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 28 

Abstract: 29 

Active microwave measurements have the potential to estimate vegetation optical depth 30 

(VOD), an indicator related to vegetation water content and biomass. The Advanced 31 

SCATterometer (ASCAT) provides long-term C-band backscatter data at vertical-vertical 32 

(VV) polarization from 2007. So far, very few studies have considered retrieving VOD from 33 

this active sensor. This study presents a new publicly released global long-term and 34 

continuous (2007-2020) C-band VOD dataset retrieved from the ASCAT observations, named 35 

the ASCAT INRAE-BORDEAUX or ASCAT IB VOD product. The retrieval algorithm is 36 

based on the Water Cloud Model (WCM) including the Ulaby bare soil model. The algorithm 37 

takes advantage of a multi-temporal (MT) retrieval method relying on a cost function where 38 

constraints to the retrieved parameters are implemented and a reanalysis soil moisture (SM) 39 

dataset from ERA5-Land is used as an input. The performance of ASCAT IB VOD was 40 

evaluated by inter-comparing it with ASCAT Technische Universität Wien (TUW), the 41 

Advanced Microwave Scanning Radiometer 2 (AMSR2), and VOD Climate Archive 42 

(VODCA) VOD products (the last two products are estimated from passive microwave 43 

observations). Results showed that ASCAT IB VOD presented the highest spatial correlation 44 

with aboveground biomass (R~0.83) and with the Global Ecosystem Dynamics Investigation 45 

(GEDI) canopy height (R~0.84-0.85). In terms of temporal performance, ASCAT IB VOD 46 

had the highest correlation R values with leaf area index (LAI) and Normalized Difference 47 
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Water Index (NDWI) in most parts of the globe from 2013 to 2018. This contrasts with 48 

AMSR2 VODs which correlated better with Normalized Difference Vegetation Index (NDVI). 49 

The new ASCAT-based VOD product on a global scale highlighted the potential benefit of 50 

combining active (namely ASCAT) and passive (namely AMSR2) VOD products for 51 

vegetation studies. 52 

Keywords: VOD; biomass; vegetation phenology; ASCAT; Active microwave; multi-53 

temporal (MT); AMSR2 54 

1. Introduction: 55 

Microwave vegetation optical depth (VOD) has proven to be a useful indicator for the study 56 

of terrestrial ecosystems based on its sensitivity to vegetation biomass as well as water 57 

content of vegetation (Chaparro et al., 2019; Frappart et al., 2020; Rodríguez-Fernández et al., 58 

2018a; Vittucci et al., 2019; Wigneron et al., 2021). To date, long-term VOD retrieved from 59 

K-, X-, C- and L-band passive microwave brightness temperatures (Kerr et al., 2012; Konings 60 

et al., 2017; Liu et al., 2011; Moesinger et al., 2020; Wang et al., 2021a; Wigneron et al., 61 

2017) have been used to monitor the global vegetation biomass changes (Liu et al., 2013), the 62 

carbon dynamics in tropical and Siberian regions (Fan et al., 2022; Fan et al., 2019; Wigneron 63 

et al., 2020), resilience of the Amazon rainforest (Boulton et al., 2022), vegetation dynamics 64 

in drylands over West African Sahel (Tian et al., 2016) and vegetation phenology over the 65 

mid- and high-latitudinal Northern Hemisphere (Li et al., 2023). However, some deficiencies, 66 

including the discontinuity in time series between observations from satellites and their 67 

successor (the Advanced Microwave Scanning Radiometer for EOS, AMSR-E, and the 68 

Advanced Microwave Scanning Radiometer 2, AMSR2), as well as data quality issues related 69 

to radio frequency interference (Li et al., 2021; Wang et al., 2021b), affect the quality of the 70 

above-mentioned passive long-term VOD datasets. Most importantly, a long-term freely 71 

available global active VOD product is still lacking and very few studies have focused on this 72 
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topic. The development of a new active global product could be very interesting as it could 73 

provide useful data to monitor the vegetation characteristics, in a way complementary to 74 

passive VODs (Liu et al., 2021b). 75 

The active microwave observations show a different sensitivity to vegetation and soil 76 

compared with the passive ones (Link et al., 2021; Prigent et al., 2022). Using a discrete 77 

radiative transfer model to simulate the relationship between active and passive signals in 78 

three vegetation types (wheat, corn, and forest), Link et al. (2021) found the coupling between 79 

active and passive signals decreases with increasing vegetation water content because of the 80 

decreasing sensitivities of the radar (active) and radiometer (passive) observations to soil 81 

moisture. The sensitivity of the radar systems to SM over vegetation areas decreases more 82 

quickly than that of the radiometers due to the two-way vegetation attenuation (forward and 83 

backward) (Piles et al., 2015) and active systems are more sensitive to the effects of the 84 

vegetation structure (Ferrazzoli et al., 1989; Fung and Eom, 1985; Wigneron et al., 1999). 85 

Prigent et al. (2022) found the diurnal and seasonal cycles of backscatter and emissivity 86 

collected from Global Precipitation Mission (GPM) at a 1° × 1° resolution tend to be in phase 87 

opposition in the tropical forest region, while backscatter and emissivity vary more in phase 88 

during the dry season in the less densely forested regions of southeast Amazon. The dissimilar 89 

information obtained from active and passive microwave signals motivates us to explore the 90 

retrieval of VOD from active microwave observations. 91 

Active microwave data provide complementary observations to passive observations because 92 

1) they are sensitive to specific vegetation characteristics, 2) are less affected by radio 93 

interference than passive observations (Liu et al., 2021b) and 3) can also provide long-term 94 

records, such as observations from three series of Advanced SCATterometer (ASCAT) 95 

Meteorological Operational (MetOp -A/B/C) satellites which start in 2007 and can be 96 

extended to the 2020s (Srivastava et al., 2016). Radar observations have been used in many 97 
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studies for vegetation monitoring (phenology, structure, or productivity) (Canisius et al., 2018; 98 

Chang et al., 2022; Hosseini et al., 2015; Meroni et al., 2021; Neumann et al., 2010; Wagner 99 

et al., 1999), while studies on active VOD retrievals are scarce and only conducted at the site 100 

scale or over small regions (El Hajj et al., 2019a; Grippa and Woodhouse, 2003; Magagi and 101 

Kerr, 1997; Quast et al., 2019; Zhou et al., 2022). The first active VOD research at a 102 

continental scale (Vreugdenhil et al., 2016) was conducted for assessing the vegetation 103 

correction in the Technische Universität Wien (TUW) method of the C-band ASCAT soil 104 

moisture retrieval (Wagner et al., 2013). The TUW VOD is retrieved by the change detection 105 

method using the Water Cloud Model (WCM) (Attema and Ulaby, 1978). The TUW VOD 106 

value is mainly dependent on two parameters (slope and curvature) which are the coefficients 107 

of a second-order Taylor expansion function established to describe the angular ASCAT 108 

backscatter dependency (Hahn et al., 2017). The preliminary TUW VOD data set did not 109 

consider inter-annual variability as the climatology of slope and curvature are computed in the 110 

algorithm (Vreugdenhil et al., 2016; Vreugdenhil et al., 2017). With a novel calculation of 111 

slope and curvature, the updated TUW VOD can capture vegetation dynamics in Australia 112 

(Vreugdenhil et al., 2017). However, it is not yet public and there are few studies on the 113 

global assessment of TUW VOD (Teubner et al., 2018; Vreugdenhil et al., 2016). 114 

Recently, INRAE-BORDEAUX (IB) developed a new active VOD product from ASCAT in 115 

Africa (hereafter ASCAT IB V1 VOD) (Liu et al., 2021b). The algorithm is based on the 116 

WCM integrated with the Ulaby bare soil scattering model (Ulaby et al., 1978) as these 117 

simple models can be used efficiently to simulate the ASCAT backscattering signals (Lievens 118 

et al., 2021; Santoro et al., 2022; Shamambo et al., 2019). To retrieve VOD from the VV 119 

polarization and mono-angular (incidence angle at 40°) normalized ASCAT observations, the 120 

ERA5-Land soil moisture (SM) dataset was used as an input to the algorithm. The evaluation 121 

of ASCAT IB V1 VOD showed a high spatial correlation with Climate Change Initiative 122 
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(CCI) and Saatchi above-ground biomass (AGB) (Carreiras et al., 2017; Saatchi et al., 2011; 123 

Santoro and Cartus, 2019), with R values generally higher than for ASCAT TUW VOD and 124 

C-band passive VOD, namely the Advanced Microwave Scanning Radiometer 2 (AMSR2) 125 

and VOD Climate Archive (VODCA) VOD. ASCAT IB V1 VOD was also found to be 126 

highly temporally correlated to Moderate Resolution Imaging Spectroradiometer (MODIS) 127 

Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and leaf 128 

area index (LAI). However, the algorithm used in ASCAT IB V1 VOD has been applied 129 

globally with imperfect results (Liu et al., 2021a), mainly because the hypothesis that the 130 

vegetation scattering parameter (ω) consists globally of two constant values (distinguishing 131 

very densely vegetated regions from the other vegetated regions) did not hold. 132 

In the present study, to improve the quality of the global ASCAT IB VOD product, we 133 

evaluated the possibility of retrieving VOD and ω simultaneously from the ASCAT 134 

normalized backscatter at 40° by adding constraints in the retrieval process. The first 135 

constraint was applying a multi-temporal (MT) method which is generally based on the 136 

assumption that VOD varies relatively slowly in time as was first developed by Wigneron et 137 

al. (2000) for the SM and VOD retrieval algorithm of the Soil Moisture and Ocean Salinity 138 

