N

N

Estimating major merger rates and spin parameters ab
initio via the clustering of critical events
Corentin Cadiou, Eric Pichon-Pharabod, Christophe Pichon, Dmitri Pogosyan

» To cite this version:

Corentin Cadiou, Eric Pichon-Pharabod, Christophe Pichon, Dmitri Pogosyan. Estimating major
merger rates and spin parameters ab initio via the clustering of critical events. Monthly Notices of the
Royal Astronomical Society, 2024, 531 (1), pp.1385-1397. 10.1093/mnras/stae1220 . hal-04246812

HAL Id: hal-04246812
https://hal.science/hal-04246812v1

Submitted on 26 Sep 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-04246812v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 531, 1385-1397 (2024)
Advance Access publication 2024 May 9

https://doi.org/10.1093/mnras/stae 1220

Estimating major merger rates and spin parameters ab initio via the

clustering of critical events

Corentin Cadiou *,"** Eric Pichon-Pharabod,* Christophe Pichon “?** and Dmitri Pogosyan >
! Lund Observatory, Division of Astrophysics, Department of Physics, Lund University, Box 43, SE-221 00 Lund, Sweden

2CNRS and Sorbonne Université, UMR 7095, Institut d "Astrophysique de Paris, 98 bis Boulevard Arago, F-75014 Paris, France

3IPHT, DRF — INP, UMR 3680, CEA, Orme des Merisiers Bat 774, F-91191 Gif — sur — Yvette, France

4Department for Physics, Korea Institute of Advanced Studies (KIAS), 85 Hoegiro, Dongdaemun — gu, Seoul 02455, Republic of Korea

3 Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7, Canada

Accepted 2024 May 3. Received 2024 April 15; in original form 2023 September 21

ABSTRACT

We build a model to predict from first principles the properties of major mergers. We predict these from the coalescence of peaks
and saddle points in the vicinity of a given larger peak, as one increases the smoothing scale in the initial linear density field as a
proxy for cosmic time. To refine our results, we also ensure, using a suite of ~400 power-law Gaussian random fields smoothed
at ~30 different scales, that the relevant peaks and saddles are topologically connected: they should belong to a persistent pair
before coalescence. Our model allows us to (a) compute the probability distribution function of the satellite-merger separation
in Lagrangian space: they peak at three times the smoothing scale; (b) predict the distribution of the number of mergers as a
function of peak rarity: haloes typically undergo two major mergers (>1:10) per decade of mass growth; (c) recover that the
typical spin brought by mergers: it is of the order of a few tens of per cent.

Key words: large-scale structure of Universe —cosmology: theory.

1 INTRODUCTION

On large scales, the galaxy distribution adopts a network-like
structure, composed of walls, filaments, and superclusters (Geller &
Huchra 1989; Sohn et al. 2023). This network is inherently tied to the
cosmic microwave background, the relic of the density distribution in
the primordial Universe. The non-uniformity of this initially quasi-
Gaussian field evolved under the influence of gravity into the so-
called cosmic web (Bond, Kofman & Pogosyan 1996) we now
observe. One can therefore hope to predict the evolution of the cosmic
web by studying the topological properties of the initial density field.
From its evolution, one should be able to predict the rate of mergers
of dark haloes and their geometry hence their contribution to halo
spin.

The classical method to study mergers is to run cosmological
simulations (e.g. Bertschinger 1998; Vogelsberger et al. 2020),
compute where haloes are located at each time increment and
construct that way their merger tree (e.g. Lacey & Cole 1993; Moster,
Naab & White 2013).

The theory of merger trees for dark haloes has a long-standing
history starting from the original Press—Schechter theory (Press &
Schechter 1974), excursion set (Bardeen et al. 1986; Peacock &
Heavens 1990; Bond et al. 1991), and peak patch theory (Bond &
Myers 1996) or related formalisms (Manrique & Salvador-Sole 1995,
1996; Hanami 2001; Monaco, Theuns & Taffoni 2002; Salvador-
Solé, Manrique & Botella 2022). One notable recent variation is
the suggestion to use peaks of ‘energy’ field as such progenitors
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(Musso & Sheth 2021). One of the prevailing theoretical ideas is to
consider peaks of the initial density field in initial Lagrangian space,
smoothed at scales related to halo masses, to be halo progenitors
(Bardeen et al. 1986). The statistical properties of mergers can then be
predicted analytically through extensions of the excursion set theories
(Lacey & Cole 1993; Neistein & Dekel 2008), or, alternatively,
it can be measured in peak-patch simulations (Stein, Alvarez &
Bond 2019). In the first approach, all the information is local,
preventing us from computing the geometry of mergers. In the second
approach, the geometry of mergers is accessible as a Monte Carlo
average.

In this paper, we provide an alternative framework that specifically
takes into account the geometry of mergers while remaining as
analytical as possible. The goal is not for accuracy, but rather
to provide a simple framework to access information such as the
statistics of the number of mergers or the spin brought by mergers.

The paper is organised as follows: in Section 2, we present our
model together with analytical estimates of the number of direct
mergers with a given halo In Section 3, we extend our model to
take into account the topology of the density field using persistence
pairing via DisPerse. This allows us to draw mock merger trees and to
predict the probability density function (PDF) of the spin parameter
that each merger contributes as a function of rarity. Section 4 wraps
up.

Section A introduces the relevant spectral parameters. Section B
revisits event statistics while relying on the clustering properties of
peaks and events computed from first principles. Section D recalls
the critical event PDF and provides a fit to it. Section E discusses the
evolution of peak rarity with Gaussian smoothing.

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.
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2 ANALYTICAL MODEL OF MERGERS PER
HALO

2.1 Model of halo mergers: cone of influence of a halo

The starting point of our approach is the peak picture (Bardeen
et al. 1986). In this framework, peaks in the linear density field are
the seeds for the formation of haloes. We rely on the proposition
that the overdensity §(R) of a given peak smoothed at scale R can
be mapped to a formation redshift z, using the spherical collapse
model, §(Rty)D(z) = 3., where 6. = 1.686 is the critical density,
D(z) is the growing mode of perturbations, and Rry is the top-hat
scale. The mass of the halo formed at this time is inferred from the
top-hat window scale, M = ﬁm%nR%H.

