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Abstract

We show that the description of the holomorphic CP1-bundle associated to a holomorphic projective

structure on a Riemann surface in terms of the principal bundle of projective 2-frames extends very well

to the setting of branched projective structures. This generalization reveals a space of parameters, each

of which is associated to a branching class. The space of branched projective structures with a given

branching class appears as a space of connections on a given CP1-bundle, and is consequently an affine

space. Finally, we study the map which to a branching class associates the corresponding CP1-bundle

with section.

Introduction

Projective Structures

Holomorphic projective structures are
(
PSL(2,C),CP1

)
-structures, i.e. Riemann surfaces locally modeled on

the Riemann sphere CP1. More precisely, a holomorphic projective structure on a Riemann surfaceX is given

by an atlas (Ui, fi)i∈I , where (Ui)i∈I is an open cover of X and fi : Ui → CP1 are a local biholomorphisms,

such that on the intersections Ui∩Uj , there is a Möbius transformation gij ∈ PSL(2,C) such that fi = gij ◦fj.

These structures play a central role in the theory of uniformization of Riemann surfaces, which is the

reason why they were introduced at the end of the nineteenth century (see [Sai16]). Recall that the uni-

formization theorem states that any simply connected Riemann surface is biholomorphic to CP1, C or H
2,

and can thus be seen as an open subset of the Riemann sphere. In particular, if X is a Riemann surface and

π : X̃ → X its universal covering, then X̃ ⊂ CP1 and the group of deck transformations of π is contained

in PSL(2,C), so that the local inverses of the covering map π provide local identifications of X with CP1,

defining the so-called uniformizing projective structure of X.

Projective structures also provide examples of opers (see [BD05]) , namely PSL(2,C)-opers. Recent pa-

pers extend properties of holomorphic projective structures to more general classes of opers (see in particular

[San18]). See also [Fre07] for the role opers in the Langlands program.

This paper revisits one of the key properties of holomorphic projective structures. Namely, if X is a

compact Riemann surface, the space of projective structures on X is an affine space, directed by the vector

spaceH0
(
X,K⊗2

X

)
of global holomorphic quadratic differentials on X (hereKX denotes the cotangent bundle

of X).
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There is a very rich literature about this affine structure. The classical approach is centered on an order

3 differential operator, named the schwarzian derivative : the difference between two holomorphic projective

structures p1 and p2 is obtained as the schwarzian derivative of the charts of p1, seen as holomorphic functions

of the coordinates given by the charts of p2. All the properties of the schwarzian derivative are encapsulated

in the fact that this process defines a quadratic differential on X. See for instance [Gun66], [Dum09], [LM09]

for a precise exposition of this approach.

The Projective Osculating Line

A more geometric viewpoint on the affine structure of the space of projective structures on X is developed in

[Del70], [Kob95] and [And98]. A holomorphic projective structure on X is seen as a triple (P, s,∇) where P

is a holomorphic CP1-bundle on X, s is a holomorphic section of P and ∇ is a flat connection (equivalently

a Riccati foliation) on P such that s and ∇ are transverse over each point of X. The key fact here is that

the couple (P, s) is the same for all the holomorphic projective structures on X. As a consequence, the space

of projective structures on X appears as a space of connections on a fixed CP1-bundle, and inherits the

classical affine structure of connection spaces.

We denote by (PX , sX) the CP1-bundle with section associated to the holomorphic projective structures

on X. It is called the projective osculating line of X and should be understood as a projective equivalent to

the tangent bundle TX of X. The section sX plays the role of the zero section of TX : for any x ∈ X, sX(x)

is the contact point between X and the fiber PX,x. However, while TX,x has a tangency point of order 1 with

X, PX,x and X are tangent up to order 2 at s(x).

In [Kob95] and [And98], the projective osculating line of X is introduced by way of its principal bundle

of trivializations, namely the bundle of projective 2-frames on X. This is also the approach of this paper.

Branched Projective Structures

The aim of this article is to generalize this point of view on projective structures, involving the projective

osculating line, to branched projective structures. A branched projective structure is a projective structure

with a particular kind of singularities, namely cone points with angle a multiple of 2π. Formally, a branched

projective structure on the Riemann surface X is given by an atlas (Ui, fi), still with Möbius transforma-

tions as changes of charts, but where the charts fi are now only nonconstant holomorphic maps. Here the

differentials dfi may vanish, and the vanishing locus of the dfi define a divisor D on X, named the branching

divisor of the branched projective structure.

Branched projective structures arise for instance as pullbacks of projective structures by ramified cov-

erings. It should be noted that this notion is a special case (where poles are of order at most 2 and local

monodromy is trivial) of the more general notion of meromorphic projective structure, that is studied in

particular in [AB20], [GM21], [GM20] and [Sér22]. However, usual techniques for the study of meromorphic

projective structures do not apply to branched projective structures.

Branched projective structures are also examples of branched opers, namely branched PSL(2,C)-opers.

See [FG10] and [BDH22] for more on branched opers. It should also be noted that branched projective

structures have been extensively studied with regards to their holonomy representations, that are elements
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of Hom (X,PSL(2,C)), see [GKM00], [CDF14], [Le 23]. While the holonomy representations of unbranched

projective structures are all nonelementary, any element in Hom (X,PSL(2,C)) is the holonomy of a branched

projective structure. This illustrates the flexibility allowed by branching singularities.

One difficulty in the study of branched projective structures is that, unlike what happens for (mero-

morphic) projective structures, the space of branched projective structures over a fixed Riemann surface X

and divisor D is not an affine space in general. It is only an analytic space, as shown in [Man72] where

Mandelbaum introduced branched projective structures.

One way to understand this lack of structure is to consider the description of branched projective struc-

tures as flat CP1-bundles with section. Similarly to the unbranched case, a branched projective structure

on X is a triple (P, s,∇) where P is a holomorphic CP1-bundle, s a holomorphic section of P and ∇ a

holomorphic connection on P such that s is not flat for ∇ (equivalently, s is not a leaf of the Riccati foliation

associated to ∇). Note that, unlike in the case of projective structures, here the condition on the triple

(P, s,∇) is a generic one, in this sense the notion of branched projective structures is a generic generalization

of the concept of unbranched projective structures (like branched coverings are generic generalizations of

coverings).

This description of branched projective structures reveals a major difference with the unbranched case.

Namely, the couple (P, s) depends on the branched projective structure considered, even when the underlying

Riemann surface X and branching divisor D are fixed. This explains why the space of branched projective

structures over a Riemann surface with divisor is not an affine space, being not a space of connections. Note

that in [BDG19] the space of branched projective structures over a curve with divisor is described as a space

of logarithmic connections over a fixed rank 2 vector bundle, while in [BD21], generic triples (P, s,∇) are

described as branched SO(3,C)-opers.

In this paper we show that the construction of the projective osculating line in the unbranched case

naturally generalizes to the branched case and exhibits, for a fixed X and D, a space of parameters that we

call branching classes. To each branching class is associated a branched projective osculating line, that is a

CP1-bundle with section, generalizing the twisted tangent line bundle TX(D) with the zero section. To a

branched projective structure is associated a branching class, and the CP1-bundle with section associated

to a branched projective structure is the projective osculating line corresponding to its branching class.

One consequence is that the space of branched projective structures corresponding to a given branched

osculating line, being identified to a space of connections, is an affine space. The underlying vector space is

H0
(
X,K⊗2

X (−D)
)
.

Note that in [Bil23b], branching classes is the key element to construct an analytic structure on the

space of all branched projective structures with fixed genus and branching degree, and investigate their

singularities. See also [Bil23a].

It should be noted that a branched projective osculating line is slightly more that a CP1-bundle with

section. In particular several branched projective osculating lines may have the same underlying CP1-bundle

with section. We conclude this paper by studying the map from the space of branching classes (or branched

projective osculating lines), that we show to be an affine space, to the moduli space of CP1-bundles with

section, in the spirit of [Mar70].
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Structure of the Paper

In section 1, we present the theory of (G,X)-structures and Cartan geometries with a point of view that will

be useful to consider projective structures from the viewpoint of the projective osculating line. We emphasize

the equivalence between the datum of a bundle (with section) over a manifold and the datum of the principal

bundle of its trivializations (preserving the section).

In section 2, we introduce the theory of holomorphic projective structures on a fixed Riemann surface

X, in the spirit of [KN96], [Kob95] and [And98], through the study of the osculating projective line PX ,

its adjoint bundle and its Atiyah bundle. With our viewpoint, the object that arises naturally is in fact

the bundle of projective 2-frames of X, that is the bundle of trivializations of PX . Thus we mostly work

with projective 2-frames. Projective structures arise as some class of Cartan connections on the bundle of

projective 2-frames, called projective connections. We show that these connections induce a natural structure

of SO(3,C)-oper on the adjoint bundle of the bundle of projective 2-frames. The content of this section, as

well as the previous one, is classical.

In section 3, we confront the viewpoint developed in section 2 on the projective osculating line to the

branched case. This reveals, at each branching point, a parameter space, the space of branching classes,

each branching class corresponding to a branched analog of the bundle of projective 2-frames, thus leading

to a branched analog of the osculating projective line. We then generalize the constructions carried out for

projective 2-frames to branched projective 2-frames. A notion of branched projective connections on these

bundles arises, that we show to be equivalent to the notion of branched projective structures.

In section 4, we are interested in the space of parameters defined in section 3. We show that this space

of parameters is an affine space, and we study the map from this affine space to the moduli space of CP1-

bundles with section, that maps each branching class to the CP1-bundle with section given by the associated

branched osculating line.
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1 Cartan Geometries

In this section we introduce the language of Cartan geometries, that we will use to describe the CP1-bundle

associated to a projective structure.

1.1 Different Notions of Manifolds Modeled on a Space

Let Q be a manifold, endowed with the faithful left-action of a Lie group G by diffeomorphisms. For instance,

one can have in mind the space R
n, along with the action of its group of isometries Isom(Rn). In this article

we are interested in the projective line CP1 with the action of the projective linear group PGL(2,C) by linear

transformations. The action of G makes it possible to pay attention to properties of some objects of Q, that

we call geometric properties. A property p is said to be geometric if, for any object ω attached to Q that
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1.1 Different Notions of Manifolds Modeled on a Space

has the property p, the image of ω by any element of G also has the property p. For instance, in R
n with

the action of Isom(Rn), the property "being aligned" is a geometric property of sets of points. The property

"being of norm 1" is a geometric property of tangent vectors. In CP1 with the action of PGL(2,C), four

points can have the property "being of cross-ratio 1", which is a geometric property.

Let us first introduce an abstract way of considering the geometry of Q with the action of G :

Definition 1.1.1. A (G,Q)-space is a space Q′ endowed with a family (αi)i∈I of trivializations, that is to

say of diffeomorphisms αi : Q
′ ∼
−→ Q, such that for any i, j ∈ I there exists g ∈ G such that αi = g ◦ αj. If

Q1 and Q2 are (G,Q)-spaces, a diffeomorphism φ : Q1
∼
−→ Q2 is said to be an isomorphism of (G,Q)-spaces

if there is a trivialization α1 : Q1
∼
−→ Q of Q1 and a trivialization α2 : Q2

∼
−→ Q of Q2 such that α1 = α2 ◦ φ

Remark 1.1.2. (i) A (Isom(Rn),Rn)-space is a Euclidean space of dimension n.

(ii) If Q′ is a (G,Q)-space, there is no canonical action of G on Q′.

(iii) Since the action of G on Q is faithful, the set of trivializations of a (G,Q)-space Q′ is a G-torsor, i.e.

a space on which G acts freely and transitively. In particular it inherits the differential structure of G.

If the geometric properties that can be studied on Q are of interest, one might ask whether the same

notions can also be studied on objects attached to other differential manifolds, that are not necessarily

isomorphic to Q. Let M be a differential manifold. If one is interested in local objects, it is enough to

only have, for each point m ∈ M , an identification of an open neighborhood of m with an open subset of

Q. Of course these several local identifications have to be consistent with the geometry of Q : if two of

them are defined on the same open subset of M , one has to be obtained from the other by composing with

the action of an element of G, so that the induced local geometry on M is the same. This is the notion of

(G,Q)-structure :

Definition 1.1.3. Let M be a differential manifold. A (G,Q)-atlas on M is the datum of :

• An open cover (Ui)i∈I of M

• For each i ∈ I, a map fi : Ui → Q that is a diffeomorphism from Ui to its image, such that for any

i, j ∈ I there exists g ∈ G with fi(x) = g · fj(x) for all x ∈ Ui ∩ Uj

Two (G,Q)-atlases are equivalent if their union is still a (G,Q)-atlas. A (G,Q)-structure is an equivalence

class of (G,Q)-atlases.

For example, a (Isom(Rn),Rn)-structure is a flat Riemannian manifold.

Another way of understanding the fact that M locally has the geometry of Q is the following. Consider

a small observer moving in Q. In the case where M is a sphere, Q = R
2 and G = Isom(R2), one can think of

somebody walking on a very big sphere, such as the earth. Wherever he is, the observer sees his neighborhood

as if he was living in Q : to each point m of M is attached a copy Qm of Q, and the observer locates himself

as if he was moving in Qm. In the case of the plane R
2 with the action of Isom(R2), the space Qm would be

the tangent space of M at m. In particular, there is a point s(m) ∈ Qm, identified with m ∈ M that is the

point where the observer considers he is standing when he is in m. When the observer moves from a point

m ∈ M to m′ ∈ M , he feels like he was moving inside Q, while he moves from Qm to Qm′ : he identifies
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1.1 Different Notions of Manifolds Modeled on a Space

these two spaces. Moreover, when he moves inside M , the observer sees that his position inside his reference

space changes, meaning that sm′ is not identified to sm when m and m′ are close. In other words, the family

of spaces (Qm)m∈M comes with a connection, i.e. an identification between Qγ(0) and Qγ(1) for any smooth

path γ : [0, 1] →M . This connection is transverse to the family of points (sm)m∈M . Such a local modelling

of M on the geometry of Q is formalized by the notion of Cartan geometry.

Definition 1.1.4. A Cartan geometry on M modeled on Q with the action of G is given by

• A differential bundle of (G,Q)-spaces π : Q →M over M

• A connection ∇ on Q, i.e. a distribution of dim(M)-dimensional spaces in Q, transverse to the fibers of

π, and such that the associated parallel transport identifies the fibers by isomorphisms of (G,Q)-spaces

• A section s of Q that is transverse to the connection ∇.