(SMOS) mission (Kerr et al., 2010). This assumption is now widely used in the development 139 

of passive VOD retrievals. For instance, in the multi-temporal dual channel retrieval 140 

algorithm (MT-DCA), VOD was assumed to be nearly constant between every two 141 

consecutive overpasses (Konings et al., 2016). Based on MT-DCA, (Konings et al., 2017; 142 

2016) successfully retrieved VOD and SM from L-band Aquarius (with a seven-day revisit 143 

time) and SMAP (with a three-day revisit time). This assumption was also adopted in the 144 

different operational VOD and SM retrieval algorithms of the SMOS observations (Al Bitar et 145 

al., 2017; Wigneron et al., 2021). Similarly in the active domain, El Hajj et al. (2019a) 146 

assumed that VOD remains stable during four consecutive overpasses (18 days) of Sentinel-1 147 
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and hence obtained the very first retrievals of VOD from Sentinel-1 images in southern 148 

France. 149 

Incorporating a priori information into the algorithm is another interesting way to constrain 150 

the retrieved parameters. A key feature of the widely used L-band microwave emission of the 151 

biosphere (L-MEB) inversion method is integrating a priori information into the retrieval 152 

(Wigneron et al., 2021; Wigneron et al., 2017). In the SMOS-IC Version 2 algorithm 153 

(Wigneron et al., 2021), by using the mean value of VOD retrieved in the previous ten days as 154 

a first guess value of VOD for subsequent SM and VOD retrievals, results showed a 155 

considerable improvement compared with the preceding versions. In the SMAP official SM 156 

baseline algorithm (O'Neill et al., 2015), the MODIS NDVI was converted to vegetation water 157 

content and then multiplied by a factor to represent VOD. Based on the optimization of the a 158 

priori information, Li et al. (2022) developed a new SMAP SM and VOD product (called 159 

SMAP-IB) using the L-MEB algorithm. In addition, Wang et al. (2021a) calibrated a 160 

relationship between VOD and the Microwave Polarization Difference Index (MPDI) and 161 

then used the VOD based on MPDI as the initial value to retrieve X-band VOD from the 162 

AMSR2.  163 

In this context, the main objective of this study is to retrieve simultaneously a global ASCAT 164 

product including VOD and the vegetation scattering parameter (ω). The retrieval algorithm 165 

used the model-based soil moisture (SM) data from the ERA5-Land product as it offers long-166 

term data at a time close to the ASCAT satellite observations owing to its hourly availability. 167 

The use of SM data from satellite missions (e.g. SMOS, SMAP and AMSR2) is more difficult: 168 

observation time is not concurrent to the ASCAT observations; the time period is not long 169 

enough; and accuracy may be limited for some satellite products in some areas (Liu et al., 170 

2021b; Xing et al., 2021). To overcome the challenge of retrieving two parameters from a 171 

single-angle and polarization ASCAT observation, the concept of “slow VOD time variations” 172 
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introduced previously and the a priori information obtained from ASCAT IB V1 VOD 173 

retrievals over Africa were incorporated into the algorithm. Similar to previous VOD 174 

assessment studies  (Chaparro et al., 2019; Li et al., 2021; Liu et al., 2021b), thirteen years of 175 

global ASCAT IB VOD (2007-2020) were retrieved and evaluated using different AGB, tree 176 

height and optical vegetation index products. The key characteristics of the global ASCAT IB 177 

VOD product are illustrated by performing comparisons with ASCAT TUW VOD and two 178 

other passive C-band VOD products from the AMSR2 satellite, namely AMSR2 VOD and 179 

VODCA VOD. 180 

2. Data description 181 

2.1 ASCAT backscatter 182 

The ASCAT sensors are equipped with fan-beam (mid, fore, and aft) antennas which conduct 183 

VV backscatter observations with incidence angles varying from 25 to 65 degrees at a carrier 184 

frequency of 5.255 GHz (C-band) covering two 550 km wide swaths separated by a gap of 185 

about 360 km with a 30–50 km spatial resolution and twice a day temporal resolution (Figa-186 

Saldaña et al., 2014). In the present study, we used the backscatter measurements normalized 187 

at the standard reference angle (40°) and the historically wettest measurements (referred to as 188 

wet reference), which were extracted from the ASCAT Soil Moisture near-real time (NRT) 189 

product at 12.5 km Swath Grid. This product provides 15 scene acquisitions per day and 190 

covers the globe approximately every two days. The stack of the ASCAT backscatter data 191 

used in this study consisted of all data acquired by MetOp-A descending orbits (9:30 am) 192 

from 2007 to 2020. We used data measured at morning because vegetation water stress is 193 

typically lower in the morning making “morning” VOD better suited for monitoring biomass 194 

(Frappart et al., 2020; Liu et al., 2021b). The data with good quality (probability flags for 195 

frozen soil and snow equal to zero, topographic complexity flags and wetland probability 196 

flags lower than 30% and 10%, respectively) were resampled to a 0.25° grid (~ 25 km × 25 197 
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km) by the inverse distance weighting algorithm (Lievens et al., 2017). The ASCAT data is 198 

freely available at https://archive.eumetsat.int/. 199 

2.2 ERA5-land data 200 

In this study, we used the 0–7 cm SM and soil temperature (ST) datasets of ERA5-Land 201 

(Muñoz-Sabater et al., 2021). This dataset is on a 0.1-degree grid with hourly time steps. The 202 

new surface model (Carbon Hydrology-Tiled ECMWF Scheme for Surface Exchanges over 203 

Land) used in ERA5-Land is able to better simulate the SM dynamics than the older scheme 204 

(Wagner et al., 2022). The evaluation of ERA5-Land SM also shows good performance on the 205 

global scale (Beck et al., 2020; Chen et al., 2021; Lal et al., 2022; Muñoz-Sabater et al., 206 

2021). More importantly, as the ERA5-Land does not assimilate land surface observations 207 

(whereas ERA5 assimilates the ASCAT SM), ERA5-Land SM and the ASCAT backscatter 208 

measurements can be treated as quasi-independent variables (Wagner et al., 2022). In the 209 

present study, ERA5-Land SM is used as an input to the WCM model to retrieve ASCAT IB 210 

VOD, and ERA5-Land ST is used for simulating the Ulaby bare soil model parameters. 211 

ERA5-Land SM and ST were aggregated to the 0.25° grid using area-weighted averaging, and 212 

then temporally matched with the ASCAT descending (~9:30 local time) observations. 213 

2.3 Vegetation variables for evaluating VOD 214 

Three kinds of vegetation variables widely used in VOD evaluation (Grant et al., 2016; Li et 215 

al., 2021; Rodríguez-Fernández et al., 2018b; Tian et al., 2016) were used to evaluate the 216 

retrieved ASCAT IB VOD: AGB, canopy height, and optical vegetation indices. The rationale 217 

for using those parameters is that 1) there is no consensus on in-situ VOD reference values, so 218 

proxies of VOD as vegetation height and vegetation biomass are often used to evaluate the 219 

performance of the VOD retrieval algorithms (Li et al., 2022; Li et al., 2021); 2) VOD can 220 

provide information on AGB at the inter-annual scale and on the vegetation water status at the 221 



10 
 

seasonal scale (Lyons et al., 2021; Wang et al., 2023).  Since total vegetation biomass (AGB) 222 

is generally well related to vegetation height  (Asner et al., 2012), utilizing canopy height may 223 

confirm the anticipated relationship between VOD and AGB. We also refer the reader to the 224 

inter-comparison study of nine commonly used VOD for more details (Li et al., 2021). 225 

2.3.1 AGB datasets 226 

Three AGB products, the Saatchi AGB in 2015 (Carreiras et al., 2017; Saatchi et al., 2011), 227 

the Climate Change Initiative (CCI) AGB dataset version 1 in 2017 (Santoro and Cartus, 228 

2019) and the Global Ecosystem Dynamics Investigation (GEDI) L4B AGB in 2020 229 

(Dubayah et al., 2022), were used to evaluate the ability of ASCAT IB VOD to monitor AGB. 230 

Those three datasets are all at 1-km spatial resolution and were resampled to the 0.25° grid by 231 

spatial averaging. 232 

2.3.2 Canopy height datasets 233 

Two canopy height products (Lang et al., 2022; Potapov et al., 2020) used in this study were 234 

derived from the GEDI LIDAR measurement. The product developed by Potapov et al. (2020) 235 

is produced by extrapolating the GEDI footprint-level forest canopy height to a 30 m spatial 236 

resolution map using a regression tree algorithm and Landsat analysis-ready data for the year 237 

2019. Lang et al. (2022) used the GEDI Level 1B waveforms and Bayesian deep learning 238 

algorithm to develop a global 0.5° resolution canopy height map, which has a lower root mean 239 

square error (RMSE = 2.7m) than the product (RMSE = 6.6m) from  Potapov et al. (2020).  240 

2.3.3 Optical vegetation indices datasets 241 

Three vegetation indices (VIs) products, the 10-day NDVI and LAI data from Copernicus 242 

Global Land Service (CGLS) (https://land.copernicus.eu/global/) and 8-day Normalized 243 

Difference Water Index (NDWI) calculated from the MODIS MOD09A1 product (Gu et al., 244 

2008), were used to assess the temporal variations in ASCAT IB VOD. LAI and NDVI are 245 
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good proxies of phenology and vegetation greenness. NDWI represents the vegetation water 246 

dynamics which is expected to be important in terms of temporal changes. Therefore, those 247 

three VIs can be used to test the ability of ASCAT IB VOD to monitor the seasonal and 248 

interannual variations of vegetation phenology and vegetation water status. After quality 249 

control, the dataset was resampled to a spatial resolution of a 0.25° grid (Fuster et al., 2020). 250 

