of mergers per peak, which we show on
ig. 8 . This measurement differs from the value one would obtain
y taking Table 1 multiplied by the logarithm of the range of scales.
ndeed, we account here for the decrease in the number of rele v ant
atellites as their mass approaches the final peak mass. We also
btain our measurement by computing the number of mergers per
urviving peak at the scale M pk . Compared to that, in Table 1 , we
i ve the v alue per any peak at 1/10 M pk scale, irrespective of whether
nd how long it would survive at the further smoothing scales.
e find that the dependence of the number of mergers with peak

eight is weak, with a mean number of mergers varying between
.8 and 2. This shows that in the language of effective influence
one radius of equation ( 4 ), α = 2 R TH / R = 3.1 is a very good 
roposition. 
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Figure 8. Distribution of the number of major mergers for peaks in different 
rarity bins, as labelled. The mean number of major mergers increases from 

1.8 for low- ν peaks to 2 for high- ν peaks and is graphically represented with 
vertical lines with tilted caps for readability. 

Figur e 9. Mer ging objects bring in orbital spin; we quantify here its distri- 
b ution. The distrib ution resembles a lognormal distrib ution with parameters 
μλ ≈ 0.048 and σλ ≈ 0.51; the distribution resembles its N -body counterpart. 
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.2 Orbital spin parameter of mergers 

et us now define the spin parameter of an event at scale R ce relative
o a peak of rarity ν at scale R pk as 

= 

R 

3 
ce 

R 

3 
pk 

∣∣r × ( ∇ ψ − ∇ ψ pk ) 
∣∣

√ 

2 R pk σ−1 ( R pk ) 
. (12) 

ere, we recall that σ−1 is the variance of the gradient of the
otential, whose definition is given in Section A . ∇ ψ and ∇ ψ pk 

re the gravitational accelerations at the locus of the critical event 
nd of the peak respectively, and r is the position of the critical event
ith respect to the peak. This definition reflects the spin definition 
f Bullock et al. ( 2001 ): under the Zel’dovich approximation, 
 

3 
ce | r × ( ∇ ψ − ∇ ψ pk ) | is proportional to the mass times the cross
roduct of the position with the velocity of the merging object 
elative to the peak at the time of its collapse, i.e. the numerator
s proportional to the orbital angular momentum of the merger. 
onversely, the denominator is proportional to the orbital angular 
omentum a merger of mass ∝ R 

3 
pk coming from a distance of R pk 

ith velocity equal to the RMS of the velocity 
√ 

2 σ−1 would have at
he time of the collapse of the peak. We show on Fig. 9 the distribution
f the spin parameter λ. The sample consists of mergers with mass
atios greater or equal to 1:10 around rare peaks. In practice, we select
pk > 2 . 5; R pk / 

3 
√ 

10 ≤ R ce ≤ R pk and δce ≥ δpk . The distribution is
oughly lognormal with a mean value of μλ ≈ 0.048 and a standard
eviation of σλ ≈ 0.51. 
The no v elty of our approach is to model mergers as punctual

vents. This has to be compared to previous theoretical works 
hich treated angular momentum accretion around peaks as a 

ontinuous accretion process (e.g. White 1984 ; Ryden 1988 ). This
llows direct comparisons to results about mergers obtained from 

 -body simulations. Remarkably, our estimate for the orbital spin of
ergers is found to be very close to the values measured in N -body

imulations, which are on the order of 0.04 (see e.g. Bullock et al.
001 ; Aubert, Pichon & Colombi 2004 ; Danovich et al. 2015 ). This
ranslates two effects. First, the mass ratio ( R 

3 
ce /R 

3 
pk ) is dominated

y the more numerous smaller mergers, which drives λ down. In 
ddition, we find that critical events tend to have a mostly radial
cceleration so that their tangential velocity is smaller than the RMS
f the velocity field (( ∇ ψ − ∇ ψ pk ) /σ−1 ). This is qualitatively in
ine with findings from N -body simulations (Wetzel 2011 ; Jiang
t al. 2015 ), where the tangential velocity of major mergers was
ound to be smaller than their radial velocity. Albeit simplistic, our
odel thus allows us to provide a natural explanation for the fact

hat mergers bring in a comparable amount of angular momentum 

o that of the full halo: gravitational tides alone (which is the only
ngredient of our model) can funnel in a significant amount of angular

omentum through mergers. This provides a theoretical moti v ation 
or the amplitude of the spin jumps during mergers employed in semi-
nalytical models (see e.g. Vitvitska et al. 2002 ; Benson, Behrens &
u 2020 ). 