For instance, a Cartan geometry modeled on R
n with the action of Isom(Rn) is a (not necessarily flat)

Riemannian manifold.

Remark 1.1.5. (i) We use in definition 1.1.4 the notion of differential bundle of (G,Q)-spaces. Let us give

a formal definition, although it is not surprising. A differential bundle of (G,Q)-spaces on M is a

differential manifold Q with a differential map π : Q → M as well as an open covering (Ui)i∈I of M

and for each i ∈ I a local trivialization, i.e. a diffeomorphism (π, Fi) : π
−1(Ui)

∼
−→ Ui × Q, such that

the restrictions fi,m = Fi|π−1(m) : π
−1(m) → Q (m ∈ M) are isomorphisms of (G,Q)-spaces, and for

any i, j ∈ I,m ∈M , there exists gij ∈ G such that fi,m = gij ◦ fj,m.

(ii) A bit trickier is the notion of section of a bundle of (G,Q)-spaces. A section of the (G,Q)-bundle Q is

a smooth map s :M → Q such that, firstly, π ◦s = idM and, secondly, there is an open cover (Ui)i∈I of

M and trivializations (π, Fi) : π
−1(Ui)

∼
−→ Ui ×Q such that for each i ∈ I, Fi ◦ s : Ui → Q is constant.

The second condition is a consequence of the first one only in the case where the action of G on Q is

transitive.

(iii) The distribution defined by the connection ∇ has rank dim(M). The section s, seen as a submanifold

of Q, also has dimension dim(M). Thus the transversality of s and ∇ gives 2 dim(M) = dim(Q) =

dim(M) + dim(Q), so dim(M) = dim(Q).

Suppose from now on that the action of G on Q is analytic, meaning that for any nonempty open set

U ⊂ Q, an element g ∈ G is uniquely determined by the restriction of its action to U . Recall that a

connection is said to be flat if the associated distribution is integrable.

Suppose given a (G,Q)-structure on M , with atlas (Ui, fi)i∈I . For each i ∈ I, consider a (G,Q)-space

Qi, as well as an open subset Vi ⊂ Qi and an identification ιi : Vi
∼
−→ Ui (the diffeomorphism fi ensures

the existence of Vi and ιi). Since the action of G is analytic, for each i ∈ I there is a unique trivialization

γi : Qi
∼
−→ Q extending the map fi ◦ ιi. Thus for each nonempty intersection Ui ∩ Uj, there is a uniquely

determined identification γ−1
i ◦ γj : Qj → Qi. These identifications make the family (Qi)i∈I into a local

system of (G,Q)-spaces on Q. Such a local system can be seen as a flat bundle of (G,Q)-spaces Q over M ,

by considering for each i ∈ I the product Ui ×Qi and glueing these products over the intersections Ui ∩ Uj
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1.2 Adjoint and Atiyah Bundles

by the isomorphisms (m,xj) ∈ (Ui ∩Uj)×Qj 7→
(
m,γ−1

i ◦ γj(xj)
)
∈ (Ui ∩Uj)×Qi. The connection on Q is

given locally over Ui by the horizontal distribution on the trivial bundle Ui×Qi. Moreover, the identifications

ιi : Vi
∼
−→ Ui are encoded in a section of Q given on each Ui by the diagonal sectionm ∈ Ui 7→ ι−1

i (m) ∈ Ui×Qi,

which is transverse to the flat connection. In other words, a (G,Q)-structure on M induces a flat Cartan

geometry on M , i.e. a Cartan geometry whose associated connection is flat.

Reciprocally, a flat Cartan geometry (Q,∇, s) on M induces a (G,Q)-structure on M : the flat bundle

(Q,∇) defines a local system (Ui, Qi)i∈I of (G,Q)-spaces on Q, and the section s gives identifications of each

open subset Ui ⊂M with an open subset of Qi.

Proposition 1.1.6. The datum of a (G,Q)-structure on M is equivalent to the datum of a flat Cartan

geometry modeled of Q with the action of G.

1.2 Adjoint and Atiyah Bundles

From now on, suppose that the action of G on Q is transitive, so that all points of Q are geometrically

equivalent. Fix a point x0 ∈ Q, so that Q is now a pointed space. Let H ⊂ G be the subgroup of G fixing

x0, so that Q = G/H, and (TQ)x0
= g/h, where g and h are the respective Lie algebras of G and H. One

can slightly modify the definition of a (G,Q)-space to get the definition of a (G,Q, x0)-space :

Definition 1.2.1. A (G,Q, x0)-space is the datum of a (G,Q)-space Q′ with a marked point x′0 ∈ Q′. The

trivializations of the (G,Q, x0)-space (Q′, x′0) are the trivializations of Q′ sending x′0 to x0 ∈ Q.

There is an obvious notion of isomorphism of (G,Q, x0)-spaces. There is also a notion of bundle of

(G,Q, x0)-spaces, that is equivalent to the notion of bundle of (G,Q)-spaces with section. In particular, the

structure group of a bundle of (G,Q, x0)-spaces is H. There is also a notion of connection on a bundle of

(G,Q, x0)-spaces, for which the parallel transport has to preserve the section.

Take a (G,Q)-space (respectively a (G,Q, x0)-space) Q1. The adjoint space of Q1, denoted by ad(Q1),

is the vector space of infinitesimal automorphisms of Q1, i.e. the space of global vector fields of Q1 whose

flow at any small time is an automorphism of Q1. The vector space ad(Q1) is stable for the Lie bracket

of vector fields, and is thus a Lie algebra. A trivialization of Q identifies the Lie algebra ad(Q1) with g

(respectively identifies the Lie algebra ad(Q1) with h, and the vector space Tx0Q1 with g/h). If x1 ∈ Q1,

and Q̃1 is the (G,Q, x0)-space given by Q1 and the marked point x1, the infinitesimal automorphisms of Q̃1

are in particular infinitesimal automorphisms of Q1, thus ad
(
Q̃1

)
⊂ ad(Q1). The tangent space of Q1 at x1

is given by (TQ1)x1
= ad (Q1) / ad

(
Q̃1

)
.

Now take a bundle of (G,Q)-spaces (respectively of (G,Q, x0)-spaces) π : Q → M . The adjoint bundle

of Q, denoted by ad(Q) is the vector bundle on M whose fiber over m ∈M is ad(Qm). It is a bundle of Lie

algebras.

The Atiyah bundle of Q, denoted by At(Q), is the vector bundle over M whose fiber over m ∈ M is the

vector subspace of H0
(
π−1(m), TQ |π−1(m)

)
generated by global sections V of TQ |π−1(m) for which there is a

vector V ∈ (TM )m and a local trivialization of Q such that V is the horizontal lift of V . See [Ati57].

There is a natural notion of isomorphism of bundles of (G,Q)-spaces (respectively (G,Q, x0)-spaces).

Given another bundle of (G,Q)-spaces (respectively (G,Q, x0)-spaces) π′ : Q ′ → M ′, where M ′ is another
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1.3 Cartan Connections

differential manifold, a map φ : Q → Q
′ is an isomorphism if φ is a diffeomorphism, there exists an underlying

diffeomorphism ψ : M
∼
−→ M ′ such that π′ ◦ φ = ψ ◦ π, and φ induces isomorphisms of (G,Q)-spaces

(respectively (G,Q, x0)-spaces) between fibers of π and fibers of π′. A gauge transformation of Q is an

automorphism of Q for which the underlying automorphism of M is the identity. The adjoint bundle of Q

can be seen as the bundle of infinitesimal gauge transformations of Q. The Atiyah bundle can be seen as the

bundle of infinitesimal automorphisms of Q. In particular, ad(Q) ⊂ At(Q).

The exact sequence at any x ∈ Q

0 → ker(dπ)x → (TQ)x
dπx−−→ (TM )π(x) → 0 (1)

defines an exact sequence

0 → ad(Q) → At(Q) → TM → 0 (2)

That is called the Atiyah exact sequence associated to Q.

Since the infinitesimal automorphisms of Q are identified with elements of the Lie algebra g of G (respec-

tively the lie algebra h of H), ad(Q) is of rank dim(G) (respectively dim(H)). As a consequence, it follows

from the Atiyah exact sequence (2) that At(Q) is of rank dim(G)+dim(M) (respectively dim(H)+dim(M)).

A connection on Q, seen as a distribution on Q transverse to the fibers of π : Q → M , defines at each

point x ∈ Q a decomposition (TQ)x = (TM )π(x) ⊕ ker(dπ)x, where (TM )π(x) is identified with the vector

subspace of (TQ)x given by the connection at x. In particular, it defines a splitting of the exact sequence

(1), which in turn induces a splitting of the exact sequence (2). In fact, the datum of a connection on Q is

equivalent to the datum of a splitting of (2) : such a splitting enables to lift a vector field on M to a vector

field on Q whose restriction to each fiber is in the Atiyah bundle, which ensures that the associated parallel

transport identifies the fibers of π through isomorphisms of (G,Q)-spaces (respectively (G,Q, x0)-spaces).

1.3 Cartan Connections

Consider on M a Cartan geometry modeled on (Q,G), given by a triple (Q,∇, s), where π : Q → M is a

bundle of (G,Q)-spaces, ∇ is a connection on Q and s is a section transverse to ∇. In particular the couple

(Q, s) can be seen as a (G,Q, x0)-bundle, that we denote by π̃ : Q̃ → M . Note that Q̃ is a reduction of Q

to the structure group H. One has the inclusion ad
(
Q̃

)
⊂ ad(Q). The local trivializations of Q̃ are also

local trivializations of Q, which on an infinitesimal level implies At
(
Q̃

)
⊂ At(Q). If m ∈M , denote by Qm

(respectively Q̃m) the fiber of Q (respectively Q̃) over m. One has (TQm)s(m) = ad(Q)m/ ad
(
Q̃

)
m

.

Let (Wξ)ξ∈Q be the distribution on Q defining ∇, in particular Wξ ⊂ (TQ)ξ and (TQ)ξ =Wξ ⊕ ker(dπ)ξ .

Let also ω : At(Q) → ad(Q) be the splitting of the exact sequence 0 → ad(Q) → At(Q) → TM → 0 given by

∇. If m ∈M and V ∈ At(Q)m ⊂ H0 (Qm, TQ |Qm), then ω(V) = 0 if and only if Vξ ∈Wξ for all ξ ∈ Qm.

Since ω is a splitting, it is the identity on ad(Q) and thus on ad
(
Q̃

)
. Suppose now V ∈ At

(
Q̃

)
m

⊂

At(Q)m. In particular Vs(m) is tangent to the section s. Since the connection ∇ is transverse to s, ω(V) = 0,

i.e. Vs(m) ∈Ws(m), if and only if Vs(m) = 0, which implies dπ(V) = 0, so V ∈ ad
(
Q̃

)
and thus V = 0 because

ω is the identity on ad
(
Q̃

)
. As a consequence, ω is injective when restricted to At

(
Q̃

)
. Recall that ad(Q) is

of rank dim(G) and At
(
Q̃

)
is of rank dim(H)+dim(M). Since dim(M) = dim(Q) = dim(G)−dim(H), the
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1.4 The Point of View of Principal Bundles

vector bundles ad(Q) and At
(
Q̃

)
have the same rank. So the injective morphism ω|

At(Q̃) is an isomorphism.

Reciprocally, a splitting ω′ : At(Q) → ad(Q) defines a connection on Q, and if moreover ω′|
At(Q̃) is an

isomorphism (in particular injective), the induced connection is transverse to s. Notice that the vector

subbundles At
(
Q̃

)
and ad(Q) generate the vector bundle At(Q), so that such a splitting ω′ is determined

by its restriction to At
(
Q̃

)
.

Definition 1.3.1. A Cartan connection on a bundle of (G,Q)-spaces Q on M along with a reduction to a

bundle of (G,Q, x0)-spaces Q̃ is an isomorphism ω|
At(Q̃) : At

(
Q̃

)
∼
−→ ad(Q) that is the identity in restriction

to ad
(
Q̃

)
.

Proposition 1.3.2. The datum of a Cartan geometry on M modeled on Q with the action of G is equivalent

to the datum of a bundle of (G,Q)-spaces Q on M , along with a reduction to a bundle of (G,Q, x0)-spaces

Q̃, and a Cartan connection on Q along with its reduction Q̃.

Consider a Cartan geometry on M given by a bundle of (G,Q)-spaces Q, a bundle of (G,Q, x0)-spaces

Q̃ and an isomorphism ω|
At(Q̃) : At

(
Q̃

)
∼
−→ ad(Q) that is the identity on ad

(
Q̃

)
. The isomorphism ω|

At(Q̃)
defines for each m ∈M an isomorphism of exact sequences :

0 ad
(
Q̃

)
m

At
(
Q̃

)
m

(TM )m 0

0 ad
(
Q̃

)
m

ad(Q)m (TQm)s(m) 0

ω|
At(Q̃)m

Φm
(3)

In particular, the Cartan geometry comes with an identification of the tangent space of M at each m with

the tangent space of Qm at s(m). This confirms that the space Qm is an osculating space to Q at m, the

point s(m) being the point of contact.

1.4 The Point of View of Principal Bundles

Consider a (G,Q)-space Q′, and let TQ′ be the space of trivializations of Q′. The group G acts freely and

transitively on the left on TQ′, so that TQ′ is a G-torsor. A trivialization αi ∈ TQ′ identifies the group G

to TQ′ by g ∈ G 7→ g ◦ αi ∈ TQ′. The differential structure induced on TQ′ by this identification does not

depend on the choice of αi. Note that there is a surjective map

Φ : TQ′ ×Q → Q′

(α, x) 7→ α−1(x)
(4)

and the fibers of Φ are the orbits of the left-action of G on TQ′ ×Q. Thus Φ defines a canonical isomorphism

G\
(
TQ′ ×Q

) ∼
−→ Q′.

Reciprocally, given a G-torsor T, one can consider the quotient

Q′ = G\ (T ×Q) (5)

Since the action of G on T is free and transitive, if t0 ∈ T, any x′ ∈ Q′ has a unique representative in T×Q
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1.4 The Point of View of Principal Bundles

of the form (t0, x). Thus t0 defines a diffeomorphism

αt0 : Q′ → Q

[(t0, x)] 7→ x
(6)

Remark 1.4.1. Having in mind the preferred point x0 ∈ Q, fixed by the subgroup H ⊂ G, one has Q′ = H\T,

where if t ∈ T, the class [t] ∈ H\T is identified with the class [t, x0] ∈ G\ (T ×Q) = Q′.