While the peak-patch theory provides useful insight into the origin
of haloes of a given mass at a given time, it becomes singular
during mergers. Indeed, by construction, the merging halo disappears
into the larger one together with its corresponding peak. Here, we
instead rely on the analysis of the geometry of the initial linear
density field in (N 4+ 1)D, where N is the dimension of the initial
Lagrangian space and the extra dimension is the smoothing scale. At
each smoothing scale, we can formally define critical points (peaks,
saddles, and minima) following Bardeen et al. (1986). As smoothing
increases, some of these critical points eventually disappear when
their corresponding halo (for peaks) merge together. This approach
allows to capture mergers in space—time from an analysis of the
initial conditions in position-smoothing scale employing the critical
event theory (Hanami 2001; Cadiou et al. 2020), where critical
events of coalescence between peaks and saddle points serve as
proxies for merger events. The process is sketched in Fig. 1 and
illustrated in (1 4+ 1)D in Fig. 2. In the following, we will rely
on the use of Gaussian filters, which allow us to advance further
the analytical description. First, this choice allows us to obtain
analytical results with the critical event theory. Second, it yields
peaks whose density decreases monotonically with smoothing scale
— and hence the collapse time of the associated haloes grows under
the spherical collapse model. While exploring the effect of different
filters is beyond the scope of this paper, we note that using any
filter that is positive with sufficiently smoothly tapered boundaries
does not pose any fundamental challenge to the numerical analysis
we perform later on. Tophat filter by itself is not of this class,
having sharp boundaries leading to ill-defined second- and third-
derivatives of the smoothed field with cold dark matter-like power
spectrum.

Let us track the Lagrangian history with decreasing smoothing of
one peak first identified at a smoothing scale Ry and position xpi(Rp).
Since we employ Gaussian filters, we need to match the Gaussian
and Top-Hat smoothing scales, R and Rty to assign mass to haloes.
The criteria of equal mass encompassed by the filter! gives Rry ~
1.56R in 3D. At R, the peak describes a halo that has collected its
mass from a spherical cross-section of (N 4 1)D space of volume
o R); we can call this sphere a Lagrangian patch of the halo. At
smaller R, the Lagrangian position of a peak changed to x,(R) and
the volume of its Lagrangian patch decreased to ocR". The history of
the peak in the (N + 1)D space, including mass accumulation, now
consists of its trajectory x,x(R) and a cone of cross-section volume
~R" around it as shown in Fig. 3 for (2 + 1)D example.

I Different criteria modify the relation between Gaussian and Top-Hat filters,
for instance matching the variance of the perturbations leads to Rty & 2.1R.
Here, we instead rely on matching masses within the filtering window W,
which implies [ Wru(r, Rtn)d¥r = [ Wg(r, Rg)dVr.
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Figure 1. Typical density field around a critical event in 1D. From left
to right: (1) We see two distinct objects (two peaks in red), separated by
a minimum (in blue) in the density field. (2) The critical event occurs
(inflection point in green), but the density profile still shows two different
objects (highlighted with dashed lines). (3) The merger has completed and
there remains only one object (peak in red).

N\
Density

Position

Smoothing scale

Figure 2. Representation of the smoothing of a 1D Gaussian random field
representing density fluctuations in the primordial universe. Red lines are
maxima of the field, blue lines are the minima. Green points are critical
events, where a minimum/maximum pair meets and annihilates itself. By
counting how many critical events there are in the vicinity of a peak line, one
can count the number of subhaloes merging into the corresponding halo.

A critical event marks the end of a trajectory of a peak that
disappeared when its scale reached R.. and is absorbed into a
surviving peak. Counting all critical events within a (N 4- 1)D straight
cylinder with a spatial cross-section of radius Ry around the final
surviving peak position xp(Rp) will give the number of all mergers
that ever happened within this peak Lagrangian patch. For instance, if
two small haloes have merged together before merging with a larger
halo, that would count as two events. However, we are interested in
counting only the last direct merger event that brought the combined
mass of the two small haloes into the main one. Physical intuition
tells us that to count only those, we need to count critical events
within the history cone of the peak mass accumulation. Indeed, the
Lagrangian patch of the peak grows in size by absorbing the layers
along its boundary, and if that layer contains a critical event, it is a
direct merger.

In (1 4 1)D, as illustrated in Fig. 4, direct mergers correspond to
critical events (green points) that are not separated by any intervening
minimum (blue line) from the surviving peak. In (N + 1)D, this is
generalized by only counting a critical event as a direct merger if,
at fixed smoothing R = R.., it is connected to the main peak in ND
space by a filamentary ridge with no other saddles in-between. Fig. 4
confirms that, indeed, one can find a ‘cone of influence’ around a
peak line which spatial cross-section radius is @R, where « is between
2 and 4, that contains most and, vice versa, almost exclusively the
critical events that are directly connected to this peak. The very fact
that such a cone can be defined, at a statistical precision, even in
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Figure 3. Visualization of the action of Gaussian smoothing on the critical
events of a 2D field. The vertical axis is the smoothing scale, increasing
upwards. The horizontal cross-section is a 2D space. The various vertical
lines represent the tracks of extrema positions (maxima in pink, minima in
blue, saddles in green) as one changes the field smoothing. The red and
blue squares represent the corresponding critical events (in red are points of
peak-saddle and in blue that of minima-saddle coalescence). The grey cones
show the volume within some fraction of the smoothing scale (here chosen
arbitrarily to be 1.2 times the smoothing scale) around each maxima track,
which contain all the past physical history of a given peak. This paper aims to
characterize these cones and the properties of the critical events within them
S0 as to compute major merger rates as a function of final halo mass.

principle, is non-trivial. The reason for that is, as Fig. 4 demonstrates
again, the presence of the exclusion zone around the main peak
devoid of any other critical events. This causes direct merger events
to be most likely located in the first layer of critical events from
the main peak. This exclusion effect is expected from peak—peak
correlation studies (e.g. Baldauf et al. 2021) and can be used as a
quantitative way to determine the boundary of the ‘cone of influence’
that we develop in Sections 2.3.2 and B.
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Counting critical events within the ‘influence cone’ of the peak
that contribute to the mass and spin growth of this surviving halo is
the main analytical tool of this paper.

The evolution of a halo in smoothing direction tells us directly
its history in terms of mass accumulation, as M o< R". That is, we
can describe what happened with the halo as its mass increased, say,
10-fold. In the next section, we apply this picture to count merger
events. We shall limit ourselves to the (3 + 1)D case as it bears the
most relevance to dark matter halo formation. We however note that
there is no additional theoretical difficulty in deriving the general (N
+ 1)D case.

2.2 Number of major merger events within a mass range

Here and in the following, we are interested in counting the number
of objects that directly merged into an object of final mass M, as
its mass grew from f*M to My, where f < 1. Since smoothing scale
maps directly on to mass, this amounts to counting the number of
critical events between two scales Ry o< /My and R < f/Mj.

Let us now count direct major mergers that we define as mergers
with satellites that bring at least fMO mass in the merger event. First,
note that we define here the mass ratio with respect to the final mass
of the peak at a fixed time, rather than at the time of the merger. The
number of such mergers, as halo grew from M to My, is given by
the number of critical events in the section of the cone of influence
of the halo contained between fR( and Ry. It can be obtained with the
following integral

Ro o R
Nmerger = / dR/ dsrnce(Rs r), (1)
fRo 0

where n..(R, r) is the number density of critical events at the point
(R, r) in the extended (3 4+ 1)D space of positions—smoothing scale
and the adjustable parameter «, introduced in the previous section,
sets the radial extent of the R = const cross-section of the influence
cone. Note that in the above formula, we are able to avoid the
dependence on the past trajectory xp(R) of the halo, by treating
each slab of constant R independently, and by evaluating the radial
distance r to the critical event found of at R from the main peak
position, xpi(R), defined at the same smoothing.

