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A Riemannian framework for incorporating white
matter bundle priors in ODF-based tractography

algorithms.
Thomas Durantel, Gabriel Girard, Emmanuel Caruyer, Olivier Commowick and Julie Coloigner

Abstract— Diffusion magnetic resonance imaging (dMRI)
tractography is a powerful approach to study brain struc-
tural connectivity. However, its reliability in a clinical con-
text is still highly debated. Recent studies have shown that
most classical algorithms achieve to recover the majority
of the existing true bundles. However, the generated trac-
tograms contain many invalid bundles. This is due to the
crossing fibers and bottleneck problems which increase
the number of false positives fibers. In this work, we pro-
posed to overpass this limitation with a novel method to
guide the algorithms in those challenging regions with prior
knowledge of the anatomy. We developed a method of cre-
ating and combination of anatomical prior applicable to any
orientation distribution function (ODF)-based tractography
algorithms. The proposed method captures the track orien-
tation distribution (TOD) from an atlas of segmented fiber
bundles and incorporates it during the tracking process,
using a Riemannian framework. We tested the prior incor-
poration method on two ODF-based state-of-the-art algo-
rithms, iFOD2 and Trekker PTT, on the diffusion-simulated
connectivity (DiSCo) dataset and on the Human Connec-
tome project (HCP) data. We showed that our method
improves the overall spatial coverage and connectivity of
a tractogram on the two datasets, especially in crossing
fiber regions. Moreover, the fiber reconstruction may be
improved on clinical data, informed by prior extracted on
high quality data, and therefore could help in the study of
brain anatomy and function.

Index Terms— Anatomical prior, Diffusion MRI, Track Ori-
entation Distribution, Tractography, Tractometry

I. INTRODUCTION

D IFFUSION magnetic resonance imaging (dMRI) is an
MRI modality that allows to measure the thermal agi-

tation of the water molecule in the brain [1]. This agitation
being constrained by the tissues micro-structures, typically the
nervous system axons, dMRI enables the voxelwise estimation
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of the orientations of the white matter fibers [2], [3]. By
randomly choosing seeds from within the brain white matter,
then following, from one voxel to the next, the local fiber
orientations, one can achieve to estimate the brain connec-
tivity and characterize the physical connections that mediate
information transfer between cortical regions [3]. This process
is called fibers tracking, or fiber tractography, and the resulting
set of white matter trajectories is called tractograms [4]. The
ability of those approaches to delineate the white matter
fiber pathways offers unprecedented insight into the structural
connections of the human brain and enormous potential for the
study of human brain anatomy, development and function [5].
Moreover, tractography has been proven particularly useful
to neurosurgeons for the planning of surgery, especially to
preserve important white matter pathways during resections
[6].

A multitude of new tracking algorithms has been proposed
to improve the quality of the tractograms [7], [8]. The first
methods were deterministic methods, where only the principal
diffusion orientation of the diffusion tensor was used in each
voxel [9]. However, studies have shown the difficulties that
these methods have to represent complex brain regions, like
crossing or fanning fibers [10]. In response, new diffusion
model, like the orientation distribution function (ODF) which
encodes continuously all the diffusion orientations within a
voxel and thus can characterize the complex fiber structure,
have been developed [11], [12]. Modern methods have then
sought to estimate the fiber dispersion estimation using prob-
abilistic methods [5], [13], [14]. Among them, existing local
tractography approaches estimates the local fiber orientation at
each voxel independently by simultaneously fitting the local
model and propagating in the most consistent direction, such
as Kalman filtering method [15], particle filtering method [16],
[17], random walks methods [11] and graph theory method
[18]. Other approaches have proposed more global approach
which compute multiple fibers pathways and select the best
ones based on the diffusion characteristics, like using Bayesian
model [19] or the Hough transform [20] and machine learning
more recently [21]. However, despite the improvement of the
dMRI acquisition, the modeling and the tracking, white matter
fibers tractography still can’t overcome some limitations [22],
[23] which prevents those methods to be usable in the clinical
context. Maier-Hein et al (2017). have shown that most modern
algorithms can recover up to 90% of the ground truth white
matter bundles, but these are poorly recovered in terms of
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spatial extent [23]. Moreover, those tractograms also contained
large amounts of invalid bundles [23]. Overall, the iFOD2 [24]
and PTT [25] algorithms had good performances in recent
international challenges [23], [26].