If g ∈ G, one has αg·t0 = g ◦ αt0 . This proves that the diffeomorphisms (αt)t∈T are the trivializations

for a structure of (G,Q)-space on Q′. In particular, the G-torsor T is canonically identified through the

map α with the G-torsor TQ′ of trivializations of Q′. The same holds, mutatis mutandis, in the case of

(G,Q, x0)-spaces. We have proved the following proposition :

Proposition 1.4.2. The datum of a (G,Q)-space Q′ is equivalent to the datum of the G-torsor TQ′ of its

trivializations. The datum of a (G,Q, x0)-space is equivalent to the datum of the H-torsor of its trivializations.

Fix a (G,Q)-space (respectively a (G,Q, x0)-space) Q′ and its torsor of trivializations TQ′ . The group

Aut(Q′) of automorphisms of Q′ acts on the right on TQ′ by precomposition, and this action is free and

transitive. Thus, while being a left G-torsor (respectively a left H-torsor), TQ′ is a right Aut(Q′)-torsor. As

a consequence, if α ∈ TQ′ and V ∈
(
TTQ′

)
α
, the tangent vector V can be seen either as an infinitesimal action

of Aut(Q′), i.e. an element of ad(Q′), or as an infinitesimal action of G, i.e. an element of g (respectively of

h). In other words, one has identifications ad(Q′) ≃
(
TTQ′

)
α
≃ g (respectively ad(Q′) ≃

(
TTQ′

)
α
≃ h). The

composed identification ad(Q′) ≃ g (respectively ad(Q′) ≃ h) is the one given by the trivialization α of Q′.

The actions of G (respectively H) and Aut(Q′) on TQ′ commute. The identifications
(
TTQ′

)
α
≃ g identify

the tangent bundle TTQ′
to g×TQ′ . The left-action of G on TQ′ induces, by differentiation, a left-action of G

on TTQ′
and thus, by the previous identification, on g. This left-action is the adjoint action of G on g. The

g-valued 1-form on TQ′ given by the identification TTQ′
≃ g×TQ′ is called the Maurer-Cartan form

The global vector fields on TQ′ that are invariant under (i.e. that commute with) the left action of G

(respectively H), form a Lie algebra that is canonically identified to ad(Q′). In particular the flow of such a

vector field is given by the action of an element of Aut(Q′). Conversely, global vector fields that are invariant

under the right action of Aut(Q′) form a Lie algebra that is identified to g (respectively h), and the flow of

such a vector field is given by the action of an element in G (respectively g).

The above study can be made in family. Given a bundle π : Q → M of (G,Q)-spaces on the manifold

M , one can consider its bundle of trivializations π̃ : TQ → M , whose fiber over m ∈ M is the G-torsor TQm

of trivializations of the fiber Qm of Q. The bundle TQ is a G-principal bundle, i.e. a bundle of G-torsors.

Reciprocally, given a G-principal bundle T, one gets a bundle of (G,Q)-spaces by considering the quotient

G\(T ×Q).

Remark 1.4.3. The equivalence between a bundle Q of (G,Q)-spaces and the associated principal bundle TQ

of trivializations allows to speak indifferently of Q or TQ. In particular, the adjoint and Atiyah bundles of Q

are also the adjoint and Atiyah bundles of TQ : ad(Q) = ad (TQ) and At(Q) = At (TQ).

Suppose given a connection ∇ on π : Q → M . It defines a parallel transport on Q, thus a parallel

transport on the bundle of trivializations π̃ : TQ →M , that is equivariant with respect to the action of G on
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TQ . To such a parallel transport is associated a connection ∇̃, thus a distribution (Wα)α∈TQ on TQ with for

any α ∈ TQ , (TTQ )α =Wα ⊕ ker(dπ̃)α. The equivariance of the parallel transport induced by ∇̃ is equivalent

to the invariance of the distribution (Wα)α∈TQ with respect to the action of G : for any g ∈ G and α ∈ TQ,

g ·Wα =Wg·α, where the action of G on the tangent space of TQ is the differential of the action of G on TQ.

Definition 1.4.4. A principal connection on a G-principal bundle π̃ : TQ → M is a distribution (Wα)α∈TQ
that is transverse to the fibers of π̃ and that is invariant by the action of G : for any g ∈ G, g ·Wα =Wg·α.

Proposition 1.4.5. The datum of a connection on Q is equivalent to the datum of a principal connection

on its principal bundle of trivializations TQ .

Note that the pullback vector bundle π̃∗ At(Q) (respectively π̃∗ ad(Q)) has fiber (TTQ )α (respectively

ker(dπ̃)α) over α ∈ TQ . A principal connection (Wα)α∈TQ defines for each α ∈ TQ a projection ̟ : (TTQ )α →

ker(dπ̃)α, of kernel Wα. The projection ̟ is the pullback of the projection ω : At(Q) → ad(Q) defined by

the connection on Q associated to (Wα)α∈TQ .

Since ker(dπ̃)α is the tangent space to the fiber of TQ over π̃(α), which is a G-torsor, there is an iden-

tification ker(dπ̃)α ≃ g. In other words, the pullback of ad(Q) by π̃ is the trivial bundle g × TQ. Thus a

principal connection can be seen as a map TTQ → g, that is equivariant for the action of G on TTQ and the

adjoint action of G on g.

Let us use this description of principal connections to give another formulation of the notion of Cartan

geometry. Suppose given a bundle Q̃ of (G,Q, x0)-spaces on M , and write Q the associated bundle of (G,Q)-

spaces. We saw that a Cartan geometry on M with underlying bundles Q and Q
′ is given by an isomorphism

ω|
At(Q̃) : At

(
Q̃

)
∼
−→ ad(Q) that is the identity in restriction to ad

(
Q̃

)
. Let ˜̃π : T̃

Q
→M be the H-principal

bundle of trivializations of Q̃, and π̃ : TQ the G-principal bundle of trivializations of Q, so that T̃
Q
⊂ TQ.

One has ˜̃π∗ At
(
Q̃

)
= TT̃

Q
, ˜̃π∗ ad(Q) = ker dπ̃|T

Q̃
and ˜̃π∗ ad

(
Q̃

)
= ker d˜̃π.

We have just noted that ker dπ̃ ≃ g× TQ , and similarly ker d˜̃π ≃ h × T̃
Q
. Thus the pullback of the map

ω|
At(Q̃) by ˜̃π can be seen as a g-valued 1-form ̟ on T̃

Q
that is the Maurer-Cartan form in restriction to

the fibers of ˜̃π and such that ̟ is equivariant for the action of H on T̃
Q

and the adjoint action of H on g.

Moreover, for any α ∈ T̃
Q
, ̟α is an isomorphism. This construction can be reversed, so that we have :

Proposition 1.4.6. The datum of a Cartan geometry on M , modeled on Q is equivalent to the datum of

a principal H-bundle T, along with a g-valued 1-form ̟ on T such that ̟ is the Maurer-Cartan form in

restriction to the fibers of T, ̟ is equivariant with respect to the action of H on T and its adjoint action on

g, and ̟α is an isomorphism for all α ∈ T.

2 Projective Structures and the Projective Osculating Line

From now on, X is a Riemann surface. Let OX denote the trivial bundle of X, TX its tangent bundle and

KX its cotangent bundle. In the rest of the paper, the notions defined in section 1 are used in a holomorphic

framework, meaning that smoothness conditions are replaced by holomorphicity conditions.
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2.1 Holomorphic Affine Structures and Holomorphic Affine Connections on a Riemann Surface

2.1 Holomorphic Affine Structures and Holomorphic Affine Connections on a Riemann

Surface

Before coming to projective structures, let us examine the simpler case of affine structures, of which the

description in terms of Cartan geometries involves very familiar notions of differential geometry.

In this section only, Q = C and G = Aff(C), the group of holomorphic affine transformations acting on

C.

Definition 2.1.1. A (Aff(C),C)-structure on X whose charts are holomorphic is called a holomorphic affine

structure.

The affine space C has a privileged point, namely x0 = 0 ∈ C. The subgroup of G fixing 0 is the group of

holomorphic dilatations C
∗. A bundle of (G,Q)-spaces on X is a holomorphic affine bundle on X. A bundle

of (G,Q, x0)-spaces on X is a holomorphic line bundle on X. There is a preferred holomorphic line bundle

on X, namely the tangent bundle TX . Let us denote by AffX the associated holomorphic affine bundle,

and s : X → AffX the section of AffX given by the reduction TX , namely the zero section. Of course,

tautologically, for any x ∈ X : (TX)x =
(
TAffX,x

)
s(x)

.

A Cartan connection ω|At(TX) on the (G,Q)-bundle AffX along with its reduction TX induces for any

x ∈ X an isomorphism (3) Φx : (TX)x
∼
−→
(
TAffX,x

)
s(x)

= (TX)x, thus an automorphism of (TX)x.

Definition 2.1.2. An affine connection on X is a Cartan connection on AffX along with its reduction TX ,

such that for any x ∈ X the induced automorphism of (TX)x is the identity.

Now suppose given two affine connections on X, namely ω|At(TX) and ω′|At(TX). By definition and the dia-

gram (3), these two forms coincide when composed with the quotient At(TX) →

At(TX)/ ad(TX). Thus the difference ω′|At(TX) − ω|At(TX) takes values in ad (TX). Denote respectively

by ω, ω′ : At (AffX) → ad (AffX) their extensions to At (AffX), that are splittings of the Atiyah exact

sequence (2)

0 → ad (AffX) → At (AffX) → TX → 0 (7)

and write respectively ω̃, ω̃′ : TX → At (AffX) the corresponding splitting morphisms. The difference ω′ − ω

still takes values in ad (TX), thus so does the difference ω̃′− ω̃ : it is a holomorphic linear form ω̃′− ω̃ : TX →

ad (TX). Moreover the adjoint bundle of any line bundle is trivial, so ad (TX) = OX , the structure sheaf of

X. In other words ω̃′ − ω̃ is a section of KX , the cotangent bundle of X. Moreover any section of KX can

be obtained as the difference ω̃′ − ω̃ for some pair of affine connections, and an affine connection ω′|At(TX) is

uniquely determined by the associated splitting morphism ω̃. One has the following proposition :

Proposition 2.1.3. The set of affine connections on the Riemann surface X has the structure of an affine

space, directed by the vector space of global holomorphic differentials H0 (X,KX).

Let us have a look at the principal bundles associated to AffX and its reduction TX . For any x ∈ X,

an affine isomorphism α from AffX,x to C is given by a point of C, namely the image of s(x) by α, along

with a linear isomorphism from the vector space TX,x = (TAffX ,x)s(x) to C, namely the differential of α at

s(x). In other words, a trivilization of the affine space AffX,x is given by a 1-jet of biholomorphism from a
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2.2 The Principal Bundle of Projective 2-Frames of a Riemann Surface

neighborhood of x to C. Thus the Aff(C)-principal bundle AffX associated to AffX has fiber over x :

AffX,x =
{
j1xφ|φ is the germ at x of a local biholomorphism from X to C

}
(8)

The principal bundle AffX is also called the bundle of affine 1-frames on X. Now a trivialization of TX,x

is given by a trivialization of AffX,x sending s(x) to 0, so the C
∗-principal bundle TX associated to TX has

fiber over x :

TX,x =
{
j1xφ|φ is the germ at x of a local biholomorphism from X to C, φ(x) = 0

}
(9)

Let (Ui, zi)i∈I be the atlas of a holomorphic affine structure on X : on Ui ∩ Uj , one has zi = gij ◦ zj ,

with gij ∈ Aff(C). For each i ∈ I, one gets a local holomorphic section (thus trivialization) of AffX |Ui

by considering x ∈ Ui 7→ j1xzi ∈ AffX,x. Moreover for any i, j ∈ I, on the intersection Ui ∩ Uj, the

change of trivialization is the constant gij ∈ Aff(C), thus the local connections on each Ui associated to the

trivializations defined by the charts zi glue together on the intersections Ui∩Uj . As a consequence, an affine

structure on X defines a global connection on AffX .

A straightforward calculation, similar to the proofs of proposition 2.4.1 and lemma 2.5.3 below, shows that

the connection on AffX given by an affine structure is an affine connection, and that any affine connection

comes from a unique affine structure, so that the following proposition holds :

Proposition 2.1.4. The datum of a holomorphic affine structure on the Riemann surface X is equivalent

to the datum of an affine connection on X. In particular, the set of affine structures on X is an affine space,

directed by H0(X,KX ).

2.2 The Principal Bundle of Projective 2-Frames of a Riemann Surface

From now on, the model space we consider is the Riemann sphere Q = CP1, and its group of symmetries is

G = PSL(2,C). The Riemann sphere CP1 has a preferred point x0 = 0 ∈ CP1. Let H ⊂ G be the subgroup

whose action on CP1 fixes 0. With these conventions, a bundle of (G,Q)-spaces is a holomorphic CP1-bundle

and a bundle of (G,Q, x0)-spaces is a holomorphic CP1-bundle along with a holomorphic section.

Let also L ⊂ H be the subgroup whose action on the tangent space of CP1 at 0 is trivial. Let l ⊂ h ⊂ g

be the respective Lie algebras of L ⊂ H ⊂ G. The Lie subalgebra h ⊂ g is not preserved by the adjoint

action of G. However, the adjoint action of H over h preserves l.

The action of G on CP1 induces an isomorphism of Lie algebras g ≃ H0(CP1, T
CP1), where the Lie

bracket on H0(CP1, T
CP1) is given by the Lie bracket of vector fields. The Lie subalgebra h is identified with

the space of vector fields that vanish at 0 ∈ CP1 and l is identified with the space of vector fields whose 1-jet

vanishes at 0.

If x ∈ CP1, denote by (CP1, x) the germ of CP1 at x. Similarly to what happens for affine transformations

of C, it is a classical fact (see for instance [Del70]) that for any x ∈ CP1 and any 2-jet j at x of local

biholomorphism with values in CP1, there is exactly one Möbius transformation in G whose 2-jet at x is j.

This justifies the following definition.
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2.3 The Structure of Filtered SO(3,C)-Bundle on ad(PX)

Definition 2.2.1. The bundle of projective 2-frames on X, denoted by π : PX ։ X, has fiber over x ∈ X :

PX,x =
{
j2xφ|φ is the germ at x of a local biholomorphism from X to CP1

}
(10)

The holomorphic structure of PX is such that if φ is a local holomorphic function on X, then x ∈ X 7→

j2xφ ∈ PX,x is a holomorphic section of PX .

The group G acts on the left on PX by postcomposition, and by the above discussion the action is free

and transitive on the fibers, thus PX is a G-principal bundle.

