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Abstract— We propose an orthogonal collocation method
(CM) for solving Cosserat rod Dirichlet-Neumann boundary
value problems in static and dynamic modes. We interpolate the
internal loading and collocate the strong form of the differential
equations. The method uses Chebyshev polynomials in order to
minimize Runge’s phenomenon. The time derivatives are im-
plicitly discretized using the backward differentiation formula
BDF-α. We compare our method with the shooting method
(SM), multiple shooting method (MSM) and two isogeometric
CM against three static and one dynamic applications. The
results show that our CM is more stable than SM and faster
than MSM.

I. INTRODUCTION

Elastic rods have attracted interest in many fields such as
robotics [1], computer graphics [2], [3] and medicine [4]. An
application of interest to the current work is the simulation
of soft catheter navigation in blood vessels. This requires
an accurate, fast, and numerically stable method capable of
solving large deflections, contacts, and friction. Cosserat rod
theory is widely used to formulate this problem. 3D finite
element methods have been developed for its resolution,
but they struggle to achieve both real-time performance and
accuracy for the full range of states that a catheter passes
through during navigation [5]. Therefore, this paper focuses
on numerical methods that represent the state of the rod as
a continuous function of its arclength that can be recovered
by solving a boundary value problem (BVP).

In [6], [7] forward dynamics is solved by discretizing
Kirchhoff/Cosserat partial differential equations (PDEs) in
time using the backward differentiation formula BDF-α. The
resulting BVPs in arclength dimension are solved in every
time step using the shooting method (SM). This technique
achieved real-time performance in many soft and continuum
robots applications. Indeed, SM unknowns are the initial
conditions of the ordinary differential equations (ODEs)
which provides a relatively small Jacobian matrix to non-
linear solvers. However, SM can be unstable in ill-posed
shooting problems and may be fundamentally unsuitable for
handling contacts at arbitrary locations [8]. The multiple
shooting method (MSM) can be used to improve the stability
of SM. It was used in [9] for multibody analysis. The method
subdivides the BVP interval into multiple subintervals and
solves an initial value problem for each one. MSM can
be computationally expensive because all initial conditions
are unknown at the subintervals and must be computed.
Thus, it is impractical for solving dynamics. More stable
techniques for solving Cosserat BVPs include collocation
methods (CMs). Isogeometric CM was used in [10], [11] to

solve static problems by using NURBS to approximate cen-
terline position and orientation. Due to NURBS smoothness,
first and second derivatives of the approximated variables
are computed which allows to collocate the strong form of
the governing equations. This work was extended in [12] to
tackle contacts and friction in dynamic mode by additionally
solving for velocity and angular velocity using an implicit
time integration. In [13] the linear and angular accelerations
are approximated and a Newmark time integration is used.
A significant advantage of isogeometric methods lies in
their inherent compatibility with CAD systems, enabling
a direct and efficient integration. However, in order to
minimize Runge’s phenomenon, orthogonal CM which uses
Chebyshev polynomials and their roots as collocation points,
can be used. The Kirchhoff model was solved in [14]
with collocation on curvature and internal forces. This work
shows that for beam under vertical tip force experiment, the
error decays exponentially with increasing the number of
collocation points. In [15] the internal force and moment
are approximated and the strong form of the equilibrium
equations is collocated. The Kirchhoff model was solved
in [16] with collocation on curvature. This work uses the
Magnus expansion for arclength integration which allows to
get the Jacobian in closed form. This method was compared
to SM but only for applications that require low order
polynomials (less than 11). All these methods were presented
in the static case.
To the best of our knowledge, Chebyshev CM for solving
Cosserat forward dynamics collocated on the strong form
of PDEs have not been explored yet. Motivated by this
and the limitations of SM, we propose a Chebyshev CM
for solving Dirichlet-Neumann BVPs in static and dynamic
modes. We interpolate the internal forces and moments and
collocate the strong form of the differential equations. The
time derivatives are computed using the implicit BDF-α as
described in [7]. We compare time computation, precision
and stability of our method against SM in three static and one
dynamic applications. We include experiments that require
high polynomial order. In addition, the dynamic numerical
application is compared to the results of [13].
In section II Cosserat static ODEs and dynamic PDEs are
introduced. Chebyshev approximation is briefly described
in section III. Section IV shows how to solve static and
dynamic Cosserat BVPs using CM. Numerical applications
are presented in section V.