To overpass the poor spatial extent of white matter bundles,
one proposed solution is to increase the numbers of the total
generated streamlines leading to an over representation of easy
tracks and an under-representation of difficult tracks, inducing
a density bias [27]. For example, the local tractography meth-
ods aim to recover a global connectivity by inferring from lo-
cals directional information that causes the algorithm to follow,
in complex regions, the easiest path available and sometimes
the non-realistic decisions [23]. Various studies have suggested
that advanced diffusion microstructure modeling [28], [29],
streamline filtering techniques [30] or advances in machine-
learning-driven tractography [31] could make improvement on
the false positive rate.

Other approaches have proposed to compensate the lack of
global information by adding them in the form of anatomical
priors whose purpose would be to guide the algorithm in
complex regions. As for segmentation and label fusion ap-
proach, recent methods are based on the use of an anatomical
atlas such as the TRACULA method [32], with promising
results combining deterministic tractography and anatomical
prior. Then, diffusion priors during the tracking process were
proposed in [33]–[35], improving the delineation of white
matter bundles. In [35], a bundle-specific method incorporates
anatomical and orientational priors based on a template, to
improve the reconstruction of long fibers and increase of
reproducibility, sensitivity and specificity. On the other hand,
in [36], another well-known approach based on a machine
learning method was proposed to automatically segment, with
high precision, the overall shape of a bundle, being a poten-
tially great source of prior.

Based on these promising results, we developed a method
of anatomical prior creation and combination, which is usable
with any tractography algorithm based on orientation distri-
bution function (ODF) [37]. Our method use pre-segmented
fiber bundles by [36], to agglomerate global information from
several different brains and capture the orientational variability
in complex brain region. In this work, prior are computed on
this anatomical atlas and expressed in the form of voxel-wise
TOD [38] and then combined with the orientation distribution
function (ODF) [37] data using a Riemannian framework [39].
We decided to incorporate those priors in two state-of-the-art
algorithms using traditional ODF data, MRtrix iFOD2 [24]
and Trekker PTT [25]. We then evaluated those methods on
the diffusion-simulated connectivity (DiSCo) dataset [40] and
on the Human Connectome project (HCP)1 data to show the
increase quality of the tractogram and more specifically on the
spatial extent of the reconstructed bundles.

II. METHODS

Our method can be separated into 3 distinct parts: i) the
construction of an anatomical atlas from segmented fibers,
considered as gold standard, ii) the extraction and estimation

1https://www.humanconnectome.org/

of the TOD anatomical priors, from the atlas and iii) the
combination between the priors and the subject data. The
entire framework is illustrated in Figure 1.

A. Atlas construction
The first step of our framework is the creation of a reference

fiber atlas from a set of high-resolution diffusion images (see
Figure 1.a). In this paper, we chose high-resolution diffusion
images from the Human Connectome Project (HCP) young
adult study [41], which were acquired at high spatial resolution
and b-values with 90 directions and thus contains high quality
information on the fibers orientations.

The proposed atlasing method follows a modified version
of Guimond et al (2000). [42] which was adapted for diffusion
data, to compute an atlas of Tensor images from a set of
control subjects. This approach is based on a procedure which
compute iteratively the atlas by registering the tensor images
of HCP images onto a current reference. After each iteration,
it performs an average of all the previous unbiased atlases
to compute the next one at the following iteration. The main
modifications from the original Guimond et al. (2000) method
is to use diffeomorphisms encoded as Stable Vector Fields
(SVF) and the log-Euclidean framework [43] to compute the
average transformations and the approach was adapted to
diffusion data. The entire procedure is detailed in [44].