.3 Mass distribution of mergers 

inally, we compute the mass distribution of mergers as well as
heir density. The goal here is to obtain the distribution of the time
nd mass ratios of the mergers. In order to build the distribution of
he mass ratio, we track peaks o v er multiple decades of smoothing
cales ( i.e. mass). Since the number density of peaks evolves as R 

−3 
pk ,

he sample size quickly decreases with smoothing scale; we select 
ere peaks that exist at a scale larger than R min 

3 
√ 

100 ≈ 4 . 6 R min .
he practical consequence is that our sample is only complete o v er

wo decades in mass ratio. We also only retain rare peaks that have
pk > 2.5. Let us then estimate the time of the merger as follows:
e associate both the peak and the critical event a time t pk and

 ce , respectively, using δ = δc / D ( z). Note that some of the selected
eaks will have collapsed by z = 0 while others will in the distant
uture. To aggregate peaks collapsing at different times, we compute 
he lookback time of the merger relative to the collapse time of the
eak � = ( t pk − t ce )/ t pk . We estimate the distribution of mergers in
ookback time–mass ratio space using a 2D kernel density estimation 
hich we show in Fig. 10 , top panel. As expected, the more massive

he merger, the more recently it happened. In the figure, we included
ergers with mass ratios smaller than 0.01 in the shaded region rather

han truncating the plot, but we remind the reader that our data set is
ot complete in this region. 
We then show on the bottom panel of Fig. 10 the cumulative

istribution function of the merger time, for mass ratios larger than
:10 as a function of peak height. We reco v er the trend found in
 -body simulations that rarer haloes have had more recent major
ergers than lower mass ones. Cluster-like structures ( νpk � 3.5) 

ypically had 80 per cent of their mergers in the second half of their
ife (past 7 Gyr for a cluster at z = 0), and had half their mergers in
he last third of their life (last 5 Gyr for a cluster at z = 0). 

Our model reproduces qualitative trends observed in N -body 
imulations (figure 9 Genel et al. 2009 ; Fakhouri, Ma & Boylan-
MNRAS 531, 1385–1397 (2024) 
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Figure 10. Top: distribution of the merger as a function of mass ratio and 
lookback time. We show the median with 68 per cent interval in black. The 
hashed area corresponds to regions of the parameter space that may not be 
complete, see the text for details. Bottom: the corresponding fraction of major 
merger as a function of lookback time relative to the peak collapse time, for 
different peak heights. Rarer objects have had more recent mergers. 
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olchin 2010 ), namely that rarer peaks typically had their last major
erger more recently than less rare ones. 
Our model differs from the Extended Press–Schechter (EPS)

pproach (Bond et al. 1991 ; Bower 1991 ; Lacey & Cole 1993 ).
n the EPS approach, random walks in σ ( R ) − δ( R ) are mapped on to
ass and time e volution, respecti vely. Jumps from one R to another

t fix ed o v erdensity thus correspond to sudden changes in mass at a
x ed time, i.e . mergers. While this approach yields statistically useful
erger rates, it is unable to provide spatial information about mergers

ince neither the satellite nor the central halo are localized. Our model
rades some of the analytical tractability of the EPS approach for
dditional information about the spatial location of mergers, all the
hile yielding a good agreement with N -body simulations. 

 C O N C L U S I O N  A N D  PERSPECTIVES  

e built a model of mergers from an analysis of the initial conditions
f the Univ erse. F ollowing the work of Hanami ( 2001 ) and Cadiou
t al. ( 2020 ), we relied on the clustering of critical events around
eaks in the initial density field to study the properties of halo
ergers. We started with a simple model that yields analytically

ractable results, while further refinements presented in Section 3
llowed for more precise results at the cost of numerical integration.