As a first estimate, let us approximate Nperger by taking the density
of the critical events inside the cone of influence to be equal to its

Peak
—— Minimum

. ®  Critical event

ﬂhn[

Cone of
accretion

Directly connected
critical events

Figure 4. Our model associates peaks (in red) to haloes, and critical events (in green) to mergers as a function of smoothing scale R which encodes mass
evolution. Critical events correspond to the coalescence of a peak with a minimum (in blue). We count any critical event directly connected to the central
peak (i.e. not separated by another minimum) as a merger. Here, this definition would give six mergers (shown with grey dashed lines) into the central peak.
Alternatively, we can estimate this number by counting the number of critical events within the shaded grey ‘influence cone’ of spatial width «R. Here, o =
3.3 is chosen so that the cone includes only directly connected events capturing five events. Note that the left-most event indicated by an arrow is missed, but it
lies at large smoothing R where the sample variance is large. The second arrow gives an example of an event that is not directly connected to the central peak,
instead merging with the peak on its left. The cone boundary separates this event from the directly connected one above it.
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mean value. Thus, we first neglect any spatial correlation between
the existence of a peak (corresponding to the surviving object in a
merger) and the critical event (corresponding to the absorbed object
in a merger). In Cadiou et al. (2020), we determined that the average
density of critical events in (3 4+ 1)D that correspond to peak mergers
is given by

R 1 — 722915 — 18410
60072

, @

TR 2
where the spectral scale R, and parameter § are given in Section A,
together with other parameters that characterize the statistics of a
density field. Note that R, o R, so the number density of critical
events scales as n,. o« R~*. The cubic part of this dependence,
R73, reflects the decrease of spatial density of critical points with
increasing smoothing scale; the additional scaling, R~!, reflects that
the frequency of critical events is uniform in log R.

Assuming a power-law density spectrum with index ng and
Gaussian filter, equation (2) gives

5 N\
e ~ 0.0004 ( 21" R, 3)
2

Using this mean value 7i.. for critical density in equation (1) gives us
a first rough, but telling estimate of the merger number that a typical
halo experiences

(C)

5+ns>3/2 R
.
2

Nerger & 0.039(—1In f) (

The final results depend on the specific values of f and «. The value
of the fraction f controls down to which mass ratio mergers should be
included and has thus a straightforward physical interpretation. The
parameter « controls the opening of the cone of influence around
the peak from which critical events should be considered as direct
mergers and is to be determined.

Using equation (4) with ny, = —2, which corresponds to the
typical slope of a A cold dark matter (ACDM) power-spectrum
at scales ranging from Milky-Way-like systems to clusters, we can
count the number of direct mergers with mass ratio larger than 1:10
(f = 1/7/10). For the choice of «, a natural idea would be to count
only critical events within the halo Top-Hat Lagrangian radius, then
a = Rru/R ~ 1.56 and we find Nierger = 0.2. However, this is clearly
an underestimation for «, as it corresponds to the situation where
the centre of the merging halo has already been incorporated into
the main one when the latter was of equal mass. A more sensible
choice, as will bear out in the analysis presented in the next section is
to extend the opening of the cone to twice that ratio @ = 2Ry/R ~
3.1 which corresponds to the two mass spheres of the surviving and
merging peaks touching at the scale of the critical event, signifying
the merger onset. We then find Nyerger & 1.7. Overall, we see that
the number of direct major mergers that a halo experiences while
increasing its mass tenfold is small, of the order of one or two. For
scale invariant history, each decade of mass accumulation contributes
a similar number of mergers, so a cluster that grew from a galactic-
scale protocluster thousand-fold in mass (f = 1/+/1000), did it
having experienced Npyerger A 5 major mergers. These conclusions
follow directly from first principles while studying the structure of
the initial density field.

2.3 Accounting for rarity and clustering

Let us now refine our model so as to define o more rigorously by (i)
requiring the merging object to have gravitationally collapsed before

MNRAS 531, 1385-1397 (2024)
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FigureS. Panel (a) shows the tracks of two peaks (solid line, red) and a saddle
point (dashed line, blue) of the density field as a function of smoothing scale
Rin 1 4 1D space. Panel (b) shows the field profile at three smoothing scales.
At smoothing scale Ry, the peaks and saddle points are distinct. At smoothing
Rce, one peak and a saddle point create a critical event C, after each only one
peak survives to larger smoothing scales. The merging of peaks is completed
at the scale Ryx when the overdensity of the surviving peak, now at point A,
is equal to the overdensity of the critical event §c and thus can be viewed as
reaching the threshold §. for halo formation at the same time. We can then
interpret the critical event as a merger with mass ratio MA/Mc = (RCE/Rpk)3
at a redshift corresponding to D(z) = 8c/8A.

it merges and by (ii) taking into account the correlations between the
central halo peak and the merger critical events.

Let us therefore consider the number density of critical events of
given height v as a function of their distance r to a central peak, both
defined at the same smoothing scale R

nce\pk(v’ R,r) =n(R)C(v, V) (1 + Ece.pk(va R, r)) ’ (5)

where C is the distribution function, f_ozo C(v, y)dv = 1, of critical
events in overdensity and is given by the analytical formula in Sec-
tion D along with a useful Gaussian approximation. The clustering of
critical events in the peak neighbourhood is described by the peak—
critical event correlation function on a slice of fixed R, &, pk(v, R,
r). The composite index pk refers to any peak parameters that may
be specified as a condition. Our goal is to determine what range of v
and what extent of r one needs to consider to count haloes merging
into a surviving halo with a particular vp.

2.3.1 Heights of critical events

To establish the range of critical event heights that describe mergers
of real haloes, we rely on the spherical collapse approximation to map
the peak overdensity to its gravitational collapse time. We consider
a physical halo at redshift z to be described by a peak at the Top-
Hat scale Ry such that §,x(Ryx) = 8./D(z), where 8. is the critical
overdensity for collapse model and D(z) is the linear growing mode
value at redshift z. Thus, a critical event found at smoothing R..
describes the merger of a satellite halo of scale R into the main
peak at scale Ry that corresponds to the same redshift, i.e. such
that 8ce(Ree) = Spk(Rpk) = 8./D(z). The situation is demonstrated in
Fig. 5. The ratio of scales and, correspondingly, masses of the two
merging haloes is therefore determined by the condition of equal
overdensities at the time of the merger.

Let us now consider a peak that has reached a scale Ry and that
experienced a merger in its past when its scale was Ry, Ry < Ro.
Requiring that, at the time of the merger, the surviving peak’s scale
(mass) is larger than that of the satellite sets the relation Ry > Ry, >
R or, conversely, 0¢(Rp) < 0o(Ryk) < 00(Rce), Where o is the oot
mean square (RMS) of the density field and is defined in Section A.
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From which it follows that the rarity of the relevant critical events at
scale R,

5ce RCS 6 R R
b= ( ) _ pk( pk) = v UO( pk) (6)
O-O(Rce) UO(Rce) O-O(Rce)
is within the range
0o(Ro)
<p< 7
P UO(Rce) =r= Vpk ( )

The lower bound corresponds to mergers that have been completed
at the very last moment, Ryx = Ry. The upper bound is achieved for
mergers of two equal mass objects, Rpx = Re..