2.4 Other C-band VOD products  251 

To better illustrate the performance of the ASCAT IB VOD product, we inter-compared it 252 

with three other C-band VOD products, namely ASCAT TUW, AMSR2 and VODCA VOD. 253 

ASCAT TUW VOD was provided by Vreugdenhil et al. (2016). TUW VOD is calculated 254 

from the loss in sensitivity to soil moisture (i.e., attenuation of the bare soil backscatter). The 255 

sensitivity is calculated as the difference between the wet and dry reference, and more details 256 

on the product are given in (Vreugdenhil et al., 2016; Vreugdenhil et al., 2017). AMSR2 and 257 

VODCA VOD can be freely downloaded at the Goddard Earth Sciences Data and Information 258 

Services Center (GES DISC) website and the Zenodo repository (Moesinger et al., 2020). 259 

These two products are retrieved from the passive sensor AMSR2 (providing data from July 260 

2012) but with different algorithms. The AMSR2 VOD retrieval algorithm is based on the 261 

Land Parameter Retrieval Model (LPRM) version 5 (Owe et al., 2008), while VODCA VOD 262 

is retrieved via the LPRM version 6 and then a cumulative distribution function (CDF) 263 

matching technique is used to scale VOD to the AMSR-E VOD (Moesinger et al., 2020). The 264 

key differences between those three products and ASCAT IB VOD are presented in the 265 

discussion section. 266 

2.5 Ancillary datasets 267 

This study also utilized several ancillary datasets, including ISRIC SoilGrids250m data 268 

(Hengl et al., 2017), Digital Elevation Model (DEM)-related data (Danielson and Gesch, 269 
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2011), and MODIS land cover map (Sulla-Menashe et al., 2019). The SoilGrids250m dataset 270 

provides global standard numeric soil properties at seven standard depths with a 250 m spatial 271 

resolution. DEM-related data were calculated from the 1km Global Multi-resolution Terrain 272 

Elevation Data 2010 by using the System for Automated Geoscientific Analyses (SAGA) GIS 273 

software (Conrad et al., 2015). The SoilGrids250m (15 types, in Table S1), and DEM-related 274 

(9 types, in Table S2) data were used in the estimation of the soil parameters of the Ulaby 275 

linear model (see Section 3.1). As several previous studies showed that VOD varies as a 276 

function of the land cover (Li et al., 2021; Vreugdenhil et al., 2016), the land cover map 277 

extracted from the MODIS MCD12Q1 product based on the International Geosphere-278 

Biosphere Programme (IGBP) scheme was used to analyze the different VOD products. 279 

3. Methodology 280 

The ASCAT IB retrieval approach is illustrated in the flowchart of Fig.1. The retrieval model 281 

is based on a vegetation backscatter model (Water Cloud Model) integrated with the Ulaby 282 

bare soil model (Section 3.1). Instead of the common procedure in which VOD and SM are 283 

retrieved simultaneously, which may lead to an ill-posed problem (Wigneron et al., 2000), we 284 

focused on retrieving the two vegetation parameters, VOD and vegetation scattering 285 

parameter (ω), which can be assumed to be relatively constant over a short time-window, 286 

while model-based dynamic SM data is used as an input in the retrieval algorithm. One 287 

prototype study undertaken to retrieve VOD from AMSR2 in Africa supports the validity of 288 

this idea (Wang et al., 2021a). The estimation of the Ulaby linear model parameters is 289 

described in Section 3.2. The retrieval of the VOD and ω from the integrated retrieval model 290 

is presented in Section 3.3. The methods implemented to quantify the performance of ASCAT 291 

IB VOD and to qualify the ω parameter are described in Section 3.4. 292 
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 293 

Fig. 1. Flowchart presenting the development and assessment of global ASCAT IB VOD. 294 

3.1. Vegetation backscatter model  295 

The radar backscatter from vegetation was described by the Water Cloud Model (WCM) 296 

(Attema and Ulaby, 1978). The sensor-received backscattering coefficient (σ���∘ , in m2/m2) at 297 

the incidence angle θ (40° in this study) can be denoted as a combination of two components: 298 

the direct vegetation backscatter signal (σveg
∘ , in m2/m2) and the backscatter from the soil 299 

surface (σsoil
∘ , in m2/m2) attenuated by the vegetation canopy ( γ2 , called the two-way 300 

vegetation attenuation factor). This leads to the following equations: 301 

σobs
∘ =σveg

∘ +γ2σsoil

∘ �1� 302 
σveg

∘ =ω⋅cos θ⋅�1-γ2� �2� 303 
γ2=exp�-2⋅τ/ cos θ� �3� 304 

where ω is the vegetation scattering parameter related to the single scattering albedo, and τ is 305 

the vegetation optical depth (VOD).  306 

A simple linear approach (Eq. (4)) (Ulaby et al., 1978) was used to model the bare soil 307 

backscatter (σsoil
∘ , in dB) as a function of soil moisture (SM, in m3/m3): 308 
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σsoil(dB)
∘ =10 ∙ log�� �soil(��/��)

∘ =C+D∙SM �4� 309 

where C is the radar backscatter of the very dry bare soil, D represents the radar backscatter 310 

sensitivity to soil moisture changes, and SM comes from the ERA5-land SM product. 311 

The Eqs. (2)- (4) were finally inserted into Eq. (1) to express σ���∘  as a function of vegetation 312 

optical depth (τ): 313 

σobs
∘ =�∙cos θ∙�1 − exp(-2∙τ/cosθ)�+exp(-2∙τ/cosθ)∙10�.�∙�C+D∙SM� �5� 314 

3.2 Calibration of the model parameters 315 

The soil-vegetation radar model in Eq. (5) contains three parameters (ω, C and D) that needed 316 

to be calibrated on each pixel in space and time. As there are no “true” VOD samples, the 317 

three parameters cannot be calibrated at the same time. In this study, we calibrated the bare 318 

soil parameters (C and D) and then retrieved ω and VOD simultaneously.  319 

The soil parameter calibration consisted of three steps (1) selecting so-called “bare soil” 320 

pixels globally where vegetation effects can be neglected during a specific period (which 321 

varies over each pixel) (2) computing the C and D parameters over the “bare soil” pixels 322 

during that specific period (3) training machine learning models by using the retrieved C and 323 

D values over “bare soil” pixels obtained in the step (2) and then estimating the two 324 

parameters (C and D) globally. These three steps are detailed below: 325 

Step1: Globally selecting the “bare soil” pixels based on LAI and land cover data. Two kinds 326 

of “bare soil” pixels can be identified: i) vegetation-free pixels during the entire year (desert 327 

area), and ii) pixels with sparse vegetation (LAI<0.5) seasonally. Some “bare soil” pixels 328 

have very low moisture condition (< 0.05 m3/m3) and almost stable σ���∘ . In those pixels, only 329 

C can be calculated. Therefore, we divided the “bare soil” pixels into two categories, namely 330 

category 1: where soil moisture and σ���∘  show a significant correlation; category 2: where 331 

soil moisture is very low and there are very low time variations in σ���∘ . 332 
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Step2: calculating the parameters C and D over the “bare soil” pixels. For the pixels in 333 

category 1, the C and D values were obtained with linear fitting on Eq. (4).  For the pixels in 334 

category 2, only the C value can be computed, and it was estimated from the averaged σ���∘ . 335 

At the same time, the corresponding soil properties (Table S1) and DEM-related (Table S2) 336 

data were extracted. 337 

Step3: estimating C and D globally. The pixels in step 2 were used to train two random forest 338 

(RF) regression models, in which the parameters C and D computed over the “bare soil” 339 

pixels were treated as the target and the soil properties (Table S1) and DEM-related (Table S2) 340 

data were selected as the predictors. More details about the implementation of the RF model 341 

are presented in Appendix A. Then, the selected global predictors were used as input to the 342 

trained RF models to estimate C and D globally.  343 

Two years (2015-2016) of ASCAT σ���∘  and ERA5-Land SM were used to select the “bare 344 

soil” pixels. For more details about each step, readers can refer to the same calibration work 345 

done in Africa (Liu et al., 2021b). 346 

3.3 Retrieval of VOD and ω 347 

The simultaneous retrieval process of two variables, VOD and ω, was performed by using a 348 

cost function (CF) (Eq. (6)). CF integrates the squared weighted differences between the 349 

backscatter simulations  (σsim
∘ ) and the observations (σobs

∘ ), taking into account the constraint 350 

information on the retrieved model parameters (Wigneron et al., 2007). This strategy was also 351 

implemented in the development of SMOS IC V2 and SMAP IB (Li et al., 2022; Wigneron et 352 

al., 2021). 353 

CF=
∑�σobs

∘ -σsim
∘ �2

StdDev�σ∘�2 + # $P&&'&-P&∗(2

StdDev�P&�2

)
&*�

�6� 354 
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where the sum of the differences between observed (σobs
∘ ) and simulated (σsim

∘ ) backscattering 355 

coefficient is computed from VV polarization observations over a w-day window. In this 356 

window, the value of retrieved P&∗(VOD* and ω*, respectively for i = 1, 2) are time-invariant. 357 

StdDev(σ∘) is the standard deviation associated with σobs
∘ .  P&ini (VODini and ωini, respectively 358 

for i = 1, 2) is the initial value of VOD or ω in the retrieval process and corresponds to a 359 

constraint information (or “priori information”) estimate; StdDev(Pi) is the standard deviation 360 

associated with this estimate. 361 

Two sources of constraint information were used in the retrieval algorithm: (1) the ASCAT IB 362 

