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Abstract
Phylodynamic analyses can generate important and timely data to optimise public healthresponse to SARS-CoV-2 outbreaks and epidemics. However, their implementationis hampered by the massive amount of sequence data and the difficulty to parame-terise dedicated software packages. We introduce the COVFlow pipeline, accessible athttps://gitlab.in2p3.fr/ete/CoV-flow, which allows a user to select sequences from theGlobal Initiative on Sharing Avian Influenza Data (GISAID) database according to user-specified criteria, to perform basic phylogenetic analyses, and to produce an XML file tobe run in the Beast2 software package. We illustrate the potential of this tool by study-ing two sets of sequences from the Delta variant in two French regions. This pipelinecan facilitate the use of virus sequence data at the local level, for instance, to track thedynamics of a particular lineage or variant in a region of interest.
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1. Introduction
Millions of SARS-CoV-2 full genome sequences have been generated since 2020, and, forthe majority, been made available through the Global Initiative on Sharing Avian Influenza Data(GISAID) consortium (Elbe and Buckland-Merrett, 2017; Khare et al., 2021). This has allowedthe timely monitoring of variants of concerns (VoC) with platforms such as CoVariants (https:

//covariants.org/), outbreak.info (Gangavarapu et al., 2023), or CoV-Spectrum (Chen et al.,2022), and the realisation of phylogenetic analyses, e.g. via NextStrain (Hadfield et al., 2018).Phylogenies represent a powerful means to analyse epidemics with an intuitive parallel be-tween a transmission chain and a time-scaled phylogeny of infections, which is the essence ofthe field known as ‘phylodynamics’ (Grenfell et al., 2004). As illustrated in the case of the COVID-19 pandemic, state-of-the-art analyses allow one to investigate the spatio-temporal spread of anepidemic (Plessis et al., 2021), superspreading events (Alizon, 2021), and even detect differencesin transmission rates between variants (Volz et al., 2021).Phylodynamic analyses involve several technical steps to go from time-stamped virus se-quence data to epidemiological parameter estimates, which can make them difficult to access toa large audience. Furthermore, the amount of data shared greatly overcomes the capacities ofmost software packages and imposes additional selection steps that further decrease the accessi-bility of these approaches. To address these limitations, we introduce the COVflow pipelinewhichcovers all the steps fromfiltering the sequence data according to criteria of interest (e.g. samplingdata, sampling location, virus lineage, or sequence quality) to generating a time-scaled phylogenyand an XML configuration file for a BDSKY model (Stadler et al., 2013) to be run in the Beast2software package (Bouckaert et al., 2014).Some pipelines already exist to assess sequence quality, filter data, infer an alignment, andinfer a time-scaled phylogeny such as Nextclade (Aksamentov et al., 2021) and Augur (Huddle-ston et al., 2021). However, these do not include a step to perform a phylodynamic analysis fromthe output files, which requires dedicated skills. The COVFlow pipeline addresses this limitationand integrates all the steps present in separate software packages to go from the sequence dataand metadata to the XML to be run in Beast2.Here, we present the architecture of the pipeline and apply it to data from the French epi-demic, which has been poorly analysed (but see Coppée et al., 2023; Danesh et al., 2021; Gam-baro et al., 2020). Focusing on sequences belonging to the Delta variant collected in Francein two regions, Ile-de-France, and Provence-Alpes-Cote-d’Azur, by a specific French laboratory(CERBA), we illustrate the pipeline accessibility, flexibility, and public health relevance.
2. Methods

COVFlow is a bioinformatics pipeline for phylogenetic and phylodynamic analysis of SARS-CoV-2 genome sequences. It is based on the Snakemake workflow management system (Kösterand Rahmann, 2012) and its dependencies are easily installed via a conda virtual environment.Snakemake ensures reproducibility, while Conda (https://docs.conda.io/en/latest/) and
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Figure 1 – Structure of the COVFlow pipeline. The input data correspond to FASTA se-quences and metadata provided by the GISAID. The data filtering is done using a YAMLconfiguration file. The sequence alignment is performed with MAFFT and the phyloge-netic inference with IQ-TREE. The pipeline generates an XML file that can be directlyused with Beast2.
Bioconda (Grüning et al., 2018) allows for version control of the programs used in the pipeline.Overall, the pipeline is easy to install and avoids dependency conflicts.
Pipeline configuration

