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Abstract

We show that the description of the holomorphic CP'-bundle associated to a holomorphic projective
structure on a Riemann surface in terms of the principal bundle of projective 2-frames extends very well
to the setting of branched projective structures. This generalization reveals a space of parameters, each
of which is associated to a branching class. The space of branched projective structures with a given
branching class appears as a space of connections on a given CP'-bundle, and is consequently an affine
space. Finally, we study the map which to a branching class associates the corresponding CP'-bundle

with section.

Introduction

Projective Structures

Holomorphic projective structures are (PSL(Z, C), (CPl)—structures, i.e. Riemann surfaces locally modeled on
the Riemann sphere CP!. More precisely, a holomorphic projective structure on a Riemann surface X is given
by an atlas (U;, f;)icr, where (U;)ier is an open cover of X and f; : U; — CP! are a local biholomorphisms,
such that on the intersections U;NUj, there is a Mobius transformation g;; € PSL(2, C) such that f; = g;;0 f;.

These structures play a central role in the theory of uniformization of Riemann surfaces, which is the
reason why they were introduced at the end of the nineteenth century (see [Sail6]). Recall that the uni-
formization theorem states that any simply connected Riemann surface is biholomorphic to CP!, C or H?,
and can thus be seen as an open subset of the Riemann sphere. In particular, if X is a Riemann surface and
7: X — X its universal covering, then X C CP! and the group of deck transformations of 7 is contained
in PSL(2,C), so that the local inverses of the covering map m provide local identifications of X with CP!,
defining the so-called uniformizing projective structure of X.

Projective structures also provide examples of opers (see [BD05]) , namely PSL(2, C)-opers. Recent pa-
pers extend properties of holomorphic projective structures to more general classes of opers (see in particular
[San18]). See also [Fre07] for the role opers in the Langlands program.

This paper revisits one of the key properties of holomorphic projective structures. Namely, if X is a
compact Riemann surface, the space of projective structures on X is an affine space, directed by the vector
space H? (X , K%Q) of global holomorphic quadratic differentials on X (here K x denotes the cotangent bundle
of X).



There is a very rich literature about this affine structure. The classical approach is centered on an order
3 differential operator, named the schwarzian derivative : the difference between two holomorphic projective
structures p; and ps is obtained as the schwarzian derivative of the charts of p1, seen as holomorphic functions
of the coordinates given by the charts of py. All the properties of the schwarzian derivative are encapsulated
in the fact that this process defines a quadratic differential on X. See for instance [Gun66], [Dum09], [LM09|

for a precise exposition of this approach.

The Projective Osculating Line

A more geometric viewpoint on the affine structure of the space of projective structures on X is developed in
[Del70], [Kob95] and [And98|. A holomorphic projective structure on X is seen as a triple (P, s, V) where P
is a holomorphic CP!-bundle on X, s is a holomorphic section of P and V is a flat connection (equivalently
a Riccati foliation) on P such that s and V are transverse over each point of X. The key fact here is that
the couple (P, s) is the same for all the holomorphic projective structures on X. As a consequence, the space
of projective structures on X appears as a space of connections on a fixed CP'-bundle, and inherits the
classical affine structure of connection spaces.

We denote by (Px,sx) the CP!-bundle with section associated to the holomorphic projective structures
on X. It is called the projective osculating line of X and should be understood as a projective equivalent to
the tangent bundle T'x of X. The section sx plays the role of the zero section of Tx : for any x € X, sx(z)
is the contact point between X and the fiber Px ,. However, while T'x , has a tangency point of order 1 with
X, Px, and X are tangent up to order 2 at s(z).

In [Kob95] and [And98], the projective osculating line of X is introduced by way of its principal bundle

of trivializations, namely the bundle of projective 2-frames on X. This is also the approach of this paper.

Branched Projective Structures

The aim of this article is to generalize this point of view on projective structures, involving the projective
osculating line, to branched projective structures. A branched projective structure is a projective structure
with a particular kind of singularities, namely cone points with angle a multiple of 27. Formally, a branched
projective structure on the Riemann surface X is given by an atlas (Uj, f;), still with Mobius transforma-
tions as changes of charts, but where the charts f; are now only nonconstant holomorphic maps. Here the
differentials df; may vanish, and the vanishing locus of the df; define a divisor D on X, named the branching
divisor of the branched projective structure.

Branched projective structures arise for instance as pullbacks of projective structures by ramified cov-
erings. It should be noted that this notion is a special case (where poles are of order at most 2 and local
monodromy is trivial) of the more general notion of meromorphic projective structure, that is studied in
particular in [AB20], [GM21], [GM20] and [Sér22|. However, usual techniques for the study of meromorphic
projective structures do not apply to branched projective structures.

Branched projective structures are also examples of branched opers, namely branched PSL(2, C)-opers.
See [FG10] and [BDH22| for more on branched opers. It should also be noted that branched projective

structures have been extensively studied with regards to their holonomy representations, that are elements



of Hom (X, PSL(2,C)), see [GKMO00], [CDF14], [Le 23]. While the holonomy representations of unbranched
projective structures are all nonelementary, any element in Hom (X, PSL(2, C)) is the holonomy of a branched
projective structure. This illustrates the flexibility allowed by branching singularities.

One difficulty in the study of branched projective structures is that, unlike what happens for (mero-
morphic) projective structures, the space of branched projective structures over a fixed Riemann surface X
and divisor D is not an affine space in general. It is only an analytic space, as shown in [Man72| where
Mandelbaum introduced branched projective structures.

One way to understand this lack of structure is to consider the description of branched projective struc-
tures as flat CP'-bundles with section. Similarly to the unbranched case, a branched projective structure
on X is a triple (P,s,V) where P is a holomorphic CP!-bundle, s a holomorphic section of P and V a
holomorphic connection on P such that s is not flat for V (equivalently, s is not a leaf of the Riccati foliation
associated to V). Note that, unlike in the case of projective structures, here the condition on the triple
(P, s,V) is a generic one, in this sense the notion of branched projective structures is a generic generalization
of the concept of unbranched projective structures (like branched coverings are generic generalizations of
coverings).

This description of branched projective structures reveals a major difference with the unbranched case.
Namely, the couple (P, s) depends on the branched projective structure considered, even when the underlying
Riemann surface X and branching divisor D are fixed. This explains why the space of branched projective
structures over a Riemann surface with divisor is not an affine space, being not a space of connections. Note
that in [BDG19] the space of branched projective structures over a curve with divisor is described as a space
of logarithmic connections over a fixed rank 2 vector bundle, while in [BD21], generic triples (P, s, V) are
described as branched SO(3, C)-opers.

In this paper we show that the construction of the projective osculating line in the unbranched case
naturally generalizes to the branched case and exhibits, for a fixed X and D, a space of parameters that we
call branching classes. To each branching class is associated a branched projective osculating line, that is a
CP!-bundle with section, generalizing the twisted tangent line bundle T (D) with the zero section. To a
branched projective structure is associated a branching class, and the CP'-bundle with section associated
to a branched projective structure is the projective osculating line corresponding to its branching class.
One consequence is that the space of branched projective structures corresponding to a given branched
osculating line, being identified to a space of connections, is an affine space. The underlying vector space is
1Y (X, K(-D).

Note that in [Bil23b], branching classes is the key element to construct an analytic structure on the
space of all branched projective structures with fixed genus and branching degree, and investigate their
singularities. See also [Bil23a].

It should be noted that a branched projective osculating line is slightly more that a CP!-bundle with
section. In particular several branched projective osculating lines may have the same underlying CP!'-bundle
with section. We conclude this paper by studying the map from the space of branching classes (or branched
projective osculating lines), that we show to be an affine space, to the moduli space of CP'-bundles with

section, in the spirit of [Mar70].



Structure of the Paper

In section 1, we present the theory of (G, X)-structures and Cartan geometries with a point of view that will
be useful to consider projective structures from the viewpoint of the projective osculating line. We emphasize
the equivalence between the datum of a bundle (with section) over a manifold and the datum of the principal
bundle of its trivializations (preserving the section).

In section 2, we introduce the theory of holomorphic projective structures on a fixed Riemann surface
X, in the spirit of [KN96], [Kob95] and [And98|, through the study of the osculating projective line Py,
its adjoint bundle and its Atiyah bundle. With our viewpoint, the object that arises naturally is in fact
the bundle of projective 2-frames of X, that is the bundle of trivializations of Px. Thus we mostly work
with projective 2-frames. Projective structures arise as some class of Cartan connections on the bundle of
projective 2-frames, called projective connections. We show that these connections induce a natural structure
of SO(3,C)-oper on the adjoint bundle of the bundle of projective 2-frames. The content of this section, as
well as the previous one, is classical.

In section 3, we confront the viewpoint developed in section 2 on the projective osculating line to the
branched case. This reveals, at each branching point, a parameter space, the space of branching classes,
each branching class corresponding to a branched analog of the bundle of projective 2-frames, thus leading
to a branched analog of the osculating projective line. We then generalize the constructions carried out for
projective 2-frames to branched projective 2-frames. A notion of branched projective connections on these
bundles arises, that we show to be equivalent to the notion of branched projective structures.

In section 4, we are interested in the space of parameters defined in section 3. We show that this space
of parameters is an affine space, and we study the map from this affine space to the moduli space of CP!-
bundles with section, that maps each branching class to the CP-bundle with section given by the associated

branched osculating line.

Acknowledgements

I am thankful to my advisor Sorin Dumitrescu for his help and support. I would like to thank David Dumas

for sharing the work of Charles Gregory Anderson [And98| with me.

1 Cartan Geometries

In this section we introduce the language of Cartan geometries, that we will use to describe the CP!-bundle

associated to a projective structure.

1.1 Different Notions of Manifolds Modeled on a Space

Let @ be a manifold, endowed with the faithful left-action of a Lie group G by diffeomorphisms. For instance,
one can have in mind the space R", along with the action of its group of isometries Isom(R™). In this article
we are interested in the projective line CP! with the action of the projective linear group PGL(2, C) by linear
transformations. The action of G makes it possible to pay attention to properties of some objects of @), that

we call geometric properties. A property p is said to be geometric if, for any object w attached to () that



1.1 Different Notions of Manifolds Modeled on a Space

has the property p, the image of w by any element of G also has the property p. For instance, in R" with
the action of Isom(RR™), the property "being aligned" is a geometric property of sets of points. The property
"being of norm 1" is a geometric property of tangent vectors. In CP! with the action of PGL(2,C), four
points can have the property "being of cross-ratio 1", which is a geometric property.

Let us first introduce an abstract way of considering the geometry of () with the action of G :

Definition 1.1.1. A (G, Q)-space is a space @' endowed with a family («;);er of trivializations, that is to
say of diffeomorphisms o; : Q' = @, such that for any i,j € I there exists g € G such that a; = g o aj. If
Q1 and Q9 are (G, Q)-spaces, a diffeomorphism ¢ : Q1 — Q3 is said to be an isomorphism of (G, Q)-spaces

if there is a trivialization a1 : Q1 — @ of @1 and a trivialization as : Q2 — @ of Q2 such that a; = ap 0 ¢
Remark 1.1.2. (i) A (Isom(R"™),R")-space is a Euclidean space of dimension n.
(i) If Q" is a (G, Q)-space, there is no canonical action of G on Q’.

(iii) Since the action of G on @ is faithful, the set of trivializations of a (G, @)-space Q' is a G-torsor, i.e.

a space on which G acts freely and transitively. In particular it inherits the differential structure of G.

If the geometric properties that can be studied on @ are of interest, one might ask whether the same
notions can also be studied on objects attached to other differential manifolds, that are not necessarily
isomorphic to Q). Let M be a differential manifold. If one is interested in local objects, it is enough to
only have, for each point m € M, an identification of an open neighborhood of m with an open subset of
Q. Of course these several local identifications have to be consistent with the geometry of @ : if two of
them are defined on the same open subset of M, one has to be obtained from the other by composing with
the action of an element of GG, so that the induced local geometry on M is the same. This is the notion of

(G, Q)-structure :
Definition 1.1.3. Let M be a differential manifold. A (G, @)-atlas on M is the datum of :
e An open cover (U;);er of M

e For each i € I, a map f; : U; — @ that is a diffeomorphism from U; to its image, such that for any
i,j € I there exists g € G with fij(zx) = g fj(x) for all x € U; N Uj;

Two (G, Q)-atlases are equivalent if their union is still a (G, Q)-atlas. A (G, Q)-structure is an equivalence
class of (G, Q)-atlases.

For example, a (Isom(R"),R"™)-structure is a flat Riemannian manifold.