V1 VOD developed in Africa (Liu et al., 2021b) was used to estimate the a priori information 363 

on VOD, and (2) the wet reference of the ASCAT observations was used to estimate the a 364 

priori information on ω. Specifically, due to the diversity of the vegetation conditions in 365 

Africa, the VODini and StdDev(VOD) parameters used in Eq. (6) were simply estimated for 366 

the forest and non-forest regions in Africa. In this study, VODini was set to 0.87 and 0.16 for 367 

forest and no-forest pixels, respectively. StdDev(VOD) was set to 0.40 for forest pixels and 368 

0.15 for no-forest pixels. According to the definition of ω, the ωini and StdDev(ω) parameters 369 

were calculated from the ASCAT wet reference (σWetRef
∘ ) data which is computed from the 370 

maximum backscattering coefficient for each pixel during the peak growth season (Fig. 1 in 371 

Steele-Dunne et al. (2019) and Fig. 2 in Vreugdenhil et al. (2016)) or during times with high 372 

values of ERA5-Land SM (Fig. S1). σWetRef
∘  is provided over each pixel and is almost constant 373 

on a daily basis. The yearly mean value of σWetRef
∘  in each pixel was used to estimate ωini. Like 374 

the calculation of StdDev(VOD), StdDev(ω) was estimated from the yearly mean value of 375 

σWetRef
∘  over the forested and non-forested areas.  It was set to 0.01 for the forested areas and 376 

0.03 for the non-forested areas.  377 

In order to ensure a good quality of P&∗(VOD and ω) and to consider that P&∗ did not change 378 

much over the period of w-days, the w value cannot be too small or too large (Wigneron et al., 379 
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2021). An 18-day window was used in this study. This window size allows for robust results 380 

with more than three consecutive observations and it corresponds to the time-period used for 381 

Sentinel-1 VOD (El Hajj et al., 2019a). We also checked that this window size led to the best 382 

results when evaluating the performance of ASCAT IB VOD against AGB (Table S3). 383 

3.4. Evaluation metrics for ASCAT IB retrievals assessments 384 

Evaluating the ASCAT IB retrievals, we mainly focused on the VOD parameter as there are 385 

few studies evaluating the ω parameter at a large scale (Du et al., 2016; Fernandez-Moran et 386 

al., 2016; Konings et al., 2017; Vittucci et al., 2017). As in (Li et al., 2021), the global 387 

ASCAT IB VOD retrievals were evaluated in time and space. For the temporal performance, 388 

the Pearson correlation coefficient (R) between optical vegetation indices (i.e., LAI, NDVI 389 

and NDWI and ASCAT IB VOD was calculated. To evaluate ASCAT IB VOD in terms of 390 

spatial performance, we estimated the spatial correlation between ASCAT IB VOD and 391 

different AGB products (Eq. (7)). Meanwhile, the spatial correlation between VOD-predicted-392 

AGB and AGB was also computed: the aim is to evaluate the performance of ASCAT IB 393 

VOD and other VOD in estimating AGB. To compute the VOD-predicted AGB as a function 394 

of ASCAT IB VOD, two functions (Eq. (8)-(9)) were chosen to fit the relationship between 395 

VOD and AGB (Li et al., 2021; Wang et al., 2021a). The root mean square deviation (RMSE) 396 

between VOD-predicted-AGB and AGB was also calculated (Eq. (10)). The same calculation 397 

was also done for ASCAT IB VOD and different canopy height products. 398 

R - ∑ �VOD& − VOD000000��1& − 10�2&*�
3∑ �VOD& − VOD000000�)2&*� 3∑ �1& − 10�)2&*�

�7�
 399 

1 - a1 6 exp$−b ∗ �VOD − c�( 6 d �8� 400 

1 - a ∗ exp�b ∗ VOD� 6 d �9� 401 
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RMSE - ?∑ �@& − 1&�)2&*� A �10� 402 

where Y is AGB or canopy height, a, b, and c are best-fit parameters, y is the predicted AGB 403 

or predicted canopy height, n is the valid number of pixels. 404 

The spatial and temporal performance of three other C-VOD products were also evaluated for 405 

inter-comparing with ASCAT IB VOD. In order to keep consistency for each product, the 406 

following criteria were used: 1) for each product, we used VOD data from the same year (or 407 

close in time) as the vegetation-related proxies; 2) since the VODCA data set is only available 408 

until 2018 and AMSR2 provides data from July 2012, the temporal evaluation was made from 409 

2013 to 2018; and 3) over each pixel and each year, the number of VOD data should be larger 410 

than 60 per year to avoid statistical under-representation. The retrievals of the VOD and ω 411 

parameters were also analysed considering different classes of vegetation types defined by the 412 

MODIS IGBP classification scheme.   413 

4. Results 414 

4.1 Calibration results of the C and D parameters  415 

The “bare soil” pixels used for the computation of the C and D parameters of the Ulaby bare 416 

soil scattering model (Eq. (4)) are presented in Fig. 2. The red pixels, corresponding to the 417 

“bare soil” regions where the backscatter signals were observed in a prolonged state of 418 

dryness, are in the desert area. For the blue pixels in non-desert regions, the C and D values 419 

were computed from Eq. (4), keeping only pixels where the correlation coefficient (R) is 420 

larger than 0.25. Those pixels are mainly distributed in the north, center, and south of Africa, 421 

the south of Australia, south of Southern America, Central Asia, and the western regions of 422 

the United States. The main land cover types associated with the blue pixels are grassland, 423 

cropland, and open shrubland which have a clear seasonality. As a result, the C value could be 424 
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estimated over 23,482 pixels and the D value over 24,205 pixels. The corresponding soil 425 

properties (18 types) and terrain-related indexes (9 types) of these pixels were extracted, and 426 

then they were used as predictors to train two random forest models (referred to as the C and 427 

D models, respectively) for simulating, separately, the C and D parameters at the global scale. 428 

 429 

Fig.2. Spatial distribution of the “bare soil” pixels (represented by points) and MODIS IGBP 430 

land cover map. The “bare soil” pixels are shown in a 2° × 2° grid if the total number of C or 431 

D pixels is larger than six. 432 

In total, 18 predictor variables were selected to train the C model and 19 predicator variables 433 

were selected to train the D model after applying the recursive feature elimination (RFE) 434 

method. Fig. 3 (a-b) shows the variable importance of each C and D model. Soil property 435 

indices (group SPI) played a key role in estimating the target variables in both the C and D 436 

models, with a total importance of 79.39 % and 65.67 %, respectively. The soil organic 437 

carbon density (Ocdens) ranked first in SPI for both models. The terrain-related features 438 

(group TI) contributed more in the C model than in the D model, which is consistent with the 439 

results obtained in Africa (Liu et al., 2021b).  440 
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 441 

Fig.3. Predictive variable importance of the C (a) and D (b) model values. SPI and TI mean 442 

soil property indices (in orange) and terrain-related feature variables (in dark blue), 443 

respectively. The definition of each variable is given in Table S1 and S2. 444 

The results of the 10-fold cross-validation of two RF models trained by the selected indices 445 

(Fig. 4) are better than those obtained in Africa (Liu et al., 2021b). For the C model, R2 446 

increased from 0.85 to 0.87, and RMSE decreased from 1.31 dB to 0.97 dB.  The R2 metric of 447 

the D model improved from 0.61 to 0.79, but the RMSE showed a slight increase (from 448 

2.37 dB/ m3⋅m-3  to 2.43 dB/ m3⋅m-3 ). The overestimation of the lower values and 449 

underestimation of the higher values obtained in Africa still occurred for the two models 450 

calibrated here at the global scale. This is likely due to the limitation of the RF regression 451 

model that cannot be extrapolated; namely when the range of the test fold is not included in 452 

the training fold, values beyond the range of the training data set will be overestimated or 453 

underestimated.  454 
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 455 

Fig. 4. Performance of the C (a) and D (b) soil model based on the 10-fold cross-validation.  456 

The spatial patterns of the global predicted C and D parameters are illustrated in Fig. 5. The 457 

5th–95th percentiles of the C and D values among all pixels varied from -18.05 dB to -11.82 458 

dB, and from 5.12 dB/ m3⋅m-3 to 13.97 dB/ m3⋅m-3 , respectively. These values are in the 459 

usual range for C-band SAR observations (Baghdadi et al., 2008; Baghdadi et al., 2016; 460 

Verhoest et al., 2008). The distribution of the D values is more discrete than that of the C 461 

values. The pixels with a value ranging from -15 dB to -10 dB account for 76.20 % of the 462 

pixels in the C map, while 66.62 % of them are concentrated in the range of -15 dB to -12.5 463 

dB. Comparatively, 75.26 % of the pixels have a D value in the 5-10 dB/ m3⋅m-3 range and 464 

are evenly distributed in 5-7.5 dB/ m3⋅m-3  (accounting for 38.79 %) and 7.5-10 dB/ 465 

m3⋅m-3 (accounting for 36.46 %). In addition, the distribution of the pixels with a C value 466 

lower than -15 dB in the C map matches well with the distribution of pixels with a D value 467 

larger than 10 dB/ m3⋅m-3 in the D map, especially in South and North America, Eastern 468 

Europe, and Central Asia. Considering each IGBP landcover (Fig. 5 (c)), we can see that the 469 

C and D parameters have a wide range of values in the low vegetation areas. A wide range of 470 