The pipeline workflow is configured using a YAML configuration file, which must contain thepath to the sequence data file, the path to the metadata file, and the prefix chosen for the outputfiles. Each parameter of the pipeline following steps has a default value, which can be modifiedby the user in the configuration file.
Input data

The input data analysed by COVFlow are sequence data and metadata, corresponding to pa-tient properties, that can be downloaded from the Global Initiative on Sharing All Influenza Data(GISAID, https://www.gisaid.org/). The sequence data are in a FASTA format file. The meta-data downloaded contains details regarding the patient’s sequence ID (column named ‘strain’),the sampling dates (column ‘date’), the region, country, and division where the sampling wasmade (columns respectively named ‘region’, ‘country’, and ‘division’). It also lists the virus lineageassigned by the Pangolin tool (O’Toole et al., 2021), and the age and sex of the patient (columnsrespectively named ‘pango_lineage’, ‘age’, and ‘sex’).
Data filtering

The first step implemented in the pipeline performs quality filtering. By default, genomic se-quences that are shorter than 27, 000 bp, or that have more than 3, 000missing data (i.e. N bases)and more than 15 non-ATGCN bases are excluded. These parameter values can be modified bythe user. Sequences belonging to non-human or unknown hosts are also excluded. Sequencesfor which the sampling date is more recent than the submission date, or for which the samplingdate is unclear (e.g. missing day) are also excluded. Finally, duplicated sequences and sequencesthat are flagged by the Nextclade tool (Aksamentov et al., 2021) with an overall bad quality(Nextclade QC overall status ‘bad’ or ‘mediocre’) are also removed.The sequence data is then further filtered following the user’s criteria. These include Pangolinlineages, sampling locations (regions, countries, or divisions), and sampling dates. In addition tospecifying the maximum and/or minimum sampling dates, the user can specify a sub-samplingscheme of the data with a number or percentage of the data per location and/or per month. Forexample, the user can decide to keep x% of the data per country per division per month or tokeep y sequence data per division. Finally, more specific constraints can be given using a JSONformat file with three possible actions: i) keep only rows (i.e. sequences) that match or containa certain value, ii) remove rows that match or contain a certain value, and iii) replace the valueof a column by another value for specific rows with a column that matches or contains a certainvalue. The last action can be used to correct the metadata, for instance, if the division field is notfilled in but can be inferred from the names of the submitting laboratory. The JSON file can becomposed of multiple key-value pairs, each belonging to one of the three actions. For example,the user can specify to keep only male patients and to remove data from one particular division
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while setting the division of all the samples submitted by a public hospital from the Paris area(i.e. the APHP) to the value ‘Ile-de-France’.
Aligning and masking

The set of sequences resulting from the data filtering is then divided into temporaryFASTA files with a maximum number of 200 sequences per file. For each subset, sequencesare aligned to the reference genome MN908947.3 using MAFFT v7.305 (Katoh and Stan-dley, 2013) with the ’keeplength’ and ’add’ options. All the aligned sequences are then ag-gregated into a single file. Following earlier studies, the first 55, the last 100 sites, andother sites recommended from https://github.com/W-L/ProblematicSites_SARS-CoV2 ofthe alignment are then masked to improve phylogenetic inference (http://virological.org/
t/issues-with-sars-cov-2-sequencing-data/473).
Inferring and time-scaling a phylogeny

A maximum-likelihood phylogenetic tree is estimated using IQ-TREE v2.1.2 (Minh et al.,2020) under a GTR substitution model from the alignment. The resulting phylogeny is time-scaled using TreeTime v0.8.1 (Sagulenko et al., 2018). By default, the tree is rooted using twoancestral sequences (Genbank accession numbers MN908947.3 and MT019529.1) as an out-group, which is then removed, with a fixed clock rate of 8 · 10−4 substitutions per position peryear (Rambaut, 2020) and a standard deviation of the given clock rate of 0.0004. These parame-ters can be modified by the user. The output phylogeny is in a Newick format file.
BDSKY XML file generating for BEAST 2

