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Early identification of children on the autism spectrum is crucial for early intervention with long-term positive effects on symptoms
and skills. The need for improved objective autism detection tools is emphasized by the poor diagnostic power in current tools.
Here, we aim to evaluate the classification performance of acoustic features of the voice in children with autism spectrum disorder
(ASD) with respect to a heterogeneous control group (composed of neurotypical children, children with Developmental Language
Disorder [DLD] and children with sensorineural hearing loss with Cochlear Implant [CI]). This retrospective diagnostic study was
conducted at the Child Psychiatry Unit of Tours University Hospital (France). A total of 108 children, including 38 diagnosed with
ASD (8.5 ± 0.25 years), 24 typically developing (TD; 8.2 ± 0.32 years) and 46 children with atypical development (DLD and CI;
7.9 ± 0.36 years) were enrolled in our studies. The acoustic properties of speech samples produced by children in the context of a
nonword repetition task were measured. We used a Monte Carlo cross-validation with an ROC (Receiving Operator Characteristic)
supervised k-Means clustering algorithm to develop a classification model that can differentially classify a child with an unknown
disorder. We showed that voice acoustics classified autism diagnosis with an overall accuracy of 91% [CI95%, 90.40%-91.65%]
against TD children, and of 85% [CI95%, 84.5%–86.6%] against an heterogenous group of non-autistic children. Accuracy reported
here with multivariate analysis combined with Monte Carlo cross-validation is higher than in previous studies. Our findings
demonstrate that easy-to-measure voice acoustic parameters could be used as a diagnostic aid tool, specific to ASD.

Translational Psychiatry          (2023) 13:250 ; https://doi.org/10.1038/s41398-023-02554-8

INTRODUCTION
Autism spectrum disorder (ASD) is a class of prenatal neurodeve-
lopmental disorders [1] defined by the co-occurrence of two main
diagnostic criteria: a socio-emotional impairment and a behavioral
deficit manifested by repetitive behaviors and interests [2]. Socio-
emotional impairments affect both the production and perception
of social signal. To this day, there is no reliable biomarker of ASD,
and diagnostic is based on a pluri-disciplinary clinical assessment
of the child [3]. Finding a more objective and automated marker of
ASD could help in the diagnosis of ASD making it simpler and
more reliable [4]. Atypical voice prosody is one of the earliest
markers of ASD [5–8], evaluated in diagnostic tools such as ADOS
[9]; here, we asked whether easy-to-measure vocal acoustic
features could be used as an objective ASD-specific marker to
help diagnosis.
The human voice carries a wealth of information regarding a

speaker, its physical characteristics, state of mind and health. From
birth, the voice is used to signal information on well-being to
surrounding adults, and infant cries are part of the preliminary
assessment of neonates’ health. Atypical acoustic cry features are
associated with central nervous system dysfunction in human
neonates [10] and rodent pups [11]. Voice production involves the
entire brain and is under the influence of both autonomic and
somatic nervous systems [12]. Voice production starts with