For each HCP data, 72 bundles were obtained by Wasserthal
et al. (2018), using the TractSeg algorithm [36] which perform
fiber tracking and fiber filtering, first by regions of interest
(ROIs), then by an expert. The overall process used to segment
these bundles is detailed in [36] and the data is available online
[45].

The transformation field obtained by the atlasing method
from each individual space to the atlas space are then applied
to 72 segmented fiber bundles of interest of each subject in
order to all align them to the fiber atlas.

B. Priors Extraction
Once aligned to a common space, the bundles of interest are

combined in order to represent the general shape of bundles. In
order to capture complex orientation, a local fibre orientation
prior was estimated using the track orientation distribution
(TOD) [38], in each voxel. The tractogram is represented as
a voxel-wise probability distribution function (PDF) in the
image domain, rather than a set of individual tracks (samples
from this distribution). The TOD, thus, captures the expected
fibre directions [38].

Our TOD imaging method operates as follows : first, all
the fibers directions of the voxel are extracted, then clustered
using a k-means algorithm to define the main directions within
the voxel and to correct for the density bias. This way, up to 4
principal directions can be extracted, allowing us to correct for
the density bias as well as to characterize complex crossing
regions. Then, the TOD in each voxel is represented using
a set of modified spherical harmonics (SH) basis functions
(see [ [37]]) and constructed by projecting one spherical point
spread function (PSF) per extracted main direction along the
z direction.
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Fig. 1. Overall method pipeline. (a) Atlas creation. (b) TOD estimation. (c) Data and prior combination.

The PSF, along the z direction at position ϵ, can be easily
obtained in SH basis:

δz(ϵ)(θ, ϕ) =

∞∑
l=0

l∑
m=−l

cml Y
m
l (θ, ϕ), (1)

where 0 ≤ θ ≤ π and −π ≤ ϕ ≤ π are the spherical
coordinates, Y ml the spherical harmonic of degree l and order
m and cml , the coefficients, given as:

cml =

∫ π

−π

∫ π

0

δz(ϵ)(θ, ϕ)Y
m
l (θ, ϕ)dθdϕ (2)

We found that resolving the equation 2 with the PSF
pointing towards the direction θ = π

2 and then rotating them to
match the direction extracted from the atlas greatly simplifies
the calculations. In [46], authors showed a simple method
to rotate functions expressed in SH basis. Since 4 different
directions can be represented in a voxel, the final step of
the prior extraction is to average the projected PSF. The
averaging of distributions defined on the sphere is performed
through a Riemannian framework [39]. To do that, we define
ψ(θ, ϕ) =

√
δz(ϵ)(θ, ϕ), the square-root density function of

the PDF δ(θ, ϕ). The square-root is used to ensure that the
logarithm maps are available in closed form. Thus, δ(θ, ϕ) has
to be strictly positive. For this reason, in order to find the right
PSF, several different distributions were tested (i.e. a Dirac
distribution, a Watson distribution and a Gaussian distribution)
and then were expressed on the SH basis. We found out that
a 2D Gaussian distribution, defined on the unit sphere, is the
only one whose number of negative values do not diverge with
the degree l.

Then, in order to calculate the average distribution, we used
the weighted Karcher mean, ψ, of a set of n points {ψi}ni=0

in a Riemannian manifold defined by:

ψ = argmin
1

2

n∑
i=0

ωidist(ψ,ψi)
2 (3)

with ωi ≤ 0 and
∑n
i=0 ωi = 1

As described in [39], the unique solution is ψ, such as:
n∑
i=0

ωi logψ(ψi) = 0 (4)

where logψ is the logarithm map from ψ to ψi, given by:

logψ(ψi) =
ψi − ⟨ψi, ψ⟩ψ√

1− ⟨ψi, ψ⟩
cos−1⟨ψi, ψ⟩ (5)

with ⟨., .⟩, the normal dot product.
At the end of this step, using the equation 5 and ωi =

1/n,∀i ∈ {1, ..., n}, we obtained ψ, which is the square-root
of the prior for each voxel. An example of the prior with
the SH coefficients, truncated at a degree of l = 8, of the PSF
described previously are shown in Figure 4. The prior creation
process in order to average all extracted directions has to be
calculated only once.