To obtain the total number of merger events in a halo history we
now integrate the conditional event density in equation (5) over the
physically relevant range of heights from equation (7), i.e.

merger(vpk) —/ dR/ 47'[7' dr
fR
.
v op(Rg)

PK o0(R)

d‘)ncclpk(v R, r)~ (8)

2.3.2 Clustering of critical events around peaks

Ultimately, the conditional event density 7 px should include only
critical events that will directly merge with the peak; this would
make the density of critical events go to zero neepk(v, R, r) — 0 far
from the peak, i.e. when » — oo. While we cannot implement this
condition analytically (as it is non-local), we can measure ncejpk(V,
R, r) numerically, as will be done in the upcoming Section 3. We can
however approximate the conditional density ab initio by relaxing
the conditions that the peak is linked to the critical event to obtain
Teepk given by

Foap(v, R, r) = (LeakO0) Event(y)) ©)

(Peak(x))

using formally straightforward analytical calculations of critical
event—peak correlations, as described in Section B. Here, brackets
denote an ensemble average, where x and y are the random vectors
containing the density and its successive derivatives at the location of
the peak and the critical event, respectively and ‘Peak’ and ‘Event’
enforce the peak and critical event conditions, respectively. We
can expect ﬁceh,k to track the exact ngpx up to several smoothing
length distances from the peak, but further away from the peak
it just describes the mean unconstrained density of critical events:
Teelpk(V, R, 1) = fice(R)C(v) as r — oo. Therefore, in this approx-
imation, the question of where to truncate the integration over the
peak neighbourhood remains and we have

N, merger ( l)pk) ~

Ry ok
/ dR / 4 r?dr /
f op(Rp)

Vpk 50 (R)

dvﬁcelpk(”y R, r)-

10)

For scale-free spectra, introducing the dimensionless ratios u =
r/R and w = R/R, and changing the order of integration, equation (8)
can be written as

dw & " Neeppk
merger(vpk) - / / du dln w
d? Ngelpk 2/
4 d 11
du dInw i v kw(n+3)/sz nCC\pk(V w, u), (1
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Figure 6. Integration of the analytical expression of the clustering of critical
events around peaks, equation (11), for different values of vpk. Here vee is
integrated from 0.681vp to vpk, with power spectrum n = —2 and smoothing
ratio Rpk/Rce = 0.95. We detail the method used to compute this graph in
Section C1. Rarer peaks have a stronger excess of events in their vicinity,
which mirrors the known Kaiser bias (Kaiser 1984).

where we note that the differential event count per logarithm of
smoothing scales has only a dependence on the smoothing scale w
via the bounds of the height integration, since for power-law spectra
w*neepk(w) is w-independent.

In Fig. 6, we plot the differential version of equation (11) per radial
spatial shell, integrated over v in the range 0.681 vy, < v < vy which
corresponds to (R/Ry)® = 1/10 for n = —2 power-law spectrum.
Fig. 6 shows that critical events are indeed preferentially clustered
at distances ~3R from a peak. It is natural to interpret this distance
as the boundary of the cone influence of the peak, with more distant
critical events constituting ‘the field’ of events that are not directly
merging into the peak. Thus, the computation of the correlation
function supports choosing « & 3 in the estimate of equation (4), i.e.
qualitatively double the value of Rry. Note also that the probability
of a critical event to be found close to a peak is suppressed, which
corresponds to an exclusion from the interior of the peak’s cone of
influence, as was qualitatively observed in Fig. 4.

3 NUMERICAL INTEGRATION OF MERGERS

‘We will now rely on a numerical approach to study the properties of
the mergers a given halo undergoes through the properties of critical
events that are absorbed by the peak representing the halo. The
main numerical step is the identification of critical event—peak pairs
that mark specific mergers. This in turn involves the identification
in the initial field at a sequence of smoothing scales of connected
peak—saddle—peak triplets that describe filamentary links between
the merging peaks. At a particular smoothing scale, the saddle and
one of the peaks of a given triplet merge into a critical event, while
the remaining peak is a surviving halo. Such triplets are identified
with DisPerse (Sousbie, Colombi & Pichon 2009) that performs
Morse complex analysis of the random density field. We perform the
analysis on an ensemble of scale-free Gaussian realizations of initial
density fields.

3.1 Number of mergers per peak line

We identify proto-events as close-to-zero persistence-pairs of peaks
and filament-saddles, and we study here their clustering relative
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Figure 7. The radial number density of topologically linked critical event
per peak as a function of distance to the peak on a slice of constant R
and per logarithmic bin in smoothing scale (see the text for details of how
critical events are identified and paired to a peak). We represent the mean
separation with vertical lines. Critical events are preferentially clustered at r
~ 2.5 — 3.5R, depending on rarity. When compared to Fig. 6, the rarer peaks
have relatively fewer connected events, suggesting that their satellites would
have merged together before merging into the central object.

to a given peak. We proceed as follows: we generate 430 scale-
invariant gaussian random fields of size 256 with a power-law
power spectrum with spectral index n = —2. We smooth each
field with a Gaussian filter over multiples of a given smoothing
scale. Here we choose R = 1.1% pixel with k running from 15 to
49. Each smoothing step corresponds to 33 per cent increase in the
mass associated with the smoothing scale, and eight steps give the
mass increasing approximately 10-fold. The skeleton is identified at
each scale using DisPerse (Sousbie et al. 2009) with a persistence
threshold of 1 percent of the RMS of the smoothed fields. We
also measure at each critical point the value of the gravitational
acceleration. Since we rely on Gaussian filters, the overwhelming
majority of critical events encode the destruction of a peak with a
saddle with increasing smoothing, rather than the creation of such a
pair (the latter is 30 x less likely, see Cadiou et al. 2020, fig. F1). In the
following, we ignore the latter rare case as it has no straightforward
physical interpretation and is subdominant. We thus detect events by
following each pair of peak and saddle from one smoothing scale to
the next one. Each pair either survives at the next smoothing scale or
disappears at a critical event. In the latter case, we define the position
of the critical event as the middle point of the pair at the largest
smoothing scale where it survived. Given that DisPerse (Sousbie
2011) stores for each saddle the two maxima it is paired with, we
can therefore associate the critical event to the one peak that is not
involved in the event.