The Bayesian birth-death skyline plot (or BDSKY) method allows the inference of the effec-tive reproduction number from genetic data or directly from a phylogenetic tree, by estimatingtransmission, recovery, and sampling rates (Stadler et al., 2013). This method allows these param-eters to vary through time and is implemented within the BEAST 2 software package (Bouckaertet al., 2014).Performing a BDSKY analysis requires setting an XML file specifying the parameters forthe priors. As in any Bayesian analysis, this step is extremely important. The default settingsin BEAST2 have been chosen to minimise the risk of errors. COVFlow builds on most of thesewith some modifications to fit the needs of large SARS-CoV-2 phylogenies.The most important change has to do with the inference of the phylogeny. This can be doneby BEAST 2 but to minimise computation speed and allow for the analysis of large phylogenies,the pipeline sets the time-scaled phylogeny from the previous step in the XML file.The default XML file assumes that there are two varying effective reproduction numbers toestimate, with a lognormal prior distribution, LogNorm(M = 0,S = 1), resulting in a median of 1,the 95% quantiles falling between 7.10 and 0.14, and a starting value of 1.0. This prior is adaptedto such virus epidemics and, as we will see below, can be edited if needed. The default prior forthe rate of end of the infectious period is a uniform distribution, Uniform(10, 300), resulting in amedian of 155[17.3; 293]years−1, with a starting value of 70 years−1, and is assumed to be con-stant over time. The inverse of the rate of end of the infectious period is the average infectiousperiod. This default prior yields infectious periods varying from 0.034 year (1.2 days) to 0.1 year(36.5 days), which is consistent with the biology of SARS-CoV-2 infections (Zhou et al., 2020).Usually, little or no sampling effort is made before the first sample was collected. Therefore, bydefault, we assume two sampling proportions: before the first sampling date it is set to zero, andafter the default prior is a beta distribution, Beta(α = 1,β = 1), with a starting value of 0.01,translating in a median of 0.50 ([0.025; 0.975]). The non-zero sampling proportion is assumed toremain constant during the time the samples were collected. The method can also estimate thedate of origin of the index case, which corresponds to the total duration of the epidemic. Sincethe tree is assumed to be a sampled tree, and not a complete one, the origin is always earlier thanthe time to the most recent common ancestor of the tree. Hence, the prior distribution’s start-ing value and upper value must be higher than the tree height. This condition is always checkedwhen running the pipeline. The default prior for this parameter prior is a uniform distribution
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Uniform(0,height+2) years, with a starting value of height, with height as the maximum heightof the inferred time-scaled tree.
Note that, although the default priors are designed to minimise the risk of bias in the resultsand the pipeline checks for the origin parameter prior, the choice of the priors is essential andmay impact the phylodynamic inference of parameters.
In the COVFlow configuration file, the user can modify the distribution shapes, the startingvalues, the upper and lower values, and the dimensions for each of these parameters to estimate,and set the dates at which the parameter estimation changes. The length of the MCMC chainand the sampling frequency, which are by default set to 10, 000, 000 and 100, 000 respectively,can also be modified.
The BEAST 2 inference itself is not included in the pipeline. The reason for this is that a pre-liminary step (i.e. installing the BDSKY package) needs to be performed by the user. Similarly, theanalysis of the BEAST2 output log files needs to be performed by the user via Tracer (Rambautet al., 2018) or a dedicated R script available on the COVflow Gitlab page.
Compared with the Nextclade pipeline (Hadfield et al., 2018), COVflow allows a more flexiblefiltering stage using the JSON file. For example, it can select data if a column contains a certainword, allowing the user to filter data that may contain spelling mistakes or to select data from agroup of laboratories that contain a common word (in our case CERBA) but don’t have the samenames. Furthermore, the sub-sampling can either be based on the number of data points or onthe percentage of available data and the latter option is currently not possible with Nextstrain.The masking sites strategy is also different between the two pipelines. Finally, and perhaps mostimportantly, COVflow configures an XML file for a BDSKY phylodynamic analysis in Beast 2,allowing for more detailed phylodynamic analyses.