C. Data and prior combination

As displayed in Figure 1, the ODF image of the individual
diffusion dataset is calculated to estimate the next direction.
During tractography, in order to inform the ODF with the
anatomical prior, as previously explained in the previous
section, a weighted Karcher mean is computed between the
ODF and the prior using equation 4, to obtain the enhanced-
odf (EODF). However, this method involves calculating, at
each step of the tracking, the dot product between distribution
on the sphere, that implies an integral over the sphere which
would complicate the process. To simplify the computations,
Goh et al. (2009) proposed to discretize the PDF and to work
with the square root of histograms [39]. In this case, the dot
product become summations.

Since the overall purpose of our method is only to guide
the tractography algorithms and not to reflect the structure of
the priors, the weighting factor ωi must be well studied. We
want to be able to distinguish between the simple linear region,
where not much guidance is needed, especially in easier-to-
track bundles with only one fiber direction, and the complex
regions with crossing fibers, where the use of the prior is more
needed. In order to address this specification, we choose to
use 2 measures to weight the prior: the generalised fractional
anisotropy (GFA), for the prior and the Akaike information
criterion (AIC) [47] for the data.
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Fig. 2. Left: DiSCo dataset pathways. Right: Prior weighting map
example for the DiSCo dataset. Higher value denotes higher usage of
the prior and thus more complex regions.

The GFA, is given by:

GFA =

√
1− c20∑N
i=0 c

2
i

(6)

where the ci are the SH coefficients. The GFA is a measure of
the anisotropy within the considered voxel, that is, in the case
of the prior, this value can reflect the complexity of a region.

The AIC, is described by;

AIC = 2k − 2 ln(L) (7)

where k is the numbers of parameters in the model and L
the maximized likelihood. The AIC is a measurement of the
estimation quality of a model.

Empirically, to well differentiate linear and complex re-
gions, we defined the prior weight given by:

ωprior = α(1−GFA) + βexp(
AICmin −AIC

2
) (8)

where α represents the amount of information extracted
from the priors, via the GFA, and β the amount of information
extracted from the data, via the AIC. Those parameters needs
to be adapted to the data. For the scenario presented in this
work, we choose α = 0.35 and β = 0.65 (see Figure 3).

Fig. 3. Evolution of the Dice score versus α (from the Equation 8)
for the tracking of the CST and for the iFOD and PTT algorithms. The
method performs most effectively with an alpha value of 0.35.

An example of a weighting map for the DiSCo dataset can
be seen on Figure 2 with higher ωprior in crossing fiber areas.

The result of this averaging process is then an EODF,
expressed in SH basis, usable in any ODF-based tractogra-
phy algorithm. Figure 4 shows examples of data and priors
combination, as well as the effect of weighting on the results.
The first row represents a voxel where the ODF and the prior

Fig. 4. Examples of data and prior combination. On the first row: prior
and data are aligned. The EODF main orientation are unchanged. On
the second and third rows: Prior and data are crossing. The correspond-
ing EODF peak is more or less attenuated using the weight of the prior.

have the same direction, corresponding to an easy-to-track
regions with one-way crossing. On the other hand, in the
second and third rows, the orientation of the ODF and the prior
are different. In this case, according to the value of ωprior, the
EODF is almost equal to the ODF or a mixture of the prior
and ODF.

