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A state-space approach for remaining
useful life control

Mônica S. Félix, John J. Martinez and Christophe Bérenguer

Université Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, 38000
Grenoble, France.

Abstract: This paper presents a state-space approach for controlling the Remaining Useful
Life (RUL) of deteriorating systems. The proposed approach supposes the availability of a
deterioration model that links the deterioration rate with some manipulable control inputs.
Such a link can be a non-linear monotonic function between the deterioration-rate and the
manipulable control inputs. We propose a method for designing both state observer and state
feedback controller for RUL prediction and control. We consider that the manipulable inputs
are affected by additive random disturbances and possible multiplicative unknown parameters.
In addition, we assume that the control decisions can not be applied instantaneously on the
system, which is modeled as a time-delay between control decisions and manipulable inputs of
the deterioration dynamics. The proposed methodology is illustrated on a simulated study case
which considers an exponential degradation model.

Keywords: Health-aware control, deterioration-aware control, RUL control, deterioration
estimation, prognosis, reliability adaptive systems, state-space approach.

1. INTRODUCTION

Mechanical systems deteriorate during use due to wear and
tear, stress, strain, friction, etc. leading to damage, fatigue
and eventual equipment failure, affecting the system’s re-
liability. For example, a friction drive system deteriorates
as friction stresses and damages the actuator over time.
Within this context, adapted control strategies can con-
tribute to ensure the reliability of such degrading systems
and guarantee that the controlled system remains func-
tional and keeps operating in the same way throughout its
life despite possible failures or changes in its dynamics due
to degradation.

According to Rausand et al. (2021), the Remaining Useful
Life (RUL) of a system is modeled as a random variable
that expresses the time until the system is no longer
functional, and its distribution can be used as a reliability
metric. If a degradation model is available and if the
degradation dynamics can be changed through the control
inputs, adaptive control can be used to control the RUL
of the system and influence the system reliability, as
proposed in Rodriguez Obando et al. (2021). This control
strategy, referred to as Health-Aware Control (HAC) in Do
and Söffker (2021), proposes to incorporate health state
information, such as prognostic and degradation states,
into the control loop using available dynamic knowledge
about the degradation. In the case where the degradation
is influenced by operational decisions and control inputs,
the system can be reconfigured to control the potential
stress and wear factors that degrade the system. According
to Do and Söffker (2020), this type of control can be used
in Prognostic and Health Management (PHM) approaches
to integrate maintenance requirements into global control
objectives and to trade-off load mitigation and control
performance.

Many works address this problem, referred here to as RUL
Control, as a multi-objective control problem. With an
available degradation model, it is possible to model an
optimal control solution to track the desired RUL. For
example, Meyer et al. (2013) has proposed modeling RUL
control to incorporate RUL into the control objectives of a
driven system. Gokdere et al. (2005) proposed a model to
extend the lifetime of electromechanical actuators. Also,
in a more recent work, Sanchez et al. (2015) proposed
a Model Predictive Control (MPC) method to control
the RUL of a wind turbine system to meet maintenance
requirements while satisfying other control performance
requirements. In addition, Rodriguez Obando et al. (2018)
has proposed an architecture to incorporate the RUL
requirement into the model to extend the lifetime of a
friction drive system.

However, most works propose RUL control methods that
model RUL as a deterministic variable. Only some works,
such as Langeron et al. (2015), Mo et al. (2018) and Pe-
drosa Alias et al. (2022), proposed methods that establish
a relationship between control and degradation by consid-
ering RUL as a random variable and using knowledge of
the stochastic dynamics of degradation.

In this paper, we propose to solve the RUL control tracking
problem following a state-space control approach. We
also consider the stochastic dynamics of the degradation
and possible delay in the decision within the relationship
between control actions on the system and the degradation
rate.

This paper is organized as follows: Section 2 discusses
the definition of the problem, then Section 3 describes
the deterioration model with the corresponding dynamic
states. Next, in Section 4, the stated problem is solved



by proposing a state observer to estimate the states of
the chosen deterioration process and a state-feedback con-
troller. Finally, a study case which illustrates the proposed
approach is presented in Section 5.