Illustration study with French data
We applied COVFlow to analyse GISAID data by downloading sequence data and metadatafrom the GISAID platform for the GK clade corresponding to the lineage B.1.617.2 availableon April 22, 2022, which amounted to 4, 212, 049 sequences. Using the pipeline and the editingof its JSON file, we cleaned the sequence data, selected the data collected by a specific largeFrench laboratory (CERBA), selected the data from two regions of interest (the Ile-de-Franceregion for a first analysis, and the Provence-Alpes-Côte d’Azur region for a second analysis), andsub-sampled the data to keep up to 50 sequences per month. These two regions were chosenbecause they had some of the highest coverage in the dataset, while being in different parts ofFrance. Our third analysis included the whole country so we sub-sampled the data to keep up to

50 sequences per month per French region. The other parameters of the pipeline were defaultexcept for the number of windows for the effective reproduction numbers in the BDSKY analysiswhich was set to 9 with a change-point time every month from June 01, 2021, to January 01,2022.
To evaluate the robustness of the inference, we performed 5 independent COVFlow runs forFrance, using the pipeline configuration described above for the France analysis. For each run,we manually extracted the two major clades representing at least 20% of the leaves from theresulting phylogeny and used a Python script of the COVFlow pipeline to generate two XML files.For each BDSKY analysis, 9 effective reproduction numbers were estimated over the same timeperiods.
To assess the validity of the BDSKY results, we extracted SARS-CoV-2 PCR screening datafrom https://www.data.gouv.fr/fr/datasets/r/5c4e1452-3850-4b59-b11c-3dd51d7fb8b5.More precisely, we used the positivity rate at the national level and in the two regions of interest.The effective reproduction number (Re ) was estimated using the EpiEstim R package (Cori et al.,2013; Thompson et al., 2019). The data were smoothed out using a 7-days rolling average, inorder to compensate for the reporting delays.
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Figure 2 – Analysing the SARS-CoV-2 Delta variant epidemics in French regions usingthe COVFlow pipeline. a) Geographical sub-sampling using at most 50 sequences permonth for the Delta variant in Ile-de-France (IdF, in red), Provence-Alpes-Côte d’Azur(PACA, in green), and in all of France collected by CERBA laboratory. b) Time-scaledphylogenies generated using sub-sampled data from IdF (in red), PACA (green), and allof France (in orange). c) Temporal variations of the effective reproduction number (Re )of the Delta variant in IdF (red), in PACA (green), and France (orange) estimated usingBeast2 from phylogenies in solid lines, and estimated using Epiestim from incidence datain dashed lines. The last panel was generated using Beast2. In panel c, the solid linesshow the median values and the shaded area the 95% highest posterior density.

3. Results
We illustrate the potential of the COVFlow pipeline by performing a phylodynamic analysisof a specific COVID-19 lineage, here the Delta variant (Pango lineage B.1.617.2), in two regionsof a country, here Ile-de-France and Provence-Alpes-Côte d’Azur in France (Figure 2(a)).The COVflow runs resulted in the selection of 176 SARS-CoV-2 genomes for Ile-de-France(IdF), 221 genomes for Provence-Alpes-Côte d’Azur (PACA), and 1, 575 genomes for France.The first output of the pipeline is the time-scaled phylogeny inferred from the sequences. InFigure 2(b), we show the one for each of the two regions considered and the one for the wholecountry. This already allows us to visualise the date of origin of the epidemic associated with
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Figure 3 – Estimations of the effective reproduction number Re of the Delta variant inFrance for 5 different COVflow runs. For each run, the Re were estimated from the in-ferred phylogenetic tree, and for the two principal clades, denoted Subtree 1 and Subtree2. For each tree, 9 different Re were estimated, with a changing point date every monthfrom 2021-06-01 to 2022-01-01.