III. EXPERIMENTS

In order to validate our method using priors, we conducted
our first experiments on the DiSCo challenge dataset [26].
Then, we tested our algorithms on HCP data. For each exper-
iment, we implemented our prior approach on two state-of-
the-art algorithms, MRtrix iFOD2 [24] and Trekker PTT [25].
Thus, on the two dataset, 4 tractography reconstruction were
performed, both with and without using priors. For iFOD2, we
used a step size of 0.2 voxel and a maximum angle between
successive steps of 20 degrees. For PTT, we used the default
parameters.

A. DiSCo challenge dataset
The aim of this experiment is to test the ability of our novel

method to improve the connectivity estimation and the effect
of noise. In this context, we do not have access to several
datasets to build an anatomical atlas, instead, we computed the
TOD: (i) using the ground-truth fiber pathways as anatomical
priors and (ii) using fiber tracked on high quality data as
anatomical priors.

1) Data: We performed two different variants of this ex-
periment: in the first one, priors are estimated on ground-truth
fibers, not available on in vivo data; and the second experiment
is used to demonstrate the benefit of our method, without
having a ground-truth but priors build on high resolution data.

(i) Fiber pathways ground-truth: The DiSCo dMRI images
have a grid of 40 × 40 × 40 with voxel size of 1 mm2 and
are acquired with 4 different b-shell of 1000, 2000, 3000
and 1300 s/mm2, 90 directions per b-shell and 4 b0. In
order to obtain synthetic data with the same quality as those
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Fig. 5. Visual comparison of the resulting tractograms, with and without prior. From left to right, in column : iFOD2, PTT, iFOD2 with priors and
PTT with priors. Last column on the right: Prior weighting map, where brighter pixel denotes a higher usage of the prior. From top to bottom : The
Arcuate fascicle (AF), the Cingulum (CG), the Corticospinal tract (CST), the Optic radiation (OR) and the Superior longitudinal fascicle I (SLF I).

in clinical context, we used degraded data with a grid of
20×20×20 voxels and only using the 3000 s/mm2 b-shell with
60 directions. The prior is computed with the original data. In
addition, to study the effect of noise, we added Rician noise on
the dMRI. The resulting images have an average SNR of 0dB,
10dB, 20dB, 30dB, 40dB and 50dB. The individual ODF were
computed using the method described in [48] and represented
in a spherical harmonic basis truncated at the 8th order. Then,
EODF were calculated using the method described in this
paper.

(ii) multi-shell ODF: In this second set of experiment, we
computed the priors on fibers tracked with the multi-shell
multi-tissue constrained spherical deconvolution (CSD) fiber
ODFs. The idea is to simulate a clinical context by computing
the ODF on clinical dMRI data and combined with anatomical
priors calculated on high resolution data. The anatomical
prior are calculated on 40 × 40 × 40 voxels DiSCo dMRI
at SNR 20. From those images, fiber ODF were computing
using the MRtrix implementation of the multi-shell multi-

tissue constrained spherical (msmt-CSD) method described in
[49] using default parameters and using 8th order SH basis.
Then, fibers were tracked using the MRtrix iFOD2 algorithm
with a step size of 0.2 voxel and default parameters. Only the
streamlines that reach the endings ROIs were kept. Finally,
the TODs were extracted from those fibers using the method
detailed in the previous section. After prior estimation on high
resolution data, we estimated the ODF of a subject data with
20×20×20 grid and SNR= 20. Then, EODFs were obtained
by combining the TOD with the clinical data fiber ODF.