Using this data, we can now study the clustering of critical events
around peaks. In Fig. 7, we show the ratio of the number of critical
events per logarithmic smoothing scale bin per unit distance to the
number of peaks at the same scale and at the same rarity.? Critical
events are counted in the interval of rarity 0.681 v < vee < vpy. This
range corresponds to the smallest scale cross-section of the influence
cone if we count major mergers of a peak that grows ten times in the
process, i.e. Ree =1/ WRO in equation (8). Note that our quantity
differs from two-point correlation functions in which one would
compute the distance between any critical event and any peak, as was

ZNote that some peaks will not be associated to any critical event in the fixed
interval of smoothing scales.
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Table 1. Number of critical events per peak, both being measured at the
same scale, per logarithmic bin of smoothing scale, as a function of the rarity
of the peak.

vekrange  [15,20)  [20,25) [253.0) [30,35) [3.5,00)
dn,
celpk 0.90 1.20 1.40 142 127
dln R

done in the previous section (Fig. 6). Here, each critical event only
contributes to the density at a single distance to its associated peak,
and we thus expect the signal to drop to zero at infinite separation
since the probability for a critical event to be associated with a peak
far away vanishes.

Should the critical events be randomly distributed, their number
per linear dr would grow as 2. Instead, in Fig. 7 we find an exclusion
zone at small separations, an excess probability at 7/R ~ 2-3, and a
cutoff at large separations as a consequence of our requirement for
the critical event to be paired to a peak.

We integrate the curves in Fig. 7 and report the mean number of
critical events per peak per logarithmic smoothing bin in Table 1.
All the effects accounted for in our numerical analysis give just
~40 per cent lower values in Table 1 relative to equation (4) (per
Inf) with « = 3.1. This shows that the two main corrections to the
naive uniform density estimate — the restriction to only collapsed
satellite haloes (Section 2.3.1) on the one hand, and an attraction
of critical events of similar heights towards the peak influence zone
(Section 2.3.2) on the other hand — compensate each other to a large
extent.

As a function of peak rarity vy, the mean number of critical
events per peak in a constant R slab first increases up to vy ~ 3
before decreasing. It is fairly flat in the range v = 2.5-3.5, where
most of the physical haloes are, which argues for taking o parameter
independent on vy if one uses the rough estimate as the global
mean density of events times effective volume as in equation (4),
Section 2.2.

So far, we have only studied properties of peaks and critical events
at the same scale, using the defining equation (7) to implicitly perform
a multiscale analysis. We can however track peaks from one slab of
smoothing scale to another to build peak lines and associate them to
critical events. This generalizes the procedure sketched on Fig. 4 in
3 + 1D. For each peak with mass My, we follow its peak line
to find all associated critical events with a mass My > M. >
M /10 that have 8c.(Ree) > Opk(Rpk) where R and Ry, are now
different. We only retain peaks that exist at scales Ry, > Runinv/10
to ensure that we do not miss critical events below our smallest
scale.

Given our numerical sample, we are now in a position to study the
distribution of the number of mergers per peak, which we show on
Fig. 8. This measurement differs from the value one would obtain
by taking Table 1 multiplied by the logarithm of the range of scales.
Indeed, we account here for the decrease in the number of relevant
satellites as their mass approaches the final peak mass. We also
obtain our measurement by computing the number of mergers per
surviving peak at the scale M. Compared to that, in Table 1, we
give the value per any peak at 1/10My scale, irrespective of whether
and how long it would survive at the further smoothing scales.
We find that the dependence of the number of mergers with peak
height is weak, with a mean number of mergers varying between
1.8 and 2. This shows that in the language of effective influence
cone radius of equation (4), « = 2Rry/R = 3.1 is a very good
proposition.
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3.2 Orbital spin parameter of mergers

Let us now define the spin parameter of an event at scale R, relative
to a peak of rarity v at scale Ry as

R3, |r x (Vi — V)|
Rl V2Ryo_1(Ry)

Here, we recall that o_; is the variance of the gradient of the
potential, whose definition is given in Section A. Vi and V1
are the gravitational accelerations at the locus of the critical event
and of the peak respectively, and r is the position of the critical event
with respect to the peak. This definition reflects the spin definition
of Bullock et al. (2001): under the Zel’dovich approximation,
Rge|r x (Vi — V)| is proportional to the mass times the cross
product of the position with the velocity of the merging object
relative to the peak at the time of its collapse, i.e. the numerator
is proportional to the orbital angular momentum of the merger.
Conversely, the denominator is proportional to the orbital angular
momentum a merger of mass ng coming from a distance of Ry
with velocity equal to the RMS of the velocity v/2o_; would have at
the time of the collapse of the peak. We show on Fig. 9 the distribution
of the spin parameter A. The sample consists of mergers with mass
ratios greater or equal to 1:10 around rare peaks. In practice, we select
Vok > 2.5; Ry /V/10 < Ree < Ry and 8ce > 8y The distribution is

12)
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roughly lognormal with a mean value of u; ~ 0.048 and a standard
deviation of o, ~ 0.51.

The novelty of our approach is to model mergers as punctual
events. This has to be compared to previous theoretical works
which treated angular momentum accretion around peaks as a
continuous accretion process (e.g. White 1984; Ryden 1988). This
allows direct comparisons to results about mergers obtained from
N-body simulations. Remarkably, our estimate for the orbital spin of
mergers is found to be very close to the values measured in N-body
simulations, which are on the order of 0.04 (see e.g. Bullock et al.
2001; Aubert, Pichon & Colombi 2004; Danovich et al. 2015). This
translates two effects. First, the mass ratio (R},/Ry,) is dominated
by the more numerous smaller mergers, which drives A down. In
addition, we find that critical events tend to have a mostly radial
acceleration so that their tangential velocity is smaller than the RMS
of the velocity field (Vi — Vi )/0o_1). This is qualitatively in
line with findings from N-body simulations (Wetzel 2011; Jiang
et al. 2015), where the tangential velocity of major mergers was
found to be smaller than their radial velocity. Albeit simplistic, our
model thus allows us to provide a natural explanation for the fact
that mergers bring in a comparable amount of angular momentum
to that of the full halo: gravitational tides alone (which is the only
ingredient of our model) can funnel in a significant amount of angular
momentum through mergers. This provides a theoretical motivation
for the amplitude of the spin jumps during mergers employed in semi-
analytical models (see e.g. Vitvitska et al. 2002; Benson, Behrens &
Lu 2020).

3.3 Mass distribution of mergers

Finally, we compute the mass distribution of mergers as well as
their density. The goal here is to obtain the distribution of the time
and mass ratios of the mergers. In order to build the distribution of
the mass ratio, we track peaks over multiple decades of smoothing
scales (i.e. mass). Since the number density of peaks evolves as Rl;f s
the sample size quickly decreases with smoothing scale; we select
here peaks that exist at a scale larger than Rinin /100 & 4.6 Rpin.
The practical consequence is that our sample is only complete over
two decades in mass ratio. We also only retain rare peaks that have
vpk > 2.5. Let us then estimate the time of the merger as follows:
we associate both the peak and the critical event a time #, and
tce, respectively, using § = §./D(z). Note that some of the selected
peaks will have collapsed by z = 0 while others will in the distant
future. To aggregate peaks collapsing at different times, we compute
the lookback time of the merger relative to the collapse time of the
peak A = (fp — tee )ty We estimate the distribution of mergers in
lookback time—mass ratio space using a 2D kernel density estimation
which we show in Fig. 10, top panel. As expected, the more massive
the merger, the more recently it happened. In the figure, we included
mergers with mass ratios smaller than 0.01 in the shaded region rather
than truncating the plot, but we remind the reader that our data set is
not complete in this region.