2. PROBLEM STATEMENT

The RUL of a system is defined as the time until it can
no longer be used to meet the desired performance, i.e.,
the remaining time before the system reaches a maximum
allowable deterioration, denoted here as Dmax. Therefore,
for a given current time t, the RUL verifies the following
equality:

D(t+RUL) = Dmax (1)

Let us assume that the deterioration dynamics obeys the
following differential equation:

dD

dt
= β1D + β0 (2)

where the parameters β1 and β0 dictate the deterioration-
rate. If β1 and β0 are random (e.g., white noise for β0), the
deterioration D is then a stochastic process determined
by a Stochastic Differential Equation (SDE) resulting
from (2), and particular choices of β0 and β1 allow this
equation to represent well-known deterioration process
dynamics such as Wiener or Gamma processes, often used
in reliability and maintenance studies, see for instance
Rausand et al. (2021).

2.1 Link function definition

Moreover, we assume that the median values of parameters
β1 and β0 can be governed by a certain number of inputs
w that we can control, and the vector of parameters
β = [β0 β1]

T can be written as a function of the input
w. In particular, we can model the behavior of β as a
function of w by using a monotonic nonlinear function
f(w) with possible additive perturbations η and uncertain
multiplicative parameters γ as follows:

β = γf(w) + η (3)

Equation (3) models the so-called link function. In partic-
ular, the function f(w) is based on the link between con-
trollable process variables w and the degradation rate β.
Of course, this relationship depends on the complexity of
system dynamics, which may be nonlinear or not straight-
forward. However, instead of using the full dynamics of the
process states to have an explicit link function, we assume
that a metamodel is available. The form presented in (3)
can therefore be seen as an approximation of the degrada-
tion rate dynamics with stochastic behavior. Nevertheless,
the unmodeled parts of this dynamic are accounted for
by the uncertainty parameters γ and η, which contain
the random influence of different operating points and
exogenous inputs on the degradation rate.

In this paper, we make the simplifying assumption that
w can be directly controlled, and we propose to act on β
by making decisions on the value of w, denoted by wd.
Of course, in practice, the considered deterioration would
take place in a controlled system, and it has to be noted
that w may be different from the control inputs to this
deteriorating system, usually expressed by u, whose pur-
pose is to make the system work according to a reference
or set point. For example, w could be a state variable of

Fig. 1. Proposed RUL control architecture.

the deteriorating system, that could be controlled by u.
We also consider that the decisions wd are not perfectly
executed at a given time t and may contain delays td. Thus,
the behavior of β is described by the following time-delay
relationship:

β(t+ td) = γf(wd(t)) + η (4)

2.2 RUL control definition

Now, the RUL control problem can be stated as follows:
at every time instant t, for a given desired median value
of the RUL, denoted RULref (t), decide the values of wd

to modify the predicted RUL, denoted RUL(t), in such a
way that the deterioration D, starting at D(t), achieves its
maximal and admissible value Dmax at time t+RULref ,
respecting both the deterioration dynamics (2) and the
deterioration-rate parameter dynamics (4).

Remark that the desired RULref (t) can be chosen ac-
cording to maintenance constraints or operational require-
ments for the given deteriorating system.

In order to control the RUL, we also assume that β and D
can be estimated by using an available dynamical model
of deterioration and the available data coming from noisy
deterioration measurements or imperfect estimates. Thus,

we propose a state observer that can estimate both β̂ and
D̂, which allows us to continuously compute RUL control
decisions wd. The final proposed control architecture is
depicted in Fig. 1.

In the following sections, we propose to solve the con-
trol and observer design problems using a state space
approach. We will show that, based on a given link
function model and a chosen degradation model, we can
control degradation by making decisions on wd to impose
properties on the lifetime distribution, such as, e.g., its
median value.

3. DETERIORATION MODELS

According to the nature of the deterioration behavior and
to model the item-to-item variability and heterogeneity of
deterioration paths, the parameters β can be considered
as random variables that follow a particular a priori prob-
ability distribution, see Gebraeel et al. (2005). Here we
will focus on deterioration models for which the parameter
β follows a normal distribution, i.e., β ∼ N (µ, σ2), as
described in Rausand et al. (2021).

In doing so, we consider the evolution of deterioration as
a stochastic process with random effects. For the control
design, it is more interesting to model it as an SDE-



like equation (2) and to consider a “median” solution of
Equation (2) described by:

D̄(t) = D(0)eµ1t + µ0t (5)

where µ1 and µ0 are the median values of β0 and β1, as
previously defined as β, and with an initial deterioration
state D(0).