We focused here on the analysis of merger events that bring at
east 10 per cent of the final mass of the main halo, which we refer
o as ‘major mergers’. We ho we ver note that our approach can be
xtended to the analysis of minor mergers, which we leave for future
ork. 
We first obtained a zero th -order analytical estimate of the mean

umber of mergers per decade in mass using the mean abundance
NRAS 531, 1385–1397 (2024) 
f critical event per peak in Sections 2.1 and 2.2 . Our results
re consistent with haloes having had one to two major mergers
er relative decade of mass growth. We then refined our model
n Section 2.3 by accounting for the timing of the collapse of
he haloes involved in a merger candidate; a critical event should
nly be counted as a merger if its two associated haloes have
ollapsed before the merger happens. We showed this can be achieved
emi-analytically by numerically computing the value of a cross-
orrelation function, equation ( 10 ), that reveals that critical events
luster at 2–3 times the smoothing scale of the peak (Fig. 6 ). 

Finally, in Section 3 , we addressed the double-counting issue,
hereupon a given critical event may be associated with several
eaks, by uniquely associating each to the one peak it is topologically
onnected to. To that end, we relied on multiscale analysis of
aussian random fields using computational topology to restrict
urselves to the study of peaks that, up to the critical event, form
ersistent pairs. In this model, we found again that haloes of different
arities undergo about two major mergers. By tracking peaks in
osition-smoothing scale and by associating critical events with
hem, we were able to provide numerically cheap and easy-to-
nterpret data on the statistical properties of halo mergers. We found
hat mergers come from further away for rarer peaks (Fig. 7 ), but
hat the total number of major mergers only weakly depends on peak
arity (Fig. 8 ). 

We then computed the gravitational tides at the location of the
ritical event to estimate the relative velocity of mergers and predict
he orbital spin they bring in. We find that it has a lognormal
istribution with a mean of μλ = 0.048 and σλ = 0.5. These
roperties are remarkably close to the distribution of dark matter halo
pins measured in hydrodynamical simulations ( μλ = 0.038, σλ =
.5, Danovich et al. 2015 ). This suggests that our model captures
he (statistical properties) of the orbital parameters of mergers, as
s expected should they be driven by gravitational tides (Cadiou,
ontzen & Peiris 2021a , 2022 ). We also computed the distribution of

he mass brought by mergers and their timing, which we found to be
n qualitative agreement with results obtained in N -body simulations
Fakhouri et al. 2010 ). 

While the aim of this model was not to compete with numerical
imulations, it provides theoretical grounds to explain the properties
f mergers observed in N -body simulations and efficient tools to
redict their statistics and geometry ab initio . Our model could be
mpro v ed with precision in mind, for example by taking into account
eviations from spherical collapse under the effect of shears to
mpro v e our time assignments. It ho we ver re veals that the statistical
roperties of the merger tree of dark matter halo can be explained
hrough a multiscale analysis of these initial conditions. 

.1 Perspecti v es 

tatistics involving successive mergers could potentially be built
n top of our model by using critical events associated with the
ame peak line, for example, to study the relative orientation of
he orbital angular momentum of successi ve mergers. Ho we ver, we
ound that such analysis was complicated by the fact that peaks mo v e
ith smoothing scale. Different definitions of angular momentum

distance to the peak at the same scale, at the same density, or for a
xed peak density) yielded qualitatively different results. This should
e explored in future work. 
The model built in this paper relied on a linear multiscale analysis

f the density field. This could be employed to provide control over
he merger tree (timing of the merger, orientation) in numerical
imulations through ‘genetic modifications’ of the initial field (Roth,



Analytical model of merger rates and spin 1393 

P  

C  

t  

t

w
a
s
G
c  

w  

o  

r
t
s  

o  

s  

t
B  

fi
i
c
s  

c
e  

w
T  

u
r

r
a
a
i
2  

s
a  

s  

t
p
M  

c  

2  

t  

f

A

W  

t
a
K
f
C
w
S  

R
N
A
(
s

D

T  

t

R

A
B  

B
B
B
B
B
B
B
B  

C  

C
C  

C
D  

F
G
G
G  

H
H
J
K
K
L
L
M
M
M
M
M
M  

N
P
P
P
R
R
R
S
S  

S
S
S
S  

V  

V  

W
W

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/531/1/1385/7667923 by guest on 26 Septem
ber 2024
ontzen & Peiris 2016 ; Rey & Pontzen 2018 ; Stopyra et al. 2021 ;
adiou et al. 2021a , b ). We also note that, as we did for tidal torque

heory in Cadiou et al. ( 2022 ), such an approach would allow direct
esting of the range of validity of the model. 