breathing. The air coming from the lungs is sent towards the
larynx, where it induces the vibration of the vocal folds. The
vibration of the vocal folds produces a buzzing sound with a
particular fundamental frequency, and associated harmonics. This
sound is then modulated by its passage through the vocal tract
airways. Breathing is normally considered an automatic process,
but during speech it can be controlled voluntarily yet uncon-
sciously [12, 13]. Muscles in the larynx are controlled by two
different branches of the vagal nerve: the recurrent laryngeal
nerve (RLN) and the superior laryngeal nerve (SLN). The RLN
controls muscles of the larynx that allow opening, closing, and
adjusting the tension of the vocal folds; the SLN allows changing
the tension of the vocal folds, therefore increasing fundamental
frequency. Articulation of the sound depends on the position of
the different elements forming the vocal tract airways and are
under voluntary control by the primary motor cortex [e.g., [12]].
Autism spectrum disorder is characterized by impaired function-
ing of both somatic and autonomic nervous systems, and these
impairments have consequences in their vocal production.
Consistently, previous studies have reported differences in the
acoustic properties of the voice of autistic individuals. Nonetheless
results are often contradictory and inconsistent (see [5]). Pitch,
measured as the fundamental frequency (f0) of speech sounds,
has been reported to be higher in autism [14–18], although many
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studies do not show this result [19–22]. Jitter, a measure of cycle-
to-cycle regularity in f0 frequency, and shimmer, a measure of
cycle-to-cycle variation of f0 amplitude, are reported to be smaller
in autism with regards to neurotypical individuals [16, 21]; these
observations suggest a greater stability of voicing during speech
productions in ASD. It should be noted however that other studies
report, using different measures, increased pitch variation in
autism [14, 15, 22], or lack of differences in pitch variability [23].
Studies of vocal tract features analysis also report discrepant
results with higher formant frequencies [18] or a smaller formantic
dispersion [16]. These data converge into demonstrating that
there is something special in the voice of autistic individuals, that
could help in diagnosis. Yet, univariate analysis of specific acoustic
measures may not be powerful enough. Here, we describe a
multivariate analysis of vocal acoustic parameters combined with
machine learning techniques to develop potential tools to aid
autism diagnosis.
Machine learning techniques are increasingly used for medical

diagnosis, especially clustering which is a powerful tool for
detecting patterns in datasets. Several studies have used
clustering methods in order to develop diagnostic biomarkers of
various pathologies in animal models [4, 24, 25] and in human
trials [26–28]. A classical, non-supervised, and robust clustering
algorithm, the k-Means clustering algorithm [29], also known as
nearest centroid classifier when used in machine learning, yields
high discriminating power to diagnose a single unknown subject
in a given disorder state [25, 27]. Here, we used voice acoustics
(Fig. 1) as the selected features included in this common classifier
to evaluate their classification performance of ASD relative to
typical development and other pathologies. We evaluated the
classification performance of voice acoustics in comparison not
only to TD children (study 1) but also to children with other
disorders sharing common deficits with ASD: sensorineural
hearing loss and Developmental Language Disorder (DLD, study
2). These two pathologies were chosen due to observed
commonalities in the language domain between children with
DLD and autism [30] and between children with sensorineural
hearing loss and with cochlear implants (CI) and autism [31]. The
acoustic properties of speech samples produced by children in the
context of a nonword repetition task (NRT) [32] were examined.
Data were analyzed with unsupervised and ROC (Receiving
Operator Characteristic) supervised clustering algorithm.

METHODS AND MATERIALS
Participants
One hundred and eight children were enrolled in our retrospective
studies. Study 1 (Fig. 2a) is composed of 38 children on the autism
spectrum (1 girl; 8.5 ± 0.25 years) and 24 TD children (12 girls;
8.2 ± 0.32 years), and Study 2 (Fig. 3a) additionally includes 21 children
with DLD (9 girls; 7.9 ± 0.51 years) and 25 children displaying severe-to-
profound sensorineural hearing loss fitted with CIs (8 girls;
8 ± 0.22 years). Data of 24 children were excluded from the analysis
(see Experimental protocol and data acquisition). Therefore, the final
sample comprised 84 children distributed as follows: 29 ASD (0 girl;
8.4 ± 0.29 years; age range [6.3 12]; ADOS severity score: 6.19 ± 0.45;
CARS: 27.7 ± 0.7), 20 TD (10 girls; 7.99 ± 0.33 years; age range [6 10.5]), 20
CI (6 girls; 8.2 ± 0.19 years; age range [6.5 9.9]; 12 with bilateral CI; 6 with
right CI; 2 with left CI; age at first implantation 1.86 ± 0.15) and 15 DLD (7
girls; 8.2 ± 0.37 years; age range [6.5 10.8]). Demographic and clinical
information regarding the final samples are presented in Table 1. Youth
with ASD received an expert clinical diagnosis based on Diagnostic and
Statistical Manual of Mental Disorders – fifth Edition – (DSM-V) [33]; the
Autism Diagnostic Interview-Revised [34], and/or the Autism Diagnostic
Observation Schedule [35] were used by experienced clinicians of the
Excellence Center of Autism (Exac·t), Tours, France to inform diagnostic
decisions. Children with DLD also received an expert clinical diagnosis
based on the DSM-V [33] Nonverbal cognitive abilities were assessed
either by Raven Progressive Matrices or Block Design and Matrix
Reasoning of the WISC-IV (data of 5 TD children are missing). Only