2) Metrics: To quantify the results, we computed the Pear-
son correlation coefficient (r) between the ground truth con-
nectivity matrices of the three DiSCo dataset and the resulting
tractograms connectivity matrix. These matrices are computed
by counting the numbers of streamlines that reach both start
and end ROIs for each DiSCo fibers bundles.
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B. HCP data
1) Data: To test our method on in vivo high quality data,

we used the HCP young adult data, acquired with 90 gradients
distributed on 3 shells of b=1000, 2000, and 3000 s/mm2

with 6 b= 0 acquisitions and a final resolution of 1.25mm3.
Among them, the 105 pre-segmented HCP images were used,
as described in II-A, to build fiber atlases of the Arcuate
fascicle (AF), the Cingulum left (CG), the Corticospinal tract
(CST), the Optic radiation (OR) and the Superior longitudinal
fascicle I (SLF I) to study the influence of the addition of
prior on bundles of different degrees of complexity and in
different region of the brain. A cross validation was performed
on the 105 subjects in which 100 subjects are used to build
the atlas and the 5 remaining to perform the tractography
algorithm. This process is repeated 8 times, giving us a total of
40 subjects to test the method on. For each image belonging
to training set, ODFs were computed on the shell b= 3000
s/mm2 using the method described in [48] and represented in
a spherical harmonic basis truncated at the 8th order. Then, the
TOD images for each bundle were registered on the subject
space. Those priors were incorporating during the tracking
process for each subject. The tractography algorithms were
tested on the 5 remaining subjects.

In order to compare our method with state of the art
anatomical priors methods, we used the BST algorithm ([
[35]], using the default parameters, to compute enhanced ODF
for the CST and the AF bundles. We then tracked those
bundles with the iFOD2 and PTT algorithms using the same
parameters as before.

2) Metrics: To quantify the overall shape quality of the
tractograms, we computed the generalized Dice score [50]
between the segmentation of fibers obtained with tractography
algorithm and the reference fibers. In order to measure the
improvement on the numbers of streamlines reaching both
ROI endpoints, we computed the percentage of streamlines
that correctly connects the beginning and the end regions of
bundles over the total number of streamlines in the reference
bundle (noted valid streamlines VS). It is worth noting that this
measure does not mean anything in absolute, being biased by
the numbers of streamlines in the reference tracks. However,
since the same numbers of streamlines is generated for each
bundle, it allows us to compare the overall bundles shape and
quality with and without the addition of priors.

IV. RESULTS

A. DiSCo challenge dataset
Figure 6 displays the correlation with the ground-truth con-

nectivity of the two experiments, for the three DiSCo dataset.
First, on Figure 6.a, we observed that lower the noise is, better
are the correlation improvement for the experiment using
the fiber pathways as ground-truth. Next, both algorithms
performed better with the addition of priors for all level of
noise and the three datasets. We can also notice that the
improvement decreases when the quality of the data increases.
In average, the correlation increases of 0.23 for an SNR of 10
dB but only 0.11 for an SNR of 50 dB. Moreover, the mean
correlation improvement is of 0.19 and 0.17 for the iFOD2 and

PTT algorithms, respectively. At last, the average maximum
reached is r = 0.83 for PTT and r = 0.82 for iFOD2.
There are no major differences between the three dataset.
For the second experiment using high resolution DW-MRI
data, we showed an average correlation improvement of 0.15
for the PTT algorithm and 0.17 for the iFOD2 algorithm, in
figure 6.b. Incorporating anatomical priors calculating on high
resolution data during the tracking process of low resolution
data increases the Pearson correlation coefficient with the
ground-truth connectivity matrix.

B. HCP data
Figure 5 displays the segmentation of AF, CG, CST, OR

and SLF I obtained with iFOD2 and PTT, with and without
prior. The results for the Valid streamlines and the Dice score
are presented, respectively, in Figure ?? and Figure ??. For
the Valid streamlines score, the addition of priors appears to
always increase, on average, the numbers of streamlines that
connect both end regions. However, enhanced tractography
seems to also increase the variability of the results, as we found
a mean variance across all bundles of 7.19% without the prior
and 19.84% with. We also noticed that incorporating the priors
in the PTT algorithm improve more the Valid streamlines than
with the iFOD2 algorithm. Indeed, the average gain for iFOD2
is of 25.08% and 31.37% for PTT. The same observation can
be made for the dice measurement, but as opposed to the Valid
streamlines measurement, the variability seems to be decreased
with the addition of prior. We notice that incorporating the
anatomical priors improve the spatial coverage and that a
higher fraction of streamline reach the endpoints of the bundle