Following (5) and remark 1.4.1, one can consider the CP1-bundle whose bundle of trivializations is PX :

Definition 2.2.2. The projective osculating line of the Riemann surface X is the CP1-bundle over X,

denoted by Π : PX → X and defined by PX = G\
(
CP1 ×PX

)
= H\PX .

Having chosen x=0 ∈ CP1 as a preferred point, the principal bundle PX is endowed with a subbundle

SX ⊂ PX , that is a H-principal bundle, and whose fiber over a point x ∈ X is defined in the following way :

SX,x =
{
j2xφ|φ germ at x of local biholomorphism from X to CP1, φ(x) = 0

}
(11)

In other words, SX is the bundle of projective 2-frames on X that send the points of X to 0 ∈ CP1. The

subbundle SX is the bundle of trivializations of a (G,Q, x0)-bundle whose underlying (G,Q)-bundle is PX .

In other words, SX defines a holomorphic section sX : X → PX , given by s(X) = H\SX ⊂ H\PX = PX .

2.3 The Structure of Filtered SO(3,C)-Bundle on ad(PX)

Recall the definition of a holomorphic filtered SO(3,C)-bundle on X.

Definition 2.3.1. A filtered SO(3,C)-bundle on X is a rank 3 holomorphic vector bundle on X endowed

with

(i) A nondegenerate bilinear form Bx on each fiber Wx of W , such that Bx varies holomorphically with

x ∈ X.

(ii) An identification
∧3W ≃ OX such that the bilinear form induced by B on the fibers of

∧3W is the

trivial one on OX

(iii) A filtration F1 ⊂ F2 ⊂ W along with identifications F1 ≃ KX and F2/F1 ≃ OX such that for all

x ∈ X, F2 is the orthogonal of F1 for the nondegenerate bilinear form Bx.

Remark 2.3.2. Condition (iii) implies that Bx induces a perfect pairing between F1 and W/F2, thus W/F2

is identified with TX .

It is shown in [BD21] that the datum of a holomorphic CP1-bundle with a holomorphic section is equiv-

alent to the datum of a holomorphic filtered SO(3,C)-bundle. In this subsection we exhibit the filtered

SO(3,C)-bundle associated to the projective osculating line PX along with its canonical section sX , and we

show that this particular SO(3,C) carries slightly more structure.
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2.3 The Structure of Filtered SO(3,C)-Bundle on ad(PX)

The fiber over x ∈ X of the adjoint bundle ad(PX) (= ad (PX)) is the space of holomorphic vector fields

over the projective line PX,x. The adjoint bundle ad(PX) is a vector bundle of rank 3 and it is endowed with

a filtration FX
1 ⊂ FX

2 ⊂ ad(PX), defined as follows. For any x ∈ X, take for FX
2,x (respectively for FX

1,x) the

2-dimensional (resp. 1-dimensional) vector space whose elements are vector fields on the projective line PX,x

that vanish at s(x) ∈ PX,x (resp. whose 1-jet vanishes at s(x)). Note that FX
2 = ad(SX).

For x ∈ X, since PX is the bundle of trivializations of PX , the datum of an element φ ∈ PX,x (φ is a

local biholomorphism from a neighborhood of x to CP1, and the bar denotes the class in PX,x) is the same

as an identification PX,x ≃ CP1, and induces an identification ad(PX) ≃ g. If moreover φ ∈ SX,x, then SX,x

is identified with H, FX
2,x with h and FX

1,x with l.

For any x ∈ X, denote by J2(TX)x the 3-dimensional vector space of 2-jets at x of local vector fields

on X. The holomorphic vector bundle J2(TX) comes with a filtration F̃X
1 ⊂ F̃X

2 ⊂ J2(TX), where F̃X
2,x

(respectively F̃X
1,x) contains the 2-jets of vector fields vanishing (respectively with vanishing 1-jet) at the

point x. The line bundle F̃X
1 is identified with K⊗2

X ⊗ TX = KX . The line bundle F̃X
2 /F̃

X
1 is identified with

KX ⊗ TX = OX . The line bundle J2(TX)/F̃2,x is identified with TX .

In the case of the model space CP1, since any 2-jet of local vector field at a point x ∈ CP1 uniquely extends

to a global vector field inH0(CP1, T
CP1), there is a canonical identification J2(T

CP1)x ≃ H0(CP1, T
CP1). Note

that in this way F̃CP1

2,x (respectively F̃CP1

1,x ) is identified with H0
(
CP1, T

CP1 (−[x])
)

(respectively

H0
(
CP1, T

CP1 (−2[x])
)
).

Proposition 2.3.3. There is a canonical identification FX
2 ≃ F̃X

2 , that sends moreover FX
1 to F̃X

1 .

Proof. Let x ∈ X and φ ∈ SX,x. In particular φ(x) = 0. The local biholomorphism φ thus identifies a

neighborhood of x ∈ X with a neighborhood of 0 ∈ CP1, and as a consequence it defines an isomorphism

δφ : J2(TX)x ≃ J2(T
CP1)0. Let us explicitely write down this isomorphism.

Let z be a local coordinate on X centered at x, and let ϕ be the holomorphic function on a neighborhood

of 0 ∈ C such that φ = ϕ(z). The vector space J2(TC)0 is identified with C
3 : if f is a function defined in a

neighborhood of 0 ∈ C, then the 2-jet j20f ∈ is given by (f(0), f ′(0), f ′′(0)). As a consequence, the coordinate

z identifies J2(TX)x with C
3. Using this identification, one has δφ(a0, a1, a2)z = (ϕ′a0, ϕ

′′a0 + ϕ′a1, ϕ
′′′a0 +

2ϕ′′a1 + ϕ′a2).

In particular, if (a0, a1, a2) ∈ F̃X
2,x ⊂ J2(TX)x, i.e. a0 = 0, then δφ(a0, a1, a2) ∈ F̃CP1

2,0 , and moreover

δφ(a0, a1, a2) only depends on j2xφ = φ. Thus φ defines an isomorphism δφ between F̃X
2,x and F̃CP1

2,0 =

H0
(
CP1, T

CP1 (−[x])
)
= h. Clearly, if ψ ∈ SX,x, then φ = h · φ with h ∈ H, and δψ = h · δφ where the

action of h on h is the adjoint action. Note finally that if (a0, a1, a2) ∈ F̃X
1,x ⊂ J2(TX)x, i.e. a0 = a1 = 0,

then δφ(a0, a1, a2) ∈ l.

On the other hand, we already noted that φ gives an isomorphism ∆φ : FX
2,x ≃ h, that sends FX

1,x to l.

We also have ∆ψ = h ·∆φ.

Finally, φ gives an isomorphism δφ
−1

◦∆φ : FX
2,x ≃ F̃X

2,x. We have δψ
−1

◦∆ψ = (h · δφ
−1

) ◦ (h ·∆φ) =

δφ
−1

◦∆φ. Thus the isomorphism FX
2,x ≃ F̃X

2,x does not depend on the choice of φ. It sends FX
1,x to F̃X

1,x, since

δφ (resp. ∆φ) sends F̃X
1,x (resp. FX

1,x) to l. It is clear that the induced map FX
2 ≃ F̃X

2 is holomorphic.

Proposition 2.3.4. There is a canonical identification ad(PX)/FX
1 ≃ J2(TX)/F̃X

1 = J1(TX), that sends

moreover FX
2 /F

X
1 to F̃X

2 /F̃
X
1 .
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2.4 Projective Connections

Proof. The proof is similar to proposition 2.3.3. On the one hand, given x ∈ X and φ ∈ SX,x, φ identifies

J1(TX)x to J1(T
CP1)0 = g/l. On the other hand, φ identifies ad(PX)x/F

X
1,x to g/l. Thus it defines an

isomorphism J1(TX)x ≃ ad(PX)x/F
X
1,x, that happens to not depend on the choice of φ, and to send FX

2,x/F
X
1,x

to F̃X
2,x/F̃

X
1,x. Finally, the induced map from ad(PX)/FX

1 to J1(TX) is holomorphic.

Remark 2.3.5. Let Y be another Riemann surface and f : X ≃ Y a biholomorphism. The map f induces

identifications ι1 : ad(SX) ≃ f∗ ad(SY ), ι2 : ad(PX)/FX
1 ≃ f∗ ad(PY )/F

Y
1 , ι3 : J1(TX) ≃ f∗J1(TY ) and

ι4 : F̃X
2 ≃ f∗F̃ Y

2 . From the proofs of propositions 2.3.3 and 2.3.4, it appears that the following diagram

commutes, where the horizontal arrows are given by the isomorphisms in propositions 2.3.3 and 2.3.4 :

ad(SX) F̃X
2

f∗ ad(SY ) f∗F̃ Y
2

ι1 ι4 (12)

ad(PX)/FX
1 J1(TX)

f∗ ad(PY )/F
Y
1 f∗J1(TY )

ι2 ι3 (13)

We have, as a consequence of propositions 2.3.3 and 2.3.4 :

Corollary 2.3.6. There are canonical identifications :

(i) ad(PX)/FX
2 ≃ TX

(ii) FX
2 /F

X
1 ≃ OX

(iii) FX
1 ≃ KX

This corollary, along with the remark that, for any x ∈ X, FX
2,x is the orthogonal of FX

1,x for the killing

form of the Lie algebra ad(PX)x, shows that ad(PX) is canonically endowed with a structure of a filtered

SO(3,C)-bundle.

2.4 Projective Connections

In this subsection we introduce a special class of Cartan connections on PX along with its reduction SX ,

namely projective connections. To do that we use propositions 2.3.3 and 2.3.4, as well as the following

proposition about the Atiyah bundle At(SX) of SX .

Proposition 2.4.1. There is an isomorphism ΦX : At(SX)/FX
1

∼
−→ ad(PX)/FX

1 = J1(TX) such that the

following diagram commutes :

At(SX)/FX
1 ad(PX)/FX

1 = j1(TX)

TX TX

π̃

ΦX

(14)

Proof. Let x ∈ X and z1 be a local coordinate on a neighborhood U ⊂ X of x. The coordinate z1 defines

a local section γz1 = j2z1 of the principal bundle PX , and thus trivializations of PX |U and PX |U . In

particular γz1 gives a principal connection on PX |U , i.e. a local morphism φz1 : At(PX) → ad(PX) that
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2.4 Projective Connections

is the identity on ad(PX) ⊂ At(PX). Since FX
1 ⊂ ad(PX), the principal connection φz1 induces a local

morphism At(PX)/FX
1 → ad(PX)/FX

1 , whose restriction to At(SX) ⊂ At(PX) we write Φz1
X .

Let us show that diagram 14 commutes when ΦX is replaced by Φz1
X . Let µz1 : PX |U → CP1 be the

trivialization of PX defined by γz1 : if Π : PX → X is the obvious projection map, then (Π, µ|z1) identifies

PX |U to U × CP1. Then it is not hard to see that the expression µz1 ◦ sX : U → CP1 of section s in

the trivialization γz1 is given by µz1 ◦ sX = z1. Let V ∈ Γ(U,At(SX)) and [V ] its class modulo FX
1 . On

the one hand we have dz1 ◦ ̟ ◦ Φz1
X ([V ]) = dµz1(V (s)) ∈ Γ(U, z∗1TCP1), where we see V as a vector field

on PX |U , and ̟ is the projection J1(TX) → TX . On the other hand, for any y ∈ U and any p ∈ PX,y,

π̃([V ])y = dΠ(V (p)) where in the second term V is seen as a vector field on PX |U . In particular, choosing

p = s(y), we have π̃([V ]) = dΠ(V (s)). Since V ∈ Γ(U,At(SX)), V is tangent to s, i.e. V (s) = ds◦dΠ(V (s)).

Thus dµz1(V (s)) = dµz1 ◦ ds ◦ dΠ(V (s)) and by using µz1 ◦ sX = z1 : dµz1(V (s)) = dz1 ◦ dΠ(V ). Finally,

since dz1 is an isomorphism, ̟ ◦ Φz1
X = dΠ.

It follows that Φz1
X is an isomorphism. Indeed, it is the identity on ad(SX)/FX

1 and TX , and both

At(SX)/FX
1 and ad(PX)/FX

1 = j1(TX) are extensions of TX by ad(SX)/FX
1 .

It remains to prove that if z2 is another local coordinate on U , then Φz2
X = Φz1

X . If it is the case, then

the Φz
X for all local coordinates on X glue together in a global isomorphism ΦX . Write γz2 = g · γz1 , where

g : U → G is a holomorphic function. It is a consequence of a computation in the proof of lemma 2.5.3

that for any y ∈ U and any V ∈ TyX, the vector field dgy(V ) ∈ H0(CP1, T
CP1) = g has vanishing 1-jet

at z1(y) ∈ CP1. As a consequence, dµz2 − g · dµz1 has values in dλ−1FX
1 , where λ : PX → At(PX) is the

quotient map. This shows that φz2 − φz1 has values in FX
1 , and thus Φz2

X = Φz1
X .

Take a Cartan connection for the bundles SX ⊂ PX , that we see as a splitting ω : At(PX) → ad(PX)

of the short exact sequence 0 → ad(PX) → At(PX) → TX → 0 such that the induced morphism ω|At(SX ) :

At(SX) → ad(PX) is an isomorphism. The lines of the following diagram are exact :

0 FX
1 At(SX) At(SX)/FX

1 0

0 FX
1 ad(PX) ad(PX)/FX

1 = J1(TX) 0

	 ω|
FX
2

ΦX
(15)

The left square of (15) commutes for any Cartan connection ω. This is however not the case for the right

corner.

Definition 2.4.2. A projective connection onX is a Cartan connection ω for the principal bundles SX ⊂ PX ,

such that diagram (15) commutes.

Remark 2.4.3. The vector bundle ad(PX), along with the filtration FX
1 ⊂ FX

2 ⊂ ad(PX) and a projective

connection, is a SO(3,C)-oper, in the sense of [BD21].