II. COSSERAT MODEL

Cosserat rod is described as a one-dimensional framed
curve defined by the parameter s ∈ [0, L], where L represents
the length before strain. Unlike the Kirchhoff rod theory,
this model allows for shear and extension. The rod is
characterized by its centerline position, p(s) ∈ R3 and its
orientation, R(s) ∈ SO(3). The cross-sections are assumed
to remain undeformed under loading [10].

Following the notation in [7], a partial derivative of a
vector y w.r.t s is denoted ys and w.r.t to time t is denoted
yt. The ODEs can be written as follows [7]:

n = RKse(v − v∗)
m = RKbt(u− u∗)

ps = Rv
Rs = Rû
ns = −f

ms = −ps × n− l

(1)

Linear elastic constitutive law is used. n and m are respec-
tively the internal forces and moments in the inertial frame.
The first derivative of p w.r.t s and the curvature vector, both
in the local frame, are v and u. (̂.) is the skew-symmetric
matrix operator. The initial configuration of v and u are v∗

and u∗. The stiffness matrices for shear and extension and
for bending and torsion are Kse = diag(GA,GA,EA) and
Kbt = diag(EI1, EI2, GI3), where E is Young’s modulus,
G the shear modulus, A the cross-sectional area, I1 and I2
are the second moments of area, and I3 is the polar second
moment of area. The external distributed forces are f and l.

Following Antman’s [17] derivation, the PDEs can be
written as follows [7]:

n = Kse(v − v∗) +Bsevt
m = Kbt(u− u∗) +Bbtut

ps = Rv
Rs = Rû

ns = ρAR(ω̂q + qt)− f
ms = ρR(ω̂Jω + Jωt)− p̂sn− l

qs = vt − ûq + ω̂v
ωs = ut − ûω

(2)

Kelvin-Voigt type viscous damping is used [18]. q and ω
are respectively the velocity and the angular velocity in the
local frame. The damping matrices for shear and extension
and for bending and torsion are Bse and Bbt. ρ is the material
density and J = diag(I1, I2, I3) is the second mass moment
of inertia tensor. The Cosserat equations are reduced to the
Kirchhoff model when v = [0, 0, 1]T and vt = 0. It can be
used in applications where the effects of shear and extension
are negligible [6].

For simplicity, we parametrize the rotations R(s) by
rotation matrices. They may not remain orthonormal during
the spatial numerical integration. However, we use a high-
order integration scheme to ensure that the matrices remain
sufficiently close to SO(3). To avoid this issue, alterna-
tive methods including the modified Rodrigues parameters
(MRP) with its shadow set (SMRP) [9] and the Magnus
expansion [16] could be used.

III. CHEBYSHEV APPROXIMATION

In this section, the Chebyshev approximation used in our
CM is briefly presented. The Chebyshev polynomials of the
first kind of order N can be computed from this recurrence
relation:

T0(x) = 1, T1(x) = x
TN (x) = 2xTN−1(x)− TN−2(x), N > 1

(3)

x ∈ [−1, 1] is used, thus TN (x) ∈ [−1, 1]. A mapping is
employed in order to use the polynomials in [0, L]. Cheby-
shev roots ci ∈ (−1, 1) are chosen to be the interpolation
nodes in order to minimize Runge’s phenomenon [16]. A
Chebyshev polynomial of order N has N roots:

cN−i+1 = cos(π(2i−1)
2N ), i = 1, ..., N (4)

c1 and cN get closer to -1 and 1 respectively as the
order N increases, but never reach them exactly. To avoid
interpolation at the boundaries, [0, L] is mapped to [c1, cN ]
using Φ(s):

Φ(s) = c1 +
s(cN−c1)

L
(5)

Let the mapped interpolation nodes τi = Φ−1(ci) ∈ [0, L]. A
continuous function ξ(s) ∈ RM can be approximated using
its values at τi. Let Ξ = [ξj(τi)] ∈ RN×M , j = 1, ...,M and
H = 2

N [Tk(ci)] ∈ R(N+1)×N , k = 0, ..., N .

ξ(s)T = [(1/2)T0(Φ(s)), ..., TN (Φ(s))]HΞ (6)

A different number of interpolation nodes can be assigned
for each component of ξ. The choice may depend on their
non-linearity. For simplicity, the same number N is used in
section III and IV. Ξs = [ξjs(τi)] can computed using the
Chebyshev differentiation matrix DN ∈ RN×N [16]:

Ξs = DNΞ (7)

DN (i, j) =


1
2
T ′′
N (ci)

T ′
N (ci)

if i = j
T ′
N (ci)

(τi−τj)T ′
N (cj)

if i ̸= j
(8)

T ′
N and T ′′

N denote the first and second derivatives.