V. DISCUSSIONS

In this work, we proposed a novel method for creating and
incorporating anatomical priors to any ODF-based tractog-
raphy algorithms. We showed that incorporating anatomical
priors on two state-of-the-art tractography algorithms improve
the overall quality of tractograms when priors are extracted
from a ground truth, but also from high quality tractograms.
Indeed, first, on the DiSCo dataset, the proposed prior-based
tractography methods obtained better correlation scores be-
tween the reconstructed bundles and the ground truth for every
level of noise than the standards probabilistic algorithms, but
this improvement decreases with the increasing SNR. Thus,
the addition of priors to ODF images improve the quality of
tractograms in presence of noise. However, due to the actual
form of the extracted TOD it may not be useful on high SNR
data. More particularly, in the DISCO experiment, we tried to
mimic real clinical context with low spacial resolution data
and an SNR of 20. In this case, our results showed a better
correlation for two methods incorporating priors between the
estimated fiber and the ground-truth, reducing false positive
fibers. This could allow us to consider using this method on
clinical data of average quality, informed by prior extracted
on high quality data. On the HCP data, the same results were
obtained with an increase of the fraction of valid streamlines
numbers when anatomical priors were incorporating during
tracking process. In the same time, due to the increase of
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Fig. 6. Pearson correlation for the DiSCo experiments: (a) Fiber
pathways ground-truth experiment with respect to SNR (b) Multi-Shell
ODF experiment for the 3 DiSCo dataset. First column for PTT and
second for iFOD2. In all cases, blue points denotes measure without
prior and the oranges ones, with prior.

the dice score when adding prior, the overall shape of the
bundle seems to be also modified. We also reported an increase
in variability across subjects of the tractography with priors
compared with the ones without priors.

The effect of the priors seems to be more effective in
complex fibers configurations, like fanning and crossing fibers
or in large curvature radius. Indeed, our method is able to a
better delineation and estimation of precise details. For the
CST, it is well known that the upper part, that fans into the
cortex, is hard to estimate. Without prior, the iFOD2 and PTT
algorithms only manage to estimate a portion of the CST.
While, with the addition of anatomical prior, they achieve a
more complete reconstruction of the fanning portion. Another
example is the OR bundle, where the Meyer’s loop, with its
highly curving fibers, is still a tractography open challenge
[51]. When guided by EODF, both tested algorithms show
results that, while containing spurious streamlines, allow a
better recovery of the anterior extent of the Meyer’s loop.
This result can be easily explained by the fact that in regions
with crossing fibers, more information is taken from the prior.
See the right column in Fig. 5 where the brightest regions

Fig. 7. On the left, Dice score result for the HCP experiment. On the
right, VS number result for the HCP experiment. From top to bottom :
AF, CG, CST, OR, SLF I

Fig. 8. Comparison with the BST algorithm
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correspond to the most complex fibers micro structure regions
and denotes a higher usage of the prior.

It is important to note that the results presented in this paper
use iFOD2 and PTT algorithms as proof of concept, but the
main idea behind this work is to develop a method to improve
the spatial coverage and the numbers of streamline reaching
the endpoints of the bundle of any ODF-based tractography
algorithm. In fact, future works should study the contribution
of prior addition with other algorithm but also generalize this
method to other diffusion model.