the sequences sampled. More generally, the shape of the phylogenies can reflect the epidemicspread in the locality studied, e.g. the number of external introductions.
The second output of the pipeline is the XML file for a BDSKY model that can be run intoBeast2. In Figure 2(c), we show the temporal variations in the effective reproduction number(Re ), which is the average number of secondary infections caused by an infected individual at agiven date. If Re < 1, the epidemic is decreasing and if Re > 1 it is growing.
The results show that the Delta variant epidemic seems to have started earlier in PACA thanin IdF in early 2021. In both regions (and in France), the growth of the Delta variant in Juneis consistent with previous results showing the transmission advantage of 79% over the Alphavariant during this time period (Alizon et al., 2021). Furthermore, the earlier start in PACA is con-sistent with the beginning of the school holidays, PACA being a densely populated region in thesummer. Note that IdF, as PACA, was more above the French average, which is also unsurprisinggiven the density and international connections of the region.
Early in the fall of 2021, the back-to-school period led to an epidemic rebound in France. Theassociated epidemic growth was again stronger in PACA than the national average. Furthermore,contrarily to IdF or France, PACA experienced a period of Delta variant growth following thewinter holidays. These are more difficult to explain but could be linked to local differences interms of behaviour.
Finally, we see a clear slowdown in the Delta variant epidemic at the end of 2021. This islikely linked to the extension of the 3rd vaccination dose, to changes in French behavior, but alsoto emergence of Omicron BA.1 variant, which was shown to have a growth advantage over theDelta variant (Sofonea et al., 2022).
When comparing BDSKY estimates with that of EpiEstim on the screening tests (dashedlines), we generally found consistent results. However, we did observe a shift in Re peaks. This isconsistent with the fact that methods based on incidence have an intrinsic delay due to the lagbetween the date of the infection and that of the PCR testing. For phylodynamics, this delay is,in theory, less important since the methods focus on virus evolution. EpiEstim estimates detectan epidemic growth in IdF and then PACA at the end of 2021 but this is expected because PCRtests do not discriminate between lineages and the end of the 2021 year saw the rise of theOmicron BA.1 variant (Sofonea et al., 2022).
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Finally, a worry with phylodynamics is that the results depend on the sequences chosen.Moreover, considering the whole phylogeny incorporates importation events that are not in-cluded explicitly in the underlying birth-death model assumed by the BDSKY methods. Fig. 3,we show that the effective reproduction numbers estimated from themain subtrees are quantita-tively similar to theRe estimated from thewhole phylogenetic tree. Furthermore, the estimationsare all similar for different runs suggesting that the BDSKY framework is robust to phylogenetictree uncertainty.
4. Discussion

The COVID-19 pandemic constitutes a qualitative shift in terms of the generation, sharing,and analysis of virus genomic sequence data. The GISAID initiative allowed the rapid sharingof SARS-CoV-2 sequence data, which is instrumental for local, national, and international publichealth structures that need to provide timely reports on the sanitary situation. At a more fun-damental level, this genomic data is also key to furthering our understanding of the spread andevolution of the COVID-19 pandemic (Martin et al., 2021), especially in low-resource countries(Wilkinson et al., 2021).We elaborated the COV-flow pipeline, which allows users to perform all the steps from se-quence data to phylodynamics analyses. In particular, it can select sequences from the GISAIDdataset based on metadata, perform a quality check, align the sequences, infer a phylogeny, rootthis phylogeny into time, and generate an XML file for Beast2 analysis (we also provide scriptsto analyse the outputs). Furthermore, COV-flow can also readily allow the implementation ofsubsampling schemes per location and per date. This can help balance the dataset and also beextremely useful to perform sensitivity analyses and explore the robustness of the phylodynamicresults.A future extension could consist in including other Beast2 population dynamics models, forinstance, the Bayesian Skyline model, which is not informative about R0 but is potentially lesssensitive to variations in sampling intensity. Another extension could be to use other databasesto import SARS-CoV-2 genome data, e.g. that published by NCBI, via LAPIS (Lightweight API forSequences).Beast2 can simultaneously infer population dynamics parameters and phylogenies, which isan accurate way to factor in phylogenetic uncertainty (Bouckaert et al., 2014). However, thisglobal inference is particularly computationally heavy and is out of reach for large data sets. Tocircumvent this problem, we perform the phylogenetic inference first using less accurate soft-ware packages and then impose the resulting phylogeny into the Beast2 XML file. An extensionof the pipeline could offer the user to also perform the phylogenetic inference, for instance byusing the so-called ‘Thorney Beast’ (https://beast.community/thorney_beast) implementedin Beast 1.10 (Suchard et al., 2018).Finally, it is important to stress that phylogenetic analyses are always dependent on the sam-pling scheme (Guindon and De Maio, 2021; Hall et al., 2016; Karcher et al., 2020; Louca et al.,2021). If most of the sequences come from contact tracing in dense clusters, the analysis willtend to overestimate epidemic spread. This potential bias can be amplified by the sequenceselection feature introduced in the pipeline. An advantage of COVFlow is that it can performspatio-temporal subsampling but additional studies are needed to identify which are the mostappropriate subsampling schemes to implement.
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