children with a minimum Mean Length of Utterances of 2.5 were
included in the study [36] to ensure that language tests could be
administered.
This study was carried out in accordance with the recommendations of

the local ethics committee (Comité de Protection des Personnes [CPP]
Tours Ouest 1, n°2006-RS), with written informed consent from all parents
of the children and assent from the children, in accordance with the
Declaration of Helsinki.

Experimental protocol
Acoustic data were extracted from 20 speech samples recorded in the
context of a nonword repetition task [32], therefore reducing the influence
of social interaction in voice production. The task focuses on complex
phonological structures that have been identified as the source of errors in
children with impaired phonology. Briefly, children had to repeat 50 or 70
nonwords of varying phonological complexity, presented with a computer
either with only auditory or with both audio and visual information.
Nonwords were created using 1, 2 or 3 of the three most common vowels
among the languages of the world, namely [a], [i], [u], and from a concise
list of consonants which included two stops ([k], [p]), two fricatives ([f], [s]),
one liquid [l]. Nonwords had a maximum of 3 syllables to limit the
influence of working memory on the repetition task. Nonwords had
different syllable complexity: either a simple consonant vowel syllables,
syllables with a final consonant or syllables with initial and median
consonant clusters [32]. Phonological analysis of the data presented in the
current manuscript are published elsewhere [37, 38]. Among the 50 or 70
nonwords, the 20 ones with less phonological errors were chosen for
acoustical analysis (see the audio material of non-words retained in the
study on the OSF platform). The NRT took place in a quiet room and audio
were digitally recorded using Zoom H4 microphones put on a table in front
of the child. Overall performance in the NRT task is presented in the results
section and was analyzed with a 1 factor Welch ANOVA.

Acoustic measurements
Acoustic parameters were analyzed using the open-source software Praat
[39]. For each nonword, we extracted 9 acoustics parameters (Fig. 1): mean
fundamental frequency (f0), mean formant frequencies (F1 to F4), mean
formant dispersion (FD), mean harmonic-to-noise ratio (HNR), mean jitter
(cycle-to-cycle variation in frequency of f0) and mean shimmer (cycle-to-
cycle variation in intensity of f0).
Start and end of the non-word were identified visually, and average

values of the frequency parameters (f0, and formant values) were
measured on the total length of the non-word. To measure f0, a Pitch
object was created with the following parameters: time step= 0.01 s, pitch
floor= 90 Hz; pitch ceiling= 600 Hz. To measure formant frequencies, a
Formant object using the Burg method was created with the following
parameters: time step= 25% of window length, maximum number of
formants= 5, maximum formant= 6500 Hz; window length= 0.025, pre-
emphasis from 50 Hz. Formant dispersion was calculated as the average
difference between formants.
Evaluation of periodicity-related parameters were performed on the 50%

central part of the non-word, that is on an interval staring at the start point
plus 25% of non-word duration and ending at the end point minus 25% of
non-word duration. Mean HNR was measured on the Harmonicity object
based on a forward cross-correlation analysis; the Harmonicity object was
created with the default parameter values except for minimum pitch which
was set to 90 Hz. Jitter and shimmer were measured on the Point process
(periodic, cross-correlation) object with 90 Hz and 600 Hz as minimum and
maximum pitch, respectively. Jitter is measured as the relative average
perturbation using default parameter values (e.g., shortest period= 0.0001,
longest period= 0.02, maximum period factor= 1.3). Shimmer (local, dB)
was measured as the average absolute base-10 logarithm difference
between the amplitudes of consecutive periods, multiplied by 20 with the
same parameters than jitter and 1.6 as the maximum amplitude factor.
Parameters were then averaged across the 20 nonwords. In addition,