Another way of understanding the fact that M locally has the geometry of @ is the following. Consider
a small observer moving in Q. In the case where M is a sphere, Q = R? and G = Isom(RQ)7 one can think of
somebody walking on a very big sphere, such as the earth. Wherever he is, the observer sees his neighborhood
as if he was living in @) : to each point m of M is attached a copy 2,, of @), and the observer locates himself
as if he was moving in Q,,. In the case of the plane R? with the action of Isom(R?), the space Q,, would be
the tangent space of M at m. In particular, there is a point s(m) € Q,,, identified with m € M that is the
point where the observer considers he is standing when he is in m. When the observer moves from a point

m € M to m’ € M, he feels like he was moving inside (), while he moves from Q,, to Q,, : he identifies



1.1 Different Notions of Manifolds Modeled on a Space

these two spaces. Moreover, when he moves inside M, the observer sees that his position inside his reference
space changes, meaning that s,/ is not identified to s,, when m and m’ are close. In other words, the family
of spaces (Q)mem comes with a connection, i.e. an identification between Q. and Q) for any smooth
path 7 : [0,1] — M. This connection is transverse to the family of points (S, )mear. Such a local modelling

of M on the geometry of @) is formalized by the notion of Cartan geometry.
Definition 1.1.4. A Cartan geometry on M modeled on @) with the action of G is given by
e A differential bundle of (G, Q)-spaces m: Q — M over M

e A connection V on Q, i.e. a distribution of dim(M)-dimensional spaces in Q, transverse to the fibers of

m, and such that the associated parallel transport identifies the fibers by isomorphisms of (G, Q)-spaces
e A section s of Q that is transverse to the connection V.

For instance, a Cartan geometry modeled on R™ with the action of Isom(R") is a (not necessarily flat)

Riemannian manifold.

Remark 1.1.5. (i) We use in definition 1.1.4 the notion of differential bundle of (G, Q)-spaces. Let us give
a formal definition, although it is not surprising. A differential bundle of (G, Q)-spaces on M is a
differential manifold Q with a differential map 7 : Q — M as well as an open covering (U;);e; of M
and for each i € I a local trivialization, i.e. a diffeomorphism (7, ) : 7= 4(U;) = U; x Q, such that
the restrictions fim = Filz—1(m) : 71(m) = Q (m € M) are isomorphisms of (G, Q)-spaces, and for
any 4,j € I,m € M, there exists g;; € G such that f;,, = gij o fjm.

(ii) A bit trickier is the notion of section of a bundle of (G, Q)-spaces. A section of the (G, @)-bundle Q is
a smooth map s : M — Q such that, firstly, 7 os = idys and, secondly, there is an open cover (U;);cr of
M and trivializations (7, F}) : 71 (U;) = U; x @ such that for each i € I, F; 05 : U; — Q is constant.
The second condition is a consequence of the first one only in the case where the action of G on @ is

transitive.

(iii) The distribution defined by the connection V has rank dim(M/). The section s, seen as a submanifold
of Q, also has dimension dim(A/). Thus the transversality of s and V gives 2dim(M) = dim(Q) =
dim(M) + dim(@Q), so dim(M) = dim(Q).

Suppose from now on that the action of G on @ is analytic, meaning that for any nonempty open set
U C @, an element g € G is uniquely determined by the restriction of its action to U. Recall that a
connection is said to be flat if the associated distribution is integrable.

Suppose given a (G, Q)-structure on M, with atlas (U;, f;)icr. For each i € I, consider a (G, Q)-space
Q;, as well as an open subset V; C Q; and an identification ¢; : V; = U; (the diffeomorphism f; ensures
the existence of V; and ¢;). Since the action of G is analytic, for each i € I there is a unique trivialization
v+ Qi = @ extending the map f; o¢;. Thus for each nonempty intersection U; N Uj, there is a uniquely
determined identification -, Lo v; + Qj — Qi. These identifications make the family (Q;)icr into a local
system of (G, Q)-spaces on . Such a local system can be seen as a flat bundle of (G, Q)-spaces Q over M,
by considering for each i € I the product U; x Q; and glueing these products over the intersections U; N U;



1.2 Adjoint and Atiyah Bundles

by the isomorphisms (m,z;) € (U;NU;) X Q; — (m,%_1 0v;(x;)) € (UiNUj) x Q;. The connection on Q is
given locally over U; by the horizontal distribution on the trivial bundle U; x Q;. Moreover, the identifications
t; : Vi = U, are encoded in a section of Q given on each U; by the diagonal section m € U; — Li_l(m) € U; xQ;,
which is transverse to the flat connection. In other words, a (G, Q)-structure on M induces a flat Cartan
geometry on M, i.e. a Cartan geometry whose associated connection is flat.

Reciprocally, a flat Cartan geometry (2,V,s) on M induces a (G, Q)-structure on M : the flat bundle
(Q,V) defines a local system (U;, Q;)icr of (G, Q)-spaces on @, and the section s gives identifications of each
open subset U; C M with an open subset of @Q;.

Proposition 1.1.6. The datum of a (G, Q)-structure on M is equivalent to the datum of a flat Cartan
geometry modeled of QQ with the action of G.

1.2 Adjoint and Atiyah Bundles

From now on, suppose that the action of G on @ is transitive, so that all points of @) are geometrically
equivalent. Fix a point zg € @, so that @ is now a pointed space. Let H C G be the subgroup of G fixing
o, so that @ = G/H, and (TQ),, = 9/h, where g and b are the respective Lie algebras of G and H. One
can slightly modify the definition of a (G, Q)-space to get the definition of a (G, @, x¢)-space :

Definition 1.2.1. A (G, Q, zo)-space is the datum of a (G, Q)-space @’ with a marked point z{, € Q. The

trivializations of the (G, Q, xo)-space (Q',x() are the trivializations of @’ sending z{, to zo € Q.

There is an obvious notion of isomorphism of (G,Q,xp)-spaces. There is also a notion of bundle of
(G, Q, zg)-spaces, that is equivalent to the notion of bundle of (G, @)-spaces with section. In particular, the
structure group of a bundle of (G, @, xp)-spaces is H. There is also a notion of connection on a bundle of
(G, Q, zp)-spaces, for which the parallel transport has to preserve the section.

Take a (G, Q)-space (respectively a (G, Q, xg)-space) Q1. The adjoint space of @)1, denoted by ad(Q1),
is the vector space of infinitesimal automorphisms of ()1, i.e. the space of global vector fields of )1 whose
flow at any small time is an automorphism of Q1. The vector space ad(Q1) is stable for the Lie bracket
of vector fields, and is thus a Lie algebra. A trivialization of @ identifies the Lie algebra ad(Q;) with g
(respectively identifies the Lie algebra ad(Q;) with b, and the vector space Ty,@Q1 with g/b). If z; € Qq,
and @1 is the (G, Q, z¢)-space given by ()1 and the marked point x1, the infinitesimal automorphisms of @vl
are in particular infinitesimal automorphisms of ()1, thus ad (@) C ad(Q1). The tangent space of Q1 at x;
is given by (Tg,),, = ad (Q1) /ad (@)

Now take a bundle of (G, Q)-spaces (respectively of (G, Q,xg)-spaces) m : Q — M. The adjoint bundle
of Q, denoted by ad(Q) is the vector bundle on M whose fiber over m € M is ad(2,,). It is a bundle of Lie
algebras.

The Atiyah bundle of Q, denoted by At(Q), is the vector bundle over M whose fiber over m € M is the
vector subspace of HY (17 (m), Ta|-1(m)) generated by global sections ¢ of Tq|r-1(m, for which there is a
vector V' € (Thr),, and a local trivialization of Q such that ¢ is the horizontal lift of V. See [Ati57].

There is a natural notion of isomorphism of bundles of (G, Q)-spaces (respectively (G, Q,x()-spaces).

Given another bundle of (G, Q)-spaces (respectively (G, Q, zg)-spaces) 7’ : Q" — M’ where M’ is another



1.3 Cartan Connections

differential manifold, a map ¢ : Q — Q' is an isomorphism if ¢ is a diffeomorphism, there exists an underlying
diffeomorphism ¢ : M = M’ such that 7’ o ¢ = 9 o, and ¢ induces isomorphisms of (G, Q)-spaces
(respectively (G, Q, xg)-spaces) between fibers of m and fibers of #'. A gauge transformation of Q is an
automorphism of Q for which the underlying automorphism of M is the identity. The adjoint bundle of Q
can be seen as the bundle of infinitesimal gauge transformations of Q. The Atiyah bundle can be seen as the
bundle of infinitesimal automorphisms of Q. In particular, ad(Q) C At(Q).

The exact sequence at any = € Q

0 — ker(dr)y — (Ta), T (Tar) y() — 0 (1)
defines an exact sequence
0—ad(Q) = At(Q) > Ty — 0 (2)

That is called the Atiyah exact sequence associated to Q.

Since the infinitesimal automorphisms of @ are identified with elements of the Lie algebra g of G (respec-
tively the lie algebra b of H), ad(Q) is of rank dim(G) (respectively dim(H)). As a consequence, it follows
from the Atiyah exact sequence (2) that At(Q) is of rank dim(G)+dim(M) (respectively dim(H ) +dim(M)).

A connection on Q, seen as a distribution on Q transverse to the fibers of w : Q — M, defines at each
point z € Q a decomposition (To), = (Tn),(,) ® ker(dm)s, where (Tar), () is identified with the vector
subspace of (Tg), given by the connection at z. In particular, it defines a splitting of the exact sequence
(1), which in turn induces a splitting of the exact sequence (2). In fact, the datum of a connection on Q is
equivalent to the datum of a splitting of (2) : such a splitting enables to lift a vector field on M to a vector
field on Q whose restriction to each fiber is in the Atiyah bundle, which ensures that the associated parallel

transport identifies the fibers of 7 through isomorphisms of (G, Q))-spaces (respectively (G, Q, xq)-spaces).

1.3 Cartan Connections

Consider on M a Cartan geometry modeled on (@, G), given by a triple (2,V,s), where 7 : Q — M is a
bundle of (G, Q)-spaces, V is a connection on Q and s is a section transverse to V. In particular the couple
(Q,5s) can be seen as a (G, @, xp)-bundle, that we denote by 7 : Q —» M. Note that Q is a reduction of Q
to the structure group H. One has the inclusion ad (§> C ad(Q). The local trivializations of Q are also

local trivializations of Q, which on an infinitesimal level implies At (§> C At(Q). If m € M, denote by Qp,

(respectively Q) the fiber of Q (respectively Q) over m. One has (TQu) s(m) = ad(Q)n/ ad (Q)m
Let (Wé)geg be the distribution on Q defining V, in particular We C (To), and (To), = We @ ker(dm)e.
Let also w : At(Q) — ad(Q) be the splitting of the exact sequence 0 — ad(Q) — At(Q) — Ty — 0 given by
V.Ifme M and ¥V € At(Q),, C H® (Qm, Tolg,,), then w(V) = 0 if and only if Vs € W for all £ € Q.
Since w is a splitting, it is the identity on ad(Q) and thus on ad (§> Suppose now € At <§)m C

At(Q)pm,. In particular Vs(m) 1s tangent to the section s. Since the connection V is transverse to s, w(V) =0,
i.e. Vsim) € Wy(m), if and only if V() = 0, which implies dr (V) = 0, so ¥ € ad <§) and thus ¥ = 0 because

w is the identity on ad (é) As a consequence, w is injective when restricted to At (§> Recall that ad(Q) is
of rank dim(G) and At <£~2) is of rank dim(H)+dim(M). Since dim(M) = dim(Q) = dim(G) — dim(H), the



1.4 The Point of View of Principal Bundles

vector bundles ad(Q) and At <§ > have the same rank. So the injective morphism w/,, (3) is an isomorphism.
Reciprocally, a splitting w’ : At(Q) — ad(Q) defines a connection on Q, and if moreover «’| At(3) is an
isomorphism (in particular injective), the induced connection is transverse to s. Notice that the vector

subbundles At (Q) and ad(Q) generate the vector bundle At(Q), so that such a splitting w’ is determined
by its restriction to At (Q)

Definition 1.3.1. A Cartan connection on a bundle of (G, Q)-spaces Q on M along with a reduction to a

bundle of (G, Q, zp)-spaces Qis an isomorphism w| At(3) * At (§> = ad(Q) that is the identity in restriction
to ad <£~2)
Proposition 1.3.2. The datum of a Cartan geometry on M modeled on Q) with the action of G is equivalent

to the datum of a bundle of (G,Q)-spaces Q on M, along with a reduction to a bundle of (G, Q,x)-spaces

§, and a Cartan connection on Q along with its reduction Q.

Consider a Cartan geometry on M given by a bundle of (G, Q)-spaces Q, a bundle of (G, Q, z¢)-spaces
9 and an isomorphism W|At(§) DAt (é) = ad(Q) that is the identity on ad <§> The isomorphism W|At(§)
defines for each m € M an isomorphism of exact sequences :

0 —— ad <§2)m — At <§)m — (Tm),, —— 0

| l‘”m(é)m J‘I’m ®)

0 —— ad (é)m — ad(Q)m — (TQm)s(m) —0

In particular, the Cartan geometry comes with an identification of the tangent space of M at each m with
the tangent space of @, at s(m). This confirms that the space @Q,, is an osculating space to @ at m, the

point s(m) being the point of contact.