C values can also be found in mixed forest (MFO). The median C values were similar across 471 
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all vegetation types, while the median D values varied across the different land cover types. 472 

More details about the statistical description of C and D are given in Appendix Table 1-3. 473 

 474 

Fig. 5. Global maps of the C (a) and D (b) soil model parameters estimated from the RF 475 

models and (c) their boxplots for different IGBP land types. 476 

4.2 Vegetation scattering parameter (ω) retrieval 477 

A global map of the thirteen-year time-average retrieved ω (based on w=18 days) is shown in 478 

Fig. 6 (a). The highest values (ω > 0.32) were obtained in Western Australia, northern 479 

Mexico, northwest Canada, eastern Lena River in Russia, southern Somalia, western Arabian 480 
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Peninsula, southwest Iran, and northern Pakistan. Those regions are in areas with complex 481 

terrain of hills and gullies. High values of ω were also retrieved in most pixels of the tropical 482 

regions. A clear gradient of increasing average ω value from north to south can be seen across 483 

the Sahel. The maximum values of ω reach up to 0.97, and the pixels with values in the range 484 

of 0.08-0.32 account for 97.36 % of all pixels. A boxplot of ω for each land cover type sorted 485 

by decreasing median values are shown in Fig 6 (c). Evergreen broadleaf forests (EBF) have 486 

the highest ω values, which is consistent with previous results from a calibration of the ω 487 

values over southern France (Shamambo et al., 2019). Interestingly, high ω values were 488 

obtained in the Cropland/Natural vegetation mosaics (CVM) where roughly half of the pixels 489 

(53.48%) have a value greater than 0.24. The standard deviation of the ω value in low 490 

vegetation is larger than that in the forest and woody savannas areas. 491 
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 492 

Fig. 6.  Global distribution of (a) temporal average and (b) standard deviation of the retrieved 493 

ω parameter from 2008 to 2020, and (c) the mean value per vegetation type ordered by 494 

decreasing values and the corresponding standard deviation. 495 

4.3 ASCAT IB VOD evaluation  496 

4.3.1 Global spatial patterns 497 

The spatial distribution of the four VODs (Fig. 7) shows that the passive VOD products 498 

(AMSR2 VOD and VODCA VOD)  have a larger coverage as the active VOD products 499 

(ASCAT IB VOD and ASCAT TUW VOD) failed to obtain values in some areas (algorithm 500 
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failure). In the ASCAT IB VOD retrieval algorithm, we did not perform VOD retrievals in 501 

bare soil areas when the bare soil fraction is greater than 99 % and in pixels where we failed 502 

to simulate the bare soil backscatter (i.e. when the simulated bare soil backscatter value is 503 

larger than the observed backscatter value). The retrieval of TUW VOD was not performed 504 

when the difference between the wet and dry reference exceeds the maximum range in the 505 

backscatter signal over bare soils (Vreugdenhil et al., 2016). The maximum values of all the 506 

four VODs were retrieved in the tropics with VOD ~ 1.2 for AMSR2 and ASCAT TUW 507 

VOD, ~ 1.0 for ASCAT IB VOD, and ~ 0.75 for VODCA VOD. The two passive VOD 508 

products (AMSR2 and VODCA) have a similar spatial distribution, with higher values in the 509 

boreal forests similar to those in the tropical region because they are retrieved from the same 510 

sensor (AMSR2) but with a different version of the algorithm. The zonal averaged VOD per 511 

latitude (Fig. 7 (e)) shows two peaks at the latitudes of ~ 0°N and ~ 60°N for all three VODs, 512 

except for ASCAT TUW VOD. At the latitude of ~ 0°N corresponding to regions of dense 513 

tropical forests, both ASCAT VODs decrease rapidly from north to south, while both AMSR2 514 

VODs show a plateau at ~ 0°N and decrease from a latitude of about 13°S.  515 
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 516 

Fig. 7. Global distribution of time-averaged VOD maps over the period from years 2013-517 

2018, (a) ASCAT IB, (b) ASCAT TUW, (c) AMSR2, (d) VODCA and (e) corresponding 518 

zonal average. 519 

In order to quantitatively describe the differences among the four VODs, we computed the 520 

spatial correlation and residuals of the relationship between ASCAT VOD IB and the three 521 

other VOD products (Fig 8). ASCAT IB VOD has the highest correlation with AMSR2 VOD, 522 
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followed by VODCA VOD and ASCAT TUW VOD. AMSR2 and VODCA VOD show a 523 

piecewise linear correlation with ASCAT IB VOD, while the correlation between TUW VOD 524 

and ASCAT IB VOD is quite low when the ASCAT IB VOD value is lower than 0.6. The 525 

residual plots show that the value of ASCAT IB VOD is lower than that of AMSR2 VOD in 526 

almost all pixels. Compared with VODCA VOD, ASCAT IB VOD values are larger when 527 

their values exceed 0.8. ASCAT IB VOD values are lower than the ASCAT TUW VOD 528 

values except for values in the range of 0.7-0.8. 529 

 530 

Fig. 8.  Density scatter plots and residuals of the spatial relationship between ASCAT VOD 531 

IB and the three other VOD products. VOD is time-averaged over 2013-2018, with residuals 532 

calculated as ASCAT IB VOD minus the three other VODs. 533 

4.3.2 Spatial correlation with aboveground biomass and canopy height  534 

Fig. 9 shows the density scatter plots of the four VODs with the three aboveground biomass 535 

(AGB) products. The density of points in the scatter plots of GEDI AGB is lower than that of 536 

the two other AGB products because the range of GEDI biomass did not include areas with 537 

latitudes above 53.99°N. The distribution density plot of VOD versus AGB differs between 538 
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the ASCAT and AMSR2 VOD products. The shape of the density distribution of ASCAT 539 

VOD shows a gradual slope rise, while that of AMSR2 VOD presents first a slow slope 540 

increase and then a steep increase for AGB greater than ~100 Mg ha-1. Therefore, two 541 

different parameterization functions (Eq. (8) for ASCAT VOD; Eq. (9) for AMSR2 VOD) 542 

were used to fit the relationship between VOD and AGB. The results show that ASCAT IB 543 

VOD exhibits the best performance to predict all three AGB products, with a correlation of 544 

0.83-0.87 and RMSE values (34.62-36.86 Mg ha-1) computed between reference and 545 

predicted AGB. AMSR2 VOD achieved the second-best performance in predicting the 546 

Saatchi and GEDI AGB. Similarly, ASCAT TUW VOD achieved the second-best 547 

performance in predicting CCI AGB. ASCAT TUW with Saatchi and GEDI AGB and 548 

VODCA with CCI AGB presented the lowest correlation values (0.63-0.66).  Note that there 549 

is some scatter in these relationships and at low height levels, it cannot be concluded that the 550 

C-band VOD product will be a good proxy of the vegetation biomass. In particular, further 551 

studies based on specific data sets will be necessary to better evaluate the potential 552 

capabilities of ASCAT IB VOD in low vegetation canopies as croplands and grasslands. 553 
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 554 

Fig. 9.  Density scatter plots of the four global C-VOD (yearly averaged value) vs Saatchi 555 

AGB (first row), CCI AGB (second row) and GEDI AGB (third row) datasets. R1 is the 556 

spatial Pearson correlation coefficient calculated between C-VOD and AGB (Eq. (7)), while 557 

R2 is calculated between VOD-predicted AGB and AGB. The solid blue lines are the 558 

predictive fits obtained using Eqs. (8) or (9). 559 

Considering the density scatter plot (Fig. 10) between VOD and the two GEDI canopy height 560 

(CH) (Lang and Potapov) products, ASCAT IB VOD obtained the best correlation (R = 0.84-561 

0.85). The saturation of VOD to CH is more serious for AMSR2 and VODCA VOD than for 562 

ASCAT IB and TUW VOD. AMSR2 and VODCA VOD saturate at a value of CH exceeding 563 

15 m, while ASCAT IB and TUW VOD saturate at a higher value (> 20 m). Regarding the 564 

potential to predict canopy height, ASCAT IB VOD presents again the best results with the 565 

two canopy height (CH) products at different spatial resolutions (Potapov: from 30 m 566 

resampled to 0.25 degrees, Lang: 0.5 degrees). The lowest RMSE values were obtained in the 567 
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ASCAT IB VOD predictions of CH: RMSE = 4.07 m for Potapov’s CH and RMSE = 4.38 m 568 

for Lang’s CH. The R2 value (computed using a predictive fit) is lower than the R1 value for 569 

the ASCAT IB VOD. This is mainly because we forced the predictive fitted line to start from 570 

(0, 0). The quality of the relationship between VOD and CH is slightly weaker for the Lang 571 

product (Fig. 10) probably due to the coarse resolution of the latter product. 572 

 573 

Fig. 10.   Density scatter plots of the four global C-VOD (yearly value) vs the Potapov et al. 574 

canopy height (first row), and Lang et al. canopy height (second row) datasets. R1 is the 575 

spatial Pearson correlation coefficient calculated between C-VOD and canopy height (CH) 576 

(Eq. (7)), while R2 is calculated between VOD-predicted CH and CH. The solid blue lines are 577 

the fits obtained using Eq. (8) or (9). 578 

4.3.3 Temporal correlation with vegetation indices 579 

The regions where the four VODs products presented the highest absolute temporal 580 

correlation with VIs are shown in Fig. 11. The two ASCAT VODs had more pixels with a 581 

higher correlation with LAI and NDWI, with ASCAT IB VOD showing the highest 582 

percentage. Passive VODs have a higher correlation with NDVI over more pixels, with 583 