We then show on the bottom panel of Fig. 10 the cumulative
distribution function of the merger time, for mass ratios larger than
1:10 as a function of peak height. We recover the trend found in
N-body simulations that rarer haloes have had more recent major
mergers than lower mass ones. Cluster-like structures (vpx < 3.5)
typically had 80 per cent of their mergers in the second half of their
life (past 7 Gyr for a cluster at z = 0), and had half their mergers in
the last third of their life (last 5 Gyr for a cluster at z = 0).

Our model reproduces qualitative trends observed in N-body
simulations (figure 9 Genel et al. 2009; Fakhouri, Ma & Boylan-
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Figure 10. Top: distribution of the merger as a function of mass ratio and
lookback time. We show the median with 68 per cent interval in black. The
hashed area corresponds to regions of the parameter space that may not be
complete, see the text for details. Bottom: the corresponding fraction of major
merger as a function of lookback time relative to the peak collapse time, for
different peak heights. Rarer objects have had more recent mergers.

Kolchin 2010), namely that rarer peaks typically had their last major
merger more recently than less rare ones.

Our model differs from the Extended Press—Schechter (EPS)
approach (Bond et al. 1991; Bower 1991; Lacey & Cole 1993).
In the EPS approach, random walks in o (R) — §(R) are mapped on to
mass and time evolution, respectively. Jumps from one R to another
at fixed overdensity thus correspond to sudden changes in mass at a
fixed time, i.e. mergers. While this approach yields statistically useful
merger rates, it is unable to provide spatial information about mergers
since neither the satellite nor the central halo are localized. Our model
trades some of the analytical tractability of the EPS approach for
additional information about the spatial location of mergers, all the
while yielding a good agreement with N-body simulations.

4 CONCLUSION AND PERSPECTIVES

‘We built a model of mergers from an analysis of the initial conditions
of the Universe. Following the work of Hanami (2001) and Cadiou
et al. (2020), we relied on the clustering of critical events around
peaks in the initial density field to study the properties of halo
mergers. We started with a simple model that yields analytically
tractable results, while further refinements presented in Section 3
allowed for more precise results at the cost of numerical integration.

We focused here on the analysis of merger events that bring at
least 10 per cent of the final mass of the main halo, which we refer
to as ‘major mergers’. We however note that our approach can be
extended to the analysis of minor mergers, which we leave for future
work.

We first obtained a zero"-order analytical estimate of the mean
number of mergers per decade in mass using the mean abundance
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of critical event per peak in Sections 2.1 and 2.2. Our results
are consistent with haloes having had one to two major mergers
per relative decade of mass growth. We then refined our model
in Section 2.3 by accounting for the timing of the collapse of
the haloes involved in a merger candidate; a critical event should
only be counted as a merger if its two associated haloes have
collapsed before the merger happens. We showed this can be achieved
semi-analytically by numerically computing the value of a cross-
correlation function, equation (10), that reveals that critical events
cluster at 2-3 times the smoothing scale of the peak (Fig. 6).

Finally, in Section 3, we addressed the double-counting issue,
whereupon a given critical event may be associated with several
peaks, by uniquely associating each to the one peak it is topologically
connected to. To that end, we relied on multiscale analysis of
Gaussian random fields using computational topology to restrict
ourselves to the study of peaks that, up to the critical event, form
persistent pairs. In this model, we found again that haloes of different
rarities undergo about two major mergers. By tracking peaks in
position-smoothing scale and by associating critical events with
them, we were able to provide numerically cheap and easy-to-
interpret data on the statistical properties of halo mergers. We found
that mergers come from further away for rarer peaks (Fig. 7), but
that the total number of major mergers only weakly depends on peak
rarity (Fig. 8).

We then computed the gravitational tides at the location of the
critical event to estimate the relative velocity of mergers and predict
the orbital spin they bring in. We find that it has a lognormal
distribution with a mean of w; = 0.048 and o; = 0.5. These
properties are remarkably close to the distribution of dark matter halo
spins measured in hydrodynamical simulations (u; = 0.038, o, =
0.5, Danovich et al. 2015). This suggests that our model captures
the (statistical properties) of the orbital parameters of mergers, as
is expected should they be driven by gravitational tides (Cadiou,
Pontzen & Peiris 2021a, 2022). We also computed the distribution of
the mass brought by mergers and their timing, which we found to be
in qualitative agreement with results obtained in N-body simulations
(Fakhouri et al. 2010).

While the aim of this model was not to compete with numerical
simulations, it provides theoretical grounds to explain the properties
of mergers observed in N-body simulations and efficient tools to
predict their statistics and geometry ab initio. Our model could be
improved with precision in mind, for example by taking into account
deviations from spherical collapse under the effect of shears to
improve our time assignments. It however reveals that the statistical
properties of the merger tree of dark matter halo can be explained
through a multiscale analysis of these initial conditions.

4.1 Perspectives

Statistics involving successive mergers could potentially be built
on top of our model by using critical events associated with the
same peak line, for example, to study the relative orientation of
the orbital angular momentum of successive mergers. However, we
found that such analysis was complicated by the fact that peaks move
with smoothing scale. Different definitions of angular momentum
(distance to the peak at the same scale, at the same density, or for a
fixed peak density) yielded qualitatively different results. This should
be explored in future work.

The model built in this paper relied on a linear multiscale analysis
of the density field. This could be employed to provide control over
the merger tree (timing of the merger, orientation) in numerical
simulations through ‘genetic modifications’ of the initial field (Roth,
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Pontzen & Peiris 2016; Rey & Pontzen 2018; Stopyra et al. 2021;
Cadiou et al. 2021a, b). We also note that, as we did for tidal torque
theory in Cadiou et al. (2022), such an approach would allow direct
testing of the range of validity of the model.

In our analysis throughout the paper, we used Gaussian filters
which provide closed analytical formulas for the critical event theory
and also ensure that, along the peak trajectory, larger smoothing
scales correspond to later redshifts of the collapse. In addition,
Gaussian filters limit the extent to which peak-saddle point pairs
can be created (rather than destroyed, see Cadiou et al. 2020), for
which we have no physical interpretation yet. However, other choices
of filter could be considered, as long as the filter is positive, so that the
region associated with the peak at a larger smoothing incorporates
the regions assigned with smaller smoothing, and has sufficiently
smoothly tempered boundaries to define second and third derivatives
of the field. For instance, the widely used Top-Hat filter has a compact
support and allows to directly map the density to a collapse time and
the smoothing scale to a mass through the spherical collapse model.
But it has sharp boundaries and ill-defined derivatives beyond the
first one for a density field with typical cosmological power spectra
in ACDM-like hierarchical models. For critical event theory, one
could consider a modification of Top-Hat that retains a compact
support with nearly equal weight but has at least second derivatives
continuous at the boundary. Closed analytical formulas for the critical
event theory with such non-Gaussian filters are not known, however,
we do not see any obstacle to numerical analysis using them.
The focus of this work was to provide a theoretical framework to
understand the properties of mergers, and we expect the qualitative
results to hold for other reasonable filters.