1.4 The Point of View of Principal Bundles

Consider a (G, Q)-space @', and let T be the space of trivializations of . The group G acts freely and
transitively on the left on Jg/, so that T is a G-torsor. A trivialization a; € Jg identifies the group G
to Jgr by g € G — goa; € Jgr. The differential structure induced on g by this identification does not

depend on the choice of o;. Note that there is a surjective map

D yQ/XQ — Q/

(a,z) — o l(2)

(4)

and the fibers of ® are the orbits of the left-action of G on g x Q. Thus ® defines a canonical isomorphism
G\ (7@/ X Q) :> Q/.

Reciprocally, given a G-torsor J, one can consider the quotient

Q' =G\(7 xQ) (5)

Since the action of G on J is free and transitive, if tg € 7, any 2’ € Q' has a unique representative in 7 x Q



1.4 The Point of View of Principal Bundles

of the form (tg,x). Thus t( defines a diffeomorphism

ato : Q/ — Q

[(to, 2)] = =

(6)

Remark 1.4.1. Having in mind the preferred point g € @, fixed by the subgroup H C G, one has Q' = H\7,
where if ¢ € 7, the class [t] € H\T is identified with the class [t, 2] € G\ (T x Q) = Q'.

If g € G, one has ag4, = g o ay,. This proves that the diffeomorphisms (ay),.; are the trivializations
for a structure of (G, Q)-space on @Q'. In particular, the G-torsor J is canonically identified through the
map a with the G-torsor g of trivializations of @'. The same holds, mutatis mutandis, in the case of

(G, Q,x0)-spaces. We have proved the following proposition :

Proposition 1.4.2. The datum of a (G, Q)-space Q' is equivalent to the datum of the G-torsor Jg of its

trivializations. The datum of a (G, Q, xg)-space is equivalent to the datum of the H-torsor of its trivializations.

Fix a (G, Q)-space (respectively a (G, Q,xp)-space) Q' and its torsor of trivializations Jr. The group
Aut(Q") of automorphisms of Q" acts on the right on Jy by precomposition, and this action is free and
transitive. Thus, while being a left G-torsor (respectively a left H-torsor), Jo is a right Aut(Q')-torsor. As
a consequence, if « € Ty and V' € <T57Q,>a, the tangent vector V' can be seen either as an infinitesimal action
of Aut(Q'), i.e. an element of ad(Q’), or as an infinitesimal action of G, i.e. an element of g (respectively of
h). In other words, one has identifications ad(Q’) ~ (TyQ,)a ~ g (respectively ad(Q’) ~ <T‘7Q'>a ~h). The
composed identification ad(Q') ~ g (respectively ad(Q’) ~ bh) is the one given by the trivialization « of @’.
The actions of G (respectively H) and Aut(Q') on J commute. The identifications (TyQ,>a ~ g identify
the tangent bundle T o 10 g X Jg- The left-action of G on Jgo/ induces, by differentiation, a left-action of G
on TyQ, and thus, by the previous identification, on g. This left-action is the adjoint action of G on g. The
g-valued 1-form on Jg given by the identification T: o 8 X Jq is called the Maurer-Cartan form

The global vector fields on J¢ that are invariant under (i.e. that commute with) the left action of G
(respectively H), form a Lie algebra that is canonically identified to ad(Q’). In particular the flow of such a
vector field is given by the action of an element of Aut(Q’). Conversely, global vector fields that are invariant
under the right action of Aut(Q’) form a Lie algebra that is identified to g (respectively h), and the flow of
such a vector field is given by the action of an element in G (respectively g).

The above study can be made in family. Given a bundle 7 : Q — M of (G, Q)-spaces on the manifold
M, one can consider its bundle of trivializations 7 : 5o — M, whose fiber over m € M is the G-torsor Jg,,
of trivializations of the fiber Q,, of Q. The bundle Jq is a G-principal bundle, i.e. a bundle of G-torsors.
Reciprocally, given a G-principal bundle 7, one gets a bundle of (G, Q)-spaces by considering the quotient
C\(T x Q).

Remark 1.4.3. The equivalence between a bundle Q of (G, @)-spaces and the associated principal bundle Jg
of trivializations allows to speak indifferently of Q or Jg. In particular, the adjoint and Atiyah bundles of Q
are also the adjoint and Atiyah bundles of 7y : ad(Q) = ad (7g) and At(Q) = At (Tg).

Suppose given a connection V on m : Q — M. It defines a parallel transport on 2, thus a parallel

transport on the bundle of trivializations 7 : o — M, that is equivariant with respect to the action of G on
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Jg. To such a parallel transport is associated a connection %, thus a distribution (W) aeg, On Jg with for
any o € Jg, (T7,),, = Wa @ ker(d7)o. The equivariance of the parallel transport induced by V is equivalent

to the invariance of the distribution (W) with respect to the action of G : for any ¢ € G and a € Jg,

aETy
g+ Wa = Wy.o, where the action of G on the tangent space of Jg is the differential of the action of G on Jg.

Definition 1.4.4. A principal connection on a G-principal bundle 7 : 79 — M is a distribution (W) acT,

that is transverse to the fibers of 7 and that is invariant by the action of G : for any g € G, g- W = W.q.

Proposition 1.4.5. The datum of a connection on Q is equivalent to the datum of a principal connection

on its principal bundle of trivializations Jg.

Note that the pullback vector bundle 7* At(Q) (respectively 7*ad(Q)) has fiber (77,), (respectively
ker(dr)a) over a € Jg. A principal connection (Ws),c7, defines for each a € Jg a projection w : (1,), —
ker(dm)q, of kernel W,. The projection w is the pullback of the projection w : At(Q) — ad(Q) defined by
the connection on Q associated to (Wa),eq, -

Since ker(d7),, is the tangent space to the fiber of Jg over m(«), which is a G-torsor, there is an iden-
tification ker(dm), ~ g. In other words, the pullback of ad(Q) by 7 is the trivial bundle g x J9. Thus a
principal connection can be seen as a map Ty, — g, that is equivariant for the action of G on T3, and the
adjoint action of G on g.

Let us use this description of principal connections to give another formulation of the notion of Cartan
geometry. Suppose given a bundle Q of (G, Q,x0)-spaces on M, and write Q the associated bundle of (G, Q)-
spaces. We saw that a Cartan geometry on M with underlying bundles Q and Q' is given by an isomorphism
w\At@) DAt (Q) = ad(Q) that is the identity in restriction to ad (§> Let 7 : 95 — M be the H-principal
bundle of trivializations of Q, and 7 : Jg the G-principal bundle of trivializations of Q, so that 5 C Jq.
One has 7 At <§> =Tz, 7 ad(Q) = ker dr|r; and 7 ad <§> = ker d7.

We have just noted that ker dm ~ g x Jg, and similarly ker dr ~ h x T5. Thus the pullback of the map

W|At(§) by T can be seen as a g-valued 1-form @ on J5 that is the Maurer-Cartan form in restriction to

the fibers of 7 and such that w is equivariant for the action of H on 75 and the adjoint action of H on g.

Moreover, for any o € J5, @, is an isomorphism. This construction can be reversed, so that we have :

Proposition 1.4.6. The datum of a Cartan geometry on M, modeled on Q is equivalent to the datum of
a principal H-bundle T, along with a g-valued 1-form w on I such that w is the Maurer-Cartan form in
restriction to the fibers of I, w is equivariant with respect to the action of H on I and its adjoint action on

g, and w, is an isomorphism for all « € T .

2 Projective Structures and the Projective Osculating Line

From now on, X is a Riemann surface. Let Ox denote the trivial bundle of X, Tx its tangent bundle and
Kx its cotangent bundle. In the rest of the paper, the notions defined in section 1 are used in a holomorphic

framework, meaning that smoothness conditions are replaced by holomorphicity conditions.

11



2.1 Holomorphic Affine Structures and Holomorphic Affine Connections on a Riemann Surface

2.1 Holomorphic Affine Structures and Holomorphic Affine Connections on a Riemann

Surface

Before coming to projective structures, let us examine the simpler case of affine structures, of which the
description in terms of Cartan geometries involves very familiar notions of differential geometry.

In this section only, @ = C and G = Aff(C), the group of holomorphic affine transformations acting on
C.

Definition 2.1.1. A (Aff(C), C)-structure on X whose charts are holomorphic is called a holomorphic affine

structure.

The affine space C has a privileged point, namely zqg = 0 € C. The subgroup of G fixing 0 is the group of
holomorphic dilatations C*. A bundle of (G, @Q)-spaces on X is a holomorphic affine bundle on X. A bundle
of (G,Q,xp)-spaces on X is a holomorphic line bundle on X. There is a preferred holomorphic line bundle
on X, namely the tangent bundle Tx. Let us denote by Affx the associated holomorphic affine bundle,
and s : X — Affx the section of Affx given by the reduction T, namely the zero section. Of course,
tautologically, for any v € X : (Tx), = (TAHX’I)S(:B).
A Cartan connection w|zypyy on the (G,Q)-bundle Affx along with its reduction Ty induces for any

z € X an isomorphism (3) @, : (Tx), — (TAﬁ?X@)s = (Tx),, thus an automorphism of (Tx),.

(z)
Definition 2.1.2. An affine connection on X is a Cartan connection on Affx along with its reduction Tx,

such that for any « € X the induced automorphism of (T’x), is the identity.

Now suppose given two affine connections on X, namely w|¢(7y) and W | At(Tx)- By definition and the dia-
gram (3), these two forms coincide when composed with the quotient At(Tx) —
At(Tx)/ad(Tx). Thus the difference w'|aq(ry) — Wlag(ry) takes values in ad (Tx). Denote respectively
by w,w’ : At (Affx) — ad (Affx) their extensions to At (Affy), that are splittings of the Atiyah exact
sequence (2)

0—ad(Affx) - At (Affx) = Tx — 0 (7)

and write respectively @, @’ : Tx — At (Affx) the corresponding splitting morphisms. The difference w’ — w
still takes values in ad (Tx ), thus so does the difference @’ —@ : it is a holomorphic linear form &' —@ : Tx —
ad (T'x). Moreover the adjoint bundle of any line bundle is trivial, so ad (T'x) = Ox, the structure sheaf of
X. In other words &’ — @ is a section of Kx, the cotangent bundle of X. Moreover any section of Kx can
be obtained as the difference @’ — @ for some pair of affine connections, and an affine connection w’| At(Tx) 18

uniquely determined by the associated splitting morphism @w. One has the following proposition :

Proposition 2.1.3. The set of affine connections on the Riemann surface X has the structure of an affine

space, directed by the vector space of global holomorphic differentials HO (X, K).

Let us have a look at the principal bundles associated to Aff x and its reduction Tx. For any x € X,
an affine isomorphism a from Affx , to C is given by a point of C, namely the image of s(x) by «, along
with a linear isomorphism from the vector space T'x , = (TAﬁfX7x)s(m) to C, namely the differential of o at

s(x). In other words, a trivilization of the affine space Affx, is given by a 1-jet of biholomorphism from a
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2.2 The Principal Bundle of Projective 2-Frames of a Riemann Surface

neighborhood of x to C. Thus the Aff(C)-principal bundle Affx associated to Aff x has fiber over x :
Affx o = {j;(ﬁ]qﬁ is the germ at x of a local biholomorphism from X to C} (8)

The principal bundle Affx is also called the bundle of affine 1-frames on X. Now a trivialization of T'x ;
is given by a trivialization of Affx , sending s(x) to 0, so the C*-principal bundle Ty associated to T’x has

fiber over x :
Txz = {j;gbkﬁ is the germ at x of a local biholomorphism from X to C, ¢(x) = 0} (9)

Let (Uj, #i)ier be the atlas of a holomorphic affine structure on X : on U; N Uj, one has z; = g;; o zj,
with g;; € Aff(C). For each i € I, one gets a local holomorphic section (thus trivialization) of Affx |y,
by considering z € U; — jlz; € Aftx . Moreover for any ¢, € I, on the intersection U; N Uj, the
change of trivialization is the constant g;; € Aff(C), thus the local connections on each U; associated to the
trivializations defined by the charts z; glue together on the intersections U; NU;. As a consequence, an affine
structure on X defines a global connection on Affx.

A straightforward calculation, similar to the proofs of proposition 2.4.1 and lemma 2.5.3 below, shows that
the connection on Affx given by an affine structure is an affine connection, and that any affine connection

comes from a unique affine structure, so that the following proposition holds :

Proposition 2.1.4. The datum of a holomorphic affine structure on the Riemann surface X is equivalent
to the datum of an affine connection on X. In particular, the set of affine structures on X is an affine space,

directed by H°(X, Kx).