AMSR2 VOD having the highest percentage. Similar features can be seen in Fig. 11 (a)-(c) 584 
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for the three vegetation indices, with ASCAT IB VOD obtaining the highest correlation 585 

values over more pixels in the subtropics regions, same for TUW VOD in the eastern United 586 

States, and same for the two AMSR2 VODs in Europe and Australia. The main differences 587 

were found in Alaska and central and eastern Russia where ASCAT IB VOD vs. LAI (Fig. 11 588 

(a)) and TUW VOD vs. NDWI (Fig. 11 (c)) showed the highest correlation values, while the 589 

two AMSR2 VODs showed highest correlation values with NDVI (Fig. 11 (b)). In central 590 

Russia, the two AMSR2 VODs (Fig. 11 (b)-(c)) achieved the highest correlation values with 591 

NDWI and NDVI, while the two ASCAT VODs showed the highest correlation values with 592 

LAI (Fig. 11 (a)). The pixel-wise temporal correlations between the four VODs and the three 593 

VIs are shown in Fig S2. Overall, AMSR2 VODs obtained significant correlations with VIs in 594 

more pixels than ASCAT VODs. Specifically, more significant correlations were obtained (i) 595 

between AMSR2 VODs and NDVI, and (ii) between ASCAT VODs and LAI. Both the 596 

ASCAT VOD and AMSR2 VOD have the lowest number of values significantly associated 597 

with NDWI. The spatial distribution of correlation values between the two AMSR2 VODs 598 

and the three different VIs is very similar, but the results for the active VODs are significantly 599 

different. The correlation values between the two active VODs and the VIs are in opposite 600 

directions in some specific regions. In the Amazon and Congo forest regions, ASCAT IB 601 

VOD shows negative correlations with the three different VIs, while ASCAT TUW VOD 602 

shows positive correlations. In the Central African Republic, northern Argentina and southern 603 

Bolivia, ASCAT IB VOD correlates positively with the three different VIs, while ASCAT 604 

TUW VOD correlates negatively with the same VIs. For further details, see Fig. S2 605 
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606 
Fig. 11.  Maps of the highest absolute temporal correlation (R) values between four VOD 607 

datasets and three VIs based on six-year datasets (2013-2018) and corresponding percentage 608 

of coverage (bottom left). “Not significant,” represented by shaded areas, means the P-value 609 

of the correlation is larger than 0.05. White areas mean “no valid data.” 610 
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To illustrate the seasonal dynamics of the active and passive VODs, the time series of VOD 611 

and NDVI (LAI) are plotted over five pixels with relatively homogeneous land cover 612 

conditions but different vegetation types (Fig. 12). The fractional coverage of the land cover 613 

class and location information of each pixel is presented in Table S4. In the cropland site over 614 

northern France, ASCAT IB VOD showed a negative correlation with NDVI and LAI, while 615 

the three other VOD products showed the same seasonal dynamics as NDVI and LAI (the 616 

ASCAT IB VOD changes were similar to the three other VODs and VIs only from May to 617 

July). Fig. 12 (a) illustrates the negative temporal correlations obtained by ASCAT IB VOD 618 

with all three VIs in Eastern Europe (Fig. S2). The soil moisture and backscattering 619 

coefficient data for both periods (Feb.-May and Aug.-Nov.) were checked (Fig. S3). The 620 

backscattering coefficient changes are in phase with the time changes in soil moisture. 621 

However, the backscattering coefficient has a high value at the beginning of the vegetation 622 

development and the end of senescence, even larger than the value at the time when the LAI 623 

was at its peak. Shan et al. (2022) have also identified the same phenomenon that they 624 

attributed to human activity before and after sowing and to vegetation senescence in 625 

agricultural fields that increased soil roughness resulting in the high value of the observed 626 

backscatter signals. In addition, previous studies have observed a decrease in the backscatter 627 

signals as LAI increased in narrow-leaved crops (Fontanelli et al., 2013; Macelloni et al., 628 

2001). 629 



34 
 

630 
Fig. 12.  Time series of the five VOD products (including the old ASCAT IB V1 version in 631 

(d)), NDVI, and LAI over five types of vegetation cover in the period from January 2013 to 632 

December 2018 (AMSR2 and VODCA VOD were smoothed by an 18-day moving window). 633 

Interestingly, over the evergreen broadleaf forest site in southern Vietnam, ASCAT IB VOD 634 

presents large seasonal variations similar to those of LAI, while the three other VODs and 635 

NDVI showed slight time variations. In the high latitude grasslands site (Fig. 12 (c)), the 636 

temporal availability of ASCAT IB VOD is shorter than that of the passive VODs, but 637 

ASCAT IB VOD still monitored well the vegetation growth. The AMSR2 VODs have a 638 
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longer temporal availability than the active VODs in the high latitude regions, which is clearly 639 

shown in the Hovmöller diagrams (Fig. S4). In the savanna site in Africa (Fig. 12 (d)), the 640 

peak of ASCAT IB VOD is well synchronized with that of LAI, while the AMSR2 VODs and 641 

NDVI are more synchronized. Compared to the ASCAT IB V1 VOD version (only available 642 

in Africa) (Liu et al., 2021b), it can be clearly seen that the new global ASCAT IB VOD 643 

product is smoother and solves the noise issue mentioned in the previous study in Africa. In 644 

the open shrublands site (Fig. 12 (e)), the values of LAI and NDVI were higher in 2017 than 645 

in the other three years, and ASCAT IB VOD also captured well this inter-annual variation in 646 

the vegetation cycle. ASCAT TUW VOD presents weak temporal variations over all the 647 

different vegetation types, because a time window ranging from 2 to 12 weeks were used to 648 

calculate VOD (Vreugdenhil et al., 2016). 649 

5. Discussion 650 

5.1 Uncertainty in the VOD retrieval 651 

There are three main uncertainties associated with ASCAT IB VOD. The first one is the 652 

simplified scattering process considered in the retrieval algorithms, and the other two are the 653 

soil parameters estimated from the random forest models and the ERA5-Land SM input. The 654 

water cloud model that is used to simulate the backscattering coefficient in the present study 655 

neglected the multiple scattering effects as it is hard to quantify this part in the model. Some 656 

studies showed that the multiple scattering effects can be generally ignored for low levels of 657 

the vegetation cover at the C- and L-bands (El Hajj et al., 2019b; Hosseini et al., 2015; Zribi 658 

et al., 2019). One study (Li et al., 2020) confirmed also this conclusion by comparing the 659 

VOD and SM parameters retrieved from L-band SMOS TB based on Tau-Omega and a 660 

higher order radiative transfer model, named the Two-Stream emission model (Schwank et 661 

al., 2018), which holds a stronger physical background with consideration of multiple 662 

scattering and reflection. However, the VOD values retrieved from the two models vary over 663 
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dense vegetation areas and boreal regions. A study that explored the contribution of double-664 

bounce to the total signal of the P-, L- and C-bands in forest regions showed that the double-665 

bounce component at C-band is lower than that at the L- and P-bands and accounts for a small 666 

contribution (1%) to the total signal in forests (Freeman and Durden, 1993). Quast et al. 667 

(2019) used a generalization of the WCM that incorporates an estimate of first-order (i.e., 668 

double-bounce) interaction-effects to simulate the ASCAT backscattering signals. The results 669 

also showed the interaction-contributions are very small. In the passive domain, (it is likely it 670 

is the same in the active domain), several studies showed that multiple scattering effects can 671 

be well accounted for by zero-order radiative transfer models that neglect multiple scattering 672 

effects, provided that the model parameters (VOD and scattering parameter) are considered as 673 

effective parameters (Kurum, 2013; Li et al., 2020). Here, we roughly simulated the effect of 674 

neglecting multiple scattering, by accounting for the impact of a 0 to 5 % change in the total 675 

signal (the value of 0 to 5 % was estimated from Freeman and Durden (1993) and Quast et al. 676 

(2019)), on VOD retrievals for the three vegetation types (Fig. S5). Assuming multiple 677 

scattering accounts for 5 % of the total signal (worst-case scenario), the results showed that 678 

the relative variation of VOD in the evergreen broadleaf forest reached 19 % when ignoring 679 

multiple scattering. The relative change of VOD in grasslands also showed a higher value (17 680 

%) than in savannah (12 %) even though their VOD value changed little (~ 0.02). These 681 

results show that neglecting multiple scattering effects in ASCAT VOD retrievals has a non-682 

negligible effect, potentially leading to a change in VOD values by around 10-20 % in the 683 

worst case and that better consideration of multiple scattering effects should be considered in 684 

future improvements to our retrieval approach.  However, the relative change in VOD caused 685 

by neglecting multiple scattering is relatively small compared to the large uncertainties 686 

associated with global AGB datasets: AGB values can vary by up to 50 % in some forest 687 

regions for different AGB data sets (Araza et al., 2022; Urbazaev et al., 2018). Considering 688 
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that there is no simple equation to quantitatively describe the multiple scattering effects in 689 

WCM, the traditional WCM equations were used in this study. Although there are some 690 

discrete models (Bracaglia et al., 1995; Ulaby et al., 1990)  that considered the multiple 691 

scattering effects, it is difficult to apply these models over large regions as they need too 692 

many input parameters for a rigorous retrieval (Bai et al., 2018; Bai et al., 2022). 693 