This paper focused on mergers of peaks corresponding to the
relative clustering of peak-saddle events. One could extend the
analysis to the relative clustering of saddle—saddle events to provide
a theoretical explanation for which filaments merge with which, thus
impacting their connectivity or their length (Galarraga-Espinosa et al.
2023). Conversely, extending the model to the relative clustering of
saddle-void events (which wall disappears when?) is also of interest,
as the latter may impact spin flip, and is dual to void mergers, and as
such could act as a cosmic probe for dark energy. One could compute
the conditional merger rate subject to a larger-scale saddle-point as a
proxy to the influence of the larger-scale cosmic web, following both
Musso et al. (2018) and Cadiou et al. (2020) to shed light on how the
cosmic web drives galaxy assembly (Kraljic et al. 2018; Laigle et al.
2018; Hasan et al. 2023). Eventually, such a theory could contribute
to predicting the expected rate of starburst or AGN activity as a
function of redshift and location in the cosmic web.
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APPENDIX A: NOTATIONS

Let us first introduce the dimensionless quantities for the density field, smoother over a scale R by a filter function W

d’ik ik-r
S(r,R)z/wé‘(k)W(kR)e ) (A1)

We will consider the statistics of this field and its derivatives in this paper. For practical purposes, let us introduce

ol(R) = L / ” dki2 P W2(KR). (A2)
27'[2 0

These are the variance of the density field (§2) = o, of its first derivative (V3§ - V§) = o2, etc.
Following Pogosyan, Gay & Pichon (2009), let us introduce the characteristic scales of the field
0o ! 02

Ry=—, R.,=—, R=-—-. (A3)
(o] (ep) 03

These scales are ordered as Ry > R, > R. These are the typical separation between zero-crossing of the field, mean distance between extrema,
and mean distance between inflection points (Bardeen et al. 1986; Cadiou et al. 2020). Let us further define a set of spectral parameters that
depend on the shape of the underlying power spectrum. Out of the three scales introduced above, two dimensionless ratios may be constructed
that are intrinsic parameters of the theory

2
o] 03

s ok (A4)
Ry ooy VT

R
y — = .
e R, o103

From a geometrical point of view, y specifies how frequently one encounters a maximum between two zero-crossings of the field, while 7
describes, on average, how many inflection points there are between two extrema. These scales and scale ratios fully specify the correlations
between the field and its derivative (up to third order) at the same point. For power-law power spectra of index n, P(k) o k", with Gaussian

smoothing at the scale R in 3D, we have Ry = R+/2/(n + 3), R, = Ry/2/(n +5) and R= R/2/(n+7) while y = /(n 4+ 3)/(n +5) and
y=Jm+5)/n+7).

APPENDIX B: PEAK-EVENT CORRELATION

In order to compute the number of mergers in the vicinity of a peak, we need to compute the two-point correlation function between critical
events and peaks. We achieve this by evaluating the joint density of peaks and critical events

Npeak,ce = <Peak(x) EVent()’)> s (B 1)
where the average is taken over all 30 random variables defining the peak and critical event field up to the third derivative.

Peak(x) = |J|Ou(—Tr(Hy))Ou(3_,;H, ;) Ou(det H,)
X 8p(x1)dp(x2)8p(x3)dp(x — vpk), (B2)

Event(y) = |J,|Ou(—Tr(Hy))Ou(>",Hy ))dp(det H,)
X8p(y1)8p(y2)8p(y3)8p(y — v). (B3)

Here, x = {x, x1, ..., x3, Hy, H, 1, ..., H, 3} with x, x;, H,, H,; the density, its gradient, its Hessian, and the minors of its Hessian at the peak
locationand y = {y, y1, ..., y3, Hy,H, 1, ..., H, 3} withy, y;, H,, and H,; the density, its gradient, its Hessian and the minors of the Hessian
at the critical event location. |J,| = | detH,| and we provide an explicit formula for |J,| in equation (C2). This expression is the rotationally
invariant equivalent of equation (18) of Cadiou et al. (2020).

The two-point correlation function can then be found as

(Peak(x) Event(y))

T SeeapVpie v Ry ) = o (Event(y)) (B4)

Note that, compared to Cadiou et al. (2020), we cannot perform the integration in the frame of the Hessian here. Indeed, the numerator
involves cross-correlation between the peak and the critical event which breaks the rotational invariance assumption. While the exact integration
cannot be carried out analytically, we can none the less compute it numerically.
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APPENDIX C: COVARIANCE MATRICES

The covariance matrix of x, x;, x;; is given by

1000%X 22000
0100000000
0010000000
0001000000
2ooo i LLooo

— 3 15 1

€= gooo%%séooo €D
roooLsLs 1000
000000000
000000000
000000000 L

)

We provide in equation (C2) the expression for the jacobian required to compute the number density of critical events in a covariant form. Here
X stands for the derivative of the field of order i w.r.t. the first direction, j w.r.t. the second direction, and k w.r.t. the third direction divided by
the corresponding RMS defined by equation (A2).

Jy
f} = detH, x (V*Vy)- H;l - VdetH, =

2
|:y002y020y300 _2y002y110y210+y002y120y200+2y011y101 y210+2y011y110y201 _2y011y1]1y200_y0|1y300

2 2
=2Y500 Y101 Yaor T Yoo Y102 Yaoo T 2Vi01 V1o Vin — Yot Y120 — y102y110:|
2
x ((ymz + Yo30 T ¥210) Vorr Yior = Yoo Y110) + Yooz Yoo _ym])(yloz + Yoo FY300) T Goos FYoar T Y201) Vor1 Yino _yOZ(Jyl[)l)) +

2
{yoozyozoyzm Yoo Y30 Y200 = 2002 Y110 Y120 — 2Yo11 Yor1 Y00 T 2Yo11 Yior Yizo +2You1 Yito Yiut = Yoru Yaro

2 2
+y012y020y200 _y012y1]0 _2y020y101 Yin +2y021 Yion Yo _y030y101:|
2
X ((yooz + Yoo T Y200 Vo2 Y200 = Yiao) T Gor T Y030 T Y210) i1 Yiro = You Yaoo) + Gioz Y120 Y300 Vo1 Yiro _yOZ(Jlel)) +

|:y002y020y201 +y002y02] y200 - 2y002y110y]l] +y003y020y200 _y003y1210 _2y011 y012y200 + 2y01]y]0] yll]

2 2
Y011 Y102 Y110 Yo Y01 F2Y012 Y101 Y110 = 2Y020 Y101 Yion — Your y101:|

X ((y]02+y120+y300)(y011y101 _y002y110)+(y002y200 _ylzm)(y()u+y030+y210)+(y003+y021 +y20])(y101y110 _y()]lyZOO)) . (C2)