In our analysis throughout the paper, we used Gaussian filters 
hich provide closed analytical formulas for the critical event theory 

nd also ensure that, along the peak trajectory, larger smoothing 
cales correspond to later redshifts of the collapse. In addition, 
aussian filters limit the extent to which peak-saddle point pairs 

an be created (rather than destroyed, see Cadiou et al. 2020 ), for
hich we have no physical interpretation yet. Ho we ver, other choices
f filter could be considered, as long as the filter is positive, so that the
egion associated with the peak at a larger smoothing incorporates 
he regions assigned with smaller smoothing, and has sufficiently 
moothly tempered boundaries to define second and third deri v ati ves
f the field. For instance, the widely used Top-Hat filter has a compact
upport and allows to directly map the density to a collapse time and
he smoothing scale to a mass through the spherical collapse model. 
ut it has sharp boundaries and ill-defined deri v ati v es be yond the
rst one for a density field with typical cosmological power spectra 

n � CDM-like hierarchical models. For critical event theory, one 
ould consider a modification of Top-Hat that retains a compact 
upport with nearly equal weight but has at least second deri v ati ves
ontinuous at the boundary. Closed analytical formulas for the critical 
vent theory with such non-Gaussian filters are not kno wn, ho we ver,
e do not see any obstacle to numerical analysis using them. 
he focus of this w ork w as to provide a theoretical framework to
nderstand the properties of mergers, and we expect the qualitative 
esults to hold for other reasonable filters. 

This paper focused on mergers of peaks corresponding to the 
elative clustering of peak-saddle events. One could extend the 
nalysis to the relative clustering of saddle–saddle events to provide 
 theoretical explanation for which filaments merge with which, thus 
mpacting their connectivity or their length (Gal ́arraga-Espinosa et al. 
023 ). Conv ersely, e xtending the model to the relative clustering of
addle-void events (which wall disappears when?) is also of interest, 
s the latter may impact spin flip, and is dual to void mergers, and as
uch could act as a cosmic probe for dark energy. One could compute
he conditional merger rate subject to a larger-scale saddle-point as a 
roxy to the influence of the larger-scale cosmic web, following both 
usso et al. ( 2018 ) and Cadiou et al. ( 2020 ) to shed light on how the

osmic web drives galaxy assembly (Kraljic et al. 2018 ; Laigle et al.
018 ; Hasan et al. 2023 ). Eventually, such a theory could contribute
o predicting the expected rate of starburst or AGN activity as a
unction of redshift and location in the cosmic web. 
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M

A

L ld, smoother o v er a scale R by a filter function W 

δ (A1) 

W paper. For practical purposes, let us introduce 

σ (A2) 

T ative 〈 ∇ δ · ∇ δ〉 = σ 2 
1 , etc. 

haracteristic scales of the field 

R (A3) 

T ration between zero-crossing of the field, mean distance between extrema, 
a adiou et al. 2020 ). Let us further define a set of spectral parameters that 
d ree scales introduced abo v e, two dimensionless ratios may be constructed 
t

γ (A4) 

F ncounters a maximum between two zero-crossings of the field, while ˜ γ

d  two extrema. These scales and scale ratios fully specify the correlations 
b oint. F or power-la w power spectra of index n , P ( k ) ∝ k n , with Gaussian 
s  R 

√ 

2 / ( n + 5) and ˜ R = R 

√ 

2 / ( n + 7) while γ = 

√ 

( n + 3) / ( n + 5) and 
γ

A

I , we need to compute the two-point correlation function between critical 
e peaks and critical events 

n (B1) 

w  peak and critical event field up to the third derivative. 