Equation (5) can also be expressed in terms of RUL:

D̄(t+RUL(t)) = D(t)eβ1RUL(t) + β0RUL(t) (6)

where RUL(t) is the interval time between the time instant
t and the time when the degradation first reaches a
maximum degradation D̄(t+RUL(t)) = Dmax.

Finally, based on (6), for a given Dmax, the value of
RUL(t) can be determined as a function of β and D,
variables that can be estimated. However, the solution
would require a numerical procedure. Therefore, we will
proceed with the linear and exponential deterioration
models, each separately, to continue the investigation with
an analytical solution.

3.1 Linear model

Used to model mechanisms of wear from surface contact
Archard (1953), the wear rate Ḋ is a constant β0 propor-
tional to dynamical variables such as the load N and the
speed of sliding of contact ṽ:

Ḋ = β0(N, ṽ) (7)

This model represents a linear behavior of the deteriora-
tion process that obeys approximately:

D(t) = D(0) + β0 · t (8)

with an initial deterioration state D(0) and a random
parameter β0.
Based on (8), we then consider a constant value for β0 to
predict when the deterioration at a given time t will reach
its maximum Dmax in D(t+RUL(t)), as follows:

Dmax = D(t) + β0 ·RUL(t) (9)

And therefore, RUL(t) at the given time t can be written
as a function of the chosen value of β0 for the prediction
and the current state of deterioration D(t) as follows:

RUL(t) =
1

β0
(Dmax −D(t)) (10)

3.2 Exponential model

Let us now consider degradation with exponential be-
havior, which is common in processes where degradation
occurs in a cumulative manner (e.g., wear, fatigue), espe-
cially in bearing applications:

Ḋ = β1D (11)

It will approximately follow an exponential trend:

D(t) = D(0)eβ1·t (12)

with a random degradation-rate β1. If we consider now a
constant value of degradation-rate for β1 to predict when
the degradation reaches Dmax, then we can write RUL(t)
at time t as:

RUL(t) =
1

β1
ln

(
Dmax

D(t)

)
(13)

Note that if we consider that β obeys a given probability
distribution function f(·), then the predicted RUL(t) will
obey its inverse one.

Now we are ready to introduce the state-space approach
to observe the states of the deterioration dynamics (β
and D(t)) as the system deteriorates and then control the
RUL. The following section presents the design of a state-
observer and a state-feedback controller to be implemented
within the proposed RUL control architecture. For the sake
of simplicity, we will focus on the exponential deterioration
model and a given link function.

4. RUL CONTROL DESIGN

4.1 State-observer problem

The contribution of this paper is to present a method
for synthesizing a RUL controller to impose some desired
characteristics to the RUL distribution law (e.g. its median
value) by modifying wd. In the proposed framework (see
Figure (1)), the RUL controller finds the optimal correc-
tions wd based on the current estimated degradation and
observations of the degradation rate.

Let us consider a deteriorating system that follows an
exponential behavior (11). The problem of the state-
observer is then to estimate the parameters β and D(t).

Note that β is considered as a random variable influenced
by w with a relation described in (3). Nevertheless, the
model (3) cannot be used to design the observer here, since
this model is treated as uncertain and may have a complex
form inherent to each application. Therefore, we propose
a more general equation:

β̇ = −cβ + ϵ (14)

based on the Langevin equation to estimate the deterio-
ration rate parameter β, with a model parameter c and
a noise term ϵ. Although the Equation (14) dynamics is
not determined by w, it allows us to represent the fluc-
tuating behavior of β while suffering from state-observer
corrections.

Finally, D can be measured or calculated from health
condition indicators. In this case, the model can consider
(11) and (14), leading to the following observer:

˙̂x =

[
0 D
0 −c

]
x+K(y − ŷ) (15)

where x := [D β]T and the outputs are simply y = D+εm.
Here, εm denotes a possible measurement error or noise.
Then, the observer gain K can be obtained as a solution
of an Extended Kalman Filter problem, for instance.

4.2 Control problem

For the control problem, we assume that the parameter
β follows a monotonic uncertain behavior wrt w, which
allows us to write β as the following link function:

β = γw + η (16)

with an uncertain parameter γ > 0, a normal noise η, and
one-step delay on decisions, defined as wd.