C1 Numerical implementation

In this section, we describe how Fig. 6 was obtained. We used Monte-Carlo integration to numerically evaluate equation (11). The statistical
distribution of the aforementioned field variables is regulated by its 30 x 30 covariance matrix ¥, which we may compute symbolically for
given separation distance r, smoothing scales Ry R, and spectral index ng. We aim to sample points following this distribution and evaluate
the integrands of equation (B2) to obtain the expectancies (Peak(x) Event(y)). Ideally, we would like to evaluate the correlation function at
identical smoothing scale. However, at equal smoothing scale and small separation, the covariance matrix becomes almost singular, resulting
in unfavourable numerical artifacts plaguing the statistic of our result. To avoid this, we instead consider slightly different smoothing scales.
Of course, we can not naively do this directly, as x, x;, y, y;, det Hy will rarely take the specific values that the Dirac deltas impose, and thus
the integrands will almost always evaluate to zero. To circumvent this, we compute the distribution of the other field variables conditional to
the Dirac deltas being satisfied, with two exceptions: as we will need to integrate v, over a range to recover equation (11) anyway, we replace

Sp(y — vpi) by G')H(vp“:;’l‘( —¥)Ou(y — v;"ei;k); furthermore, as det Hy depends on several field variables, computing the conditional distribution

is not easily feasible. We therefore replace ép(det Hy) by a ‘thick Dirac delta’, §,(det Hy) = i Op(e — det Hy)Oy(det Hy + ¢), for some small
€. The smaller ¢ is, the thinner the Dirac delta and the more faithful it is to the original integral. However, reducing ¢ comes at the cost of
reducing the convergence rate of the Monte-Carlo approach.

Once the conditional distribution is computed, we simply draw random points following this distribution and average the evaluation of the

integrand on these points, which converges to the value of the integral. This allows to compute fvup”u , dv(Peak(x) Event(y)) and (Peak(x)), and

results in Fig. 6. Practically, to obtain Fig. 6, we drew 22° sample points. We used a smoothing ratio Rp/Ree = 0.95 and a thick Dirac delta of
size e = 1073,
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APPENDIX D: EVENT DIFFERENTIAL DISTRIBUTION

The differential density of critical events with different field values v are derived in Cadiou et al. (2020) and read

3R 1/ 3\ 5
Nee(v, R) = Wg (E) (1 - 7/2)

2
Z c3i(v, y)exp (—2(1_1)75]/2/[)) , (DD

i=5,6,9

where the full expressions for c3;(v, y) were given in equation (39) of Cadiou et al. (2020) Factorizing the mean density of the critical events,
fice, in this expression such that

o0

nee(V, R) = i C(v), with / dvC(v) =1, (D2)

—00

we introduce the normalized distribution of the events in height

18410 2
Cv,y)= 29—76\7/% Z c3i(v, y)exp (_2(1_1)75)/2/1)) ,

i=5,6,9

which depends on the power spectrum (and on the smoothing scale if the spectrum is not scale invariant) only through the spectral parameter
y.In Fig. D1, we show the behaviour of C(v, y) for several choices of y that correspond to the spectral slopes of interest n = —2.5, —2, —1.5,
see equation (A4). For comparison, the peak rarity distribution is represented as dashed lines. We see that critical events typically occur at
lower v than peaks, and are very rare for v > 3.

We note that C(v, ) for v < 3 can be approximated with an accuracy of better than 1073 for —2.5 < ny < —1.5 by a Gaussian with parameters

1 < (v— 17«)2)
exp | — ,
V2 & P 252
i = 1.546y, & = 1 —0.5084y + 0.04140y.

C,y) =

We show on the top panel of Fig. D1 the residuals of this fit.

(Gaussian fit)

28 054
53 0.0 x &
= —0.5 41
T T T T T T T
0.5 .
Crit. event
04 - ng=—25
ns=-2.0

< 0.3 7 ng=—1.5
2
O 024
0.1 1
0.0
T T T T T T T
-2 -1 0 1 2 3 4
v

Figure D1. Normalized differential distribution of critical events in density rarity value for several values of spectral slope, as marked. The top panel shows the
absolute residuals when fitting C(v, y) with a Gaussian function. Parameters of the Gaussian are provided in the text. We show the peak rarity distribution as
thin dashed lines.

APPENDIX E: MEAN EVOLUTION OF PEAK RARITY

Let us predict the evolution of peak rarity with Gaussian smoothing. The value of the density field smoothed with a Gaussian window at
position x changes with window size R according to the diffusion equation
as(r, R)

R RAS(ry, R). (ED)
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If we are interested in the change of the peak value along the peak track r(R), we notice that the partial derivative d/0R can be replaced by

the full derivative, since at the peak V4§ = 0, thus

dé(rpk, R)
dR

and for brevity, we can now drop the reference to the position of the peak in the argument. In terms of the rarity of the peak, v(R) = §(R)/o¢(R),

the evolution equation becomes

dv(R) dlog oy
= —u(R)

dlog R dlog R

The process of changing the peak height with smoothing is stochastic since the Laplacian of the field is a random quantity. However, to estimate

the mean change, let us approximate the stochastic Laplacian by its conditional mean value given the height of the peak

= RAS(rp, R), (E2)

+ R?Av(R). (E3)

AV(R) = (Av(R)|V(R), A; < 0), (E4)

where the last conditional inequality, written compactly in terms of the eigenvalues {A;}, = ; p of the Hessian of the density, ensures that we
are dealing with a maximum and not an arbitrary field point. In principle, one should also enforce the vanishing gradient of the field at peak
position, but since the gradient of the field is uncorrelated with both the value and the second derivatives of the field at the same point, this
condition is inconsequential to our problem.

Let us first evaluate the conditional mean in equation (E4) in 1D, where the peak condition is just Av < 0. This gives us

V22
1 2 eXp | ——5—
(Av|v, Av < 0) = — — \/7(2)

R (R fr1+erf(v7g)

where Ry is defined by equation (A3), while ¢ = y/+/1 — y? varies from zero at y = 0, to infinity at y = 1. The first term in equation (E5)
is the general conditional response of the Laplacian to the field value, while the second correction comes from restricting the field to be at the
local maximum. For a Gaussian window function, we also have that dlog op/dR + R/R2 = 0 for any power spectrum. We can then obtain the
(mean) evolution equation for the peak rarity

dv(R) R \/zexp (—%)

dlogR__% nl—i—erf(%)’

where R/R is a constant that depends on the power spectrum (cf Section A); it is equal to ¢ for power-law spectra. Thus, the rarity of maxima
is, on average, decreasing slowly with smoothing scale R. The decrease is less pronounced for rarer peaks and can be in first approximation
neglected for v > +/2.

For power-law spectra in D dimensions, ¢ = /(n + D)/2. We obtain a criterion for insignificant rarity drift for peaks rarer than v >
2/+/n + D. Note that this is based on generalizing the 1D result to higher dimensions. In 2D the drift term is more cumbersome and in 3D it
does not have a closed analytical form, but the structure of the result remains the same.

(E5)

(E6)

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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