2.2 The Principal Bundle of Projective 2-Frames of a Riemann Surface

From now on, the model space we consider is the Riemann sphere Q = CP!, and its group of symmetries is
G = PSL(2,C). The Riemann sphere CP! has a preferred point 2y = 0 € CP!. Let H C G be the subgroup
whose action on CP! fixes 0. With these conventions, a bundle of (G, Q)-spaces is a holomorphic CP-bundle
and a bundle of (G, @, z()-spaces is a holomorphic CP!-bundle along with a holomorphic section.

Let also L C H be the subgroup whose action on the tangent space of CP! at 0 is trivial. Let [C h C g
be the respective Lie algebras of L C H C (. The Lie subalgebra h C g is not preserved by the adjoint
action of G. However, the adjoint action of H over h preserves [.

The action of G on CP! induces an isomorphism of Lie algebras g ~ H O(CPl,TCP1), where the Lie
bracket on H(CP!, Tept) is given by the Lie bracket of vector fields. The Lie subalgebra § is identified with
the space of vector fields that vanish at 0 € CP! and [ is identified with the space of vector fields whose 1-jet
vanishes at 0.

If z € CP!, denote by (CP!, z) the germ of CP! at z. Similarly to what happens for affine transformations
of C, it is a classical fact (see for instance [Del70]) that for any z € CP! and any 2-jet j at x of local
biholomorphism with values in CP!, there is exactly one Mobius transformation in G whose 2-jet at z is j.

This justifies the following definition.
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2.3 The Structure of Filtered SO(3,C)-Bundle on ad(®x)

Definition 2.2.1. The bundle of projective 2-frames on X, denoted by 7 : Px — X, has fiber over x € X :
Px o= {quﬁ\(b is the germ at z of a local biholomorphism from X to CP'} (10)

The holomorphic structure of #x is such that if ¢ is a local holomorphic function on X, then x € X —

jle € Px . is a holomorphic section of Px.

The group G acts on the left on #Px by postcomposition, and by the above discussion the action is free
and transitive on the fibers, thus #x is a G-principal bundle.

Following (5) and remark 1.4.1, one can consider the CP!-bundle whose bundle of trivializations is @x :

Definition 2.2.2. The projective osculating line of the Riemann surface X is the CP!'-bundle over X,
denoted by IT: Px — X and defined by Px = G\ ((CP1 XQX) = H\Px.

Having chosen #_0 € CP! as a preferred point, the principal bundle ®x is endowed with a subbundle
Sx C Px, that is a H-principal bundle, and whose fiber over a point z € X is defined in the following way :

Sxz = {quﬁ\(b germ at x of local biholomorphism from X to CP!, ¢(z) = 0} (11)

In other words, Sx is the bundle of projective 2-frames on X that send the points of X to 0 € CP!. The
subbundle §x is the bundle of trivializations of a (G, @, xo)-bundle whose underlying (G, Q)-bundle is Px.
In other words, Sy defines a holomorphic section sx : X — Px, given by s(X) = H\Sx C H\®x = Px.

2.3 The Structure of Filtered SO(3,C)-Bundle on ad(%®x)

Recall the definition of a holomorphic filtered SO(3, C)-bundle on X.

Definition 2.3.1. A filtered SO(3,C)-bundle on X is a rank 3 holomorphic vector bundle on X endowed
with

(i) A nondegenerate bilinear form B, on each fiber W, of W such that B, varies holomorphically with
e X.

(ii) An identification A\®* W ~ Oy such that the bilinear form induced by B on the fibers of A W is the

trivial one on Ox

(iii) A filtration Fy C F» C W along with identifications F; ~ Ky and F/F; ~ Ox such that for all

x € X, F5 is the orthogonal of F} for the nondegenerate bilinear form B,.

Remark 2.3.2. Condition (¢i¢) implies that B, induces a perfect pairing between F; and W/F,, thus W/F»
is identified with T'x.

It is shown in [BD21]| that the datum of a holomorphic CP'-bundle with a holomorphic section is equiv-
alent to the datum of a holomorphic filtered SO(3,C)-bundle. In this subsection we exhibit the filtered
SO(3,C)-bundle associated to the projective osculating line Py along with its canonical section sx, and we

show that this particular SO(3,C) carries slightly more structure.
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2.3 The Structure of Filtered SO(3,C)-Bundle on ad(®x)

The fiber over z € X of the adjoint bundle ad(®x) (= ad (Px)) is the space of holomorphic vector fields
over the projective line Py ;. The adjoint bundle ad(%x) is a vector bundle of rank 3 and it is endowed with
a filtration Fi* C F5¥ C ad(®Px), defined as follows. For any = € X, take for F5', (respectively for F{¥) the
2-dimensional (resp. 1-dimensional) vector space whose elements are vector fields on the projective line Py ,
that vanish at s(x) € Py, (resp. whose 1-jet vanishes at s(z)). Note that F5% = ad(Sy).

For z € X, since Px is the bundle of trivializations of Py, the datum of an element ¢ € Pxz (¢ is a
local biholomorphism from a neighborhood of z to CP!, and the bar denotes the class in Px ;) is the same
as an identification Px ; ~ (CPl, and induces an identification ad(®x) ~ g. If moreover 5 € 8x,z, then Sx
is identified with H, F2),(:v with h and Fffx with [

For any z € X, denote by J2(Tx), the 3-dimensional vector space of 2-jets at z of local vector fields
on X. The holomorphic vector bundle J2(Tx) comes with a filtration F;X ¢ F3 c J2(Tx), where ﬁQXm
(respectively ﬁffw) contains the 2-jets of vector fields vanishing (respectively with vanishing 1-jet) at the
point x. The line bundle ﬁlx is identified with K}%Q ® Tx = Kx. The line bundle }?QX / ﬁlx is identified with
Kx ® Tx = Ox. The line bundle JQ(Tx)/ﬁg,x is identified with Tx.

In the case of the model space CP?, since any 2-jet of local vector field at a point € CP! uniquely extends
to a global vector field in H°(CP!, Ti-p1), there is a canonical identification J2(Tpp1), ~ H?(CP!, Tep1). Note
that in this way ﬁfgl (respectively ﬁfgl) is identified with H® (CP', Tip1 (—[z])) (respectively
HO (CPY, Tipr (—2[2)))).

Proposition 2.3.3. There is a canonical identification F2X ~ ﬁQX, that sends moreover FIX to ﬁlx

Proof. Let x € X and ¢ € Sx,z. In particular ¢(z) = 0. The local biholomorphism ¢ thus identifies a
neighborhood of z € X with a neighborhood of 0 € CP!, and as a consequence it defines an isomorphism
§¢p: JA(Tx )y ~ J*(Tep1)o- Let us explicitely write down this isomorphism.

Let z be a local coordinate on X centered at z, and let ¢ be the holomorphic function on a neighborhood
of 0 € C such that ¢ = ¢(z). The vector space J*(T¢)o is identified with C3 : if f is a function defined in a
neighborhood of 0 € C, then the 2-jet j2 f € is given by (f(0), f(0), £/(0)). As a consequence, the coordinate
2 identifies J?(Tx ), with C3. Using this identification, one has d¢(ag,ay,as). = (¢'ag, ¢"ag + ¢'a1, " ag +
2¢" a1 + ¢'as).

In particular, if (ag,a1,a2) € ﬁi{x C J*(Tx)s, ie. ag = 0, then d¢(ag,ar,az) € ﬁ’é%)l, and moreover
5¢(ag,ar,as) only depends on j2¢ = ¢. Thus ¢ defines an isomorphism d¢ between ﬁzxx and ﬁ%’ -
HY ((CP17TCP1 (—[x])) = h. Clearly, if ¢ € Sx, then ¢ = h-¢ with h € H, and 6t = h - 6¢ where the
action of h on b is the adjoint action. Note finally that if (ag,a1,a2) € ﬁfgg C J*(Tx)g, ie. ag =a; =0,
then d¢(ag, a1, as) € .

On the other hand, we already noted that ¢ gives an isomorphism A¢ : F2),(:1: ~ p, that sends Fl)f,r to [
We also have A = h - Ag.

Finally, ¢ gives an isomorphism 5571 o Ao : FQXm ~ ﬁQXx We have 5@71 o Aty = (h- 5571) o(h-Ag¢) =
55_1 o0 A¢. Thus the isomorphism Fz)fm ~ ﬁ{fx does not depend on the choice of ¢. It sends Fﬁ; to ﬁf’(x, since

5¢ (resp. Ag) sends ﬁlxx (resp. lex) to [. It is clear that the induced map F5¥ ~ F5X is holomorphic. O

Proposition 2.3.4. There is a canonical identification ad(Px)/Fi< ~ JX(Tx)/FX = JY(Tx), that sends

moreover F5X |FX to F5XJFX.
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2.4 Projective Connections

Proof. The proof is similar to proposition 2.3.3. On the one hand, given € X and ¢ € SX x5 ¢ identifies
JYTx)y to JH(Tepi)o = g/l. On the other hand, ¢ identifies ad(@X)m/Ff; to g/l. Thus it defines an
isomorphism J(Tx), ~ ad(®x)./ Fl)’(x7 that happens to not depend on the choice of ¢, and to send FQX:B /F 1Xm
to ﬁ{m / ﬁff,r Finally, the induced map from ad(®x)/F;* to J!(Tx) is holomorphic. O

Remark 2.3.5. Let Y be another Riemann surface and f : X ~ Y a biholomorphism. The map f induces
identifications ¢1 : ad(Sx) ~ f*ad(Sy), 2 : ad(Px)/F{¥ ~ f*ad(Py)/FY, 13 : J'(Tx) ~ f*JY(Ty) and
L4 : ﬁQX ~ f*ﬁQY . From the proofs of propositions 2.3.3 and 2.3.4, it appears that the following diagram

commutes, where the horizontal arrows are given by the isomorphisms in propositions 2.3.3 and 2.3.4 :

ad(Sy) —— F ad(Px )/ FX ——— JY(Tx)
l“ l (12) l l‘s (13)
f*ad(Sy) — [*FY frad(®y)/F —— f* I (Ty)

We have, as a consequence of propositions 2.3.3 and 2.3.4 :
Corollary 2.3.6. There are canonical identifications :
(i) ad(Px)/F5 = Tx
(ii) F5/F{* ~ Ox
(iii) F{¥ ~ Kx
This corollary, along with the remark that, for any x € X, FQXx is the orthogonal of lex for the killing
form of the Lie algebra ad(®x)., shows that ad(Px) is canonically endowed with a structure of a filtered
SO(3, C)-bundle.
2.4 Projective Connections

In this subsection we introduce a special class of Cartan connections on #x along with its reduction Sx,
namely projective connections. To do that we use propositions 2.3.3 and 2.3.4, as well as the following

proposition about the Atiyah bundle At(Sx) of Sx.

Proposition 2.4.1. There is an isomorphism ®x : At(Sx)/F{X = ad(®Px)/F{* = J'(Tx) such that the

following diagram commutes :

AL(Sx)/FE 25 ad(@x)/FY = j1(Tx)

! ! &

TX TX

Proof. Let x € X and z; be a local coordinate on a neighborhood U C X of . The coordinate z; defines
a local section 7,, = j221 of the principal bundle @y, and thus trivializations of @x|y and Px|y. In

particular «y,, gives a principal connection on Px|y, i.e. a local morphism ¢, : At(Px) — ad(Px) that
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2.4 Projective Connections

is the identity on ad(®x) C At(Px). Since Fj* C ad(Px), the principal connection ¢, induces a local
morphism At(Px)/F¥ — ad(®x)/F;, whose restriction to At(Sx) C At(Px) we write 3.

Let us show that diagram 14 commutes when ®x is replaced by ®3. Let u,, : Px|ly — CP! be the
trivialization of Px defined by =, : if II : Py — X is the obvious projection map, then (II, u|,, ) identifies
Px|y to U x CPL. Then it is not hard to see that the expression u, o sy : U — CP! of section s in
the trivialization ~,, is given by p,, o sx = z1. Let V € I'(U,At(Sy)) and [V] its class modulo F{*. On
the one hand we have dz; o w o ®Y([V]) = dp., (V(s)) € T(U, 2{Tp1), where we see V as a vector field
on Px|y, and @ is the projection J'(Tx) — Tx. On the other hand, for any y € U and any p € Px 4,
7([V])y = dII(V(p)) where in the second term V is seen as a vector field on Px|y. In particular, choosing
p = s(y), we have w([V]) = dII(V (s)). Since V € I'(U, At(Sx)), V is tangent to s, i.e. V(s) = dsodII(V (s)).
Thus du, (V(s)) = dp,, o dsodIl(V(s)) and by using p,, o sx = 21 : dus (V(s)) = dz; o dII(V). Finally,
since dz; is an isomorphism, w o ®3 = dII.

It follows that ®% is an isomorphism. Indeed, it is the identity on ad(Sx) JF{ and Ty, and both
At(Sx)/F{X and ad(Px)/F{¥ = j1(Tx) are extensions of Ty by ad(Sx)/Fj*.