because ASD is characterized with increased intra-individual variability
[22, 40, 41], shape parameters (e.g., skewness and kurtosis) of f0, FD, HNR,
jitter and shimmer were computed using Matlab2018b functions, leading
to 19 variables (Fig. 1). Note that in the Matlab kurtosis function, the
normal distribution has a kurtosis value of 3 (Fig. 1e).
Acoustic data are excluded according to two categories of rejection

criteria: the nonword repetition task performance and acoustic rejection.
For the first criteria, children whose performance in the repetition of
vowels was considered outlier ([Q1-1.5xIQR] with Q1: lower quartile and
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IQR: interquartile range) were removed from the analysis (N= 9: 2 ASD, 2
DLD, 5 CI), to avoid bias due to the mispronunciation of certain vowels
which can influence acoustics. For the second criteria, based on acoustical
analysis (recording quality or outlier value of acoustic parameters with
respect to the population), another 15 children (7 ASD; 4 DLD; 4 TD) were
excluded from the analysis (ROC-supervised k-Means classification results
including all participants but those with poor recordings quality are shown
in Supplementary table 2).

Development of clustering diagnostic model
Code used in this manuscript is available on osf (https://osf.io/veqpz/). Our
goal was to determine if acoustic features of the voice could be used as a
feature classification specific for autism by k-Means classifying ASD against
typical and other atypical development, thus we randomly dichotomized
data in a diagnostic model group (train set) and an unknown data group
(test set). To validate our model performance, we used a Monte Carlo
cross-validation algorithm. Note that this method is robust to imbalance
gender across groups; indeed, with a clustering approach, if gender were
an important factor the two identified clusters would reflect gender
separation rather than diagnostic group.
To develop the diagnostic model, within the Monte Carlo cross-

validation, we randomly selected n ASD and n control as train data (70% of
data) to which we applied a k-Means clustering algorithm (50 iterations,
Hartigan & Wong algorithm); this was repeated 500 times with random

subsampling of the data from the entire population, e.g., Monte Carlo
cross-validation. Because there is no general rule regarding the number of
repetitions to use, we choose the value at which our main criteria
(selectivity and sensitivity) appear stable beyond reasonable doubt,
through multiple testing with different numbers of resampling (Supple-
mentary Fig. 1). The number of clusters was set to two, since we aimed to
determine ASD diagnostic against a control population (TD children only,
or control children). We performed k-Means clustering analysis (KCA) in an
unsupervised way with the nine acoustic and derived acoustic variables
(N= 19) and assessed its performance. Then, in order to enhance our KCA,
we performed ROC as proposed by Nikas and colleagues 25and used an
AUC (Area Under the Curve) ROC curve, as measure of separability to
evaluate the most discriminative acoustic parameters. This latter prob-
ability is an assessment of the discriminative power of a given variable with
respect to two measures, here the two groups involved. For example, with
a given variable, an AUC of 1 is synonym of a separation between groups
with 100% accuracy, and the given variable is considered as a perfect
classifier. On the contrary, the worst discrimination between the two
groups has an AUC= 0.50 (i.e., no discrimination capacity). In this way, the
ROC curve allows us to optimize our KCA by supervising it using acoustic
variables with the best discriminative performance. We used a threshold of
AUC > 0.80 (80%) corresponding to a good discrimination [42].
This model was then tested to identify the diagnostic group of the test

data (30% of the entire data, corresponding to the data not used in model
building) according to their KCA classification, for each of the 500