IV. COLLOCATION METHOD

In order to solve BVPs, CM approximate the unknown
functions. In order to satisfy the differential equations and
the boundary conditions (BCs), a specific set of collocation
points are selected and their values at the unknown functions
are iteratively computed using a non-linear solver. The choice
of collocation points is important as it determines the stability
of the method [10]. The following subsections describe how
the orthogonal CM is used to solve static and dynamic
Cosserat problems.



1) Static: We solve Cosserat Dirichlet-Neumann BVPs
by approximating the unknowns n and m. Thus, ξ =
[nT,mT]T ∈ R6. The collocation points are chosen to be
the same as the interpolation nodes τi. The method begins
by choosing N . Then τi (4)(5), H and DN (8) are computed.
Next, the objective is to compute n(τi) and m(τi) (Ξ) that
satisfy ODEs and BCs. We create two residuals rn ∈ RN×3

and rm ∈ RN×3. In τi, i = 1...N − 1, the strong form of
ODEs is evaluated (1):

rn,i = ns(τi) + f(τi) = 0
rm,i = ms(τi) + ps(τi)× n(τi) + l(τi) = 0

(9)

ns(τi) and ms(τi) are computed using DN (7). ps(τi)
are computed by integrating the rotations R(s) with the ini-
tial condition ψ = [p̄(0)T, R̄(0)T, n(τ1)

T,m(τ1)
T]T, where

p̄(0) and R̄(0) are the base BCs. An explicit Runge-Kutta of
order 4(5) (RK45) is used for integration. n(s) and m(s)
are needed for integrating R(s). They are computed via
interpolation (6). Finally, n(τN ) and m(τN ) are evaluated
in order to satisfy the tip BCs:

rn,N = n(τN )− n̄(τN ) = 0
rm,N = m(τN )− m̄(τN ) = 0

(10)

n̄(τN ) and m̄(τN ) are the tip BCs. The solution of rn and
rm can be computed using a nonlinear root-finding solver
such as Levenberg-Marquardt.

2) Dynamic: Similar to the static case, we solve Dirichlet-
Neumann BVPs in forward dynamic by approximating the
unknowns n and m. In τi, i = 1...N − 1, the strong form of
PDEs is evaluated (2) (τi are omitted for simplicity):

rn,i = ns − ρAR(ω̂q + qt) + f = 0
rm,i = ms − ρR(ω̂Jω + Jωt) + p̂sn+ l = 0

(11)

R(s), q(s) and ω(s) are computed by integration, using
the initial condition ψ = [p̄(0)T, R̄(0)T, n(τ1)

T,m(τ1)
T,

q̄(0)T, ω̄(0)T]T, where q̄(0) and ω̄(0) are the known initial
condition for velocity and angular velocity. We use RK45
for spatial integration. In the dynamic problem qt, ωt, vt and
ut appear. They are discretized using the implicit BDF−α
as described in [7]. In a time step j, Zt = [qTt , ω

T
t , v

T
t , u

T
t ]

T

can be approximated as follows:

(j)Zh = β1
(j−1)Z + β2

(j−2)Z + γ1
(j−1)Zt

(j)Zt = β0
(j)Z + (j)Zh

(12)

Where Zh is the history part of Z. Therefore, the deriva-
tives depend on the solution of the last two time steps. On the
first time step (j−1)Z is set to a known initial configuration
which is usually static and (j−1)Zt, (j−2)Z can be set to 0.
β0, β1, β2 and γ1 depend on the size of the time step δt and
α ∈ [−0.5, 0]:

β0 = (1.5 + α)/[δt(1 + α)]
β1 = −2/δt

β2 = (0.5 + α)/[δt(1 + α)]
γ1 = α/(1 + α)

(13)

Fig. 1. Example of the circular bending application with 5 tip moments
parametrized using λ ∈ [0, 2π].

α allows to interpolate between the trapezoidal method
at α = −0.5 that exhibits very little damping and BDF2
(the second order formula) at α = 0 [6]. The BDF-α is
O(δt2) accurate. However, δt cannot be too small due to
the implicit nature of the discretization that can cancel out
two nearly equal values because of limited floating points
precision [6]. Finally, (10) are included to evaluate the tip
BCs. Because of the varying size of the spatial integration
steps used by RK45, we should be able to compute Zh(s)
at arbitrary locations. We use Chebyshev interpolation (6)
(ξ = Zh).