Thus, by writing the model dynamics in a discrete-time
representation, we have:

wk+1 = wd
k (17)

βk = γ · wk + ηk (18)



Hence, the problem of tracking a desired median value
for RUL , RULref , can be rewritten into the problem
of guaranteeing that β tracks a desired reference value
βref that can be obtained from the following reference
generator:

βref
k =

1

RULref
k

ln

(
Dmax

D̂k

)
(19)

which is based on (13), where β is written in terms of RUL

and D is substituted by its estimate D̂.

Remark that RULref
k can be calculated, at each iteration

k, given a desired End of Life (EoL), EoLref , since

RULref
k = EoLref − k. (20)

In order to the minimize the tracking errors on β, the
control design should include an integral action, that can
be implemented as follows:

zk+1 = zk + (β̂k − βref
k ) (21)

where β̂k is the estimated value of βk, which is used instead
of the real one, because we assume that this value can not
be measured directly from the process.

Then, the control design considers the models in (17)
and (21) written in terms of a state vector defined as
x := [w z]T . That is, find a state feedback control wd

k
which stabilises the following state-space model:[

wk+1

zk+1

]
=

[
0 0
γ 1

] [
wk

zk

]
+

[
1
0

]
wd

k +

[
0
−1

]
βref
k (22)

for 0 < γmin ≤ γ ≤ γmax.

Therefore, the state feedback control law will be given by:

wd
k = −Kp · wk −Ki · zk (23)

where the control gain parameters can be obtained by us-
ing robust control design techniques, for instance. Remark
that in practice the value of wk can be obtained by using
(17), and then, the control law becomes:

wd
k = −Kp · wd

k−1 −Ki · zk (24)

Thus, the RUL controller can be implemented by using
(19), (21) and (24), as it is depicted in Fig. 2. Remark
that the same approach can be applied for controlling a
linear degradation dynamics. In that case, we only need
to generate the references on β0 from (10). In all cases,
estimations of D and parameters β are necessary for
implementing the proposed RUL control law in (24). These
estimations come from an observer stated previously.

Finally, the values of Kp and Ki in (24) can be found
with any optimal controller, such as H∞, Robust Control,
Linear-Quadratic Regulator (LQR), etc. In this paper, we
solve the study case controller design using a LQR.

5. STUDY CASE

In this section, the proposed approach is illustrated using
an exponential deterioration model.

5.1 Description of the system

For this study case, we consider an exponential deteriora-
tion model, as described in (11), and we assume that this
deterioration is measured. That is,

yk = Dk + ηnoise (25)

Fig. 2. Complete proposed RUL controller algorithm.

where ηnoise is a white noise of 10−1 amplitude.

Thus, the state-space representation of the deterioration
dynamics can be written as follows:

ẋ = H(x)x (26)

y = Cx+ ηnoise (27)

where

H(x) =

[
0 D
0 0

]
, (28)

C = [1 0] and x := [D β]T .

Now, by considering a sampling time ts to be exactly
equal to the actuator time-delay, the exponential model
of deterioration (11) has a discrete-time representation:

Dk+1 = Dk + tsβkDk (29)

where we will consider D0 = 1 because D starts with a
minimum deterioration which has to be an strictly positive
measure.

Discrete-time observer — Here the chosen observer will
estimate the states x̂ = [D̂ β̂] using an Extended Kalman
Filter, as proposed in Rodriguez Obando et al. (2021). We
consider a initialization of the estimates as follows:

x̂0 =
[
D̂0 0.1

]T
(30)

with the initial estimate of deterioration D̂0 = 1.

The EKF also requires a choice of the covariance matrices.
Then, we consider:

R = 0.01 (31)

which assumes that the sensor noise variances are known
and equal to 0.01. The matrix Q has been selected to
consider innovations of the system with the following
variance:

Q =

[
0.01 0
0 2.5 · 10−5

]
(32)

Finally, an initial matrix P0|0 was chosen as follows:

P0|0 =

[
100 0
0 2.5 · 10−3

]
(33)

Study case degradation parameters — The chosen link
function for this example is described in (16). Without
control intervention, β should vary randomly depending
on probability distribution of random parameters η and γ.

In order to achieve maximum deterioration at around a
EoL equal to k = 100 (in units of time), the distribution



Table 1. Control effect on the distribution of
EoL for different cases of γ.

EoL for γ = 1.2 EoL for γ ∼ U(0.7, 1.3)
System in median std median std

Open-loop 86 1.66 103 18.60
Closed-loop 100 0.63 100 0.79

of random parameters follows η ∼ N (0, 0.01), and γ ∼
U(0.7, 1.3).