Fig. 1 Experimental design. a Spectrogram of one of the nonwords produced in the nonword repetition task. b Average power spectrum.
c Amplitude waveform. d Zoom on the amplitude waveform to illustrate shimmer and jitter. e Distribution of mean f0 measured in the
20 selected nonwords for a skewness (left panel; skewness= 0), and kurtosis (middle panel; kurtosis normalize= 0) corresponding to a normal
distribution and for altered (right panel) skewness (3.1) and kurtosis (9.5).
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bootstrap replications. To realize this, test data were added one-by-one for
each participant and classified by supervised and unsupervised KCA.
Hence, diagnostic of the participant was classified based on its data;
accuracy was measured as the total number of correct classifications over
the total number of classifications.
To assess the performance of our KCA, we measured selectivity,

sensitivity and the classification performance of our model. Moreover,
goodness of fit, an evaluation of clustering efficiency and of KCA quality,
was assessed using the percent of variation (PV), a measure of
corresponding to the total within-cluster sum of squares by the total of
within and between-cluster sum of squares. Mean values derived from the
500 repetitions linked to the Monte Carlo cross-validation and their
associated standard errors are reported for percent variation, selectivity,
and sensitivity. Mean values and confidence intervals (95%CI) of
classification accuracy was derived from the Monte Carlos cross-
validation algorithm.

RESULTS
Classification of autistic children with respect to TD children
Overall performance in the NRT task, measured on the entire set of
items, differed between TD children (95.6%; performance range
[84 100]) and children with ASD (80.4%; performance range [28
100]; Welch ANOVA: F(1, 31.7)= 22.3; p < 0.001).
To investigate the discriminative power of voice acoustics

between autistic children and TD children, we performed K-Means
clustering analysis (KCA). Data were randomly split into a train
group (N= 33; 20 ASD, 13 TD) and a test group (unknown data;
N= 16; 9 ASD; 7 TD); this was done 500 times. Unsupervised KCA
with the 19 acoustics variables was conducted on the train group,
and the model was cross validated using repeated random sub-
sampling using unknown data from the test group. We observed a
percent of variation (PV, the dispersion between the two clusters;

see Methods) of 83.20% ± 1.33, a sensitivity of 0.74 ± 0.11 and a
specificity of 0.92 ± 0.12 in the training group. The unsupervised
KCA correctly classified 73.1% [71.8% 74.4%] of ASD and 92.3%
[91.4% 93.1%] of TD children (Fig. 2b).
Our goal was to find optimum KCA settings, which best

separate the ASD and the TD group to develop classification or
diagnostic model. Therefore, we performed ROC curve analysis, to
conduct ROC-supervised KCA [25, 43] on training and test data
with 500 bootstrap replications. The four most discriminant (Area
Under the Curve [AUC] > 80%) acoustics parameters according to
ROC analysis on the training group were mean F1, mean HNR,
mean shimmer and jitter skewness. The ROC-supervised KCA
setting yielded a considerable improvement over unsupervised
KCA: as shown in Fig. 2, the ROC-supervised KCA had a PV of
63.85% ± 3.00, a sensitivity of 0.89 ± 0.06 and a specificity of
0.94 ± 0.10; it classified correctly 89% [88.1% 90.0%] of ASD and
93% [92.7% 94.3%] of the TD group. ROC supervision resulted in a
decrease of false negatives.

Classification of autistic children with respect to a control
population
Overall performance in the NRT task, measured on the entire set of
items, was affected by diagnostic group (Welch ANOVA: F(3,
33.3)= 62.1; p < 0.001). It was higher for TD children than all other
groups (all pairwise comparisons p < 0.001). Autistic children
performed better than SLI (49.3% [6 76]) and IC children (42.3%
[10 80]; all pairwise comparisons p < 0.001), who did not differ.
Next, we evaluated the classification performance of voice

acoustics in comparison not only to TD children but also to
children with other disorders sharing common deficits with ASD:
sensorineural hearing loss and Developmental Language Disorder.
As previously described, we conducted a ROC-supervised KCA on