(B2) 

(B3) 

H  density, its gradient, its Hessian, and the minors of its Hessian at the peak 
l nd H y , i the density, its gradient, its Hessian and the minors of the Hessian 
a licit formula for | J y | in equation ( C2 ). This expression is the rotationally 
i

1 (B4) 

 the integration in the frame of the Hessian here. Indeed, the numerator 
i ch breaks the rotational invariance assumption. While the exact integration 
c umerically. 

D
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PPENDIX  A :  N OTAT I O N S  

et us first introduce the dimensionless quantities for the density fie

( r , R ) = 

∫ 
d 3 k 

(2 π ) 3 
δ( k ) W ( k R ) e i k ·r . 

e will consider the statistics of this field and its deri v ati ves in this 

2 
i ( R ) ≡ 1 

2 π2 

∫ ∞ 

0 
d k k 2 P ( k ) k 2 i W 

2 ( k R ) . 

hese are the variance of the density field 〈 δ2 〉 = σ 2 
0 , of its first deriv

Following Pogosyan, Gay & Pichon ( 2009 ), let us introduce the c

 0 = 

σ0 

σ1 
, R ∗ = 

σ1 

σ2 
, ˜ R = 

σ2 

σ3 
. 

hese scales are ordered as R 0 ≥ R ∗ ≥ ˜ R . These are the typical sepa
nd mean distance between inflection points (Bardeen et al. 1986 ; C
epend on the shape of the underlying power spectrum. Out of the th
hat are intrinsic parameters of the theory 

≡ R ∗
R 0 

= 

σ 2 
1 

σ0 σ2 
, ˜ γ = 

˜ R 

R ∗
= 

σ 2 
2 

σ1 σ3 
. 

rom a geometrical point of view, γ specifies how frequently one e
escribes, on average, how many inflection points there are between
etween the field and its deri v ati ve (up to third order) at the same p
moothing at the scale R in 3D, we have R 0 = R 

√ 

2 / ( n + 3) , R ∗ =
˜ = 

√ 

( n + 5) / ( n + 7) . 

PPENDIX  B:  P E A K – E V E N T  C O R R E L AT I O N  

n order to compute the number of mergers in the vicinity of a peak
vents and peaks. We achieve this by evaluating the joint density of 

 peak, ce = 〈 Peak ( x ) Event ( y ) 〉 , 

here the average is taken over all 30 random variables defining the

Peak ( x ) ≡ | J x | � H ( −Tr ( H x )) � H ( 
∑ 

i H x,i ) � H ( det H x ) 

×δD ( x 1 ) δD ( x 2 ) δD ( x 3 ) δD ( x − νpk ) , 

Event ( y ) ≡ | J y | � H ( −Tr ( H y )) � H ( 
∑ 

i H y,i ) δD ( det H y ) 

×δD ( y 1 ) δD ( y 2 ) δD ( y 3 ) δD ( y − ν) . 

ere, x = { x, x 1 , . . . , x 3 , H x , H x, 1 , . . . , H x, 3 } with x , x i , H x , H x , i the
ocation and y = { y, y 1 , . . . , y 3 , H y , H y, 1 , . . . , H y, 3 } with y , y i , H y , a
t the critical event location. | J x | = | det H x | and we provide an exp
nv ariant equi v alent of equation (18) of Cadiou et al. ( 2020 ). 

The two-point correlation function can then be found as 

 + ξce , pk ( νpk , ν, R, r) = 

〈 Peak ( x ) Event ( y ) 〉 
〈 Peak ( x ) 〉〈 Event ( y ) 〉 . 