Another possible uncertainty associated with ASCAT IB VOD is related to the fact we 694 

ignored the subsurface scattering in the simplified Ulaby soil model. Wagner et al. (2022) 695 

showed that the backscattering coefficient negatively correlates with SM when subsurface 696 

scattering is the main contribution of the soil backscatter and positively correlates with SM 697 

when the surface scattering effects dominate. When both types of scattering are present, the 698 

backscattering coefficient will exhibit a negative correlation with SM in dry conditions and a 699 

positive correlation as SM gradually increases, showing a U-shape (Liu et al., 2016; Wagner 700 

et al., 2022). Based on the correlation with AGB, the ASCAT IB VOD retrieved using the soil 701 

parameters predicted by different models trained with different positive correlation thresholds 702 

were evaluated, with the threshold R > 0.25 achieving the best results (Table S5). When a 703 

higher threshold value is selected, pixels with mixed scattering that may be U-shaped with a 704 

lower R-value are excluded from the model training, resulting in more errors in the soil 705 

parameters prediction and finally causing errors in the ASCAT IB VOD retrieval. Although 706 

some studies have showed that the subsurface scattering effects usually happen in dry desert 707 

areas (McColl et al., 2014), the correlation values between the ASCAT backscatter 708 

measurements and ERA5-land SM revealed that pixels with negative correlation values are 709 

also located in some sparsely vegetated areas (Fig. 1 in (Wagner et al., 2022)). Because of the 710 

negative correlation, the σWetRef
∘   parameter fails to represent the time period when SM values 711 

are high (Fig. S1). Therefore, neglecting subsurface scattering in soil scattering modeling and 712 

in estimating initial values of the vegetation parameter from σWetRef
∘   will introduce 713 
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uncertainty to the ASCAT IB VOD retrievals, especially when the subsurface effects are 714 

dominant.  715 

Random forest models were used in this study to simulate the global C and D soil model 716 

parameters. The underestimation of the high values and overestimation of the low values of 717 

the soil parameters (C and D) can be noted in the 10-fold cross-validation (Fig. 4 (a)-(b)). 718 

This is caused by the limitations of the tree-based (e.g. random forest) models to perform 719 

extrapolations (Hengl et al., 2018). The predictions for test data outside the range of training 720 

data are often underestimated or overestimated. During the 10-fold cross-validation, the data 721 

are divided into ten groups with 9 groups used for training and 1 group for testing, and each 722 

group is tested once for the model. The range of data in the training and testing folds may be 723 

similar if the data has a normal distribution, where the mean is equal to the median value. In 724 

the histogram of the C and D values extracted in “bare soil” pixels (Fig. S6), there is a larger 725 

difference between the averaged and median value of the D values than for the C values. As a 726 

result, the underestimation and overestimation of the D model are more severe than that of the 727 

C model (Fig. 4 (a)-(b)). The effect of the uncertainty associated with the parameters C and D 728 

on the VOD retrievals was evaluated on three vegetation types based on RMSE in Fig. 4. The 729 

results (Fig. S7) show that the most significant impact is on grasslands, followed by savannas 730 

and evergreen broadleaf forests. Following the method of Liu et al. (2021b), the uncertainty 731 

associated with ERA5-Land’s SM on the VOD retrievals was analyzed by examining changes 732 

in SM values in relation to relative changes in VOD values over three vegetation types. The 733 

selected change in SM value, derived from an estimate of ERA5-Land’s ubRMSE, is 0.05 734 

m3/m3. The results (Fig. S8) show that the relative change in VOD values is ± 17 % on 735 

grassland, ± 8 % on savannah and ± 3 % on evergreen broadleaf forest when SM values vary 736 

by ± 0.05 m3/m3. As expected, the impact of errors on SM is weaker as VOD values increase. 737 
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These results are similar to the sensitivity analysis of the uncertainty associated with ERA5-738 

Land SM on ASCAT IB V1 VOD retrievals (Liu et al., 2021b). 739 

5.2 Inter-comparison of the active and passive VOD 740 

The assessment and comparison results indicate that there are some discrepancies between 741 

ASCAT IB VOD and AMSR2 VODs. Regarding spatial relationships, ASCAT IB VOD 742 

showed the highest correlation with AGB and canopy height (Fig. 9-10). It was also found 743 

that ASCAT IB VOD had the best temporal correlation with LAI and NDWI for most of the 744 

pixels at the global scale, while AMSR2 VODs showed best correlation with NDVI (Fig. 11 745 

(b)). The statistics of the temporal correlation between VODs and VIs in each land cover type 746 

show similar results (Table S6), especially for short vegetation. Physical radiative transfer 747 

mechanisms may help to understand why LAI and NDWI have a better spatial and temporal 748 

correlation with active ASCAT IB VOD than passive AMSR2 VODs. As active microwave 749 

sensors emit energy, the observed backscattering coefficient is a measurement of the 750 

microwave radiation scattered in a single backward direction, while the passive microwaves 751 

sensors detect the naturally emitted microwave energy which corresponds to the integration of 752 

the bi-static coefficient considering the incident radiations over the whole hemisphere 753 

(Ferrazzoli et al., 1989; Wigneron et al., 1999). Therefore, compared to passive observations, 754 

active observations are more sensitive to volume scattering within the canopy. This is because 755 

passive microwave remote sensing integrates over all of the possible directions of incident 756 

radiation, while active microwave remote sensing only samples a single direction, resulting in 757 

less averaging of coherent effects. Consequently, active microwave remote sensing is more 758 

sensitive to vegetation canopy structure and specifically temporal changes in leaf water and 759 

orientation than passive microwave remote sensing.  760 

Even though ASCAT IB VOD performed well in space and time when compared with the 761 

three other C-band VOD products, we should be aware that the algorithms and input datasets 762 
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of those four products differ and also make the VOD values and ranges different (Fig. 8). We 763 

summarized these main differences in Table 1. For the two active VOD products, the retrieval 764 

algorithms are both based on the water cloud model, but the inputs are different. TUW VOD 765 

was retrieved by using the ASCAT dry and wet references which are the mean value of the 10% 766 

highest and lowest normalized backscatter data at 25° and 40° (Pfeil et al., 2018), while the 767 

ASCAT normalized backscatter data at 40° was used to retrieve ASCAT IB VOD. The 768 

hypotheses made in the two active VOD retrieval algorithms are also very different. In the 769 

ASCAT IB VOD retrieval algorithm, the vegetation scattering (ω) and VOD parameters were 770 

assumed to be constant within a period of 18 days and retrieved together using a model-based 771 

SM as input to the algorithm. In contrast, the TUW VOD retrieval algorithm assumes that the 772 

maximum range of backscatter values (- 6.68 dB) over bare soil is the same around the world, 773 

excluding desert areas. The auxiliary data used by both algorithms mainly concern the 774 

modelling of soil scattering. The ASCAT IB VOD retrieval algorithm employed many 775 

ancillary data sets (e.g. SoilGrids250m and DEM-related datasets) for calibrating the 776 

parameters of the soil model and used a modelled reanalysis SM product from ERA5-land as 777 

input to the soil model. Conversely, the TUW VOD retrieval algorithm utilized only the 778 

Koppen–Geiger climate classification data to model the bare soil scattering. The different 779 

ancillary data used in the two algorithms will affect the VOD retrievals. The most obvious 780 

difference is that the two active VODs are retrieved using ancillary information for soil 781 

moisture, while VOD and SM are simultaneously retrieved in the passive domain (Owe et al., 782 

2008; Wigneron et al., 2017). The two passive VOD are retrieved from AMSR2 brightness 783 

temperature measurements at 55° (Imaoka et al., 2012) but with different versions of the 784 

LPRM algorithm. VODCA VOD was retrieved based on LPRM version 6 (van der Schalie et 785 

al., 2017) which update the setting of the effective scattering albedo and of the soil roughness 786 

parameter, compared with LPRM version 5 used in the AMSR2 VOD retrievals. Those 787 
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discrepancies among the four VOD products may make the interpretation of the inter-788 

comparison more challenging.   789 

Table 1. Summary of the key differences in the retrieval algorithms of the active ASCAT 790 

VODs (ASCAT IB, TUW) and the passive VODs (AMSR2 and VODCA). 791 

Algorithm ASCAT IB ASCAT TUW 
(Vreugdenhil et al., 
2016) 

LPRM version 5 (AMSR2 
VOD) (Owe et al., 2008) 

LPRM version 6 
(VODCA VOD)  
(Moesinger et al., 2020 ; 
van der Schalie et al., 
2017) 

Observations ASCAT σobs
∘  at VV 

polarization 
 

ASCAT σWetRef
∘  and 

σDryRef
∘  at VV 

polarization 

AMSR2 TB at dual (V, H) 
polarization 

AMSR2 at dual (V, H) 
polarization 

Vegetation 
scattering 
modelling 

Water cloud model 
(Attema and Ulaby, 
1978) 

Water cloud model 
(Attema and Ulaby, 
1978) 
 

τ-ωp model (Mo et al., 
1982) 
ωp= 0.05 

τ-ωp model (Mo et al., 
1982) 
ωp= 0.075 

Soil scattering 
modelling 

Ulaby linear model 
(Ulaby et al., 1978) 

△�C∘: maximum range 
in backscatter values 
over bare soils 

H-Q-N modelling (Wang 
and Choudhury, 1981) 
HR= 0.09 

H-Q-N modelling (Wang 
and Choudhury, 1981) 
HR= 1.2*(1-2*SM) 

Hypothesis VOD is the same over 
a short time window 
(18 days) 

△�C∘ is the same 
everywhere in the 
world, except in 
desert areas. 