V. NUMERICAL APPLICATIONS

In this section, we compare the accuracy, stability, and
computation time of CM and SM in static and dynamic ap-
plications. All methods were implemented in Python 3.8.10.
We use Scipy’s root-finding hybr, which is a modification of
Powell’s hybrid method as implemented in MINPACK. We
have set the termination tolerance to 10−8 for all applica-
tions. The initial guesses were set to 0 for the first step and to
the solution of the last iteration for the following steps, unless
specified otherwise. We use Scipy’s RK45 for integration.
For orientations, SM uses rotation matrices, while MSM
uses MRP and SMRP [9]. Furthermore, SM uses BDF-α for
time derivatives discretization [7]. The code was executed on
an i9-10900K 3.70Ghz CPU. In this section, the first three
applications are static, while the fourth is dynamic.

A. Circular bending

In the first numerical example, we compare the different
methods to an analytical solution. An initially straight beam
directed along the x axis undergoes incremental bending,
using a tip moment l2 on the y axis, until it deforms into a
full circle [9] (Fig. 1). The mechanical properties are: L = 1
m, A = 0.25 m2, I1 = I2 = 2I3 = 2 m4, E = 1 N/m2

and Poisson’s ratio ν = 0.3. l2 = λEI1
L , where λ takes 100

equally spaced values from 0 to 2π. The final shape of the
beam corresponds to λ = 2π. The error is computed between



Fig. 2. Helical bending application: external loading parametrized using
λ are applied to the tip incrementally. Bottom: a close-up of the last cycle.

the tip displacement of Cosserat p(L) and the analytical
solution (a)p(L) provided in [19] as a percentage of the rod
length:

ep =
||p(L)− (a)p(L)||

L
× 100 (14)

We use N = Nn = Nm = 2 for n and m, which is sufficient
since they are linear in this problem. The maximum ep is
0.0412 for CM and 0.0514 for SM. The average ep is 0.0232
for CM and 0.0281 for SM. The errors are very low and CM
is more accurate than SM. Table I displays the execution time
for all static applications. SM is twice as fast as CM.

B. Helical bending

The objective of the second application is to validate the
use of RK45 for integrating rotation matrices. An initially
straight beam along the x axis is subjected to an incremental
out-of-plane tip force f2 and tip moment l2 along the y axis,
causing it to deform into a helical shape [9]. f2 = 50λ and
l2 = 200πλ are parameterized with λ ∈ [0, 1], which is
incremented using 250 equally spaced steps. L = 10 m,
Kbt = diag(102), Kse = diag(104) and ν = 0. We use

Fig. 3. Tip displacements of 45° bending application. Initial guesses for
all iterations were set to 0. SM fails to converge before the end of the
experiment.

TABLE I
TIME EXECUTION OF STATIC NUMERICAL APPLICATIONS

Method Max time (s) Avg. time (s)
Circular bending

CM 0.104 0.0766
SM 0.0485 0.0348

Helical bending
CM 22.3 6.80
SM 1.98 0.327

45° bending: initial guesses = last solution
CM 0.974 0.821
SM 0.116 0.0784

45° bending: initial guesses = 0
CM 1.49 1.12

MSM 5.63 1.93

Nn = 2 and Nm = 43 because the moments are highly
non-linear in this problem.

Fig. 2 shows the tip displacement py(L) compared to [9].
The results obtained using our approach are in excellent
agreement with [9]. Therefore, the use of rotation matrices in
combination with a high-order integration scheme can model
large rotations while effectively limiting the SO(3) drift off.
SM is, on average, 20 times faster than CM. Mainly because
CM requires a high polynomial order to approximate the
highly non-linear moments.

C. 45° bending

The last static application involves large displacements and
multiple coupled deformations. This particular test has been
extensively studied in the literature [19], [10], [9] and is
regarded as a benchmark case. The beam is curved as one-
eighth of a circle with a radius of 100 m along the xy plane.
Then, an incremental out-of-plane force f3 along the z axis is
applied on the tip in 60 steps, starting from 0 N and increased
by 50 N until it reaches 3000 N [10]. The beam has a square
cross-section with unit length for each side. E = 1 × 107

N/m2, G = E/2 and ν = 0. We use Nm = 18 and Nn = 2.
Two scenarios were considered. In the first one, we have



Fig. 4. Dynamic cantilever: a constant force f3 is applied on the tip. Left: f3 = −10 N. Right: f3 = −100 N.