Note that, compared to Cadiou et al. ( 2020 ), we cannot perform
nvolves cross-correlation between the peak and the critical event whi
annot be carried out analytically, we can none the less compute it n
NRAS 531, 1385–1397 (2024) 
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A

T

C (C1) 

W  to compute the number density of critical events in a covariant form. Here 
x ion, j w.r.t. the second direction, and k w.r.t. the third direction divided by 
t

 110 y 201 −2 y 011 y 111 y 200 −y 2 
011 

y 300 

y 102 y 
2 
110 

]
 y 120 +y 300 )+( y 003 +y 021 +y 201 )( y 011 y 110 −y 020 y 101 ) 

)+ 

 101 y 120 +2 y 011 y 110 y 111 −y 2 
011 

y 210 

10 − y 011 y 200 ) + ( y 102 +y 120 +y 300 )( y 011 y 110 −y 020 y 101 ) 
)+ 

 

10 
−2 y 011 y 012 y 200 + 2 y 011 y 101 y 111 

y 030 +y 210 )+( y 003 +y 021 +y 201 )( y 101 y 110 −y 011 y 200 ) 
)
. (C2) 

C

I te-Carlo integration to numerically evaluate equation ( 11 ). The statistical 
d  30 × 30 covariance matrix �, which we may compute symbolically for 
g ndex n s . We aim to sample points following this distribution and e v aluate 
t  Event ( y ) 〉 . Ideally, we w ould lik e to e v aluate the correlation function at 
i all separation, the covariance matrix becomes almost singular, resulting 
i t. To a v oid this, we instead consider slightly different smoothing scales. 

 y will rarely take the specific values that the Dirac deltas impose, and thus 
t is, we compute the distribution of the other field variables conditional to 
t  to inte grate νpk o v er a range to reco v er equation ( 11 ) an yway, we replace 
δ depends on several field variables, computing the conditional distribution 
i ac delta’, δε 

D ( det H y ) = 

1 
2 ε � H ( ε − det H y ) � H ( det H y + ε), for some small 

ε l it is to the original integral. Ho we ver, reducing ε comes at the cost of 
r

ndom points following this distribution and average the e v aluation of the 
i al. This allows to compute 

∫ νp 

νp w 
d ν〈 Peak ( x ) Event ( y ) 〉 and 〈 Peak ( x ) 〉 , and 

r ints. We used a smoothing ratio R pk / R ce = 0.95 and a thick Dirac delta of 
s
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PPENDIX  C :  C OVA R I A N C E  MATRICES  

he covariance matrix of x , x i , x ij is given by 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 0 0 0 γ

3 
γ

3 
γ

3 0 0 0 
0 1 

3 0 0 0 0 0 0 0 0 
0 0 1 

3 0 0 0 0 0 0 0 
0 0 0 1 

3 0 0 0 0 0 0 
γ

3 0 0 0 1 
5 

1 
15 

1 
15 0 0 0 

γ

3 0 0 0 1 
15 

1 
5 

1 
15 0 0 0 

γ

3 0 0 0 1 
15 

1 
15 

1 
5 0 0 0 

0 0 0 0 0 0 0 1 
15 0 0 

0 0 0 0 0 0 0 0 1 
15 0 

0 0 0 0 0 0 0 0 0 1 
15 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

e provide in equation ( C2 ) the expression for the jacobian required
 ijk stands for the deri v ati ve of the field of order i w.r.t. the first direct
he corresponding RMS defined by equation ( A2 ). 

J y 

R 

= det H y × ( ∇ 

2 ∇ y) · H 

−1 
y · ∇ det H y = [

y 002 y 020 y 300 −2 y 002 y 110 y 210 +y 002 y 120 y 200 +2 y 011 y 101 y 210 +2 y 011 y

−2 y 020 y 101 y 201 + y 020 y 102 y 200 + 2 y 101 y 110 y 111 − y 2 
101 

y 120 −

× (
( y 012 +y 030 +y 210 )( y 011 y 101 −y 002 y 110 )+( y 002 y 020 −y 2 

011 
)( y 102 +[

y 002 y 020 y 210 +y 002 y 030 y 200 −2 y 002 y 110 y 120 −2 y 011 y 021 y 200 +2 y 011 y

+y 012 y 020 y 200 −y 012 y 
2 
110 

−2 y 020 y 101 y 111 +2 y 021 y 101 y 110 −y 030 y 
2 
101 

]
× (

( y 003 + y 021 +y 201 )( y 020 y 200 −y 2 
110 

)+( y 012 +y 030 +y 210 )( y 101 y 1[
y 002 y 020 y 201 +y 002 y 021 y 200 − 2 y 002 y 110 y 111 +y 003 y 020 y 200 −y 003 y 