Remark 2.4.4. The datum of a Cartan connection on PX is equivalent to the datum of a connection on the

projective osculating line PX , thus a foliation of PX transverse to the fibers. The projective connections give

rise to a special class of such foliations : two foliations associated to projective connections are tangent to

order 2 at the point sX(x) ∈ PX , for any x ∈ X.
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2.5 Projective Connections and Projective Structures

Take ω1, ω2 two projective connections on X, x ∈ X and v ∈ At(PX)x. There exists v1 ∈ ad(PX)x

and v2 ∈ At(SX)x such that v = v1 + v2 (v1 and v2 are not unique). One has (i = 1, 2) : ωi(v1) = v1

and [ωi(v2)] = ΦX([v2]) ∈ J1(TX)x, where the brackets stand for the class modulo FX
1 . As a consequence,

(ω1 − ω2)x(v) ∈ F1,x. Moreover, since ωi splits the exact sequence 0 → ad(PX) → At(PX) → TX → 0, it is

also given by a morphism ω̃i : TX → At(PX). For any w ∈ TX,x, (ω̃2,x−ω̃1,x)(w) = (ω1−ω2)(v) ∈ F1,x (where

v ∈ At(PX)x such that π̃(v) = w), so ω̃2− ω̃1 defines a section of Hom
(
TX , F

X
1

)
, i.e. of K⊗2

X since FX
1 = KX

by corollary 2.3.6. Reciprocally, if ω̃ : TX → At(PX) defines a projective connection and ϕ ∈ H0
(
X,K⊗2

X

)
,

then ω̃ + φ defines a projective connection as well. Thus one has the following proposition :

Proposition 2.4.5. The set of projective connections on X is an affine space directed by H0
(
X,K⊗2

X

)
.

2.5 Projective Connections and Projective Structures

In this section, we show that the datum of a projective connection on X is the same as the datum of a

projective structure on X, i.e. a (PGL(2,C),CP1)-structure on X. Let us recall the definition in this precise

case.

Definition 2.5.1. A projective atlas on X is the datum of an open cover (Ui)i∈I and local charts zi : Ui →

CP1 such that for any i, j ∈ I, there exists gij ∈ PGL(2,C) such that zi = gij ◦ zj on Ui ∩ Uj .

Two projective atlases are said to be equivalent if their union is a projective atlas. A projective structure

on X is an equivalence class of projective atlases.

Take a projective structure of atlas (Ui, zi)i∈I . Each zi defines a principal connection on PX , thus a

splitting ωi over Ui of the exact sequence 0 → ad(PX) → At(PX) → TX → 0 : the section x ∈ Ui 7→ j2xzi ∈

PX,x is flat. Since zi = gij ◦ zi, where gij is a constant in G, the induced connections, thus the ωi’s, coincide

on the intersections Ui ∩ Uj , and thus define a global splitting ω. The proof of proposition 2.4.1 shows that

ω is a projective connection. Thus a projective structure on X defines a projective connection on X.

Let f : U ⊂ C → C be a local biholomorphism. The Schwarzian derivative of f , denoted S(f), is the

function on U defined as follows :

S(f) =

(
f ′′

f ′

)
−

1

2

(
f ′′

f ′

)2

(16)

One has S(f) = 0 if and only if f is an element of PGL(2,C). If f1, f2 are two functions defined on open

sets of C such that f2 ◦ f1 has nonempty domain, one has the following formula :

S(f2 ◦ f1) = (S(f2) ◦ f1) (f
′
1)

2 + S(f1) (17)

Let z1, z2 be holomorphic coordinates on an open subset U ⊂ X. We denote by {z2, z1} the holomorphic

function on U defined by {z2, z1} = S(f), where f is the function on z1(U) ⊂ C such that z2 = f(z1). Formula

(17) means that if z3 is another local coordinate on U , then one has {z3, z1}dz
⊗2
1 = {z3, z2}dz

⊗2
2 +{z2, z1}dz

⊗2
1 .

For details on the properties of the schwarzian derivative, see [Hub81].

The two local coordinates z1, z2 are charts of two projective structures p1, p2 on U . The projective

structures p1 and p2 in turn define two projective connections ω̃1, ω̃2 on U . According to 2.4.5, the difference

ω̃2 − ω̃1 is given by a quadratic differential on U : ω̃2 − ω̃1 ∈ H0
(
U,KX |⊗2

U

)
.
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2.5 Projective Connections and Projective Structures

Proposition 2.5.2. Using the previous notations, one has ω̃2 − ω̃1 = {z2, z1}dz
⊗2
1 .

The following lemma provides an interpretation of the schwarzian derivative as an actual derivative. See

[And98] for more details.

Lemma 2.5.3. Consider f : U ⊂ C → C a local biholomorphism. Let g : U → PGL(2,C) be the holomorphic

map such that for any t ∈ U , j2t (g(t)) = j2t f , i.e. g(t)(t) = f(t), g(t)′(t) = f ′(t), g(t)′′(t) = f ′′(t).

The derivative dg(t)
dt

is a map from U to sl2,C. After identifying sl2,C with H0(CP1, T
CP1), one has

dg(t)

dt

∣∣∣∣
t=t0

= S(f)(t0)
(t− t0)

2

2

∂

∂t

In the previous statement, CP1 is seen as CP1 = C∪{∞}, and t is the coordinate on C. Thus a basis of

H0(CP1, T
CP1) is given by the global vector fields ∂

∂t
, (t− t0)

∂
∂t

and (t−t0)2

2
∂
∂t

Proof. A straightforward computation shows that for any t ∈ U , g(t) is given by the the matrix

g(t) ≡

(
a(t) b(t)

c(t) d(t)

)

with
a = ff ′′ − 2(f ′)2

b = −2ff ′ − t(ff ′′ − 2(f ′)2)

c = f ′′

d = −2f ′ − tf ′′

(18)

With these notations, the derivative of g at t0, which is a global vector field on CP1, is given by

g′(t0) =
1

a(t0)d(t0)− b(t0)c(t0)
((a(t0)c

′(t0)− a′(t0)c(t0))t
2

+ (a′(t0)d(t0)− b(t0)c
′(t0)− a(t0)d

′(t0) + b′(t0)c(t0))t

+ (b′(t0)d(t0)− d′(t0)b(t0)))
∂

∂t

(19)

Lemma 2.5.3 is obtained by combining formulas (18) and (19).

Proof. (of proposition 2.5.2) Write z2 = f(z1), and let γz1 , γz2 be the local sections of PX defined by z1, z2.

One has γz2 = g · z2, where for any x ∈ U , j2
z1(x)

g(z1(x)) = j2
z1(x)

f and g(z1(x)) ∈ G.

Let ω̃1, ω̃2 : TX |U → At(PX)|U be the morphisms associated to the projective connections defined by

z1 and z2 : ω̃1 is given by dγz1 . In the coordinate z1, (ω̃2 − ω̃1)
(

∂
∂z1

)
∈ sl2,C is given by g′(z1). Lemma

2.5.3 then implies (ω̃2 − ω̃1)|z1(x)

(
∂
∂z1

)
= {z2, z1}(x)

(z1−z1(x))2

2
∂

∂z1
. Since d

dz1

(z1−z1(x))2

2

∣∣∣
z1=z1(x)

= 0 and

d2

dz21

(z1−z1(x))2

2 = 1, it is a consequence of proposition 2.3.3 that dz1, which is a section of KX ≃ FX
1 , is

identified with 1
2 (z1 − z1(x))

2 ∂
∂z1

∈ ad(SX). This ends the proof.

Corollary 2.5.4. Any projective connection on X comes from a projective structure on X.
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Proof. This is a consequence of proposition 2.5.2 and of the fact that the equation S(f) = h has local

solutions for any holomorphic function h defined on an open subset of C (for this last fact, see for instance

[Sai16]).

Thus the datum of a projective structure on X is equivalent to the datum of a projective connection on

X. Proposition 2.4.5 gives :

Proposition 2.5.5. The set of projective structures on X is an affine space directed by the vector space

H0(X,K⊗2
X ) of global quadratic differentials on X.

3 Branched Projective Structures and Branched Projective Osculating

Lines

3.1 Ramified Coverings and PGL(2,C)-Action

Let (U, x) be a germ of Riemann surface, identified with (V, 0) where V ⊂ C is a neighborhood of 0. Take

n ∈ N
∗. Denote by Rx,n the set of 2(n+1)-jets at x of holomorphic maps φ : (U, x) → CP1 that are ramified

at x with ramification degree n. In other words φ′(x) = φ′′(x) = · · · = φ(n)(x) = 0 and φ(n+1)(x) 6= 0 :

Rx,n =
{
j2(n+1)
x φ|φ germ at x of holomorphic (n+ 1)-fold ramified covering with values in CP1

}

Write also R0
x,n =

{
j
2(n+1)
x φ ∈ Rx,n|φ(x) = 0

}
.

Using the identification (U, x) ≃ (V, 0), an element j
2(n+1)
x φ ∈ Rx,n such that φ(x) 6= ∞ can be written :

j2(n+1)
x φ = a0 + an+1z

n+1 + an+2z
n+2 + · · ·+ a2(n+1)z

2(n+1)

Thus Rx,n is identified with C×C
∗ ×C

n+1 by a bijection α : Rx,n ≃ C×C
∗ ×C

n+1 defined by α
(
j
2(n+1)
x φ

)
=

(
a0, an+1, . . . , a2(n+1)

)
. Another choice of coodinates on (U, x) induces another identification β : Rx,n ≃

C×C
∗×C

n+1. The composition β ◦α−1 is an algebraic automorphism of C×C
∗ ×C

n+1. As a consequence,

Rx,n is a smooth algebraic variety of dimension n + 3. The set R0
x,n ⊂ Rx,n is thus a hypersurface, defined

by the equation (a0 = 0).

The group G acts on the left on the algebraic variety Rx,n by postcomposition : for g ∈ G, g · j
2(n+1)
x φ =

j
2(n+1)
x (g ◦ φ). This action is algebraic, and the hypersurface R0

x,n is preserved under the action of the

subgroup H ⊂ G.

Proposition 3.1.1. The group G acts freely on Rx,n. Moreover, the equality G\Rx,n = H\R0
x,n holds, and

this quotient is endowed with a structure of complex manifold of dimension n, isomorphic to C
n.

Proof. Since G acts transitively on CP1, the subset R0
x,n generates Rx,n under the action of G, i.e. G ·R0

x,n =

Rx,n. Thus G\Rx,n = H\R0
x,n, and it is enough to show that the action of H on R0

x,n is free.
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3.2 Bundles of Branched Projective 2-Frames

Take h ∈ H, and let h =

(
α 0

γ δ

)
, with α, δ 6= 0. One has

α
(
an+1z

n+1 + · · ·+ a2(n+1)z
2(n+1) +O

(
z2(n+1)+1

))

γ
(
an+1zn+1 + · · ·+ a2(n+1)z2(n+1) +O

(
z2(n+1)+1

))
+ δ

=
α

δ

(
an+1z

n+1 + · · ·+ a2n+1z
2n+1

)
+

(α
δ
a2(n+1) −

αγ

δ2
a2n+1

)
z2(n+1) +O

(
z2(n+1)+1

)

Thus, if j
2(n+1)
x φ ∈ R0

x,n is given by j
2(n+1)
x φ =

(
0, an+1, . . . , a2(n+1)

)
in the identification Rx,n ≃ C × C

∗ ×

C
n+1, one has

h · j2(n+1)
x φ =

(
0,
α

δ
an+1, . . . ,

α

δ
a2n+1,

α

δ
a2(n+1) −

αγ

δ2
a2n+1

)

thus h · j
2(n+1)
x φ = j

2(n+1)
x φ if and only if α = δ and γ = 0, i.e. if and only if h = id. This shows

that the action of H on R0
x,n, thus of G on Rx,n, is free. Moreover the map π : R0

x,n → C
n defined by

π(0, an+1, . . . , a2(n+1)) =
(
an+2

an+1
, . . . , a2n+1

an+1

)
is a holomorphic submersion. The fibers of π are the orbits of H.

Although π depends on the coordinates on (U, x), if π′ is the map induced by another coordinate, π′ = f ◦π,

with f a biholomorphism of Cn. Thus G\Rx,n = H\R0
x,n is endowed by π with the structure of a complex

manifold, biholomorphic to C
n.

Remark 3.1.2. Take j
2(n+1)
x φ ∈ Rx,n and α between two open subsets of CP1, that is not necessarily a Möbius

transformation. A straightforward computation shows that j
2(n+1)
x (α ◦ φ) ∈ Rx,n and j

2(n+1)
x φ are in the

same orbit under the action of G. In particular, if Y is a Riemann surface, ψ : U → Y a branched covering

of branching order n at x, and χ : ψ(U) → CP1 a holomorphic chart, the orbit of j
2(n+1)
x (χ ◦ ψ) ∈ Rx,n

under the action of G does not depend on the choice of χ. As a consequence, the class of ψ in G\Rx,n is

well-defined.

Remark 3.1.3. The affine group Aff(C) ⊂ G acts freely on the space

R̃x,n =
{
j2n+1
x φ|φ germ at x of branched map of branching order n

}

and it follows from the computation in the proof of proposition 3.1.1 that the orbits of Aff(C) in R̃x,n are

exactly the images of the orbits of G in Rx,n under the obvious projection Rx,n → R̃x,n. As a consequence,

G\Rx,n = Aff(C)\R̃x,n.

3.2 Bundles of Branched Projective 2-Frames

Let D be an effective divisor on X, and write

D =
r∑

i=1

ni · yi (20)

where ni ≥ 1 for 1 ≤ i ≤ r, and the yi are pairwise distinct. Write D = {y1, . . . , yr}, and X = X\D. Denote

by AD
X = G\Ry1,n1 ×G\Ry2,n2 × · · · ×G\Ryr ,nr .

Let α ∈ AD
X : α = (α1, . . . , αr), where for any i between 1 and r, αi ∈ G\Ryi,ni

. In other words, as in

section 3.1, αi is an orbit for the action of G on the set of jets of order 2(ni+1) of germs at yi of holomorphic
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3.2 Bundles of Branched Projective 2-Frames

maps to CP1 with branching order ni.

For any x ∈ X we write : 


P

D
X (α)x = PX,x if x ∈ X

P
D
X (α)x = αi if x = yi, 1 ≤ i ≤ r

(21)

So that for any x ∈ X, the group G acts holomorphically, freely and transitively on the manifold PD
X (α)x.

Fix 1 ≤ i ≤ r, and take Ui a neighborhood of yi in X that does not contain any yj for j 6= i. Consider

φ : Ui → CP1 a holomorphic map ramified with order ni at yi, and with no other ramification point. Suppose

j
2(ni+1)
yi φ ∈ αi. For any x ∈ Ui ∩ X, we set s(x) = j2xφ and s(yi) = j

2(ni+1)
yi φ, so that for all x ∈ Ui, s(x) ∈

P
D
X (α)x. There exists a unique structure of holomorphic manifold on

⊔
x∈Ui

P
D
X (α)x such that s is a section

of the holomorphic principal bundle
⊔

x∈Ui
P

D
X (α)x → Ui. In restriction to X∩Ui, the holomorphic structure

defined by s on
⊔

x∈Ui
P

D
X (α)x coincides with the holomorphic structure of PX |Ui∩X. A straightforward

computation based on formula (18) shows that the complex manifold structure on
⊔

x∈Ui
P

D
X (α)x does not

depend on the choice of φ.