VOD is the same at H and 
V polarizations 

VOD is the same at H and 
V polarizations 

Ancillary data SoilGrids250m 
(Hengl et al., 2017) 
and DEM-related data 
(Danielson and 
Gesch, 2011) are used 
to estimate the soil 
parameters of the 
Ulbay linear model; 
 
ERA5-Land SM 
(Muñoz-Sabater et al., 
2021) is used as input 
to simulate the bare 
soil backscatter 
coefficient 

Koppen–Geiger 
climate classification 
was used to set the △�C∘ parameter 

Vertically polarized Ka-
band (36.5 GHz) 
observations from 
AMSR2 are used to 
derive the effective 
temperature (Holmes et 
al., 2009); 
 
Soil texture (clay, silt and 
sand) from FAO is used 
to estimate the soil 
dielectric constant (Wang 
and Choudhury, 1981) 

Same with LPRM version 
5 

VOD retrieval VOD is retrieved 
simultaneously with 
the vegetation 
scattering parameter 
(ω) 

Only VOD is 
retrieved 

VOD is retrieved 
simultaneously with SM 

VOD is retrieved 
simultaneously with SM, 
VOD is re-scaled to 
AMSR-E VOD by a CDF 
matching technique 
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Limitations The multi-temporal 
method may result in 
VOD not being 
sensitive to dry-down 
periods (Li et al., 
2021) and has larger 
uncertainties over 
grasslands and 
croplands where 
vegetation growth can 
be very fast (Jackson 
et al., 2004). 

The use of a kernel 
smoother with a half- 
width window of 21 
days (Vreugdenhil et 
al., 2020) when 
calculating σWetRef

∘  
and σDryRef

∘   decrease 
the seasonal 
amplitude of VOD; 
σWetRef

∘  and σDryRef
∘   

are not optimized for 
regional conditions 
(Pfeil et al., 2018) . 

The global constant value 
of ωp and HR may cause 
uncertainties in VOD 
retrieval (Baur et al., 
2019). 

Same with LPRM version 
5 

TB = brightness temperature; ωp = Effective scattering albedo; HR = roughness parameter  792 

6. Conclusion and Outlook 793 

The objective of this work was to retrieve the first global ASCAT IB VOD product and the 794 

vegetation scattering parameter (ω) from the single-channel (VV) active microwave 795 

observations of ASCAT. The spatial distribution of the retrieved ω map matches well 796 

vegetation distribution, which is in line with the previous findings of the literature. When 797 

compared to the other C-VOD products, ASCAT IB VOD had a competitive advantage. In 798 

spatial terms, ASCAT IB VOD presented the highest correlation values with AGB and tree 799 

height, with R values of ~0.83 and ~ 0.84, respectively. In comparison with the previous 800 

ASCAT IB V1 VOD developed only over Africa, the global ASCAT IB VOD has shown 801 

strong improvement in terms of temporal evolution which are much less noisy pixel-based 802 

time-series than those of the previous version. Some interesting discrepancies were also 803 

observed between ASCAT and AMSR2 VODs. The non-linear density distribution presented 804 

by ASCAT VOD and AGBs is different from that presented by AMSR2 VOD. ASCAT 805 

VODs have a linear spatial relationship with LAI and a non-linear one with NDWI and NDVI, 806 

while AMSR2 VODs presented opposite results (Fig. S9). Similar results were obtained in 807 

terms of temporal variations: ASCAT VODs show greater synchronization with LAI and 808 

NDWI, while AMSR2 VODs are more closely aligned with NDVI. So, the different 809 

characteristics of the two ASCAT VODs (more closely related to changes in LAI) and the two 810 

AMSR2 VODs (more closely related to changes in NDVI and NDWI) showed appealing 811 

complementarity for conducting joint vegetation studies. 812 



43 
 

The strong ability of ASCAT observations to predict AGB as found in this work and Santoro 813 

et al. (2022) encourages us to apply this long-term VOD to investigate the time changes in 814 

aboveground biomass at continental scales since 2007. Recently, Tao et al. (2022) developed 815 

the first global C-band scatterometer dataset which dates back to 1992. Applying the new 816 

ASCAT IB algorithm to this dataset would allow obtaining a 30-year data set of the VOD 817 

parameter which is very promising for studies of vegetation resilience (Forzieri et al., 2022). 818 

Considering that global ASCAT IB VOD showed a good sensitivity to NDWI, some 819 

applications (like wildfire prediction or post-fire recovery) related to vegetation water content 820 

can be explored in the future (Bousquet et al., 2022; Fan et al., 2018). Furthermore, a specific 821 

version of our algorithm could be developed for Sentinel-1 (S1): less uncertainty in the 822 

retrievals could be obtained by combining the S1 observations at the two VV and VH 823 

polarisations, instead of using only one (VV) for ASCAT. In addition, improved bare soil 824 

models and the use of machine learning methods that can be extrapolated (e.g. ensemble RF, 825 

Cubist)  (Lin et al., 2017; Pouladi et al., 2019) could lead to a decrease in the uncertainty 826 

associated with the simulation of  the bare soil backscattering.  827 

Data availability  828 

Global ASCAT IB VOD and vegetation scattering parameter (ω) can be downloaded from the 829 

INRAE Bordeaux remote sensing lab website (https://ib.remote-sensing.inrae.fr) after 830 

registration.  831 

Appendix A 832 

A.1 Random forest model 833 

In this study, the random forest (RF) regression model was used to simulate the global soil 834 

parameters (C and D) of the Ulaby bare soil model. RF is a tree-based machine learning 835 
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method and has been widely adopted in many geographic-related studies (Liao et al., 2022; 836 

Wang et al., 2022). RF works by training many regression trees and reporting the mean 837 

response over all the trees. In each tree, approximately two-thirds of the samples in the dataset 838 

are used for training and the remaining third (called the out-of-bag data (OOB)) are used for 839 

internal validation of the model. The r-square values (R2) and RMSE calculated from the 840 

OOB samples are used to assess the model performance. The python sklearn package 841 

(Pedregosa et al., 2011) was used for the implementation of RF, including the establishment 842 

of the model, the selection of the predictor of the model, and the validation of the model. 843 

The ‘RandomForestRegressor’ was used as the estimator and its two parameters 844 

(n_estimators and max_features) were optimized by the ‘GridSearchCV’ function. The 845 

‘random_state’ has been defined to guarantee the reproducibility of the model. The predictor 846 

variables of the model were selected using a recursive feature elimination (RFE) method 847 

(Guyon et al., 2002). We first fitted the model with all the predictors and then removed the 848 

least important predictor from the model. This process was iterated until only one predictor 849 

variable was left. The selected predictors are those that lead to the highest R2 and lowest 850 

RMSE. Finally, the 10-fold cross-validation (CV) (Stone, 1974) was used as an independent 851 

validation to assess the accuracy of the selected model. The mean value of the R2 and RMSE 852 

of 10-fold CV and the importance of each predictor were reported. 853 

Appendix Table 1 854 

Statistics of C and D at the global scale.  855 

Parameter Max 95th percentiles Min 5th percentiles Mean Median 

C(dB) -7.60 -11.82 -26.01 -18.05 -14.27 -13.92 
D (dB/ m3⋅m-3 )  34.12  13.97  1.75   5.12   8.46   9.76 

Appendix Table 2 856 

Statistics of C and D over different ranges of values. 857 

Parameter Range [Min, Max] Percentage Mean Median 

C (dB) [-25,-20] 1.51 % -21.05 -20.78 
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[-20,-15] 21.98 % -16.64 -16.38 
[-15,-12.5] 66.62 % -13.73 -13.72 
[-12.5,-10] 9.58 % -11.65 -11.85 
[-10,-5] 0.31 % -9.53 -9.70 

D  
(dB/ m3⋅m-3 ) 

[0,5] 3.96 %  4.57  4.67 
[5,7.5] 38.79 %  6.38  6.43 
[7.5,10] 36.47 %  8.63  8.59 
[10,15] 17.31 %  11.74  11.47 
[15,25] 3.39 %  17.67  16.95 

 [25,35] 0.08 %  26.92  26.32 

Appendix Table 3 858 

Statistics of C and D for different IGBP land cover classes. 859 

IGBP 
land cover 

Min Max Mean Median Percentage 

C D C D C D C D  

ENF -16.48 3.88 -9.83 12.88 -13.12 7.12 -13.34 6.83 2.17 % 
EBF -16.81 4.52 -9.79 16.14 -14.02 8.86 -14.21 8.84 7.32 % 
DBF -17.28 4.10 -10.09 18.00 -13.80 8.59 -13.90 8.51 1.80 % 
DNF -15.34 5.42 -12.35 12.42 -13.90 9.11 -13.92 8.86 0.11 % 
MFO -16.53 3.83 -9.91 16.82 -13.42 8.82 -13.43 8.34 4.84 % 
CSH -17.39 4.08 -10.76 13.19 -14.51 7.22 -14.55 6.64 0.23 % 
OSH -21.04 1.75 -9.17 30.59 -13.85 6.76 -13.44 6.38 13.15 % 
WSA -20.09 4.13 -9.90 16.91 -13.69 8.21 -13.69 8.07 10.03 % 
SAV -19.61 3.05 -10.25 17.46 -13.82 8.04 -13.78 7.95 13.44 % 
GRA -26.01 2.06 -8.72 34.12 -14.43 9.02 -14.01 8.00 23.48 % 
CRO -22.01 2.81 -1.08 26.35 -14.67 10.88 -14.53 10.86 9.64 % 
CVM -18.40 4.63 -12.31 22.20 -14.34 9.84 -14.17 9.65 0.61 % 
BSV -20.43 2.23 -7.60 24.42 -15.76 7.81 -15.99 7.31 13.18 % 
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