2
1

+2 y 011 y 102 y 110 −y 2 
011 

y 201 +2 y 012 y 101 y 110 −2 y 020 y 101 y 102 −y 021 y 
2 
101 

]
× (

( y 102 +y 120 +y 300 )( y 011 y 101 −y 002 y 110 )+( y 002 y 200 −y 2 
101 

)( y 012 +

1 Numerical implementation 

n this section, we describe how Fig. 6 was obtained. We used Mon
istribution of the aforementioned field variables is regulated by its
iven separation distance r , smoothing scales R pk R ce , and spectral i
he integrands of equation ( B2 ) to obtain the expectancies 〈 Peak ( x )
dentical smoothing scale. Ho we ver, at equal smoothing scale and sm
n unfa v ourable numerical artifacts plaguing the statistic of our resul

Of course, we can not naively do this directly, as x, x i , y, y i , det H
he integrands will almost al w ays e v aluate to zero. To circumvent th
he Dirac deltas being satisfied, with two exceptions: as we will need
D ( y − νpk ) by � H ( νmax 

peak − y) � H ( y − νmin 
peak ); furthermore, as det H y 

s not easily feasible. We therefore replace δD ( det H y ) by a ‘thick Dir
. The smaller ε is, the thinner the Dirac delta and the more faithfu
educing the convergence rate of the Monte-Carlo approach. 

Once the conditional distribution is computed, we simply draw ra
ntegrand on these points, which converges to the value of the integr

esults in Fig. 6 . Practically, to obtain Fig. 6 , we drew 2 26 sample po
ize ε = 10 −3 . 
MNRAS 531, 1385–1397 (2024) 
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A TI ON  

T are derived in Cadiou et al. ( 2020 ) and read 

i

(D1) 

w f Cadiou et al. ( 2020 ) Factorizing the mean density of the critical events, 
n

n (D2) 

w

C

w if the spectrum is not scale invariant) only through the spectral parameter 
γ f γ that correspond to the spectral slopes of interest n = −2.5, −2, −1.5, 
s epresented as dashed lines. We see that critical events typically occur at 
l

y of better than 10 −3 for −2.5 ≤ n s ≤ −1.5 by a Gaussian with parameters 

C

W

F arity value for several values of spectral slope, as marked. The top panel shows the 
a s of the Gaussian are provided in the text. We show the peak rarity distribution as 
t

A I T Y  

L g. The value of the density field smoothed with a Gaussian window at 
p uation 

(E1) 

D
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PPENDIX  D :  E V E N T  DIFFERENTIAL  DISTRI BU

he differential density of critical events with different field values ν

n ce ( ν, R ) = 

3 R 

˜ R 

2 R 

3 ∗

1 

5 

(
3 

2 π

)3 / 2 

(1 − ˜ γ 2 ) 

∑ 

= 5 , 6 , 9 

c 3 ,i ( ν, γ ) exp 

(
− ν2 

2(1 − 5 γ 2 /i) 

)
, 

here the full expressions for c 3, i ( ν, γ ) were given in equation (39) o
¯ ce , in this expression such that 

 ce ( ν, R) = n̄ ce C ( ν) , with 
∫ ∞ 

−∞ 

d νC ( ν) = 1 , 

e introduce the normalized distribution of the events in height 

( ν, γ ) = 

18 
√ 

10 π

29 − 6 
√ 

6 

∑ 

i= 5 , 6 , 9 

c 3 ,i ( ν, γ ) exp 

(
− ν2 

2(1 − 5 γ 2 /i) 

)
, 

hich depends on the power spectrum (and on the smoothing scale 
. In Fig. D1 , we show the behaviour of C ( ν, γ ) for several choices o

ee equation ( A4 ). For comparison, the peak rarity distribution is r
ower ν than peaks, and are very rare for ν > 3. 