As a consequence
⊔

x∈X P
D
X (α)x, along with its obvious projection on X, is endowed with the structure of

a holomorphic principal bundle in the neighborhood Ui of each yi. On the intersections Ui∩X, these structures

coincide with the one on PX |X. We thus have a holomorphic principal bundle P
D
X (α) =

⊔
x∈Ui

P
D
X (α)x.

Definition 3.2.1. The principal bundle P
D
X (α) is said to be the bundle of branched projective 2-frames on

X with branching divisor D and branching class α = (α1, . . . , αr) ∈ AD
X .

As in the unbranched case, the PGL(2,C)principal bundles P
D
X (α) might be more easily imagined as the

trivialization bundle of a CP1-bundle.

Definition 3.2.2. Let α ∈ AD
X . The CP1-bundle G\

(
CP1×P

D
X (α)

)
= H\PD

X (α) is called the branched

projective osculating line on X, with branching divisor D and branching class α. It is denoted by PD
X (α).

Again, remembering that we chose a preferred point x0 = 0 ∈ CP1, PD
X (α) contains a canonical subbundle,

denoted by S
D
X (α), that is a principal H-bundle, and whose fiber over x ∈ X is defined as follows :




S
D
X (α)x = SX,x if x ∈ X

S
D
X (α)x = αi ∩R

0
yi,ni

if x = yi, 1 ≤ i ≤ r
(22)

In particular the subbundle S
D
X (α) defines a canonical section of PD

X (α), denoted by sDX(α).

Pick a function f on an open subset U ⊂ X whose derivative does not vanish on X ∩ U and such that

j
2(ni+1)
x f ∈ αi for any yi ∈ U . By definition of PD

X (α), f defines a section f of the bundle P
D
X (α)|U , thus

a local trivialization of PD
X (α), that we denote by (Π, µ) : PD

X (α) ≃ U × CP1. In this trivialization, the

canonical section sDX(α) is given by µ
(
sDX(α)(x)

)
= f(x). In particular, the section sDX(α) is holomorphic,

and so is the subbundle S
D
X (α).

As in the unbranched case, the adjoint bundle ad
(
P

D
X (α)

)
is endowed with a filtration FX,D

1 (α) ⊂

FX,D
2 (α) = ad

(
S
D
X (α)

)
⊂ ad(PD

X (α)), where FX,D
1 (α) is a line bundle and FX,D

2 (α) is a rank 2 vector

bundle. For any x ∈ X, ad
(
P

D
X (α)

)
x

is identified with H0
(
PD
X (α)x, TPD

X
(α)x

)
. We then have
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3.3 Bundles of Branched Projective 2-Frames and Pullbacks of the Bundle of Projective 2-Frames




FX,D
2 (α)x = H0

(
PD
X (α)x, TPD

X
(α)x

(
−sDX(α)(x)

))
= ad

(
S
D
X (α)

)

FX,D
1 (α)x = H0

(
PD
X (α)x, TPD

X
(α)x

(
−2sDX(α)(x)

)) (23)

One has FX,D
2 (α) = ad(SD

X (α). Any γ ∈ P
D
X (α)x, identifies P

D
X (α)x with G, and thus ad(PD

X (α))x with

g. If moreover γ ∈ S
D
X (α)x, then FX,D

2 (α)x = ad(SD
X (α))x is identified to h and FX,D

1 (α)x to l.

3.3 Bundles of Branched Projective 2-Frames and Pullbacks of the Bundle of Projective

2-Frames

Let Y be a Riemann surface. Suppose given a local biholomorphism f : X → Y . The map f gives rise to

an isomorphism of principal G-bundles δf : PX → f∗PY , whose inverse (δf)−1 is defined in the following

way. For all x ∈ X, (f∗PY )x = PY,f(x). Set for any j2
f(x)φ ∈ (f∗PY )x : (δf)−1

x

(
j2
f(x)φ

)
= j2x(φ ◦ f) ∈ PX,x.

Let φ : U ⊂ Y → CP1 be a local biholomorphism and let φ denote the section of PY |U induced by φ. Then

(δf)−1(f∗φ) = φ ◦ f , where φ ◦ f denotes the section of PX |f−1(U) induced φ ◦ f . As a consequence, (δf)−1

is holomorphic. Moreover (δf)−1 is clearly equivariant with respect to the action of G on PX and f∗PY ,

thus δf is indeed an isomorphism of principal bundles. If f ′ : Y → Z is a local biholomorphism from Y to

a Riemann surface Z, one has δ(f ′ ◦ f) = f∗(δf ′) ◦ (δf). If U ⊂ X is an open subset such that f |U is a

biholomorphism onto its image, then δf |U is given by the identification PX |U ≃ PY |f(U) of remark 2.3.5.

From now on, suppose f : X → Y is a nonconstant holomorphic map. As in (20), write D =
∑r

i=1 ni · yi

the branching divisor of f , D = {y1 . . . , yr} and X = X\D. By remark 3.1.2, for all yi ∈ D, j
2(ni+1)
yi f defines

a class αi in G\Ryi,ni
. Write α = (α1, . . . αr) ∈ AD

X .

As in the unbranched case, define an isomorphism of principal bundles δf : PD
X (α) ≃ f∗PY by setting

for all j2
f(x)φ ∈ (f∗PY )x :




(δf)−1

(
j2f(x)φ

)
= j2x(φ ◦ f) if x ∈ X

(δf)−1
(
j2f(x)φ

)
= j2(ni+1)

x (φ ◦ f) if x = yi, 1 ≤ i ≤ r
(24)

The same arguments as in the unbranched case show that f is an isomorphism of G-principal bundles. In

particular, on the surface X, the isomorphism δf is the one defined in the unbranched case.

As in remark 2.3.5, one has isomorphisms ι1 : ad
(
S
D
X (α)

)
≃ f∗ ad(SY ), ι2 : ad

(
P

D
X (α)

)
/FX,D

1 (α) ≃

f∗ ad(PY )/F
Y
1 . Since δf maps S

D
X (α) to f∗SY , the isomorphism ι1 (respectively ι2) maps FX,D

1 (α) (resp.

FX,D
2 (α)/FX,D

1 (α)) to f∗F Y
1 (resp. f∗(F Y

2 /F
Y
1 )). The restriction f |X is a local biholomorphism and thus

induces ι3 : J
1(TX |X) ≃ f∗J1

(
TY |f(X)

)
and ι4 : F̃2X|X ≃ f∗F̃ Y

2 |f(X). On X, one gets diagrams analogous to

the ones in remarks (12) and (13).

Remark 3.3.1. (i) The isomorphism ι1 restricted to the subbundle FX,D
1 (α), composed with the iso-

morphism F Y
1 ≃ KY of proposition 2.3.3, gives an isomorphism I1 : FX,D

1 (α) ≃ f∗KY . Com-

posing on X with the identification KX = KX |X ≃ FX,D
1 (α)|X = FX

1 , one gets an isomorphism

Ĩ1 : KX ≃ f∗(KY |f(X)). The fact that diagram (12) commutes implies that Ĩ1 coincides with the

dual map of the differential (df |X)
−1.

(ii) Similarly, the isomorphism ι2, composed with the identification of proposition 2.3.4, gives an isomor-
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3.4 The Structure of Branched Filtered SO(3,C)-Bundle on ad
(
P

D
X (α)

)

phism I2 : ad
(
P

D
X (α)

)
/ ad

(
S
D
X (α)

)
≃ f∗TY . Restricted to X, I2 induces an isomorphism Ĩ2 : TX ≃

f∗
(
TY |f(X)

)
. The commutativity of diagram (13) implies that Ĩ2 coincides with the differential df |X.

(iii) Finally, the isomorphism ι1 (respectively ι2) gives after quotienting by FX,D
1 (α) (resp. after restricting

to ad(SD
X (α))) an isomorphism ad(SD

X (α))/FX,D
1 (α) ≃ f∗(ad(SY )/F

Y
1 ), which, composed with the

identifications of propositions 2.3.3 et 2.3.4, gives an isomorphism I3 : ad(S
D
X (α))/FX,D

1 (α) ≃ f∗OY =

OX . Restricted to X, I3 induces an isomorphism Ĩ3 : OX ≃ OX. The commutativity of diagram 12 (or

of diagram 13) implies that Ĩ3 is identity.

Now let us have a look at the Atiyah bundle At
(
P

D
X (α)

)
. The isomorphism δf : PD

X (α) ≃ f∗PY gives

an isomorphism

ǫ : At
(
P

D
X (α)

)
≃ At(f∗PY ) (25)

Moreover, the pullback f∗PY is endowed with a tautological map F : f∗PY → PY , equivariant with respect

to the action of G, such that the following diagram commutes :

f∗PY PY

X Y

F

f

(26)

Since F is equivariant with respect to the action of G, the differential dF induces the following morphism,

that we also denote by dF :

dF : At(f∗PY ) → f∗At(PY ) (27)

By construction, dF is an isomorphism when restricted to X.

By composing ǫ and dF , one gets a morphism dF ◦ ǫ : At(PD
X (α)) → f∗At(PY ), that is an isomorphism

when restricted to X, and that induces a morphism of short exact sequences :

0 ad
(
P

D
X (α)

)
At
(
P

D
X (α)

)
TX 0

0 f∗ ad(PY ) f∗At(PY ) f∗TY 0

∼

ι dF◦ǫ df (28)

where the bundle isomorphism ι is induced by δf . Moreover dF ◦ ǫ maps At(SD
X (α)) to f∗At(SY ).

3.4 The Structure of Branched Filtered SO(3,C)-Bundle on ad
(
P

D
X (α)

)

Take D, D and X as in (20). Let α ∈ AD
X .

Proposition 3.4.1. (i) The line bundle FX,D
1 (α) is canonically isomorphic to KX(−D).

(ii) The line bundle ad
(
P

D
X (α)

)
/ ad

(
S
D
X (α)

)
is canonically isomorphic to TX(D).

(iii) The line bundle ad
(
S
D
X (α)

)
/FX,D

1 (α) is canonically isomorphic to OX .

Proof. The proofs of (i), (ii) and (iii) are essentially the the same, they involve respectively the isomorphisms

I1, I2 and I3 of remark 3.3.1. We will only write down the proof of point (i).
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3.5 Branched Projective Connections

One has P
D
X (α)|X = PX. Thus, according to corollary 2.3.6, one has an isomorphism κ : FX,D

1 (α)|X ≃

KX |X.

For any integer i between 1 and r, let Ui be an open neighborhood of yi in X such that Ui ∩ D = {yi}.

Consider fi : Ui → CP1 a nonconstant map whose branching divisor is ni · yi and such that j
2(ni+1)
yi fi ∈ αi.

According to section 3.3, the map fi induces an isomorphism of bundles δfi : P
D
X (α)|Ui

≃ f∗i Pfi(Ui). Following

remark 3.3.1, δfi provides an isomorphism I1,i : F
X,D
1 (α)|Ui

≃ f∗i Kfi(Ui). Moreover, the dual isomorphism

of the differential df : TX |Ui
≃ f∗Tf(Ui) is an isomorphism df∗ : f∗Kf(Ui) ≃ KX |Ui

(−ni · yi). Thus one has

an isomorphism df∗ ◦ I1,i : F
X,D
1 (α)|Ui

≃ KX |Ui
(−ni · yi).

When restricted to Ui∩X, the isomorphisms κ and df∗ ◦ I1,i coincide. Indeed, according to remark 3.3.1,

if FX,D
1 (α)|Ui∩X is identified with KUi∩X, then I1,i ◦ κ coincides (df∗)−1.

Thus the I1,i (1 ≤ i ≤ r) and κ can be glued together on the intersections Ui∩X, to give an isomorphism

FX,D
1 (α) ≃ KX(−D)

A straightforward computation shows that for any x ∈ X, ad
(
S
D
X (α)

)
is the orthogonal of FX,D

1 for

the killing form on ad
(
P

D
X (α)

)
x
. Thus the vector bundle ad

(
P

D
X (α)

)
, along with the filtration FX,D

1 (α) ⊂

ad
(
S
D
X (α)

)
⊂ ad

(
P

D
X (α)

)
, is a branched filtered SO(3,C)-bundle, as in the following definition, introduced

in [BD21].

Definition 3.4.2. A branched filtered SO(3,C)-bundle on X is a rank 3 holomorphic vector bundle on X

endowed with

(i) A nondegenerate bilinear form Bx on each fiber Wx of W , such that Bx varies holomorphically with

x ∈ X.

(ii) An identification
∧3W ≃ OX such that the bilinear form induced by B on the fibers of

∧3W is the

trivial one on OX

(iii) A filtration F1 ⊂ F2 ⊂ W along with identifications F1 ≃ KX(−D) and F2/F1 ≃ OX such that for all

x ∈ X, F2 is the orthogonal of F1 for the nondegenerate bilinear form Bx.

3.5 Branched Projective Connections

In this subsection we introduce the branched analog of projective connections, that provide examples of

branched Cartan connections.

Proposition 3.5.1. There is a morphism :

ΦD
X(α) : At

(
S
D
X (α)

)
/FX,D

1 (α) −→ ad
(
P

D
X (α)

)
/FX,D

1 (α) (29)

that is an isomorphism when restricted to X and such that the following diagram commutes :

At
(
S
D
X (α)

)
/FX,D

1 (α) ad
(
P

D
X (α)

)
/FX,D

1 (α)

TX TX(D) = ad
(
P

D
X (α)

)
/ ad

(
S
D
X (α)

)

ΦD
X
(α)

(30)
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3.5 Branched Projective Connections

Proof. Proposition 2.4.1 gives an isomorphism ΦX : At
(
S
D
X (α)

)
/FX,D

1 (α)|X
∼
−→

ad
(
P

D
X (α)

)
/FX,D

1 (α)|X.