It remains to prove that if z; is another local coordinate on U, then & = ®. If it is the case, then
the ®% for all local coordinates on X glue together in a global isomorphism ®x. Write v,, = g - 7.,, where
g : U — G is a holomorphic function. It is a consequence of a computation in the proof of lemma 2.5.3
that for any y € U and any V € T, X, the vector field dg,(V) € HO(CP17TCP1) = g has vanishing 1-jet
at z1(y) € CPL. As a consequence, dy,, — g - du., has values in d\"'F{X, where \ : @x — At(Px) is the

quotient map. This shows that ¢., — ¢,, has values in F}¥, and thus ®3 = ®3. O

Take a Cartan connection for the bundles Sx C Px, that we see as a splitting w : At(Px) — ad(Px)
of the short exact sequence 0 — ad(®x) — At(Px) — Tx — 0 such that the induced morphism w]a¢(sy) :

At(Sx) — ad(Px) is an isomorphism. The lines of the following diagram are exact :

0 FX At(Sy) ———— At(Sx)/Ff ———— 0
| o | [ (15)
0 FX y ad(Px) —— ad(Px)/F{X = JY(Tx) —— 0

The left square of (15) commutes for any Cartan connection w. This is however not the case for the right

corner.

Definition 2.4.2. A projective connection on X is a Cartan connection w for the principal bundles Sx C #x,

such that diagram (15) commutes.

Remark 2.4.3. The vector bundle ad(®x), along with the filtration F{* C F5¥ C ad(%®x) and a projective
connection, is a SO(3,C)-oper, in the sense of [BD21].

Remark 2.4.4. The datum of a Cartan connection on Py is equivalent to the datum of a connection on the
projective osculating line Py, thus a foliation of Px transverse to the fibers. The projective connections give
rise to a special class of such foliations : two foliations associated to projective connections are tangent to

order 2 at the point sx(z) € Px, for any z € X.
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2.5 Projective Connections and Projective Structures

Take wy,ws two projective connections on X, z € X and v € At(Px),. There exists v1 € ad(Px)s
and vy € At(Sx), such that v = v; + v2 (v; and vy are not unique). One has (i = 1,2) : w;(v1) = vy
and [w;(vs)] = ®x([v2]) € J(Tx )., where the brackets stand for the class modulo Fi¥. As a consequence,
(w1 —w2)z(v) € F1 . Moreover, since w; splits the exact sequence 0 — ad(Px) — At(Px) — Tx — 0, it is
also given by a morphism w; : Ty — At(Px). For any w € Tx 5, (W2, —W1 ¢)(w) = (w1 —w2)(v) € Fy 5 (where
v € At(Px ), such that 7(v) = w), so we —w; defines a section of Hom (TX, FIX), ie. of K}%Q since F{¥ = K
by corollary 2.3.6. Reciprocally, if @ : Tx — At(®Px) defines a projective connection and ¢ € H° (X , K?f),

then w + ¢ defines a projective connection as well. Thus one has the following proposition :

Proposition 2.4.5. The set of projective connections on X is an affine space directed by H° (X7 K%Q).

2.5 Projective Connections and Projective Structures

In this section, we show that the datum of a projective connection on X is the same as the datum of a
projective structure on X, i.e. a (PGL(2,C), (CPl)—structure on X. Let us recall the definition in this precise

case.

Definition 2.5.1. A projective atlas on X is the datum of an open cover (U;);cr and local charts z; : U; —
CP! such that for any 7,5 € I, there exists gi; € PGL(2,C) such that z; = g;; 0 z; on U; N Uj.
Two projective atlases are said to be equivalent if their union is a projective atlas. A projective structure

on X is an equivalence class of projective atlases.

Take a projective structure of atlas (Uj, z;)ic;. Each z; defines a principal connection on $Px, thus a
splitting w; over U; of the exact sequence 0 — ad(Px) — At(Px) — Tx — 0 : the section x € U; — j2z; €
Px o is flat. Since z; = g;j o 2;, where g;; is a constant in G, the induced connections, thus the w;’s, coincide
on the intersections U; NUj, and thus define a global splitting w. The proof of proposition 2.4.1 shows that
w is a projective connection. Thus a projective structure on X defines a projective connection on X.

Let f: U € C — C be a local biholomorphism. The Schwarzian derivative of f, denoted S(f), is the

f// 1 f// 2
(L) -2 (L 1
st =(%) -3 (% (16)
One has S(f) = 0 if and only if f is an element of PGL(2,C). If fi, fo are two functions defined on open

sets of C such that f5 o f; has nonempty domain, one has the following formula :

function on U defined as follows :

S(f20 f1) = (S(f2) o f1) (f1)* + S(f1) (17)

Let 21, z2 be holomorphic coordinates on an open subset U C X. We denote by {z2, 21} the holomorphic
function on U defined by {z9, 21} = S(f), where f is the function on 21 (U) C C such that zo = f(z1). Formula
(17) means that if z3 is another local coordinate on U, then one has {23, 21 }dzP? = {23, 20 }d25*+{2, 21 }dzF?.
For details on the properties of the schwarzian derivative, see [Hub81|.

The two local coordinates zj,zs are charts of two projective structures pi,ps on U. The projective
structures p; and p, in turn define two projective connections wy,ws on U. According to 2.4.5, the difference

Wy — w1 is given by a quadratic differential on U : @y — @y € H° (U, Kx %2).
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2.5 Projective Connections and Projective Structures

Proposition 2.5.2. Using the previous notations, one has we — w1 = {22, zl}dzi@Q,

The following lemma provides an interpretation of the schwarzian derivative as an actual derivative. See
[And98] for more details.

Lemma 2.5.3. Consider f : U C C — C a local biholomorphism. Let g : U — PGL(2,C) be the holomorphic
map such that for any t € U, 57 (g(t)) = 57 f, i.e. g(t)(t) = f(1),9(t)'(t) = f'(t), g(t)"(t) = f"(1).

The derivative di'l—it) is a map from U to sl c. After identifying slo c with HO((CPl,TCP1), one has

dg(t) _ (t—to)* 0
dt |, S(f)(to)Ta

In the previous statement, CP! is seen as CP* = C U{oc}, and t is the coordinate on C. Thus a basis of

HO(CP', Tp1) is given by the global vector fields %, (t — to)% and W%

Proof. A straightforward computation shows that for any ¢ € U, g(t) is given by the the matrix

with
a=ff"—2(f)?
b= =2ff —t(ff" —2(f)%)
c= fl/
d=—2f —tf"

With these notations, the derivative of g at to, which is a global vector field on CP!, is given by

! o 1 / !
g (to) = alto)d(to) — blto)elto) ((alto)c(to) — d'(to)e(to))t?
+ (d/(to)d(to) — b(to)c (o) — alto)d (to) + b (to)c(to) )t (19)
+ (V/(to)d(to) — d/(to)b(to)))%
Lemma 2.5.3 is obtained by combining formulas (18) and (19). O

Proof. (of proposition 2.5.2) Write zo = f(21), and let 7,,,7,, be the local sections of @Px defined by z1, 29.
One has v,, = g - 29, where for any z € U, jgl(m)g(zl (x)) = jgl(m)f and g(z1(z)) € G.
Let wy,wy : Tx|ly — At(Px)|y be the morphisms associated to the projective connections defined by

z1 and z9 : w; is given by dv,,. In the coordinate z1, (We — wW1) (aizl) € sly ¢ is given by ¢'(z1). Lemma

2.5.3 then implies (Wa — @1)|2, (x) (%) = VZJ&@QM%' Since %M ) 0 and

%M = 1, it is a consequence of proposition 2.3.3 that dz;, which is a section of Kx =~ F1X, is
1

identified with $(z1 — 21 (QJ“))Q(%1 € ad(Sx). This ends the proof. O

Corollary 2.5.4. Any projective connection on X comes from a projective structure on X.
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Proof. This is a consequence of proposition 2.5.2 and of the fact that the equation S(f) = h has local
solutions for any holomorphic function h defined on an open subset of C (for this last fact, see for instance

[Sail6]). O

Thus the datum of a projective structure on X is equivalent to the datum of a projective connection on

X. Proposition 2.4.5 gives :

Proposition 2.5.5. The set of projective structures on X is an affine space directed by the vector space
HO(X, K?;?) of global quadratic differentials on X.

3 Branched Projective Structures and Branched Projective Osculating

Lines

3.1 Ramified Coverings and PGL(2,C)-Action

Let (U,x) be a germ of Riemann surface, identified with (V;0) where V' C C is a neighborhood of 0. Take
n € N*. Denote by Ry, the set of 2(n + 1)-jets at = of holomorphic maps ¢ : (U, x) — CP! that are ramified
at = with ramification degree n. In other words ¢/(z) = ¢/ (x) = --- = ¢ () = 0 and ¢V () #£ 0 :

Rypn = { §2 D g germ at 2 of holomorphic (n + 1)-fold ramified covering with values in CP! }

Write also RO, = {jg(nJrl)qS € Ry nl|o(z) = 0}.
Using the identification (U, z) ~ (V,0), an element jg(nﬂ)(b € R, such that ¢(z) # oo can be written :

jg(n+1)¢ — ap + Ang1 2" 4 ange2 "2 4 a2(n+1)z2(n+1)

Thus R, ,, is identified with C x C* x C™*! by a bijection « : Ry, ~CxC"x C"*! defined by « <j§("+1)¢) =
(ao,an+1,...,a2(n+1)). Another choice of coodinates on (U, z) induces another identification § : Ry, =~
C x C* x C"*. The composition o1 is an algebraic automorphism of C x C* x C"*!. As a consequence,
R, is a smooth algebraic variety of dimension n + 3. The set R%n C R, is thus a hypersurface, defined
by the equation (ap = 0).

The group G acts on the left on the algebraic variety R, , by postcomposition : for g € G, g-jg(nJrl)qS =

0

T,n

j:%(nﬂ)(g o ¢). This action is algebraic, and the hypersurface R, is preserved under the action of the

subgroup H C G.

Proposition 3.1.1. The group G acts freely on R, . Moreover, the equality G\Ry ., = H\R%n holds, and

this quotient is endowed with a structure of complex manifold of dimension n, isomorphic to C".

Proof. Since G acts transitively on CP!, the subset R%n generates R, , under the action of G, i.e. G- R%n =
Ry n. Thus G\R,,, = H\R?,,, and it is enough to show that the action of H on R%n is free.

T,n’
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3.2 Bundles of Branched Projective 2-Frames

Take h € H, and let h = (a

0
, with ;0 # 0. One has
v 6

ala ntl +.---+a Z2(n+1) +0 22(n+1)+1
( n+1 2(n+1) ( )) - — (anﬂznﬂ bt a2n+122"+1) +
V(@12 ag( g 220D + O (2D 15§

<%a2(n+1> - %afm) 20 10 <22(”+1>+1>

Thus, if ji(nﬂ)gb € R%n is given by ji(nﬂ)gb = (0,an+1, e ,a2(n+1)) in the identification R, , ~ C x C* x
C"*+!, one has
‘ @ @ e ay
h . ]g(n+1)¢ — <07 gan+1, ey ga2n+1, EGQ(n+1) — ﬁa%+1>

thus h - ji(nﬂ)gb = ji(nﬂ)gb if and only if « = § and v = 0, i.e. if and only if h = id. This shows

that the action of H on Rg,n? thus of G on R, ,, is free. Moreover the map 7 : R%n — C" defined by
Ant-2 a2n4-1
an+1’ """ Ant1

(0, ant1, - - -5 Ao(n +1)) = < > is a holomorphic submersion. The fibers of 7 are the orbits of H.
Although 7 depends on the coordinates on (U, ), if 7’ is the map induced by another coordinate, 7’ = fo,
with f a biholomorphism of C". Thus G\R,, = H \R%n is endowed by 7 with the structure of a complex

manifold, biholomorphic to C". O

Remark 3.1.2. Take jg(nﬂ)(b € R, and a between two open subsets of CP!, that is not necessarily a Mobius
transformation. A straightforward computation shows that jg(nﬂ)(a o ¢) € Ry, and ji(nJrl)(;S are in the
same orbit under the action of G. In particular, if Y is a Riemann surface, 1) : U — Y a branched covering
of branching order n at z, and x : ¢¥(U) — CP! a holomorphic chart, the orbit of jg(nﬂ)(x o1)) € Ry py
under the action of G' does not depend on the choice of x. As a consequence, the class of ¥ in G\Ry,, is

well-defined.

Remark 3.1.3. The affine group Aff(C) C G acts freely on the space
ﬁx,n = { jg"'ﬂ(b]qﬁ germ at x of branched map of branching order n }

and it follows from the computation in the proof of proposition 3.1.1 that the orbits of Aff(C) in Emm are

exactly the images of the orbits of G in R, , under the obvious projection R, — ﬁxn As a consequence,
G\Ry,p, = AfF(C)\ Ry .