RUL controller parameters — For this example, we
establish an admissible maximum deterioration Dmax =
100 where it should be reached at EoLref = 100 (units
of time). Thus, by considering (20), a value for βref is
calculated from (19). Finally, the control gain parameters
are calculated using the LQR-based control synthesis,
which leads to

Kp = 0.088, Ki = 0.955. (34)

According to (24), we calculated the initial value for the
integral action as:

z0 =
wd

0 +Kpw
d
0

−Ki
. (35)

where we will choose the initial decision parameter to be
wd

0 = 1. This value concerns the nominal one, and then we
suppose that ideally w0 has to remain around this value
for achieving the desired EoLref .

5.2 Stochastic results for 104 realisations

This case study aims to show that the proposed state-
space feedback controller can control deterioration so that
it reaches its maximum at the desired lifetime. Two
applications are proposed: the first one, concerning one
possible realisation of the link function, which depends on
an additive noise η and a multiplicative unknown but fixed
parameter γ, and the second one, intended for illustrating
the case where γ may vary randomly from one realization
to another.

The results for 104 realizations are shown in Fig. 3. In
the first application, it is chosen a fixed γ = 1.2, which
physically represents 20% more load than the nominal
one. The results shows that the control actions dislocated
the distribution of EoL, which it was around 86th cy-
cle, towards the desired one, 100th cycle. In the second
case, the system has a random γ, which physically repre-
sents random loads uniformly distributed around the the
nominal one. In this case, the realizations without RUL
control exhibit an EoL distribution with higher variance
and a non-normal distribution. In contrast, when adding
the RUL control actions, the EoL of these realisations
remains closer around the desired one. Table 1 resumes
the obtained distributions of EoL resulted from both cases:
constant γ = 1.2 and random γ ∼ U(0.7, 1.3).

5.3 RUL-control evaluation for 1 realisation

Now we are interesting in the evaluation of the response
of the control system for one realisation. For this purpose,
Figs. 4 and 5 show the results for the realisation i = 42.

The results in Fig. 4a show the assessment of RUL,
represented by ˆRUL and estimated using (13), comparing
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Fig. 3. Distribution of obtained EoL (when D(t) = Dmax)
for a (a) open-loop and (b) closed-loop with a constant
γ = 1.2, and for a (c) open-loop and (d) closed-loop
with a unknown random γ ∼ U(0.7, 1.3)

to the desired one RULref . RUL resulted tracks the
reference one thanks to the regulation of β, shown in
Fig. 5a. The decisions in Fig. 4b are computed to control
β(k) based on proposed control and estimated states (D̂

and β̂) shown in Fig. 5. In the first 40 iterations, the
decision resulted is lower than the nominal value (black
dashed line), which leads to a RUL greater than the
desired one. After, we remark an important change on
decisions to compensate and minimizing the tracking error
e(k) = RUL(k) − RULref , which results in a greater
degradation-rate in Fig (5a).

We remark also, from Fig. 5a, that β follows the trend
βref calculated as in (19). Finally, the deterioration, shown
in 5b, obeys an exponential model. With the control
proposed, we ensures that it reaches Dmax at the desired
EoL.
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6. CONCLUSION

In this paper, we have presented a state-space approach for
controlling the Remaining Useful Life (RUL) of systems
subject to degradation. The proposed method is based
on the fact that the degradation-rate can be modeled
in a state-space representation. Even if the systems, for
observation and control, are linear-time varying, LPV
or uncertain linear systems, this paper shows that the
control design can be performed using well-known robust
control techniques. This paper illustrates the approach on
exponential degradation model but other degradation-rate
model can be considered if they can be written under a
state-space form. In cases where the degradation trends
are linear or exponential, RUL predictions can be easily
obtained by using explicit equations that are functions
of both the current deterioration-rate and the current
deterioration level. In addition, such relationships allow us
to explicitly write the desired RUL in terms of the desired
deterioration-rate. As it is illustrated in the presented
study case, the RUL control problem can be efficiently
solved by keeping state-space models expressed on the
deterioration-rate space. This aspect allows us to solve the
problem as a deterioration-rate tracking control problem.
The solution was validated using a given link function
expressing the system dynamics. Future work includes
testing the presented framework for practical cases with
a given physical system that can be expressed as a special
case of the link function.
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