For each i between 1 and r, let Ui be an open set such that Ui∩X = yi. Let fi : Ui → CP1 be a holomorphic

map whose branching divisor is ni·yi and such that j
2(ni+1)
yi f ∈ αi. According to proposition 2.4.1, there exists

a canonical isomorphism Φfi(Ui) : At
(
Sfi(Ui)

)
/F

fi(Ui)
1

∼
−→ ad

(
Pfi(Ui)

)
/F

fi(Ui)
1 . Moreover, the isomorphism

δfi : P
D
X (α)|Ui

≃ f∗i Pfi(Ui) induces an isomorphism ad
(
P

D
X (α)

)
/FX,D

1 (α)|Ui
≃ f∗i ad

(
Pfi(Ui)

)
/F

fi(Ui)
1 , as

well as the morphism dF ◦ ǫ : At
(
S
D
X (α)

)
/FX,D

1 (α)|Ui
→ f∗i At

(
Sfi(Ui)

)
/F

fi(Ui)
1 of section 3.3. Thus the

pullback f∗i Φf(Ui) induces a morphism τi : At
(
S
D
X (α)

)
/FX,D

1 (α)|Ui
→ ad

(
P

D
X (α)

)
/FX,D

1 (α)|Ui
. Since the

morphism dF ◦ ǫ is an isomorphism when restricted to Ui ∩ X, so is τi.

The isomorphisms τi and ΦX coincide when restricted to Ui ∩ X. In particular, the τi’s and ΦX glue

together to give the wanted morphism ΦD
X(α). Diagram (30) commutes because diagrams (14) and (28)

commute.

The morphism ΦD
X(α) allows us to define the notion of a branched projective connection on the bundle

P
D
X (α), similarly to what we did on the bundle of (unbranched) projective 2-frames. Let us first give a

definition of a branched Cartan connection

Definition 3.5.2. A branched Cartan connection on a holomorphic bundle of (G,Q)-spaces Q on X along

with a reduction to a holomorphic bundle of (G,Q, x0)-spaces Q̃ is a morphism ω|At(Q̃) : At
(
Q̃
)
→ ad(Q)

that is an isomorphism in restriction to a Zariski open subset of X, and whose restriction to the subbundle

ad
(
Q̃
)
⊂ At

(
Q̃
)

is the identity.

In our framework, a branched Cartan connection for the bundles S
D
X (α) ⊂ P

D
X (α) is a morphism ω :

At
(
P

D
X (α)

)
→ ad

(
P

D
X (α)

)
that is a splitting of the following axact sequence :

0 → ad
(
P

D
X (α)

)
→ At

(
P

D
X (α)

)
→ TX → 0 (31)

and induces a morphism ω|At(SD
X
(α)) : At

(
S
D
X (α)

)
→ ad

(
P

D
X (α)

)
that is an isomorphism when restricted

to a Zariski open subset of X. Such a connection ω induces the following commutative diagram (using the

isomorphism (ii) of proposition 3.4.1) :

0 ad
(
S
D
X (α)

)
At
(
S
D
X (α)

)
TX 0

0 ad
(
S
D
X (α)

)
ad
(
P

D
X (α)

)
TX(D) 0

ω|
At(SDX (α)) θ (32)

The branching divisor of the connection ω is the vanishing divisor of the morphism θ.

More precisely, a branched Cartan connection for S
D
X (α) ⊂ P

D
X (α) gives rise to the following diagram,

whose left square is commutative :

0 FX,D
1 (α) At

(
S
D
X (α)

)
At
(
S
D
X (α)

)
/FX,D

1 (α) 0

0 FX,D
1 (α) ad

(
P

D
X (α)

)
ad
(
P

D
X (α)

)
/FX,D

1 (α) 0

	 ω|
At(SDX (α)) ΦD

X
(α) (33)
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3.6 Branched Projective Structures

Definition 3.5.3. A branched projective connection on X, of branching divisor D and branching class α is

a branched Cartan connection for S
D
X (α) ⊂ P

D
X (α) such that the diagram (33) commutes.

Let ω be a branched projective connexion on X, of branching divisor D and branching class α. According

to the diagram (30), the morphism θ in diagram (32) is the embedding TX →֒ TX(D). Thus the branching

divisor of ω as a branched Cartan connection is D, and the vocabulary is consistent.

Remark 3.5.4. The vector bundle ad
(
P

D
X (α)

)
, along with the filtration FX,D

1 (α) ⊂ ad
(
S
D
X (α)

)
⊂ ad

(
P

D
X (α)

)

and a branched projective connection, is a branched SO(3,C)-oper, in the sense of [BD21].

Remark 3.5.5. The morphism ΦD
X(α) of proposition 3.5.1, when restricted to X, is the isomorphism ΦX of

proposition 2.4.1. This implies that a branched projective connection on X is a projective connection when

restricted to X.

The discussion before proposition 2.4.5 can be held mutatis mutandis in the case of branched projective

connections on X, with branching divisor D and branching class α. In particular, the difference between two

such connections is given by a section of the vector bundle Hom
(
TX , F

X,D
1 (α)

)
. Thanks to the identification

(i) in proposition 3.4.1, proposition 2.4.5 becomes in the branched case :

Proposition 3.5.6. The set of branched projective connections on X, of branching divisor D and branching

class α, is either empty, or an affine space directed by the vector bundle H0
(
X,K⊗2

X (−D)
)
.

3.6 Branched Projective Structures

In this section, we make the link between the classical notion of branched projective structure and the notion

of branched projective connection introduced in the previous section.

Let D be a divisor on X, like in (20).

Definition 3.6.1. A branched projective atlas on X with branching divisor D is the datum of an open

covering (Ui)i∈I and nonconstant holomorphic maps zi : Ui → CP1 whose branching divisor is D|Ui
and such

that for any i, j ∈ I, there exists a Möbius transformation gij ∈ G such that zi = gij ◦ zj over Ui ∩ Uj .

Two branched projective atlases of divisor D are said to be equivalent if their union is a branched

projective atlas of divisor D. A branched projective structure of divisor D is an equivalence class of branched

projective atlases of divisor D.

For an overview on the theory of branched projective structures, see [GKM00] and references therein.

To a branched projective structure on X of divisor D and maximal atlas (Ui, zi)i∈I , one can associate a

branching class α = (α1, . . . , αr) ∈ A
D
X by setting αk = j

2(nk+1)
yk zi mod G, where i ∈ I is such that yk ∈ Ui.

As we saw in section 3.2, for any i ∈ I, the map zi defines a section and thus a principal connection for

the bundle P
D
X (α)|Ui

. Since the zi’s differ by composition with an element in G, the principal connections

they define coincide on the Ui ∩ Uj ’s and thus define a principal connection ω on P
D
X (α). When restricted

to X, ω is unbranched and thus makes diagram (33) commute, as we saw in section 2.5. Moreover, if yk

(1 ≤ k ≤ r) is any branching point of the atlas (Ui, zi) and i0 ∈ I is such that yk ∈ Ui0 , then ω|Ui0
can

be seen as the pullback by zi0 of the projective connection on CP1 corresponding to the trivial projective

structure on CP1. In the proof of theorem 3.5.1, the map ΦD
X(α)|Ui0

was obtained as the pullback of Φ
CP1 .
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Moreover, the tautological projective connection on CP1 makes the diagram (15) commute. Thus ω makes

the diagram (33) commute when restricted to Ui0 . This shows the following lemma :

Lemma 3.6.2. A branched projective structure induces a branched projective connection, with the same

branching divisor and branching class.

3.7 Branched Projective Structures, Branching Classes and Schwarzian Derivative

Let us recall the following result, that follows from Fuchs’s local theory, and that plays a central role in the

theory of branched projective structures. See [Sai16] for more details.

Let n ≥ 2 be an integer, z0 ∈ C and U ⊂ C be a simply connected open neighborhood of z0.

Proposition 3.7.1. There exists a polynomial Pn ∈ C[X1, . . . ,Xn+1] such that, for any φ = ϕdz⊗2 holo-

morphic quadratic differential on U\{z0}, (A) and (B) are equivalent :

(A) There exists a holomorphic function f defined on U whose branching divisor is exactly n · z0 and such

that ϕ = S(f) on U\{z0}

(B) The following are all true

(i) The quadratic differential φ extends as a meromorphic quadratic differential on U that admits a

pole of order 2 at z0 : ϕ = α−2

(z−z0)2
+ α−1

z−z0
+ α0 + α1(z − z0) + α2(z − z0)

2 + · · ·

(ii) α−2 =
1−(n+1)2

2

(iii) Pn(α−1, α0, . . . , αn−1) = 0

Moreover, the polynomial Pn is given by Pn = λXn+1+P̃ (X1, . . . Xn) for some λ ∈ C
∗ and P̃ ∈ C[X1, . . . ,Xn].

Remark 3.7.2. In particular, proposition 3.7.1 implies that given α−1, α0, . . . , αn−2 ∈ C, there exists a

function f defined on U whose branching divisor is n · z0 and such that S(f) = 1−(n+1)2

2(z−z0)2
+ α−1

z−z0
+ α0 +

α1(z − z0) + · · · + αn−2(z − z0)
n−2 + O(z − z0)

n−1. Indeed, it is enough to solve the equation S(f) =
1−(n+1)2

2(z−z0)2
+ α−1

z−z0
+ α0 + α1(z − z0) + · · ·+ αn−2(z − z0)

n−2 +
(
− P̃ (α−1,...,αn−2)

λ

)
(z − z0)

n−1.

We are now able to prove the converse of 3.6.2. Take a branched projective connection ω, of divisor D

and branching class α. The connection ω is a projective connection when restricted to X, and thus comes

from a projective structure p on X according to corollary 2.5. For i between 1 and r, let Ui be a neighborhood

of yi and fi : Ui → CP1 a map with branching divisor ni · yi and such that j
2(ni+1)
yi fi ∈ αi. We have seen

that fi defines a branched projective connection on Ui with the same branching class as ω. In particular,

the difference ω − ωi is a quadratic differential φi ∈ Γ
(
Ui,K

⊗2
X (−ni · yi)

)
. Fix an unbranched projective

connection ω0 on X. According to corollary 2.5, ω0 is given by a projective structure on X. On X, the

difference ω − ω0 is a quadratic differential ψ ∈ Γ(X,K⊗2
X ) while on Ui ∩ X, the difference ωi − ω0 is a

quadratic differential ψi ∈ Γ(Ui ∩ X,K⊗2
X ). Moreover, on Ui ∩ X, we have ψ = φi + ψi. Since φi vanishes

up to order (ni − 1) at yi, the Laurent expansions at yi of ψ and ψi in a local chart zi of the projective

structure ω0 coincide up to order ni − 1. According to proposition 3.7.1, there exists a map hi defined on

Ui, whose branching divisor is ni · yi and such that {hi, zi}dz
⊗2
i = ψ. In particular the projective connection

induced by hi on Ui ∩X coincides with ω. Moreover lemma 4.1.1 shows that hi has same branching class yi
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as fi, thus hi defines a branched projective connection with branching class αi, equal to ω on Ui by analytic

continuation. Thus when restricted to Ui, ω comes from a branched projective structure bi with branching

class αi. The branched projective structures bi glue with the unbranched structure p on Ui ∩ X and thus

define a branched projective structure on the whole X whose associated projective connection is ω.

This discussion shows the following proposition :

Proposition 3.7.3. The datum of a branched projective structure on X with branching divisor D and

branching class α is equivalent to the datum of a branched projective connection on X, of divisor D and

branching class α.

4 Spaces of Bundles of Branched Projective Frames

In this section we investigate the analytic structure of the space AD
X of bundles of branched projective frames

for a given curve X with a given divisor D. The associated CP1-bundles with section, namely the branched

projective osculating lines with their canonical sections can be seen as bundles of affine lines, thus there is a

map from AD
X to the moduli space of affine bundles over X, that we study.

4.1 Parametrizations of the Space of Bundles of Branched Projective Frames on a

Riemann Surface with Divisors

Let us work again with the notations of proposition 3.7.1. Take also a holomorphic function f on U , such

that f ′ has a zero of order n at z0. Fix the following notations :

f(z) = a0 + an+1(z − z0)
n+1 + an+2(z − z0)

n+2 + · · · + a2n+1(z − z0)
n+1 +O(z − z0)

2n+2

f ′′(z)

f ′(z)
=

n+ 1

z − z0
+ δ0 + δ1(z − z0) + · · ·+ δn−1(z − z0)

n−1 +O(z − z0)
n

S(f)(z) =
1− (n+ 1)2

2(z − z0)2
+

α−1

(z − z0)
+ · · ·+ αn−1(z − z0)

n−1 +O(z − z0)
n

A straightforward computation shows :

Lemma 4.1.1. There are two algebraic automorphisms Dn : Cn ∼
−→ C

n and Sn : Cn ∼
−→ C

n such that for

any function f , one has

(δ0, . . . , δn−1) = Dn

(
an+2

an+1
,
an+3

an+1
, . . . ,

a2n+1

an+1

)

and

(α−1, . . . , αn−2) = Sn

(
an+2

an+1
,
an+3

an+1
, . . . ,

a2n+1

an+1

)

Let X be a Riemann surface. Recall from section 2.1 that similarly to the case of projective structures,

the space of holomorphic affine structures on an open set U ⊂ X is an affine space directed by the space

Γ(U,KX) of holomorphic differentials on U . If z1, z2 are two coordinates on U with z2 = f(z1), the difference

between the affine structures given by z2 and z1 is given by [z2, z1]dz1, where [z2, z1] =
f ′′

f ′ .

Take D an effective divisor on X, like in (20). Let α,α′ ∈ AD
X be two branching classes. Take also, for

any i ∈ [[1, r]], fi (respectively gi) a holomorphic function defined on a neighborhood Ui of yi, branched to
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order ni at yi (and nowhere else) and whose branching class at yi is αi (respectively α′
i). The difference

between the two projective (respectively affine) structures defined by gi and fi on Ui\{x0} is given by the

quadratic differential {gi, fi}df
⊗2
i (respectively by the differential [gi, fi]dfi).

Lemma 4.1.2. (i) The quadratic differential {gi, fi}df
⊗2
i extends to a section in Γ

(
Ui,K

⊗2
X (yi)

)
. The

differential [gi, fi]dfi extends to a section in Γ(Ui,KX)

(ii) The (ni − 1)-jet of {gi, fi}df
⊗2
i at yi (respectively the (ni − 1)-jet of [gi, fi]dfi) does not depend on the

choice of fi and gi, of respective branching classes α and α′.

Proof. Let zi be a local coordinate on Ui, centered at yi. One has {gi, fi}df
⊗2
i = {gi, zi}dz

⊗2
i − {fi, zi}dz

⊗2
i .