3.2 Bundles of Branched Projective 2-Frames

Let D be an effective divisor on X, and write
T
D= "n;-y, (20)
i=1
where n; > 1 for 1 < i < r, and the y; are pairwise distinct. Write D = {y1,...,y,}, and X = X\DD. Denote
by AR = G\Ry, n, X G\Ry,n, X ==+ X G\Ry, .

Let a € Ag : a = (0q,...,0;.), where for any i between 1 and 7, a; € G\Ry, ,. In other words, as in

section 3.1, «; is an orbit for the action of G on the set of jets of order 2(n; + 1) of germs at y; of holomorphic
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3.2 Bundles of Branched Projective 2-Frames

maps to CP! with branching order n;.

For any x € X we write :

PR()y = Px 2 ifreX
X (@) X, (21)

PR (), = a ife=y,1<i<r

So that for any « € X, the group G acts holomorphically, freely and transitively on the manifold g’)l()(oz)x.

Fix 1 <4 <r, and take U; a neighborhood of y; in X that does not contain any y; for j # 7. Consider
¢ : U; — CP! a holomorphic map ramified with order n; at 1;, and with no other ramification point. Suppose
j;i(mﬂ)(b € ;. For any x € U; N X, we set s(z) = j2¢ and s(y;) = j;i(mﬂ)qﬁ, so that for all z € Uy, s(z) €
P2 (a);. There exists a unique structure of holomorphic manifold on U.er, PR (a), such that s is a section
of the holomorphic principal bundle |_|er1_ @)12 (), — U;. In restriction to XN Uj, the holomorphic structure
defined by s on | ],y #2(a), coincides with the holomorphic structure of Px|y;nx. A straightforward
computation based on formula (18) shows that the complex manifold structure on | |, o, P2(a), does not
depend on the choice of ¢.

As a consequence | | .y g’)lg (a),, along with its obvious projection on X, is endowed with the structure of
a holomorphic principal bundle in the neighborhood U; of each y;. On the intersections U;NX, these structures

coincide with the one on @x|x. We thus have a holomorphic principal bundle 2 (a) = | |, .y P2 ().

zeU;

Definition 3.2.1. The principal bundle Q))l?(a) is said to be the bundle of branched projective 2-frames on

X with branching divisor D and branching class o = (aq, ..., ;) € AL.

As in the unbranched case, the PGL(2, C)principal bundles Q))l? (o) might be more easily imagined as the

trivialization bundle of a CP!-bundle.

Definition 3.2.2. Let « € AQ. The CP'-bundle G\ (CP' x®2(a)) = H\PZ(a) is called the branched

projective osculating line on X, with branching divisor D and branching class «. It is denoted by P)]? ().

Again, remembering that we chose a preferred point 2y = 0 € CP?, Q))l? (cv) contains a canonical subbundle,

denoted by S}? (), that is a principal H-bundle, and whose fiber over = € X is defined as follows :

S2(a), = Sx if r € X )
S2(a), :aiﬂROi, o ifr=y, 1<i<r

In particular the subbundle $¥ () defines a canonical section of P2 (), denoted by s¥(«).

Pick a function f on an open subset U C X whose derivative does not vanish on X N U and such that
jg%(mﬂ)f € o, for any y; € U. By definition of P2 (), f defines a section f of the bundle #2(a)|y, thus
a local trivialization of P¥(a), that we denote by (II,u) : P2(a) ~ U x CP'. In this trivialization, the
canonical section s¥(a) is given by p (s¥(a)(z)) = f(z). In particular, the section s%(a) is holomorphic,
and so is the subbundle $Z(a).

As in the unbranched case, the adjoint bundle ad (@)I() (a)) is endowed with a filtration F1X ’D(a) -
F2X’D(a) = ad ($¥(a)) C ad(PL(a)), where FIX’D(oz) is a line bundle and FQX’D(O[) is a rank 2 vector

bundle. For any z € X, ad (?% (), is identified with H° (P)?(a)x, TP}?(a)x)- We then have
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3.3 Bundles of Branched Projective 2-Frames and Pullbacks of the Bundle of Projective 2-Frames

(23)

One has FQX’D(Q) = ad(S2(a). Any v € PL(a),, identifies P2 (a), with G, and thus ad(®2(a)), with
g. If moreover v € S2(a),, then F P (), = ad(S2(a)), is identified to h and FP (), to L.

3.3 Bundles of Branched Projective 2-Frames and Pullbacks of the Bundle of Projective

2-Frames

Let Y be a Riemann surface. Suppose given a local biholomorphism f : X — Y. The map f gives rise to
an isomorphism of principal G-bundles 0f : Px — f*®Py, whose inverse (§f)~! is defined in the following
way. For all # € X, (f*Py)s = Py, f()- Set for any j,%(m)‘ﬁ € (f*Py)e: (6f)5" <j]%(x)¢> =j2(¢po f) € Pxa.
Let ¢ : U C Y — CP! be a local biholomorphism and let ¢ denote the section of Py |y induced by ¢. Then
(6f)"1(f*d) = o f, where ¢ o f denotes the section of Px| -1y induced ¢ o f. As a consequence, (6f)
is holomorphic. Moreover (§f)~! is clearly equivariant with respect to the action of G on ®x and f*Py,
thus §f is indeed an isomorphism of principal bundles. If f' : Y — Z is a local biholomorphism from Y to
a Riemann surface Z, one has §(f" o f) = f*(6f') o (0f). If U C X is an open subset such that f|y is a
biholomorphism onto its image, then Jf|i is given by the identification Px | ~ Py |y of remark 2.3.5.

From now on, suppose f : X — Y is a nonconstant holomorphic map. As in (20), write D =Y\, n; - y;
the branching divisor of f, D = {y;...,y,} and X = X\D. By remark 3.1.2, for all y; € D, j;i(mﬂ)f defines
a class a; in G\Ry, ;. Write a = (aq,...a,) € AQ.

As in the unbranched case, define an isomorphism of principal bundles df : P£(a) ~ f*®y by setting
for all j?(x)gb €E(f*Py)y :

657" (5w9) = 2@ 1) if v € X

(24)
01) " (y0) = 72D (bo ) fr =y 1<i<r

The same arguments as in the unbranched case show that f is an isomorphism of G-principal bundles. In
particular, on the surface X, the isomorphism § f is the one defined in the unbranched case.

As in remark 2.3.5, one has isomorphisms ¢ : ad (S2(a)) ~ f*ad(Sy), 2 : ad (PR (a)) JFP () ~
f*ad(Py)/FY. Since f maps SZ(a) to f*Sy, the isomorphism ¢; (respectively t2) maps F1X’D(a) (resp.
FQX’D(a)/le’D(a)) to f*FY (vesp. f*(F) /FY)). The restriction f|x is a local biholomorphism and thus
induces t3 : J'(T'x|x) ~ f*J* (Ty|f(X)) and 14 : ﬁ2X|X ~ f*ﬁQY|f(X). On X, one gets diagrams analogous to
the ones in remarks (12) and (13).

Remark 3.3.1. (i) The isomorphism ¢; restricted to the subbundle F1X ’D(a), composed with the iso-
morphism FIY ~ Ky of proposition 2.3.3, gives an isomorphism [ : F1X’D(a) ~ f*Ky. Com-
posing on X with the identification Kx = Kxl|x ~ FlX’D(oz)|X = F{, one gets an isomorphism
I : Kx ~ f*(Ky| fx))- The fact that diagram (12) commutes implies that I, coincides with the

dual map of the differential (df|x)~!.

(ii) Similarly, the isomorphism t9, composed with the identification of proposition 2.3.4, gives an isomor-
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3.4 The Structure of Branched Filtered SO(3,C)-Bundle on ad (#£(a))

phism I : ad (#2(a)) /ad ($2(a)) ~ f*Ty. Restricted to X, I induces an isomorphism I : Tx ~
f* (Ty| f(X))~ The commutativity of diagram (13) implies that I, coincides with the differential df Ix.

(iii) Finally, the isomorphism ¢1 (respectively t9) gives after quotienting by FlX ’D(a) (resp. after restricting
to ad($¥())) an isomorphism ad(S)l()(a))/Ff(’D(a) ~ f*(ad(Sy)/F}"), which, composed with the
identifications of propositions 2.3.3 et 2.3.4, gives an isomorphism I : ad(S)l()(a))/Ff(’D(a) ~ f*Oy =
Ox. Restricted to X, I3 induces an isomorphism fg : Ox ~ Ox. The commutativity of diagram 12 (or

of diagram 13) implies that I is identity.

Now let us have a look at the Atiyah bundle At (?£(c)). The isomorphism 6f : PL(a) = f*Py gives
an isomorphism

e: At (PR (@) ~ At(f*Py) (25)

Moreover, the pullback f*®y is endowed with a tautological map F': f*®y — Py, equivariant with respect

to the action of G, such that the following diagram commutes :

oy Lt oy

|, s

x 1 .,y

Since F' is equivariant with respect to the action of G, the differential dF' induces the following morphism,
that we also denote by dF :
dF : At(f*Py) — [ At(Py) (27)

By construction, dF' is an isomorphism when restricted to X.
By composing € and dF, one gets a morphism dF o ¢ : At(P2(a)) — f* At(Py), that is an isomorphism

when restricted to X, and that induces a morphism of short exact sequences :

0 —— ad (PR(a)) —— At (PR()) Tx 0
L\LZ ldFoe ldf (28)
0 —— ffad(Py) —— f*At(Py) Ty 0

where the bundle isomorphism ¢ is induced by &f. Moreover dF o e maps At(S2(a)) to f* At(Sy).

3.4 The Structure of Branched Filtered SO(3,C)-Bundle on ad (#{(«))

Take D, D and X as in (20). Let a € AL.

Proposition 3.4.1. (i) The line bundle F"""(a) is canonically isomorphic to Kx(—D).
(it) The line bundle ad (PR () /ad (S¥(a)) is canonically isomorphic to Tx (D).

(iii) The line bundle ad (S ()) /le’D(oz) is canonically isomorphic to Ox.

Proof. The proofs of (i), (i) and (ii7) are essentially the the same, they involve respectively the isomorphisms

I, I and I3 of remark 3.3.1. We will only write down the proof of point (7).
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3.5 Branched Projective Connections

One has P2 (a)|x = Px. Thus, according to corollary 2.3.6, one has an isomorphism & : F1X’D(oz)|x o~
Kx|x.

For any integer i between 1 and r, let U; be an open neighborhood of y; in X such that U; N D = {y;}.
Consider f; : U; — CP! a nonconstant map whose branching divisor is n; - ; and such that j;i(mﬂ) fi € a4.
According to section 3.3, the map f; induces an isomorphism of bundles §f; : P2 (a)|y, ~ f TP,y Following
remark 3.3.1, ¢ f; provides an isomorphism Iy ; : FlX’D(a)|Ui ~ [ Ky, @, Moreover, the dual isomorphism
of the differential df : Tx|y, =~ f*Ty(v,) is an isomorphism df* : f*Kyy,) =~ Kx|v,(—ni - yi). Thus one has
an isomorphism df* o Iy ; : FP ()|, ~ Kx|u,(—ni - 7).

When restricted to U; N X, the isomorphisms x and df* o I; ; coincide. Indeed, according to remark 3.3.1,
if FlX’D(a)]UimX is identified with Kp,nx, then I1; o k coincides (df*)~!.

Thus the I;; (1 < ¢ <r) and & can be glued together on the intersections U; N X, to give an isomorphism

FP(a) ~ Kx(-D) O

A straightforward computation shows that for any r € X, ad (é’)[() (a)) is the orthogonal of FIX D for
the killing form on ad ((}))l?(a))w. Thus the vector bundle ad (%% («)), along with the filtration F1X Pla)
ad ($2(a)) C ad (PR()), is a branched filtered SO(3,C)-bundle, as in the following definition, introduced
in [BD21].

Definition 3.4.2. A branched filtered SO(3,C)-bundle on X is a rank 3 holomorphic vector bundle on X

endowed with

(i) A nondegenerate bilinear form B, on each fiber W, of W, such that B, varies holomorphically with
reX.

(ii) An identification A* W ~ Ox such that the bilinear form induced by B on the fibers of A\®> W is the

trivial one on Ox
(iii) A filtration Fy C F C W along with identifications F} ~ Kx(—D) and F/F; ~ Ox such that for all

x € X, F5 is the orthogonal of F} for the nondegenerate bilinear form B,.

3.5 Branched Projective Connections

In this subsection we introduce the branched analog of projective connections, that provide examples of

branched Cartan connections.

Proposition 3.5.1. There is a morphism :
oL (a) : At ($R(a)) /FP (@) = ad (PR(a)) /FP (a) (29)

that is an isomorphism when restricted to X and such that the following diagram commutes :

At (88(0)) /FP(0) — X ad (#8(0)) /75 ()

l l (30)

Tx ——— Tx(D) = ad (PR()) /ad (SL(a))
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3.5 Branched Projective Connections

Proof. Proposition  2.4.1  gives an  isomorphism  ®x : At ($2()) / FIX L) x =
ad (PR (@) /FP (o).