Fig. 2 Classification of autistic children with respect to TD children (study 1). a Procedure of inclusion of the participants and random
dichotomization of the data in diagnostic model group and unknown data group. NRT: Nonword Repetition Task; ASD: Autism Spectrum
Disorder/cyan; TD: typically developing children/blue. b Extrapolation of the classification on 100 subjects. Participants with good diagnosis
are surrounded by a green rectangle (93%), the misclassified by a red one. c Illustration of the acoustic profile by radar chart according to the
four most significant voice features, namely, harmonic-to-noise ratio (HNR), formant frequencies 1 (F1), skewness of Jitter [s(Jitter)] and
Shimmer generated the best ROC-supervised KCA setting; individual data are displayed in gray.
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the data of all participants, considering children with DLD,
children with CI and TD children in the same group of
heterogeneous control group (CTRL). See Supplementary table 1
for details about the unsupervised KCA.
Two acoustic parameters discriminated ASD from CTRL children

according to ROC analysis: mean shimmer and F1, with an AUC,
respectively of 85.23% and 82.36% (the separation is depicted in the
Fig. 3c). The ROC-supervised KCA had a PV of 57.42% ± 3.04, a
sensitivity of 0.86 ± 0.05 and a specificity of 0.84 ± 0.08; it classified
correctly 85.56% [84.5%-86.6%] of ASD and 84.2% [83.5%-85.0%] of
the CTRL group. More specifically, in this latter heterogeneous
population, 68.3% [66.8%-70.5%] of DLD, 85.6% [84.4%-86.8%] of CI
and 93.9% [93.1%-94.7%] of TD were correctly classified (Fig. 3b).

DISCUSSION
Voice as clustering diagnostic approach?
As classifier, the ROC-supervised KCA analysis, with classification
performance around 90%, had an extremely high classification
performance when separating ASD from TD children above
previously reported classification value (between 80 and 89%
[4, 6, 22]). Moreover, our method proves robust and reliable in
discriminating autistic children from children without ASD,
including other disorders (84%).
Importantly, acoustic factors predictive of autism diagnosis are

mainly ones related to control of the vocal folds’ vibrations (e.g.,
jitter, shimmer) rather than the f0 per se [5], consistent with
clinical description of a peculiar voice quality in autism and

previous observations [23]. The pattern characteristics of autism,
with respect to TD children, was lower average F1, higher HNR,
higher shimmer and lower jitter skewness. A lower jitter skewness
reflected a more normal distribution of jitter across nonwords,
consistent with the observation of a greater stability in voice
production [16]; TD children presented positively skewed and less
tailed distribution, highlighting that most vocal sounds had similar
shimmer and jitter. Note that we found that children on the
autism spectrum have a higher shimmer than NT children,
contrarily to what was reported in adults [16], highlighting
differences in the maturation of the vocal apparatus. A higher
HNR suggested that vocal sounds of children on the autism
spectrum are overall less noisy than those produced by TD
children. The lower F1 in the ASD group did not reflect gender
balance differences across groups as in the TD group male and
female children had similar F1 values (938 Hz and 937 Hz). Note
that when including the other pathologies, only mean F1 and
mean shimmer remained classification features. Average F1 values
were at the minimum 100 Hz lower in autistic children than in the
other children; this is unlikely explained by gender imbalance as
the second lowest F1 was observed for female (815 Hz) of the CI
group, and F1 was the highest in male of the same group. F1
frequency is related to the length of the vocal tract [44] and tend
to decrease with age; a lower F1 could reflect either an
accelerated maturation of the vocal tract or differences in
cranio-facial anatomy [45] and the presence of increased minor
physical anomalies in autistic children [46]. Shimmer, which is a
measure of cycle-to-cycle variation in amplitude of the f0,