According to proposition 3.7.1, the coefficient of 1
z2i

in {fi, zi} and {gi, zi} is 1−(ni+1)2

2 . Thus {fi, zi}−{gi, zi}

has a pole of order at most 1 at zi = 0, and thus {gi, fi}df
⊗2
i ∈ Γ

(
Ui,K

⊗2
X (yi)

)
. Similarly, [gi, fi]dfi =

[gi, zi]dzi− [fi, zi]dzi and the residue of both [gi, zi] and [fi, zi] at yi is n. Thus [gi, zi]− [fi, zi] is holomorphic

on Ui, and [gi, fi]dfi ∈ Γ(Ui,KX). This shows point (i).

Now if f̃i, g̃i are two functions of branching class αi at yi, according to lemma 4.1.1, the coefficients of

{fi, zi} and {f̃i, zi} coincide to order ni − 2, and the same is true for gi and g̃i. In particular, {gi, fi}df
⊗2
i =

{gi, zi}dz
⊗2
i − {fi, zi}dz

⊗2
i coincide with {g̃i, f̃i}df̃

⊗2
i = {g̃i, zi}dz

⊗2
i − {f̃i, zi}dz

⊗2
i up to order ni − 2. This

can also be stated as jni−1
yi

{gi, fi}df
⊗2
i = jni−1

yi
{g̃i, f̃i}df̃

⊗2
i , since {gi, fi}df

⊗2
i ∈ Γ

(
Ui,K

⊗2
X (yi)

)
. The same

argument works mutatis mutandis to show jni−1
yi

[gi, fi]dfi = jni−1
yi

[g̃i, f̃i]df̃i. This proves (ii).

Moreover, it follows from remark 3.7.2 that for any meromorphic quadratic differential around yi with

simple pole at yi, φ ∈ K⊗2
X ([yi])(yi), there exists a branching class α′′

i at yi such that if hi has branching class

α′′
i , then jni−1

yi
{hi, fi}df

⊗2
i = jni−1φ. Similarly, for any jni−1

yi
ψ ∈ Jni−1

yi
KX , there exists a branching class

α′′′
i at yi such that if hi has branching class α′′′

i , then jni−1
yi

[hi, fi]dfi = jni−1
yi

ψ. Indeed a differential form

with pole of order 1 at yi is given by [hi, zi]dzi for some holomorphic function hi with branching divisor n ·yi

if and only if it has residue n at yi.

Finally, note that
∏r

i=1 J
ni−1
yi

K⊗2
X

(
Dred

)
= H0

(
D,K⊗2

X

(
Dred

)
|D
)

and
∏r

i=1 J
ni−1
yi

KX =

H0(D,KX |D).

We have just proved the following :

Proposition 4.1.3. The schwarzian derivative equips the algebraic variety AD
X of branching classes on (X,D)

with the structure of an affine space, directed by the vector space H0(D,K⊗2
X (−Dred)|D).

The differential operator f 7→ f ′′

f ′ equips AD
X with the structure of an affine space, directed by the vector

space H0(D,KX |D).

4.2 Bundles of Branched Projective 2-Frames as Abstract CP1-Bundles with Section

Let D be an effective divisor on X, as in (20). We have seen that any branching class α ∈ AD
X is associated

to a CP1-bundle with a distinguished section, namely the branched projective osculating line PD
X (α), along

with the section s defined in section 3.2. In this section, we study the map between AD
X and the space of

isomorphism classes of couples (P, σ), where P is a CP1-bundle on X and σ is a section of P . See also [LM09]

and [Man75] for a study of the analytic CP1-bundle associated to a (branched) projective structure.
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The datum of a CP1-bundle with a section is equivalent to the datum of a A1-bundle, where A1 is the

complex affine line (with automorphism group the affine group Aff(C)). Indeed the section, seen as the

section at infinity, provides a reduction of structure group of the CP1-bundle to the affine group (the group

of homographies preserving the point at infinity). Conversely an A1-bundle gives rise to a CP1-bundle along

with a section at infinity, by adding a point at infinity to the fibers. Thus the space of isomorphism classes

of CP1-bundles with section is in fact the space of isomorphism classes of A1-bundles.

Now an A1-bundle A on X is an affine bundle directed by a line bundle, namely the line bundle L whose

fiber Lx over x ∈ X is the line of constant vector fields on the fiber Ax. If A is seen as a CP1-bundle with

section (P, σ), then Lx is the line of vector fields on the fiber vanishing twice at σ(x). Note that, although

there is a canonical action by translation of Lx on Ax, multiplication of the vectors of Lx by a nonzero

number defines another action. Thus any automorphism of the line bundle L defines on A another structure

of affine bundle directed by L.

Now fix L a line bundle on X, and let A be an affine bundle directed by L. There is an open cover

(Ui)i∈I of X such that A admits a local section fi on each Ui. Denote by hij the section of L on Ui ∩ Uj

defined by hij = fj − fi. The family (hij) is a cocycle that represents a class c(A) ∈ H1(X,L). The class

c(A) determines A as an affine bundle directed by L. Now as an A1-bundle, A has one structure of affine

bundle directed by L per automorphism of L. Thus the A1-bundle A is determined by an orbit of the gauge

group Aut(L) acting on H1(X,L). In the case where X is compact, Aut(L) = C
∗ and thus the space of

A1-bundles (CP1-bundles with section) with underlying line bundle L is P
(
H1(X,L)

)
∪ {0}. See [Mar70],

[HL19] for a more detailed study of CP1-bundles on Riemann surfaces.

Let us come back to the case of the branched projective osculating line PD
X (α) with its section s, where

α is a branching class on X of divisor D. We suppose moreover that X is compact. The line bundle whose

fiber over x ∈ X contains the vector fields on PD
X (α)x vanishing twice at s(x) is FX,D

1 (α), that is canonically

identified with KX(−D) according to proposition 3.4.1. Thus the couple (PD
X (α), s) is canonically endowed

with the structure of an affine bundle directed by KX(−D). As a consequence, it is associated to a class

γα ∈ H1 (X,KX(−D)), and, as an abstract A1-bundle, to an element [γα] in P
(
H1 (X,KX(−D))

)
∪ {0}

(here the compacity of X matters). Recall that to compute γα, one has to take local sections of PD
X (α) that

do not intersect s, consider their differences as local sections of KX(−D) defining a cocycle, and compute

the associated cohomology class.

Lemma 4.2.1. The datum of a local section of PD
X (α), over an open subset U ⊂ X, that does not intersect s

is equivalent to the datum of a branched affine structure on U whose associated branched projective structure

has branching class α.

Proof. First, suppose given such an affine structure. Since the branching class of the associated projective

structure is α, it is given by local trivializations of PD
X (α)|U , whose changes of trivializations preserve

∞ ∈ CP1. Thus it defines a section σ of PD
X (α)|U , defined by the preimage of ∞ by the trivializations. The

images of the section s in those trivializations are the local functions from U to CP1 that are the charts of

the affine structure. Since those charts take values in C, the images of s never take the value ∞ and thus σ

does not intersect s.

Conversely, suppose given a section σ of PD
X (α) that does not intersect s. We will show that there exists
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a unique connection on PD
X (α) that is a branched projective connection of branching class α and such that

σ is a flat section. This will prove the proposition : among the charts of the branched projective structure

associated to this branched projection, consider those whose associated trivilizations of PD
X (α) send σ to ∞.

The changes of charts preserve ∞ ∈ CP1, and thus belong to Aff(C). Moreover, since σ does not intersect

s, the chosen charts take values in C and thus define an affine structure.

Let us go back to the definition of a branched projective connection on the G-principal bundle P
D
X (α),

given in subection 3.5. For any x ∈ X, the fiber PD
X (α)x can be seen as the set of all isomorphisms PD

X (α)x
∼
−→

CP1. Let us denote by K the Aff(C)-principal subbundle of PD
X (α), whose fiber over x ∈ X is the set of

trivializations Ψ : PD
X (α)x

∼
−→ CP1 such that Ψ(σ(x)) = ∞. Since σ and s do not intersect, it is easy to figure

out that At(K) ⊕ FX,D
1 (α) = At

(
P

D
X (α)

)
, ad(K) ⊕ FX,D

1 (α) = ad
(
P

D
X (α)

)
and

(
ad(K) ∩ ad

(
S
D
X (α)

))
⊕

FX,D
1 (α) = ad

(
S
D
X (α)

)
. Moreover, the section σ is flat for a branched Cartan connection ω on P

D
X (α)

if and only if ω(At(K)) ⊂ ad(K). Therefore if ω is moreover a branched projective connection, then

ω|At(K)∩At(SD
X
(α)) is fully determined by the map ΦD

X(α) in diagram (33). Since ω|
F

X,D
1 (α)

is also determined

(it has to be the identity), ω|At(SD
X
(α)), and thus ω, is determined by the datum of K.

Let σ1, σ2 be two local sections of PD
X (α), over an open subset U ⊂ X, that do not intersect s. Denote

by a1 and a2 the associated branched affine structures. Since PD
X (α)\s(X) is an affine bundle directed by

KX(−D), the difference σ2 − σ1 is a local section of KX(−D). Moreover the difference a2 − a1 is a local

section of KX (see [Man72], that extends remarks of section 2.1).

Lemma 4.2.2. One has σ2 − σ1 = −(a2 − a1).

Proof. By analytic continuation, it is enough to prove this away from the branched points. Thus we suppose

that U does not contain any point of D. Up to shrinking U , suppose given a chart w : U → C of the affine

stucture a1 on U . The chart w provides a trivialization (w, z) : PD
X (α)

∼
−→ U × CP1, such that the section

σ1 is given by z ◦ σ1 = ∞, and the section s by z ◦ s = w. Let λ : w(U) → CP1 be the holomorphic

section such that z ◦ σ2 = λ(w). If ζ = 1/(z − w), for any x ∈ U , the difference σ2(x) − σ1(x) is given by

the vector field on PD
X (α)x whose flow at time 1 sends σ1(x) to σ2(x), namely 1

λ(w)−w
∂ζ = −2

λ(w)−w
(z−w)2

2 ∂z.

Since the identification FX,D
1 (α) ≃ KX(−D) of proposition 3.4.1 identifies dw with (z−w)2

2 ∂z, we have on U

: σ2 − σ1 =
−2

λ(w)−w
dw.

On the other hand, denote by ω1 and ω2 the local sections of KX ⊗At(PD
X (α) that define the projective

connections associated to a1 and a2. At any x ∈ U the difference (ω2 − ω1)x(∂w), seen as a vector field of

PD
X (α)x, has to vanish twice at w(x) and has to take the value λ′(w(x))∂z at σ2(x), because σ2 is flat for

the connection ω2. Thus on the open set U , ω2 − ω1 =
λ′(w)

(λ(w)−w)2
(z − w)2∂zdw.

Now let ∇1 and ∇2 be the local morphisms TX → KX ⊗ TX that define the linear connections on TX

induced by the affine structures a1 and a2. For i = 1, 2, since the projective connection ωi preserves the

section σi, it preserves the line subbundle Li of ad(PD
X (α)) whose fiber over x ∈ X is spanned by ∂z for

i = 1 and (z − λ(w(x)))2∂z for i = 2. Moreover, since Ts(x)P
D
X (α) is canonically identified to TX,x for any

x ∈ U , Li is canonically identified to TX |U by V ∈ Li,x 7→ V (s(x)) ∈ Ts(x)P
D
X (α). The connection ∇i is

thus given by the restriction to Li of the parallel transport defined by ωi. Now ∂w is identified to ∂z in L1,

and is thus a flat section for ∇1. In L2, ∂w is identified to 1
(w−λ(w))2

(z − λ(w))2∂z. Thus one has, using this
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latter identification,

(∇2 −∇1)(∂w)(∂w) = ∇2(∂w)(∂w)

=
d

dw

(
1

(w − λ(w))2
(z − λ(w))2∂z

)
+

[
λ′(w)

(λ(w)− w)2
(z − w)2∂z,

1

(w − λ(w))2
(z − λ(w))2∂z

]

=

(
−2(1− λ′(w))

(w − λ(w))3
(z − λ(w))2 +

−2λ′(w)(z − λ(w))

(w − λ(w))2
−

2λ′(w)

(w − λ(w))3
(z − λ(w))(z − w)

)
∂z

=
−2

(w − λ(w))3
(z − λ(w))2∂z

=
−2

w − λ(w)
∂w

Finally, a2 − a1 = ∇2 −∇1 =
2

λ(w)−w
dw = −(σ2 − σ1)

Fix a branching class α0 ∈ AD
X , and let (σ0i )i∈I be a family of sections of PD

X (α0) adapted to an open

covering of X (Ui)i∈I and that do not intersect s. We have seen that the class γα0 of the cocycle (σ0j −

σ0i )i,j∈I in H1(X,KX (−D)) characterizes the CP1-bundle PD
X (α0), along with its canonical section. Now

let α1 ∈ AD
X be another branching class, and (σ1i )i∈I a family of local sections of PD

X (α1) that does not

intersect the canonical section, so that
(
σ1j − σ1i

)
i,j∈I

represents the class γα1 ∈ H1 (X,KX (−D)). Now the

difference γα1 − γα0 is represented by the cocycle
((
σ1j − σ0j

)
−
(
σ1i − σ0i

))
i,j∈I

. Thus lemma 4.2.2 implies

that −(γα1 −γα0) is represented by the cocycle
((
a1j − a0j

)
−
(
a1i − a0i

))
i,j∈I

, where aki is the affine structure

induced by σki (k = 1, 2).

But by proposition 4.1.3, the difference α1 − α0 corresponds to an element of H0(X,KX |D), and the

correspondance is given by the differential operator f 7→ f ′′

f ′ , applied to the charts of α1 written in the charts

of α0. It is equivalent to say that α1 − α0 is given by the differences a1i − a0i restricted to the points of D.

As a consequence, γα1 − γα0 is given by −δ(α1 − α0), where δ : H0(X,KX |D) → H1(X,KX (−D)) is the

morphism in cohomology given by the short exact sequence 0 → KX(−D) → KX → KX |D → 0. We have

proven :

Theorem 4.2.3. Let us endow AD
X with its structure of affine space directed by the vector space H0(X,KX |D).

Let γ : AD
X → H1(X,KX (−D)) be the map that maps a branching class α to the isomorphism class of PD

X (α)

along with its canonical section, in the space of affine bundles directed by KX(−D). Then γ is a morphism of

affine spaces, directed by the linear map −δ : H0(X,KX |D) → H1(X,KX(−D)), where δ is the map induced

in cohomology by the short exact sequence 0 → KX(−D) → KX → KX |D → 0.
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