For each i between 1 and r, let U; be an open set such that U;NX = y;. Let f; : U; — CP! be a holomorphic
map whose branching divisor is n;-y; and such that j;fniJrl) f € a;. According to proposition 2.4.1, there exists
a canonical isomorphism @,y : At (Sy, ;) /Flf iU) > 2 (Pr.w) / Flf (U Moreover, the isomorphism
5fi + PR()|u, ~ [FPs,w,) induces an isomorphism ad (P («)) JESP )|y, ~ frad (Prv) /Flfi(Ui), as
well as the morphism dF o€ : At (S2(a)) JFP ()|, — fF At (Swn) /Flfi(Ui) of section 3.3. Thus the
pullback f7® ;) induces a morphism 7; : At (S¥(a)) JFP ()|, — ad (2R(a)) JEP )|y, Since the
morphism dF o € is an isomorphism when restricted to U; N X, so is 7.

The isomorphisms 7; and ®x coincide when restricted to U; N X. In particular, the 7;’s and ®x glue
together to give the wanted morphism ®£(a). Diagram (30) commutes because diagrams (14) and (28)

commute. O

The morphism @Q(a) allows us to define the notion of a branched projective connection on the bundle
P2(a), similarly to what we did on the bundle of (unbranched) projective 2-frames. Let us first give a

definition of a branched Cartan connection

Definition 3.5.2. A branched Cartan connection on a holomorphic bundle of (G, Q)-spaces Q on X along
with a reduction to a holomorphic bundle of (G, Q, xzg)-spaces Q is a morphism W|At(é) D At <@> — ad(9Q)
that is an isomorphism in restriction to a Zariski open subset of X, and whose restriction to the subbundle

ad (é) C At (é) is the identity.
In our framework, a branched Cartan connection for the bundles $¥(a) C #2(a) is a morphism w :
At (2R (@) — ad (Q))l?(a)) that is a splitting of the following axact sequence :

0 — ad (PR (@) — At (PR (@) = Tx — 0 (31)

and induces a morphism W|At(c¥D(a)) : At (S2(@)) — ad (PR (a)) that is an isomorphism when restricted
X
to a Zariski open subset of X. Such a connection w induces the following commutative diagram (using the

isomorphism (ii) of proposition 3.4.1) :

0 —— ad ($2(a)) —— At ($2(a)) Tx 0

H lw‘At(A’)?(a)) J@ (32)

0 —— ad (SP(a)) —— ad (PL(a)) —— Tx(D) —— 0

The branching divisor of the connection w is the vanishing divisor of the morphism 6.
More precisely, a branched Cartan connection for S (a) C #2(a) gives rise to the following diagram,

whose left square is commutative :

0 —— F{VP(a) —— At (SR(@)) —— At (SR(a)) /FP(a) —— 0
H © l“'At(A‘é?w)) l@;’%(a) (33)

0 —— FP(@) —— ad (PR(0)) —— ad (2R () /FP(a) —— 0
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3.6 Branched Projective Structures

Definition 3.5.3. A branched projective connection on X, of branching divisor D and branching class « is

a branched Cartan connection for S (a) C #2(«a) such that the diagram (33) commutes.

Let w be a branched projective connexion on X, of branching divisor D and branching class «. According
to the diagram (30), the morphism 6 in diagram (32) is the embedding Tx < Tx (D). Thus the branching

divisor of w as a branched Cartan connection is D, and the vocabulary is consistent.

Remark 3.5.4. The vector bundle ad (% (c)), along with the filtration F1X’D(oz) C ad (S2(e) C ad (2R(a))
and a branched projective connection, is a branched SO(3, C)-oper, in the sense of [BD21].

Remark 3.5.5. The morphism @Q(a) of proposition 3.5.1, when restricted to X, is the isomorphism ®x of
proposition 2.4.1. This implies that a branched projective connection on X is a projective connection when

restricted to X.

The discussion before proposition 2.4.5 can be held mutatis mutandis in the case of branched projective
connections on X, with branching divisor D and branching class «. In particular, the difference between two
such connections is given by a section of the vector bundle Hom <TX, F 1X ’D(a)) . Thanks to the identification

() in proposition 3.4.1, proposition 2.4.5 becomes in the branched case :

Proposition 3.5.6. The set of branched projective connections on X, of branching divisor D and branching

class «, is either empty, or an affine space directed by the vector bundle H° (X, KE?Q(—D)).

3.6 Branched Projective Structures

In this section, we make the link between the classical notion of branched projective structure and the notion
of branched projective connection introduced in the previous section.
Let D be a divisor on X, like in (20).

Definition 3.6.1. A branched projective atlas on X with branching divisor D is the datum of an open
covering (U;);er and nonconstant holomorphic maps z; : U; — CP! whose branching divisor is D|y, and such
that for any 7,7 € I, there exists a Mdbius transformation g;; € G such that z; = g;; 0 z; over U; N U;.

Two branched projective atlases of divisor D are said to be equivalent if their union is a branched
projective atlas of divisor D. A branched projective structure of divisor D is an equivalence class of branched

projective atlases of divisor D.

For an overview on the theory of branched projective structures, see [GKMO0O0] and references therein.

To a branched projective structure on X of divisor D and maximal atlas (U;, z;);es, one can associate a
branching class a = (ay,...,qa,) € AL by setting ay = j;,gn”l)zi mod G, where i € I is such that y, € Us.

As we saw in section 3.2, for any ¢ € I, the map z; defines a section and thus a principal connection for
the bundle @)I() (a)|y,. Since the z;’s differ by composition with an element in G, the principal connections
they define coincide on the U; N U;’s and thus define a principal connection w on Q))l?(a). When restricted
to X, w is unbranched and thus makes diagram (33) commute, as we saw in section 2.5. Moreover, if y
(1 <k <) is any branching point of the atlas (Uj, 2;) and ip € I is such that yx € Uy, then wly, can
be seen as the pullback by z;, of the projective connection on CP! corresponding to the trivial projective

structure on CP!. In the proof of theorem 3.5.1, the map @Q(a)hjio was obtained as the pullback of ®p1.

27



3.7 Branched Projective Structures, Branching Classes and Schwarzian Derivative

Moreover, the tautological projective connection on CP! makes the diagram (15) commute. Thus w makes

the diagram (33) commute when restricted to U;,. This shows the following lemma :

Lemma 3.6.2. A branched projective structure induces a branched projective connection, with the same
branching divisor and branching class.

3.7 Branched Projective Structures, Branching Classes and Schwarzian Derivative

Let us recall the following result, that follows from Fuchs’s local theory, and that plays a central role in the
theory of branched projective structures. See [Sail6] for more details.

Let n > 2 be an integer, zp € C and U C C be a simply connected open neighborhood of zj.

Proposition 3.7.1. There exists a polynomial P, € C[X1,...,X,11] such that, for any ¢ = pdz®? holo-
morphic quadratic differential on U\{z0}, (A) and (B) are equivalent :

(A) There exists a holomorphic function f defined on U whose branching divisor is exactly n - zo and such

that o = S(f) on U\{20}
(B) The following are all true

(i) The quadratic differential ¢ extends as a meromorphic quadratic differential on U that admits a

pole of order 2 at zg : p = (z ZO)Q 4+ &=L P L +ag+ai(z — 20) + ooz — 29)% + - - -
(i) a9 = (n+1)2

(ZZZ) Pn(oz,l,ozo, e ,Oénfl) =0

Moreover, the polynomial Py, is given by P, = )\XnJrl—l—ﬁ(Xl, ... Xy) for some A € C* and P € ClX1,..., Xy

Remark 3.7.2. In particular, proposition 3.7.1 implies that given a_1,qq,...,a,—o € C, there exists a
function f defined on U whose branching divisor is n - zp and such that S(f) = 12@(?1_01))22 pon Zo + ag +

a1(z — 20) + -+ an_o(z — 20)" 2 + O(z — 2)" L. Indeed, it is enough to solve the equation S(f) =
12(??3? it agtai(z —20) + o+ apa(z = 20)" 2+ (—M) (z—z20)" "

We are now able to prove the converse of 3.6.2. Take a branched projective connection w, of divisor D
and branching class . The connection w is a projective connection when restricted to X, and thus comes
from a projective structure p on X according to corollary 2.5. For ¢ between 1 and r, let U; be a neighborhood

2(ni+1)
(ni+1) fi € a;. We have seen

of y; and f; : U; — CP! a map with branching divisor n; - y; and such that Jui
that f; defines a branched projective connection on U; with the same branching class as w. In particular,
the difference w — w; is a quadratic differential ¢; € T’ (UZ-,KS?Q(—W . yl)) Fix an unbranched projective
connection wg on X. According to corollary 2.5, wq is given by a projective structure on X. On X, the
difference w — wyp is a quadratic differential ¢ € I’(X,K??) while on U; N X, the difference w; — wp is a
quadratic differential ; € I'(U; N X, KE?Q). Moreover, on U; N X, we have ¢ = ¢; + ;. Since ¢; vanishes
up to order (n; — 1) at y;, the Laurent expansions at y; of ¥ and v; in a local chart z; of the projective
structure wg coincide up to order n; — 1. According to proposition 3.7.1, there exists a map h; defined on
U;, whose branching divisor is n; - y; and such that {h;, zi}dz?Q = 1. In particular the projective connection

induced by h; on U; N X coincides with w. Moreover lemma 4.1.1 shows that h; has same branching class y;
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as f;, thus h; defines a branched projective connection with branching class a;, equal to w on U; by analytic
continuation. Thus when restricted to U;, w comes from a branched projective structure b; with branching
class a;. The branched projective structures b; glue with the unbranched structure p on U; N X and thus
define a branched projective structure on the whole X whose associated projective connection is w.

This discussion shows the following proposition :

Proposition 3.7.3. The datum of a branched projective structure on X with branching divisor D and
branching class « is equivalent to the datum of a branched projective connection on X, of divisor D and

branching class «.

4 Spaces of Bundles of Branched Projective Frames

In this section we investigate the analytic structure of the space A% of bundles of branched projective frames
for a given curve X with a given divisor D. The associated CP!-bundles with section, namely the branched
projective osculating lines with their canonical sections can be seen as bundles of affine lines, thus there is a

map from Ag to the moduli space of affine bundles over X, that we study.

4.1 Parametrizations of the Space of Bundles of Branched Projective Frames on a

Riemann Surface with Divisors

Let us work again with the notations of proposition 3.7.1. Take also a holomorphic function f on U, such

that f’ has a zero of order n at zy. Fix the following notations :

f(z)=ap+ any1(z — ZO)"+1 + apio(z — zo)"+2 + - 4 agnr1(z — zo)"+1 +0O(z — z0)2"+2

f'(z) _n+1 n— n
f’(Z) = PO, +50+51(Z—Zo)+"'+5n_1(2’—2:0) 1 +(9(Z—ZQ)
:1—(n+1)2+ o1

S(H)() 2(z — 29)? (z — 20)

o dan (2 —2)" Oz — 2)"

A straightforward computation shows :

Lemma 4.1.1. There are two algebraic automorphisms D,, : C* = C" and S, : C* = C" such that for

any function f, one has

(50 S 1) - D (an+2 An+3 a2n+1>
yeeesOn—1) =Dy

7 7 )
Ap+1 Gn+1 An+41
and
Gp+2 Qp43 A2n+1
(04_1,...,04”_2):5”< s yueny
Ap+4+1 Op+41 An+1

Let X be a Riemann surface. Recall from section 2.1 that similarly to the case of projective structures,
the space of holomorphic affine structures on an open set U C X is an affine space directed by the space
I'(U, Kx) of holomorphic differentials on U. If 21, z5 are two coordinates on U with zo = f(21), the difference
between the affine structures given by z9 and z; is given by [22, 21]dz1, where [29,21] = J}—///

Take D an effective divisor on X, like in (20). Let o, o’ € AL be two branching classes. Take also, for

any i € [[1,7]], f; (respectively g;) a holomorphic function defined on a neighborhood U; of y;, branched to

29



4.2 Bundles of Branched Projective 2-Frames as Abstract CP!-Bundles with Section

order n; at y; (and nowhere else) and whose branching class at y; is «; (respectively o). The difference
between the two projective (respectively affine) structures defined by g; and f; on U;\{zo} is given by the
quadratic differential {g;, f}df*? (respectively by the differential [g;, f]df;).

Lemma 4.1.2. (i) The quadratic differential {g;, f;}dfZ* extends to a section in T (U;, K%>(yi)). The
differential [g;, f;|df; extends to a section in T'(U;, Kx)

(i) The (n; — 1)-jet of {gi, fi}dfE? at y; (respectively the (n; — 1)-jet of [gi, fidf;) does not depend on the

choice of f; and g;, of respective branching classes o and o' .