Fig. 5. Dynamic cantilever: tip velocity and angular velocity over time. Left: f3 = −10 N. Right: f3 = −100 N.

set the initial guesses to the solution of the last iteration.
Both CM and SM are in excellent agreement with [10]. In
the second one, we have set all the initial guesses to 0. We
aim to study the impact of the initial guess on the different
methods. This test can be considered as a big variation of
external loading during a simulation. We compare CM with
both SM and MSM with 3 equally spaced sub-intervals. Tip
displacements are presented in Fig. 3. Both CM and MSM
converged to a correct solution while SM failed to converge
little before applying f3 = 2500 N. Furthermore, CM was
faster than MSM.

D. Dynamic cantilever

For the dynamic problem, we replicate the experiment
conducted in [13], [20], [21]. The initial configuration, at
t = 0, is a straight beam along the x axis. Then, at t > 0, a
constant force f3 is applied at the tip along the z-axis. The
simulation lasts for a total of 0.5 s. Following [13], [20], two
scenarios are adopted. In the first one, f3 is set to −10 N,
while in the second one f3 is set to −100 N. The beam has
a unit length and a square cross-section with a thickness of

TABLE II
TIME EXECUTION OF DYNAMIC NUMERICAL APPLICATIONS

Method Max time (s) Avg. time (s)
f3 = −10 N

SM 0.881 0.304
CM 6.49 3.18

f3 = −100 N
SM 3.62 1.19

CM N=30 36.2 9.9
CM N=32 66.6 11.7
CM N=34 105.4 14.9

0.01 m. E = 210 × 109 N/m2, ν = 0.2, ρ = 7800 kg/m3.
We use Bse = Bbt = 0, δt = 2 × 10−3 s and α = −0.5
which corresponds to the trapezoidal method. The smallest
feasible time step was employed. Utilization of any smaller
value resulted in instabilities within the numerical methods.
It is worth noting that the minimal time step is identical for
both CM and SM.

In the first scenario, we use N = 16 and NZh
= 10 for the



Chebyshev order of Zh. Fig. 4 (left) shows the tip displace-
ments pz over time compared to [13], [21]. CM and SM are
in excellent agreement with [13], [20], [21]. In the second
scenario, we try three orders N = 30, 32, 34 and NZh

= 16.
Fig. 4 (right) shows the tip displacement pz over time
compared to [13]. CM and SM are in excellent agreement
with [13], [20]. We can conclude that the trapezoidal method
has very low numerical damping and error. We observed
that N > 34 had a small effect on the results. However,
when N fell below 30, the CM demonstrated instability.
This is attributed to the highly nonlinear nature of both force
and moment functions, which necessitate an approximation
via high-order polynomial. Fig. 5 shows the velocity q(L)
and angular velocity ω(L) at the tip over time for the two
scenarios. We observe that CM kept its stability. However,
SM was less stable when applied a force f3 = −100 N.
The instability can be seen particularly at t > 0.4 where it
produces inaccurate values of qy, wx, wz that should be close
to zero. Table II shows the time execution. SM is on average
10 times faster than CM.

VI. CONCLUSIONS

We have proposed a Chebyshev collocation method on
internal loading to solve Cosserat rod Dirichlet-Neumann
BVPs in static and dynamic modes. The time derivatives
are discretized implicitly using BDF-α. The choice to pa-
rameterize the orientations with rotation matrices in con-
junction with RK45 has been validated using the helical
bending experiment. Compared to the analytical solution in
the circular bending experiment, CM was more accurate than
SM. When the initial guesses were set far from the correct
solution, CM demonstrated better convergence than SM. In
the dynamic experiment, CM kept its stability even when a
large external tip force was applied, but SM deviated from
the correct solution. Furthermore, SM was faster than CM,
especially when a high number of collocation points was
required. However, CM was faster than MSM even when
only 3 subdivisions were used. We have used a constant
Chebyshev order that gives correct convergence throughout
each application. In the span of some applications, the non-
linearity of the internal loading may change. To reduce the
computational time, a possible future work is to adapt the
Chebyshev order during the simulation. In further work, we
are planning to include contacts and friction using external
forces exerted on the rod.
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[2] Victor Romero, Mickaël Ly, Abdullah Haroon Rasheed, Raphaël Char-
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