Fig. 3 Classification of autistic children with respect to a diverse control population (study 2). a Procedure of inclusion of the participants
and random dichotomization of the data in diagnostic model group and unknown data group. OD: Other Disorders; NRT: Nonword Repetition
Task; ASD: Autism Spectrum Disorder/cyan; CTRL: heterogeneous control group (composed of children with developmental language disorder
[DLD], violet, and cochlear implant, pink [CI]). b Extrapolation of the classification on 100 subjects. Participants with good diagnosis are
surrounded by a green rectangle (84%), the misclassified by a red one. c The top two most significant voice features, namely, formant
frequencies 1 (F1) and Shimmer generated the best ROC-supervised KCA setting are plotted against each other.
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presented an increased value of almost 16% in autism; although
discriminant as in Guo et al., [6], the opposite result was found in
children speaking mandarin. Shimmer differences could reflect
morphological differences or differences in control of the vocal
cords of autistic children and other children [47]. Therefore, these
voice features could be an external marker of atypical neurode-
velopment occurring before birth [1]. Note that in the current
study we aimed to test whether voice could be used as a
classification tool, and therefore we tested older children with
stable diagnostic. Future studies should aim at studying the
classification performance of infant’s cries at birth or within the
first year of life to test the validity of voice acoustics as a true
biomarker of autism.
Previous studies that compared ASD to other populations are

sparse and rely on different grouping strategies: Oller et al. [48]
reported 62% accuracy in the classification of children with DLD in
a non-TD group, while Bone et al. [49] reported a 78% of correct
classification between ASD and DLD. Here, classifying children
with DLD in the typically developing group, we obtained high
classification rates of ASD not only with respect to TD, but also to
other pathologies. The approach developed here combining
feature selection, through ROC-supervision, a clustering analysis
and Monte Carlo cross-validation demonstrates that voice features
have a strong, specific, diagnosis power for ASD: accuracy was
well-above chance for children with DLD and children with CI. This
provides new information on the classifying power of voice
features in ASD, in relation to other neurodevelopmental disorders
in particular (e.g., DLD).
Central nervous system dysfunction affects vocal folds and by

domino individual’s voice. This is why automated voice analysis
using recordings of patient speech is increasingly being used in
psychiatry [50] and neurology as digital biomarkers of disease
(i.e., in Major depressive disorder [51], schizophrenia [52],
Parkinson’s disease [53], Alzheimer’s Disease [54], …). However,
this computational method should not be delegated solely to
machines [55], even if it is based on formal reasoning, this
method should be used in complementarity to clinical diagnosis
of experts.
The current pilot study is a proof-of-concept towards the

development of an early diagnostic biomarker specific to ASD. Yet,
the sample size of the group used are very small and need to be
much larger to define an established clinical biomarker. Futures
studies should aim at replicating this result with considerably
larger sample sizes. Moreover, in order to develop a sensitive
diagnosis test, future works should include typical cases met in
clinical practice, with disorders more often seen as comorbidities
of ASD such as attention deficit hyperactivity disorder (ADHD),
motor problems without social impairment, severe anxiety, and
other behavior disorders [56]. In this study, all children had at
some minimum, strong verbal capabilities and data were selected
to have the most optimum dataset; future studies should assess
the classification performance of vocal acoustic based on non-
linguistic vocal samples acquired in less controlled environment.

In addition, data presented here comes from children between 6
and 12 while, in high-income countries the average age of ASD
diagnosis is around age 4 [56], and around 5 worldwide [57]. To be
truly a biomarker of autism and understand its potential
diagnostic value, these results should be replicated in younger
children and possibly using cry features of babies.

CONCLUSION
Overall, our work suggests that easy-to-measure voice features,
potentially linked to abnormal early neurodevelopment, can
help in the diagnosis of autism spectrum disorder. Voice features
in supervised clustering methods can be used as a potential
feature classification for autism and paves the way to a new
objective tool to aid clinical and differential diagnosis of ASD.
The method developed here is in part automated, and in the
future, a hand-in tool should be developed to automatically
output diagnostic information. Early detection of ASD is crucial
because it is likely to lead to an improved outcome. Thus, based
on our simple clustering algorithm method, future work should
investigate the acoustic cry features of baby as a potential
biomarker for autism.
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(http://cran.r-project.org).
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