Proof. Let z; be a local coordinate on U;, centered at y;. One has {g;, fi}dffﬂ = {4, Zi}dz?Q —{fi, zi}dz;-m.
According to proposition 3.7.1, the coefficient of Z% in {fi,zi} and {g;, z;} is w Thus {fi, z:i} —{9i, zi }
has a pole of order at most 1 at z; = 0, and thus {gi, fi}adf* €T (Ui,Kg?Q(yi)). Similarly, [g;, fi]dfi =
[9i, zildz; — [ fi, zi]dz; and the residue of both [g;, z;] and [f;, z;] at y; is n. Thus [g;, z;] — [fi, zi] is holomorphic
on U, and [g;, fi]df; € I'(U;, Kx ). This shows point (7).

Now if fi, g; are two functions of branching class «; at y;, according to lemma 4.1.1, the coefficients of
{fi,zi} and {ﬁ, z;} coincide to order n; — 2, and the same is true for g; and g;. In particular, {g;, fi}df2®2 =
{gi, 2 }d2? — { fi, 2 }dzE? coincide with {g;, ﬁ}dﬁ@ = {Gi, 2 }dz2? — {fi, 2i}d2%% up to order n; — 2. This
can also be stated as jgj_l{gi, j}-}clj’zfg)2 = jgj_l{fji, ﬁ}dﬁ®2, since {g;, j}-}clj’zfg)2 el (UZ,K?;Q(yZ)) The same
argument works mutatis mutandis to show j;‘ii_l[gl-, fildfi = j;‘ii_l[ﬁi, fildf;. This proves (i7). O

Moreover, it follows from remark 3.7.2 that for any meromorphic quadratic differential around y; with
simple pole at y;, ¢ € K§2 ([yi])(yi), there exists a branching class o/ at y; such that if h; has branching class
o, then zy';j;*l{m,fi}dflfg’2 = j"~1¢. Similarly, for any j;flw € JZZFIKX, there exists a branching class
ol at y; such that if h; has branching class o/, then j;‘ii_l[hi, fildfi = jgii_liﬁ. Indeed a differential form
with pole of order 1 at y; is given by [h;, z;]dz; for some holomorphic function h; with branching divisor n - y;
if and only if it has residue n at y;.

Finally, note that []i_,Jri 'K¢*(D™) = HO(D,K (DY) |p) and [, JlilKx =
H°(D,Kx|p).

We have just proved the following :

Proposition 4.1.3. The schwarzian derivative equips the algebraic variety Ag of branching classes on (X, D)
with the structure of an affine space, directed by the vector space HO(D,K§2(—Dred)|D),

The differential operator f +— J}—/,/ equips AQ with the structure of an affine space, directed by the vector
space H(D, Kx/|p).

4.2 Bundles of Branched Projective 2-Frames as Abstract CP'-Bundles with Section

Let D be an effective divisor on X, as in (20). We have seen that any branching class o € AL is associated
to a CP!-bundle with a distinguished section, namely the branched projective osculating line P)? (), along
with the section s defined in section 3.2. In this section, we study the map between Ag and the space of
isomorphism classes of couples (P, ), where P is a CP'-bundle on X and o is a section of P. See also [LMO09]

and [Man75] for a study of the analytic CP!-bundle associated to a (branched) projective structure.
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4.2 Bundles of Branched Projective 2-Frames as Abstract CP!-Bundles with Section

The datum of a CP'-bundle with a section is equivalent to the datum of a A'-bundle, where A! is the
complex affine line (with automorphism group the affine group Aff(C)). Indeed the section, seen as the
section at infinity, provides a reduction of structure group of the CP!-bundle to the affine group (the group
of homographies preserving the point at infinity). Conversely an A'-bundle gives rise to a CP!*-bundle along
with a section at infinity, by adding a point at infinity to the fibers. Thus the space of isomorphism classes
of CP'-bundles with section is in fact the space of isomorphism classes of A'-bundles.

Now an Al-bundle 4 on X is an affine bundle directed by a line bundle, namely the line bundle L whose
fiber L, over x € X is the line of constant vector fields on the fiber A,. If A is seen as a CP!-bundle with
section (P, o), then L, is the line of vector fields on the fiber vanishing twice at o(x). Note that, although
there is a canonical action by translation of L, on A,, multiplication of the vectors of L, by a nonzero
number defines another action. Thus any automorphism of the line bundle L defines on A another structure
of affine bundle directed by L.

Now fix L a line bundle on X, and let A be an affine bundle directed by L. There is an open cover
(Ui)ier of X such that A admits a local section f; on each U;. Denote by h;; the section of L on U; N U;
defined by h;; = f; — fi. The family (h;;) is a cocycle that represents a class ¢(A) € H(X,L). The class
c(A) determines A as an affine bundle directed by L. Now as an Al-bundle, A has one structure of affine
bundle directed by L per automorphism of L. Thus the Al-bundle A is determined by an orbit of the gauge
group Aut(L) acting on H'(X,L). In the case where X is compact, Aut(L) = C* and thus the space of
Al-bundles (CP!-bundles with section) with underlying line bundle L is P (HY(X,L)) u{0}. See [Mar70],
[HL19] for a more detailed study of CP'-bundles on Riemann surfaces.

Let us come back to the case of the branched projective osculating line P)? (o) with its section s, where
« is a branching class on X of divisor D. We suppose moreover that X is compact. The line bundle whose
fiber over z € X contains the vector fields on P (a), vanishing twice at s(z) is F{*P(a), that is canonically
identified with Kx(—D) according to proposition 3.4.1. Thus the couple (P¥ (), s) is canonically endowed
with the structure of an affine bundle directed by Kx(—D). As a consequence, it is associated to a class
Yo € H'(X,Kx(—D)), and, as an abstract A'-bundle, to an element [y,] in P (H! (X, Kx(—D))) U {0}
(here the compacity of X matters). Recall that to compute 75, one has to take local sections of P¥ () that
do not intersect s, consider their differences as local sections of Kx(—D) defining a cocycle, and compute

the associated cohomology class.

Lemma 4.2.1. The datum of a local section of P)l()(a), over an open subset U C X, that does not intersect s
is equivalent to the datum of a branched affine structure on U whose associated branched projective structure

has branching class a.

Proof. First, suppose given such an affine structure. Since the branching class of the associated projective
structure is «, it is given by local trivializations of P)l() (a)|y, whose changes of trivializations preserve
oo € CP!. Thus it defines a section ¢ of P)]? (a)|u, defined by the preimage of oo by the trivializations. The
images of the section s in those trivializations are the local functions from U to CP! that are the charts of
the affine structure. Since those charts take values in C, the images of s never take the value oo and thus o
does not intersect s.

Conversely, suppose given a section o of P)l() (o) that does not intersect s. We will show that there exists
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4.2 Bundles of Branched Projective 2-Frames as Abstract CP!-Bundles with Section

a unique connection on P)]? () that is a branched projective connection of branching class « and such that
o is a flat section. This will prove the proposition : among the charts of the branched projective structure
associated to this branched projection, consider those whose associated trivilizations of P¥ () send o to co.
The changes of charts preserve oo € CP!, and thus belong to Aff(C). Moreover, since o does not intersect
s, the chosen charts take values in C and thus define an affine structure.

Let us go back to the definition of a branched projective connection on the G-principal bundle @)lg (),
given in subection 3.5. For any z € X, the fiber #2(a), can be seen as the set of all isomorphisms P¥ (), =
CP!. Let us denote by K the Aff(C)-principal subbundle of #2(«), whose fiber over x € X is the set of
trivializations ¥ : P¥ (), — CP! such that ¥(o(z)) = co. Since ¢ and s do not intersect, it is easy to figure
out that At(K) @ F{°P(a) = At (PR(a)), ad(K) ® F*(a) = ad (PR(a)) and (ad(K) Nad (S (a))) @
F*P(a) = ad (82()). Moreover, the section ¢ is flat for a branched Cartan connection w on ?%(a)
if and only if w(At(K)) C ad(K). Therefore if w is moreover a branched projective connection, then
w| AH)NAL(S (@) is fully determined by the map ®£ () in diagram (33). Since w| FXD(a) is also determined

(it has to be the identity), W|At(é’§(a))’ and thus w, is determined by the datum of K. O

Let o1, 09 be two local sections of P)? (), over an open subset U C X, that do not intersect s. Denote
by a1 and as the associated branched affine structures. Since PP (a)\s(X) is an affine bundle directed by
Kx(—D), the difference o9 — 07 is a local section of Kx(—D). Moreover the difference ay — a; is a local

section of Kx (see [Man72|, that extends remarks of section 2.1).
Lemma 4.2.2. One has 09 — 01 = —(az — ay).

Proof. By analytic continuation, it is enough to prove this away from the branched points. Thus we suppose
that U does not contain any point of D. Up to shrinking U, suppose given a chart w : U — C of the affine
stucture a; on U. The chart w provides a trivialization (w,z) : P2(a) = U x CP?!, such that the section
o1 is given by z 0 o7 = oo, and the section s by zo0s = w. Let A : w(U) — CP! be the holomorphic

section such that z ooy = A(w). If ( = 1/(z —w), for any = € U, the difference o2(z) — o1(x) is given by
-2 (z—w)?

8C = )\(w)—w( 2 ) 9.

(z—w)?
2

the vector field on P2 (a), whose flow at time 1 sends oy () to o2(x), namely /\(wl)_w

Since the identification FlX’D(oz) ~ Kx(—D) of proposition 3.4.1 identifies dw with

0., we have on U
09— 01 = ﬁdw.

On the other hand, denote by w; and ws the local sections of Kx ® At(@)? () that define the projective
connections associated to a; and ag. At any x € U the difference (wy — wq),(0w), seen as a vector field of
PP(a);, has to vanish twice at w(z) and has to take the value X (w(x))d, at oa(x), because o9 is flat for

the connection ws. Thus on the open set U, wy —wy = (&(z — w)Qﬁzdw.

o) —w)Z

Now let V1 and Vo be the local morphisms Tx — KE X)® %’X that define the linear connections on Tx
induced by the affine structures a; and as. For ¢ = 1,2, since the projective connection w; preserves the
section oy, it preserves the line subbundle L; of ad(¥(a)) whose fiber over x € X is spanned by 0, for
i=1and (2 — Aw(z)))2d, for i = 2. Moreover, since Ts(z) P2 () is canonically identified to T, for any
x € U, L; is canonically identified to Tx|y by V € L, — V(s(x)) € Ts(x)P2(a). The connection V; is
thus given by the restriction to L; of the parallel transport defined by w;. Now 0,, is identified to 0, in L,
and is thus a flat section for V. In Lg, 0,, is identified to m(z — AMw))20,. Thus one has, using this
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latter identification,

(VQ - Vl)(aw)(aw) = v2(8w)(8w)

- <m(z - A(w))%) - [()\(;\/)(7%)10)2(27 P e (e )\(w))Qﬁz}
- (TS ¢~ + R - e - e o
= o~ A,
e

Finally, ag — a1 = Vo — Vi = ﬁdw = —(09 — 01)

O

Fix a branching class ag € AL, and let (69);c; be a family of sections of PP (ap) adapted to an open

covering of X (U;)ier and that do not intersect s. We have seen that the class v,, of the cocycle (a? —
09)ijer in HY(X, Kx(—D)) characterizes the CP'-bundle PP («y), along with its canonical section. Now
let oy € AR be another branching class, and (0} );c; a family of local sections of P2 (aq) that does not

intersect the canonical section, so that (O'j - 01> ~ represents the class 7o, € H' (X, Kx(—D)). Now the

aQ> — (ail — ag)) , where af is the affine structure
jel

S
difference 7o, — 7Va, is represented by the cocycle ((a —0; > — (o} - a?)>' o Thus lemma 4.2.2 implies
1,)€
1
aj = 4

that —(va, —7Yao) 1s represented by the cocycle <<
induced by of (k =1,2).

But by proposition 4.1.3, the difference o — ag corresponds to an element of H°(X, Kx|p), and the
correspondance is given by the differential operator f +— J}, , applied to the charts of a;; written in the charts

of ap. It is equivalent to say that a; — «q is given by the differences ail

— ai restricted to the points of D.
As a consequence, Yo, — Yo 1S given by —d8(a; — ag), where § : H(X, Kx|p) — H'(X, Kx(—D)) is the
morphism in cohomology given by the short exact sequence 0 — Kx(—D) - Kx — Kx|p — 0. We have

proven :

Theorem 4.2.3. Let us endow AL with its structure of affine space directed by the vector space H*(X, Kx|p).
Letv: A — HY(X, Kx(—D)) be the map that maps a branching class o to the isomorphism class of P2 (a)
along with its canonical section, in the space of affine bundles directed by Kx(—D). Then 7 is a morphism of
affine spaces, directed by the linear map —6 : H*(X, Kx|p) — HY(X, Kx(—D)), where § is the map induced
in cohomology by the short exact sequence 0 — Kx(—D) — Kx — Kx|p — 0.
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