We note that C ( ν, γ ) for ν < 3 can be approximated with an accurac

˜ 
 ( ν, γ ) = 

1 √ 

2 π ˜ σ
exp 

(
− ( ν − ˜ μ) 2 

2 ̃  σ 2 

)
, 

˜ μ = 1 . 546 γ, ˜ σ = 1 − 0 . 5084 γ 2 + 0 . 04140 γ. 

e show on the top panel of Fig. D1 the residuals of this fit. 

igure D1. Normalized differential distribution of critical events in density r
bsolute residuals when fitting C ( ν, γ ) with a Gaussian function. Parameter
hin dashed lines. 

PPENDIX  E:  M E A N  E VO L U T I O N  O F  PEAK  R A R

et us predict the evolution of peak rarity with Gaussian smoothin
osition x changes with window size R according to the diffusion eq

∂δ( r , R ) = R �δ( r pk , R ) . 
NRAS 531, 1385–1397 (2024) 
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I rack r pk ( R), we notice that the partial deri v ati ve ∂ / ∂ R can be replaced by 
t

(E2) 

a eak in the argument. In terms of the rarity of the peak, ν( R ) = δ( R )/ σ 0 ( R ), 
t

(E3) 

T  since the Laplacian of the field is a random quantity. Ho we ver, to estimate 
t conditional mean value given the height of the peak 

� (E4) 

w  the eigenvalues { λi } i = 1,D of the Hessian of the density, ensures that we 
a ciple, one should also enforce the vanishing gradient of the field at peak 
p  the value and the second derivatives of the field at the same point, this 
c

where the peak condition is just �ν < 0. This gives us 

(E5) 

w  from zero at γ = 0, to infinity at γ = 1. The first term in equation ( E5 ) 
i , while the second correction comes from restricting the field to be at the 
l d log σ0 / d R + R / R 

2 
0 = 0 for any power spectrum. We can then obtain the 

(

(E6) 

w tion A ); it is equal to ζ for power-law spectra. Thus, the rarity of maxima 
i ease is less pronounced for rarer peaks and can be in first approximation 
n

obtain a criterion for insignificant rarity drift for peaks rarer than ν > 

2 igher dimensions. In 2D the drift term is more cumbersome and in 3D it 
d  remains the same. 

T

©
P
(

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/531/1/1385/76679
f we are interested in the change of the peak value along the peak t
he full deri v ati ve, since at the peak ∇ δ = 0, thus 

d δ( r pk , R ) 

d R 

= R �δ( r pk , R ) , 

nd for brevity, we can now drop the reference to the position of the p
he evolution equation becomes 

d ν( R) 

d log R 

= −ν( R ) 
d log σ0 

d log R 

+ R 

2 �ν( R ) . 

he process of changing the peak height with smoothing is stochastic
he mean change, let us approximate the stochastic Laplacian by its 

ν( R) → 〈 �ν( R ) | ν( R ) , λi < 0 〉 , 
here the last conditional inequality, written compactly in terms of

re dealing with a maximum and not an arbitrary field point. In prin
osition, but since the gradient of the field is uncorrelated with both
ondition is inconsequential to our problem. 

Let us first e v aluate the conditional mean in equation ( E4 ) in 1D, 

〈 �ν| ν, �ν < 0 〉 = − ν

R 

2 
0 

− 1 

ζR 

2 
0 

√ 

2 

π

exp 
(
− ν2 ζ 2 

2 

)
1 + erf 

(
νζ√ 

2 

) , 

here R 0 is defined by equation ( A3 ), while ζ = γ / 
√ 

1 − γ 2 varies
s the general conditional response of the Laplacian to the field value
ocal maximum. For a Gaussian window function, we also have that 
mean) evolution equation for the peak rarity 

d ν( R) 

d log R 

= − R 

2 

ζR 

2 
0 

√ 

2 

π

exp 
(
− ν2 ζ 2 

2 

)
1 + erf 

(
νζ√ 

2 

) , 

here R / R 0 is a constant that depends on the power spectrum (cf Sec
s, on average, decreasing slowly with smoothing scale R . The decr
eglected for νζ > 

√ 

2 . 
F or power-la w spectra in D dimensions, ζ = 

√ 

( n + D) / 2 . We 
 / 
√ 

n + D . Note that this is based on generalizing the 1D result to h
oes not have a closed analytical form, but the structure of the result
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