In [35], authors generated sharp TOD by projecting Dirac in
the SH basis. However, our experiences have shown that this
also generate a number of negative values which increase with
the truncated SH basis order, due to the Gibbs phenomenon.
Thus, to overpass this problem and remove the negative values,
they use apodized delta function [52] proposed in [38], but
at the cost of a loss of angular resolution. Using this PSF,
we would have to truncated at a higher order the TOD SH
basis to obtain the same angular resolution that we have
with the 8th order of the Gaussian PSF [38]. So we decided
to keep the Gaussian PDF and the ODF estimated without
CSD, at the expense of less sharp ODF peaks, our interest
here being to compare the tracking connectivity with and
without prior. In the same way, in [35], priors and data are
combined by an element-wise multiplication between the two
sets of SH coefficients, followed by a normalization. However,
our approach (i.e. using a Riemannian framework), allows us
a better control over the weighting between the TOD and
ODF and minimizes the potential angular smoothing. It also
enables, for future works, more complex operation on TOD,
such as interpolation between different set of priors or even
TOD filtering to remove unnecessary information, in order to
improve the prior quality, at the cost of more approximation
during the TOD estimation and an increased complexity.

Other works that studies the idea of guiding tractography
algorithms, like [32], [33], [34] or [35], use non-linear regis-
tration and atlasing techniques during the atlas, or template,
creation process, preferring to do an average of the references
images. This could smooth the variability across the atlas and
could also be the source of errors that would be accumulated
in the final atlas and would, in the end, inject a bias inherent
to the atlas in the tractography process. In our approach, using
a modified Guimond method [42], the references image are, at
each step, iteratively registered with a non-rigid transformation
onto the current space that become the reference space in the
next step ant it is only the average of the transformation that
is computed at the end of each step. With this approach, all
the variability information is accumulated in the atlas and the
errors are not included in the final atlas. Thus, no bias is
introduced in the tractography.

Also, using pre-segmented fibers to build the atlas may not
be appropriate in order to study the global connectivity of the
brain, as this approach only allows the enhanced tracking to be
performed within a unique bundle. But, although not showed
here, our method also permits, by concatenating the individual
bundles priors, the construction of full brain atlases, and thus
enable guidance of whole brain tracking. Therefore, it could
be used for clinical studies where priors would be constructed

from high resolution dMRI data in order to guide tractography
algorithm on poor, clinical, resolution data.

Finally, our method has proved to be able to increase the
quality of the estimated fibers, in term of spatial extant and
number of valid connection when utilized on healthy subjects.
These promising results could already enable advances in
an academic context for the study of the healthy brain. In
a more clinical context, if used on patients suffering from
pathologies that only slightly or moderately modify the white
matter, such as psychiatric pathologies, this method could also
bring improvements in fiber estimation, perhaps through a
more in-depth study of α and β parameters. Research along
these lines should be pursued in future work. However, when
working on patient suffering from severe brain alteration, such
as strokes, this method could produce a tractogram solely
guided by the prior in the affected region, thus removing
the specific microstructural modification and therefore may
not be the most appropriate approach. In such scenarios, a
solution might be to import other types of information into
the priors. Either in the way the data and priors are weighted,
using for example Apparent fiber density [ [?]] of the data to
potentially detect these brain modifications and thus prevent
the fibers from being tracked solely on the priors, or directly
in the estimation of the priors using other imaging modalities,
such as myelin-sensitive relaxometry in order to obtain priors
images describing these brain regions in greater detail.

VI. CONCLUSION

In this paper, we developed a method of anatomical prior
creation and combination, which is usable with any ODF-
based tractography algorithm. The prior are computed on
fiber atlases and expresses in the form of TOD, in order to
characterize the brain variability and multiple fiber directions.
Then, our prior is incorporated to guide the ODF-based
tractography algorithm. Based on our results on DISCO and
HCP data, incorporating our anatomical priors improve the
fibers reconstruction, in terms of spatial extent and valid
streamlines, especially in crossing fiber regions. Furthermore,
we have shown that our method outperforms previous methods
using anatomical priors in the tracking of the CST and the
AF. Moreover, our approach could also greatly enhance the
tractography in the context of clinical data, by incorporating
priors estimated on high quality data, which could help for the
study of neurological diseases.
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